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Abstract—This paper presents a technique for computing the geometry of objects with general reflectance properties from images.

For surfaces with varying material properties, a full segmentation into different material types is also computed. It is assumed that the

camera viewpoint is fixed, but the illumination varies over the input sequence. It is also assumed that one or more example objects with

similar materials and known geometry are imaged under the same illumination conditions. Unlike most previous work in shape

reconstruction, this technique can handle objects with arbitrary and spatially-varying BRDFs. Furthermore, the approach works for

arbitrary distant and unknown lighting environments. Finally, almost no calibration is needed, making the approach exceptionally

simple to apply.

Index Terms—Photometric stereo, shape reconstruction, shape-from-shading, bidirectional reflectance distribution function (BRDF),

specular materials, clustering materials.
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1 INTRODUCTION

AN important unsolved problem in computer vision is
modeling scenes with real-world materials. Although

real objects reflect light in a wide range of interesting ways
[8], most dense shape reconstruction techniques in the
computer vision literature assume that the scene is
Lambertian. The human visual system operates effectively
with a much wider variety of materials—we have no
problem interpreting shiny objects and other surfaces that
reflect light in varied ways. This suggests that other cues
may exist and significant improvements in shape recon-
struction algorithms are possible.

In this paper, we introduce orientation-consistency, a cue
for interpreting scenes with arbitrary reflectance properties.
Orientation-consistency states that, under the right condi-
tions, two points with the same surface orientation must
have the same or similar appearance in an image. Based on
this cue, we show how to reconstruct the surface normals of
a target object, when imaged together with one or more
reference objects of similar materials and known shape. Our
approach operates by finding, for each point on the target
object, a matching point (and normal) on the reference
object(s) that is most orientation-consistent. Because orien-
tation-consistency does not depend on illumination direc-
tion, we can capture several images with different
illuminations and require orientation-consistency over all
images to achieve very robust matches. A dense shape

reconstruction is obtained by integrating the recovered
normal field.

This approach has the following features:

. The BRDF, illumination, and shape may all be
unknown. Moreover, the BRDF may be arbitrary,
and can vary (with some restrictions, described
below) over the surface. The approach will workwith
any number of distant point or area light sources.

. Almost no calibration of the camera or lighting
environment is needed.

. A segmentation of the object into different materials
is computed.

. The algorithm is extremely simple to implement, yet
operates on a broader class of objects than any
previous photometric stereo technique, and achieves
impressive results for a wide variety of challenging
materials ranging from specular objects to velvet and
brushed fur. The quality of results on shiny objects
compares favorably to the performance of commer-
cial laser scanners on diffuse objects.

We also make the following assumptions: first, one or
more reference objects of the same or similar materials must
be imaged under the same illumination as the target object.
All BRDFs on the target object must (approximately) lie in
the linear span of the BRDFs of the reference object(s). This
assumption conveniently limits the underlying parameter
space, while still allowing for an infinite range of BRDFs. In
practice, we have found it to be an accurate model for a
wide range of real-world objects. Second, the camera is
assumed to be orthographic. Third, shadows, interreflec-
tions, and other nonlocal reflectance or transmittance effects
are ignored. Finally, like other photometric stereo methods,
the scene is assumed to be continuously differentiable.

1.1 Relation to Previous Work

Our use of reference objects builds upon early work on
photometric stereo. In particular, Silver [26] used images of
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a wooden sphere to reconstruct other wooden objects
imaged under the same lighting, based on an idea proposed
by Woodham [37]. By specifying the outgoing radiance
function for a hemisphere of directions, the sphere images
provide an empirical model of reflection for wood. More
recently, Woodham [34] developed a technique for real-time
photometric stereo using a reference object. For a good
overview of early work on photometric stereo, including the
use of reference objects, see Horn’s classic book [15].

Despite its simplicity, the use of reference objects in
shape reconstruction was not widely adopted in the
research community, due in part to the following problems:
1) the scene must have a single BRDF, 2) the reference object
must be made of the same material as the target object, and
3) the need for a calibration object is undesirable. In an
effort to overcome these limitations, most subsequent work
on photometric stereo turned to using analytic rather than
empirical models of surface reflection [3], [7], [12], [16], [22],
[33] (for a good overview, see [31]). While some of these
techniques have been shown to yield good results, they are
currently restricted to simple diffuse and specular materi-
als. It is known, however, that a wide range of real world
materials do not fit these traditional BRDF models [8].

In this paper, we show that these difficulties are
overcome by some simple observations and the use of a
small number of reference objects (typically two) instead of
one. The resulting approach operates on a broader class of
objects than any previous photometric stereo technique.

In terms of its generality and the quality of the results
obtained, our approach is similar to Helmholtz Stereopsis
[18], [30], [35], [36]which also enables reconstructing surfaces
with arbitrary BRDFs in the absence of shadows and
interreflections. The two approaches have different require-
ments, however. Some advantages of the Helmholtz ap-
proach are that it does not require reference objects,
orthography, or distant illumination. In addition, Helmholtz
techniques can exploit multiple camera viewpoints to
compute absolute depth, which is not possible with our
photometric stereo technique. A disadvantage is that the
Helmholtz approach requires a more complex experimental
setup: both the camera and the light sourcemust be calibrated
andmoved in a precise and controlled fashion (alternatively,
several static cameras and light sources may be used) [35]. In
contrast, our approach does not require that the viewpoint or
illumination are known, and is flexible enough to be used in
relatively unconstrained environments, e.g., for outside
imaging using the sun and environment as a light source.
By exploiting a fixed camera viewpoint, we directly obtain a
reconstruction at the resolution of the input images and, thus,
avoid errors due to camera calibration, image discretization,

and resampling that affect Helmholtz and other stereo
techniques. An additional advantage of our approach is that
it enables theuse of area light sources,whereas theHelmholtz
approach is restricted to point sources. Area sources are
potentially useful for highly specular surfaces that do not
have a strong diffuse component—reconstructing such
surfaces with the Helmholtz method would require a very
large number of images, enough for the highlight to appear at
every surface point.

2 SHAPE BY EXAMPLE

Surface shading provides a great deal of information about
surface geometry. However, shading also depends on
illumination, camera geometry, and reflectance—varying
any one of these factors may modify the appearance of the
object. Without some way of separating the contributions of
each of these factors, computing shape is difficult.

To address this difficulty, we propose a cue that, given
certain assumptions, is invariant to the light source dis-
tribution, camera parameters, and reflectance function and
depends purely on shape.

Orientation-consistency cue: two points with the same
surface orientation reflect the same light toward the viewer.

Orientation-consistency holds when the following as-
sumptions are satisfied: Both points have the same BRDF,
the light sources are directional (i.e., distant), the camera is
orthographic, and there are no shadows, interreflections,
transparency effects, or other nonlocal effects that do not
depend purely on the BRDF of a single point. Note that
under these conditions, the BRDF, surface orientation,
incident illumination, and viewer direction are the same
for both points. It follows [15] that the outgoing radiance is
the same for both points. Orientation-consistency is used
implicitly in the photometric stereo literature, but in a more
restricted form. We propose its use as a generic cue for
image analysis and, to this end, describe generalizations
that greatly increase its applicability.

This cue is helpful in shape perception, as it tells us quite
a bit about the distribution of highlights on an object. For
example, if a point is in highlight, any other point with the
same orientation should also have a highlight. An example
of this effect is shown in Fig. 1.

If we happen to know the surface orientation for some
points in the scene, orientation-consistency allows us to
propagate this knowledge to other points. In the example
shown in Fig. 1, we can determine the orientation of each
point on the bottle in highlight by finding the correspond-
ing point on the sphere that is also in highlight. In general,
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Fig. 1. Orientation-consistency. A sphere and a bottle are painted with the same material and lit the same way. The orientation-consistency cue says

that any two surface points with the same normal have the same color. In particular, for each of the above images (acquired with a single distant

point light source), all points that are in highlight have the same surface normal.



any reference object may be substituted for the sphere,
provided the shape of the reference is known and it
contains a sufficient distribution of surface orientations.
However, the correspondence is ambiguous when there are
multiple highlights on the sphere, and for points not in
highlight. More specifically, ambiguities arise when two
points on the sphere have the same color, resulting in two
surface orientations that cannot be distinguished from one
another.

2.1 A Correspondence Approach to
Photometric Stereo

We now describe an algorithm for reconstructing the shape
of an object from multiple images, using a reference object.
This algorithm is nearly identical to that presented by Silver
[26]; however, we show that it can be applied to a
surprisingly wide variety of objects including anisotropic
materials (Silver’s original formulation assumed isotropic
materials and was demonstrated only for simple wooden
objects). We also describe an effective technique for
reducing runtime.

Suppose that we capture multiple images of the
reference and target objects from the same viewpoint but
under different illuminations. Let Ir1; . . . ; I

r
n be the reference

images and It1; . . . ; I
t
n the target images. It is assumed that

corresponding reference Iri and target Iti images are
captured under the same illumination. For each pixel
position p ¼ ðx; yÞ in a reference or target image, let Ip be
the intensity of that pixel and define the observation vector
(abbreviated OV, or as a vector V) to be the set of intensities
observed at that pixel over the n images:

Vp ¼ ½I1;p; . . . ; In;p�T : ð1Þ

For RGB color images, there is a component OV for each
color channel. Let Rp, Gp, and Bp be the OVs for the red,
green, and blue channel, respectively. Define the cumula-
tive OV for color images Vp to be the concatenation of Rp,
Gp, and Bp into a single vector

Vp ¼ ½RT
p ;G

T
p ;B

T
p �

T : ð2Þ

Given a pixel p on the target object, the surface normal at
p is determined simply by searching for the pixel q on the
reference object with the best matching OV, i.e., q
minimizes kVp �Vqk. A complete correspondence deter-
mines the normal for every pixel on the target object.

It is interesting to observe that this formulation casts
photometric stereo as a two-image stereo matching pro-
blem—find pixel correspondences between an image of the
reference object and an image of the target object. Although
it is often argued that one of the virtues of photometric
stereo is that it avoids the correspondence problem present
in binocular stereo [33]; in fact, photometric stereo and
binocular stereo can be viewed as addressing very similar
correspondence problems. In cases where the reflectance
map has a simple parametric form, model-fitting techniques
[3], [16], [22], [33] can provide a more efficient alternative to
the explicit search method presented here.

2.1.1 Implementation Issues

In order to determine the geometry of the reference sphere,
we manually segment it from the background and then fit a
circle to the silhouette. The target object is also manually
segmented. These tasks could be fully automated, by careful
choice of the background [27], [34]. The task of finding the

reference OV closest to the target OV is a nearest-neighbor
search problem that may be accelerated with appropriate
data structures. Several fast algorithms have been devel-
oped for nearest-neighbors computations based on k-d trees
[1], [5], [11], [23]. We use the ANN algorithm [1], one such
method with freely-available source code.

We then compute a 3D surface from the estimated
surface orientations [3]. Given the set of normals fnx; ny; nzg
for each point, we solve for the height field zðx; yÞ that
minimizes

�ðzÞ ¼
X
x;y

nz
@zðx; yÞ

@x
þ nx

� �2

þ nz
@zðx; yÞ

@y
þ ny

� �2

; ð3Þ

using the approximations

@zðx; yÞ
@x

¼ zðxþ 1; yÞ � zðx; yÞ; ð4Þ

@zðx; yÞ
@y

¼ zðx; yþ 1Þ � zðx; yÞ: ð5Þ

Note that the calibration requirements are extremely
minimal—other than correcting the images for radial
distortion or vignetting (steps that we did not perform),
no geometric or radiometric calibration of the camera or
light sources is needed.

The objects were imaged with a Canon D60 camera,
using a 640mm lens to attain a good approximation to
orthography. The scene was illuminated with a hand held
spot light shone at the objects from a distance of 10 to 15 feet.
The objects were all less than one foot high.

2.1.2 Results

In our first test, we spray-painted a sphere and a plastic
bottle with the same shiny green paint, and applied the
above algorithm. The eight input images are shown in Fig. 2;
the resulting reconstruction is shown in Fig. 3. The
algorithm accurately reconstructed finely-detailed geome-
try of the bottle, including wrinkles on the label of the bottle
and indentations on the cap. Some artifacts occur in places
where the assumptions of the algorithm are not satisfied, at
self-shadows below the cap and underneath the bottle, and
where paint has flaked off the cap. Nevertheless, the shape
reconstruction is very accurate—the median distance from
each point on the laser scan to our reconstructed mesh is
0.5mm. A plot comparing a slice through the two scans is
shown in Fig. 3. Note that the laser scan has artifacts due to
specular reflections, manifested as sharp discontinuities
(spikes) in Fig. 3. To avoid such artifacts, shiny objects are
commonly painted with a diffuse coating prior to laser
scanning [6], [32]—we did not do this for the bottle, as we
wanted to demonstrate these artifacts. Later in the paper,
we show a comparison with a laser scan of an object that
was painted, and problems that the painting process can
introduce. Our approach avoids such artifacts and the need
to paint the object.

Fig. 4 shows the impact that the number of images and
distribution of light sources has on reconstruction quality.
Using as few as three images can produce a reasonable
reconstruction if the light source directions are broadly
distributed, and adding more images further improves the
result. Using even two images yields results that capture the
rough overall shape.

One challenge is that the images are quite large: 398�
1; 176 for the bottle and 328� 332 for the sphere. A brute
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force search to compute normals requires roughly one day
of compute time. The accelerated method using ANN
completed in about 5 minutes on a 2GHz Intel Xeon
processor. An additional 30 minutes was required to
compute the high-resolution mesh from the normals, but
this could be accelerated using multigrid techniques or
other fast linear solvers [28].

The same algorithm is applied to reconstructing a velvet
surface in Fig. 5. Since we did not have access to a velvet
sphere, we used a cylinder reference object instead, and
constrained the surface to bend roughly along the vertical
axis. Velvet is known to have a particularly unusual
reflectance map that is brightest at grazing angles [38].
This particular velvet sample has a two-toned appearan-
ce—from oblique angles only the red threads are visible,
while from the front, the material has a blue tone as more of
the backing material shows through. The algorithm
captured the shape very well, as seen in the figure (top
view). The reconstruction is smooth except for a number of
small wrinkles, many of which appear to reproduce
features on the actual fabric—the velvet sample itself was
wrinkled, having been folded and refolded several times.
There are also a few wrinkles on one region of the cylinder
reference object—this did not pose a problem, however, as
we simply masked out that region of the reference images
so it was not used in matching.

2.1.3 Anisotropic Materials

This algorithm can also be used to reconstruct materials
with anisotropic BRDFs. In this case, orientation-consis-
tency dictates that two pixels will have the same OV if they
have the same surface normal and orientation about the
normal. This means that the reference object should contain
samples of many surface normals and rotations, so that
there will be a good match for each possible surface
orientation on the target.

Fig. 5 shows reconstruction of an anisotropic brushed-
fur-like fabric. Note that the entire strip is made from a
single material—the interesting pattern of highlights is due
to varying orientations of the fibers, causing the BRDF to be
rotated at different positions on the fabric. As in the velvet
example above, we used a cylindrical reference object, thus
restricting the problem to vertical surfaces.

To our knowledge, this is the first time in the computer
vision literature that a shape reconstruction technique has
been successfully applied to an anisotropic material. The
reflectance in this example is sufficiently complex that it is
very difficult for humans to perceive the shape, yet the
algorithm performs quite well, as shown in the top view.
Note that the brushed-fur fabric contained a couple of sharp
creases, visible in Fig. 5b, and these were captured in the
reconstruction (front view). Moreover, the algorithm qua-
litatively preserves fine-scale textural variations over the
surface, as smoother regions appear smoother in the
reconstruction. While not perfect, it is remarkable that the
reconstruction is this good, given that the sample itself is
not exactly vertical, whereas the reconstructed normals are
all constrained to be perpendicular to the vertical axis.

Although we show results only for vertically-oriented
surfaces, note that both components of the surface normal
can be computed with this algorithm, given a reference
object with the full range of surface orientations (or by
imaging the cylinder rotated through multiple orientations).

3 MODELING MATERIAL VARIATION

Two limitations of the technique presented in Section 2 are
1) the target object must have a single albedo and 2) the
reference object must be composed of exactly the same
material as the target object. In this section, we describe
how both of these restrictions are removed.

In the next section, we consider the case of surface
texture due to albedo variations over a purely diffuse or
specular object. The following section considers the case of
more general material variations.

3.1 Color Variation

Consider a diffuse target object with a texture pattern that
varies over the surface. The appearance of such an object
may be approximated using the Lambertian formula:

Itp ¼ �tpnp �
X
light l

l; ð6Þ

where np is the surface normal at that point, l encodes the
light source direction and intensity, and �p is a reflection
coefficient that varies over the surface.
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Fig. 2. The eight source images used for this experiment. The hand-held light moves from left to right across each row. For each horizontal position,

the light is held at two heights, shown in the top and bottom rows, respectively.



Suppose we have a homogeneous diffuse reference

object with reflection coefficient �r. The appearance of this

object may therefore be modeled as:

Irp ¼ �rnp �
X
light l

l: ð7Þ

Now, suppose that a point p on the target has the same

surface orientation as a point q on the reference object. It

follows from (1), (6), and (7) that

Vt
p ¼

�tp
�r

Vr
q ð8Þ

and, therefore,

Vt
p

kVt
pk

¼
Vr

q

kV r
qk

: ð9Þ

Consequently, the algorithm in Section 2 can be applied if

we normalize the target and reference OVs before match-

ing.1 In the case of color images, the OVs for each color

channel can be normalized separately, before combining

them into Vp.

Note that the same approach can model attached

shadows and purely specular surfaces. More generally,

the approach applies for any surface having the form:

Ip ¼ �pfðnp;v;LÞ; ð10Þ

where f is any reflectance map2 as a function of v, the

direction to the viewer, and L, the incident illumination

field.

3.2 Material Variation

In the general case, the target object may be composed of

multiple materials that vary over its surface. We make the

assumption that all materials on a single object can be

represented as a linear combination of k basis materials for

some fixed value of k. For example, the Phong model is

expressed as a linear combination of a diffuse and specular

component, i.e., k ¼ 2. More generally, there is strong

empirical evidence that a wide variety of reflectance maps

may be represented as a linear combination of a small

number of basis functions [19], [21], [25], [32].
Accordingly, suppose that the target surface has a

reflectance map of the form:
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Fig. 3. Bottle reconstruction. Top: Shaded and texture-mapped renderings of the reconstructed bottle. Note the fine details such as the wrinkles in

the label that are accurately captured. Bottom: Laser scan of the same bottle rendered from the side and front. Specular reflections cause spike

artifacts in the laser scan. The graph at right compares both reconstructions, for the slice marked in white (note spike in the laser scan). Median error

over the entire scan is 0.5mm.

1. In general, we recommend the method in Section 3.3 over this
normalization approach, as it will perform better in the presence of noise
and dark albedos.

2. We define reflectance map explicitly as a function of viewpoint and
illumination, whereas in the traditional definition this dependence is
implicit [15].
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Fig. 4. Reconstruction with reduced numbers of illumination conditions. (a) All eight imaging conditions. (b) Three imaging conditions (using B, C, F).

(c) Two source images, horizontally-separated light source (using B, C). (d) Two source images, vertically-separated light source (using C, H).

Fig. 5. Velvet and brushed fur reconstructions. (a) One of 10 input images of velvet. (b) One of 12 input images of brushed fur. In each input image,

the cylindrical reference object is on the left, and the target object is on the right. (c) and (d) show frontal and overhead renderings of the

reconstructions. The rendered viewpoints were manually chosen to match the photographs, to facilitate comparison. The reconstruction accurately

captures both fine details such as creases (frontal view) and overall shape (overhead view).



Itp ¼
Xk
i¼1

�ti;pfiðnp;v;LÞ: ð11Þ

Note that here we assume that the image intensities
measured by the camera are a linear function of scene
radiances. It may be beneficial to calibrate and correct for
nonlinearities [9], although we found it unnecessary for our
experiments.

Now, instead of one reference object, suppose we had
k reference objects r1; . . . ; rk, with reflectance maps that
are similar to the target object. Although the reference
objects could in principle have spatially varying materials,
we assume for simplicity that they are homogeneous, i.e.,

Irjq ¼
Xk
i¼1

�
rj
i fiðnq;v;LÞ: ð12Þ

For notational convenience, let q denote a point with the
same surface orientation in every reference image, i.e., q is a
pointer to a pixel of a given orientation in each reference
image rather than absolute image coordinates.

If the reference observation vectors Vr1
q ; . . . ;V

rk
q are

linearly independent, they form a k-dimensional vector
space and it follows that the target OV must lie within their
span, i.e.,

Vt
p ¼

Xk
j¼1

mj;pV
rj
q : ð13Þ

We refer to the vector mp ¼ ½m1;p; . . . ;mk;p�T as the
material index for target point p.

By stacking the reference OVs into a matrix Wq ¼
½Vr1

q ; . . . ;V
rk
q �, we can rewrite (13) as

Vt
p ¼ Wqmp: ð14Þ

For the case of RGB color images, there are separate
material indices mR;p, mG;p, and mB;p for each of the R, G,
and B channels. We refer to the color material indexmp as the
concatenation of these component indices into one vector.

3.3 Generalized Orientation-Consistency

The orientation-consistency cue is generalized to handle
multiple materials as follows: We say a point p on the target
is orientation-consistent with a point q in each of the
reference images if there exists a material index mp that
satisfies (14).

The procedure in Section 2 is modified as follows: For
each point p on the target, each point q on the reference
object is considered as a candidate match. The material
index mp is computed for each candidate point q by the
pseudoinverse ðþÞ operation:

mp ¼ Wþ
qV

t
p: ð15Þ

The candidate q is chosen for which the estimated mp

minimizes

kWqmp �Vt
pk

2: ð16Þ

In the case of RGB color images, a separate mp is estimated
for each color channel, and (16) is summed over the three
channels.

Note that for some points on the surface, the material
index is ambiguous, but the surface normal is uniquely

determined. For example, some points on the bottle in Fig. 2
do not appear in highlight in any of the input images.
Although the surface is shiny, these points could also fit a
purely Lambertian model. Consequently, if we were to
attempt to reconstruct the bottle with two reference spheres,
one diffuse, and one specular, the coefficient for the
specular sphere would be ambiguous. However, the match
on the diffuse sphere is uniquely determined and this
uniquely specifies the surface normal. The use of the
pseudoinverse in (15) resolves this ambiguity.

3.3.1 Results

To evaluate the method as applied to multiple materials, we
imaged a 3-inch ceramic fish and a 6-inch ceramic cat under
a range of illumination conditions. Fourteen images of the
fish and thirteen images of the cat were used. Each image
was captured with a different position of the hand-held
light source. Both objects are shiny and contain multiple
materials.

Light positions in front of the objects were used, in order
to avoid cast shadows from the object onto itself. To model
the different materials, we used two reference objects: a
shiny sphere and a diffuse sphere. The reference spheres
were imaged together with each target object, under the
same illuminations. For the shiny reference sphere, we used
a black snooker ball. For the diffuse reference sphere, we
spray-painted a billiard ball with gray primer. Fig. 6 shows
an image of the fish and the two reference objects. For
comparison, Fig. 7 shows our reconstruction result along
with the same fish scanned with a desktop CyberWare
Model 15 laser scanner. In order to laser scan the object, it
first had to be covered with a thin diffuse paint. Our
method extracts distinctly more surface detail than the laser
scanner. While some of this detail is likely due to the higher
resolution of the D60 compared to the imager in the laser
scanner, other differences may be due to the fact that the
fish is coated with a thin layer of transparent lacquer. Our
approach is likely capturing the surface under the lac-
quer3—which does contain a relief texture, while the laser
scan of the painted fish captures the smoothed, lacquered,
outer surface. Our reconstruction required roughly 5 hours
of computation on a 2.8 GHz Intel Xeon.
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3. Except at highlights, where we capture a mixture of the inner and
outer surfaces.

Fig. 6. Fish input data (one of 14 sets of images).



Fig. 8 shows one of the input images and our shape
reconstruction of the cat model. Noticeable artifacts occur in
our results where the assumptions of our algorithm do not
hold. For example, cast shadows by the pink pendant on the
cat result in indentations in the reconstructed surface. Also,
some artifacts occur near where highlights appeared in the
original images, since generalized orientation-consistency
does not model saturation of the highlights. This saturation
problem could potentially be resolved by using high-
dynamic-range images.

4 CLUSTERING MATERIALS

We now describe a technique for segmenting surface
materials. Most image segmentation techniques operate
directly on image pixels, and are unable to distinguish
shading variations from material (e.g., albedo) variations.
Instead, we factor out shading variation and segment purely
on albedo, in the spirit of classical work on physics-based
vision [2], [13], [17]. Unlike previouswork, however, we both
exploit empirical reflectance models and operate on several
images at once toachievemore robust results.Weassume that
the surface is composed ofK distinctmaterials, withmaterial
c defined by a material index mc. We assume K is known a
priori, although our approach could be extended to compute
K automatically [10], [24]. We can then segment the surface
materials using a technique similar to k-means and to the
clustering algorithm of Lensch et al. [19].

Our goal is to estimate the material indices of the
K materials, and to assign every target pixel p to one of these
materials. We also compute the surface orientations that best
fit these estimates. Specifically, we define a labeling indicator
variable �c;p that equals 1 if point p is assigned to material c,
and 0 otherwise. The labeling is mutually exclusive:P

c �c;p ¼ 1. Define sðpÞ to be a point q on the reference
objectwith the sameorientation asp. Theproblemcan thenbe
stated as finding the labels �, materials m, and correspon-
dences sðpÞ to minimize

Eð�;m; sÞ ¼
X
p

X
c

�c;pjjVt
p �WsðpÞmcjj2: ð17Þ

Our clustering algorithm works as follows. First, we run
the algorithm described in Section 3.3 to obtain an initial
estimate of sðpÞ. We initialize � with a random labeling.4

We then optimize Eð�;m; sÞ by alternating between
updates to m and to � and sðpÞ:

. The objective function is optimized with respect to
the materials by setting

mc ¼
X
p

�c;pW
T
sðpÞWsðpÞ

 !þ X
p

�c;pW
T
sðpÞV

t
p

 !

ð18Þ

for each c. Based on these new material indices, we
can construct a virtual reference object (VRO) for each
material by linearly combining the real reference
objects: the OV at point q of the VRO for material c is
given by Wqmc. (The pseudoinverse is used in case
of ambiguities, e.g., a cluster containing normals that
are never in highlight on the calibration objects.)

. The labeling � and correspondence sðpÞ is computed
for each target pixel p by finding the material c and
sðpÞ for which jjVt

p �WsðpÞmcjj is minimized. In
practice, we compute all OVs from the VROs and
place them in an ANN data structure [1], and search
for the nearest neighbor to Vt

p for each p.

The objective function is guaranteed to be nonincreasing
at each step and, since there is a finite set of possible
labelings �, the algorithm is guaranteed to converge to at
least a local mininum. The extension to RGB color images is
straightforward: material indices are computed separately
for each color; the labelings are updated by searching for
the color OV that best matches the target OV.

4.1 Results

Fig. 9 illustrates the clustering algorithm applied to the fish
and cat images. Note that the algorithm correctly groups
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4. We do not directly use the materials produced by the algorithm
described in the Section 3.3, due to the ambiguity discussed in that section.
Directly clustering the estimated materials produces poor results.

Fig. 7. Fish reconstruction from data in Fig. 6. (a) Reconstruction using our method. (b) Comparison with laser range scanner reconstruction from a

similar viewpoint (the fish was painted with a diffuse paint in order to enable laser scanning). (c) Additional views of our reconstruction, using original

image data for texture-mapping.



pixels with similar materials but different orientations (and,
thus, different reflectances). For example, the white areas of
the cat have been grouped in cluster 4, despite variations in
shading due to illumination. Also, note that the algorithm
has used cluster 1 on the cat as an “outlier material,” to
model cast shadows and interreflections. Because there are
not enough clusters to capture the smooth material
variations on the surface, the clustering of the cat appears
fragmented, but these fragments correspond well to the
different albedos. For the same reason, the clustering
algorithm gave slightly less accurate surface normals than
the algorithm in the previous section. Because the fish object
contained a discrete set of materials, the segmentation for
this example is very clean.

5 DISCUSSION

Many fundamental questions and possible extensions
remain.

5.1 How Many Images Are Needed?

The answer will surely depend on the properties of the
material and the environment. It is known, for instance, that
three nondegenerate images are sufficient in the case of
Lambertian scenes [33]. For purely specular scenes, the
answer depends on the illumination, particularly in the case
of a perfect mirror. In one extreme, a chrome object
illuminated by a distant, moving point light source would
require an infinite number of images to reconstruct the
surface, enough for the highlight to pass over every point
on the object. In contrast, if the chrome object is illuminated
by a highly structured lighting environment, a single image
could be sufficient to compute the correspondence of pixels
to the reference object, i.e., if every incoming light ray has a
unique intensity or color. A more practical scenario might
be to use a small number of broad area light sources,
generated, for instance, by light reflected off of an indoor or
outdoor environment. In the case of an outdoor environ-
ment, the images could be captured at different times of day
as the sun moves across the sky.

While chrome objects pose unique challenges, most
realistic materials are not purely specular, but also exhibit
a significant diffuse (or other low-frequency reflection)
component. For example, the bottle in Section 2 is highly
specular, yet may be reconstructed from only three images
with a point light source due to the presence of the diffuse

component. In the spirit of [4], [25], we conjecture that many
images are required only when the BRDF and the
illumination lack low-frequency components, e.g., a mirror
surface under point lighting. An interesting topic for future
work is to determine the requisite number of images under
general situations, perhaps using the frequency-domain
analysis of Basri and Jacobs [4] and Ramamoorthi and
Hanranan [25].

5.2 Reference Objects

An important problem is how to choose a suitable set of
reference objects to best fit a given target object or class of
objects. For example, modeling surfaces where the polish
and gloss vary continuously over the surface may require
several reference spheres. Increasing the number of
reference spheres would likely necessitate using more input
images. Additional constraints may be needed to prevent
invalid linear combinations (e.g., a material corresponding
to a broad highlight minus a sharp highlight).

More generally, is there a “universal” set of reference
objects that may be used for a wide range of target
materials? Studies based on empirical BRDF measurements
may help determine what objects would comprise such a
set, in a similar vein to the work of Matusik et al. [20], [21].

5.3 Alternative Imaging Methods

Although the techniques in this paper allow area light
sources, we have experimented only with point sources.
Area light sources could provide more robust results with
fewer images, particularly in the case of highly specular
surfaces. However, one problem with using area sources is
that cast shadows will be more difficult to avoid. For
anisotropic materials, there remains a question of how to
obtain sufficient samples of the reference material to model
the full 3D space of surface orientations. One possibility is to
image a cylindrical sample rotated to multiple orientations.

While we employed a fixed camera viewpoint, orienta-
tion-consistency also holds under changes in viewpoint; in
[29], orientation-consistency is applied in the context of
multiview stereo, in which both the illumination and the
camera viewpoint may vary. Treuille et al. [29] also address
the problem of cast shadows in the multiview case.

5.4 More General Surfaces

This paper makes several assumptions that one might want
to relax. In particular, we assume orthography, distant
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Fig. 8. Cat reconstruction. (a) Input data (one of 13 sets). (b) Views of the reconstructed model.



lighting, no cast shadows, no interreflections, no subsurface

scattering, and no transparency. For some of these

assumptions, it may be possible to detect and mask out

pixels that do not satisfy these assumptions, for example, by

measuring reconstruction error for individual pixels. It may

also be possible to model some of these effects by general-

izing orientation-consistency. For example, our method

should correctly handle interreflections when similar

interreflections are observed in the reference object, for

instance, to model chisel marks on a statue. Another

interesting avenue for future research is to remove the

need for a physical reference object by rendering a synthetic

one, given a known lighting environment and a known

BRDF model (e.g., [8]).
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