
Feature-Based Projections for Effective Playtrace Analysis

Yun-En Liu, Erik Andersen, Richard Snider, Seth Cooper, and Zoran Popović
Center for Game Science

Department of Computer Science & Engineering, University of Washington
{yunliu, eland, sniderrw, scooper, zoran}@cs.washington.edu

ABSTRACT
Visual data mining is a powerful technique allowing game
designers to analyze player behavior. Playtracer, a new
method for visually analyzing play traces, is a generalized
heatmap that applies to any game with discrete state spaces.
Unfortunately, due to its low discriminative power, Play-
tracer’s usefulness is significantly decreased for games of
even medium complexity, and is unusable on games with
continuous state spaces. Here we show how the use of state
features can remove both of these weaknesses. These state
features collapse larger state spaces without losing salient
information, resulting in visualizations that are significantly
easier to interpret. We evaluate our work by analyzing
player data gathered from three complex games in order
to understand player behavior in the presence of optional
rewards, identify key moments when players figure out the
solution to the puzzle, and analyze why players give up and
quit. Based on our experiences with these games, we suggest
general principles for designers to identify useful features of
game states that lead to effective play analyses.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General – Games

Keywords
visual data mining, game design, games

1. INTRODUCTION
The rise of online products and services has given software
creators potential access to huge amounts of behavioral data.
Website logs and metrics are a good example of this. This
data could conceivably be used for many tasks, such as im-
proving an interface, testing changes, clustering or classify-
ing users, understanding common usage patterns, and find-
ing out which features users rely on and for what tasks.

Our primary interest is analysis of behavioral data gener-
ated from games. Behavioral data is comparatively easy to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FDG’11, June 29-July 1, Bordeaux, France.
Copyright 2011 ACM 978-1-4503-0804-5/11/06 ... $10.00.

obtain as it only requires recording what players do, and
does not rely on surveys, videos, or laboratory experiments.
In addition, players do not know they are being observed
and so behave naturally. However, without direct access to
players, designers have no survey or demographic data, of-
ten making it difficult for them to understand why players
behave the way they do. The sheer scale of behavioral data
also makes it difficult to analyze without some form of com-
pression; combing through ten thousand replays of player
interaction with a game to answer a question is simply not
possible.

To allow designers to understand behavioral data, in pre-
vious work Andersen et al. designed Playtracer, a visual
datamining system for analyzing behavioral data from any
game with a concept of state and state transitions. By think-
ing of users of a game as moving through an abstract state
space and attempting to reach some particular goal states,
Playtracer is able to display aggregated user behavior as a
graph in order to understand common player strategies and
confusions. However, Playtracer has two major weaknesses.
First, it is unusable in games with large or continuous state
spaces. Second, its low-level definition of states often results
in visualizations where it is difficult or impossible to under-
stand what players are thinking. Much more than this is
required to improve the design of a game based on player
behavior.

In this work, we address both of these problems with the
addition of features to state spaces. Meaningful features
serve to both compress and discretize the state space, mak-
ing Playtracer usable on complex or continuous games, and
allow designers to examine different aspects of their games
separately or in combination. These features also allow Play-
tracer to analyze large amounts of behavioral data, discov-
ering players’ general problem-solving strategies, their mo-
ments of insight and learning, and their frustrations and
reasons for quitting. We evaluate the effectiveness of these
features by analyzing player behavior from three different
games, and provide guidelines for other researchers as to
what features are most likely to produce useful output.

2. RELATED WORK
Visual data mining is a powerful tool for exploratory data
analysis, when the user is looking for previously unknown
patterns without strong assumptions [9]. Such an approach
is useful when the user is unfamiliar with the data or has
vague exploration goals, making it difficult to formulate spe-

69

cific experiments or analyses [12].

These visual methods are beginning to gain popularity among
designers for understanding gameplay data. For example,
Bungie and Microsoft made use of heat maps to determine
common places of player death in Halo 3 [18, 15]. This
data was used to modify the topography of the environment
and strength of enemies in order to minimize unfairness and
frustration. Valve used a similar approach to analyze mul-
tiplayer maps in Team Fortress 2 [1], while BioWare used
heatmaps to analyze common bug locations [20]. Chittaro
et al. [4] use heatmaps that track what players look at and
where they spend their time in order to identify poor en-
vironment layout and player personalities. Drachen et al.
use emergent self-organizing maps to analyze play data from
Tomb Raider: Underworld [8]. Others have attempted to
show movement through a virtual environment to analyze
the flow of battle [10], identify basic player behaviors [7],
and find landmarks and cluster players behavior with mul-
tidimensional scaling [17, 16].

Unfortunately, these methods are often not applicable to
games without virtual environments. Researchers in other
fields, however, have used visual data mining to understand
user behavior in domains without natural maps on which
to plot data. Lee et al., for instance, created an interac-
tive system to visualize users’ clickstream behavior in online
stores [13]. Youssefi et al. use graph visualization techniques
for analyzing user click data on different websites to identify
popular user clickstreams and commonly visited pages [19].

In order to analyze games without virtual environments, in
previous work we designed Playtracer, a generalized heatmap
applicable to any game with a concept of states and state
transitions [2]. Using a designer-specified distance function,
Playtracer takes in lists of states that players have visited,
and uses Classical Multidimensional Scaling [14] to display
these states on a map along with player movement between
them. Typical Playtracer output on a puzzle game without
a virtual environment can be seen in Figure 1. By looking at
clusters of states farther away from the goal, or areas from
which players are likely to fail, designers can quickly iden-
tify likely player strategies and confusions. They can then
investigate further by watching specific replays or through
player interviews, if necessary.

3. FEATURES
Playtracer’s primary limitation is its inability to deal with
very large or continuous state spaces. Playtracing games
in which players explore many states leads to unintelligibly
cluttered output. One natural approach to this is to collapse
similar states. Typically, this is done through clustering al-
gorithms, such as K-means [11]. However, this leads to state
graphs that are difficult to accurately interpret. If the states
that belong to any given cluster are not all conceptually the
same, the designer will not be able to determine what a
player who visits that cluster is actually doing.

If the goal is to aggregate states which are in some sense the
same, an alternative is for the designer to change the defi-
nition of a state to include only the information he wishes
to examine. This can be accomplished by calculating fea-
tures of each state, and then selecting one or more features

Figure 1: Example Playtracer output on a puzzle
game. The yellow state is the start state, and the
green states are goal states. The size of the state is
proportional to the number of players who visited
that state. The distance metric used tends to clus-
ter states with similar piece placements and aligns
the visualization according to how many moves it
would take to reach the goal. Thus clusters of states
or large states far away from the goal correspond
to incorrect player hypotheses or confusions which
move them farther away from solving the level.

to serve as the definition of state. Any states sharing the
same features would then be collapsed together and treated
as a single state. With the right selection of features, game
designers can vastly simplify Playtracer’s output to under-
stand what general strategies players employ.

As an illustrative example, consider the educational game
Refraction, shown in Figure 2. A team of graduate and
undergraduate students created this game as part of a larger
games for learning project. The goal of Refraction is to
produce lasers with certain fractional strengths and redirect
them to target spaceships. The player can accomplish this
by placing pieces on the game grid to split, add, and redirect
existing lasers as necessary. Each piece has fixed entrances
and exits which accept lasers and output them according to
certain mathematical rules; a piece with one input and two
outputs, for example, takes in a laser and emits two lasers
with half of the original’s strength.

What features make sense in Refraction? The structure of
the laser graph is one possibility, meaning that states in
which pieces are in slightly different locations but producing
the same lasers would be considered the same. This would
capture all the mathematical operations players applied to
the original laser. Alternatively, if we cared solely about the
fractions players were trying to produce, and not how they
were created, an even higher-level feature would be to look
only at the fringe lasers. A state in which 1/6 lasers are
produced by splitting first by 1/2, then by 1/3, would then
be equivalent to a state in which 1/6 lasers are produced
by splitting first by 1/3, then 1/2. Examples of how these
features differ are shown in Figure 3.

4. UNDERSTANDING PLAYER BEHAVIOR
4.1 Problem-Solving Strategies
The benefit of using features instead of raw states is sub-
stantial. To illustrate this, we will use Playtracer to ana-
lyze three different facets of players behavior from different

70

(a) (b) (c)

Figure 3: Examples of states and features. In the original Playtracer, the authors used piece configurations as
the definition of state. Since each of these states has at least one piece in a different location, they would all
be considered different. However, one might reasonably expect 3(a) and 3(b) to be equivalent given that the
player is doing the same thing with a slightly different piece configuration. A feature that could accomplish
this is the structure of the laser graph, with lasers being edges and pieces being nodes. States would have
identical laser graphs as long as the same pieces were used in the same order on each laser. Finally, if we
were only interested in the lasers players were trying to produce regardless of how they made them, we could
look only at the fringe lasers shooting off into space. Since each state has six fringe lasers with strength 1/6,
using the fringe lasers as our primary state feature would cause all three states to be equivalent.

(a) Refraction

(b) Old Playtracer (c) New Playtracer

Figure 2: Refraction is an educational game where
players must place pieces to split and redirect lasers
to ships on the screen, shown in Figure 2(a). Defin-
ing states to be exactly the configuration of pieces
on the board causes Playtracer’s output to have too
many states to be usable, shown in Figure 2(b). In
this work, we introduce feature-based aggregation of
states to analyze player behavior in complex or con-
tinuous games; Figure 2(c) is an example of how this
approach can vastly simplify Playtracer’s output.

games, all of which would have been impossible without fea-
tures.

First, we will use Playtracer to understand a counter-intuitive
result we obtained on how players behave in the presence of
optional rewards. In a previous experiment, we discovered
through A/B testing that including optional coins in Refrac-
tion caused players to play significantly less during their first
playthrough and return less often [3]. Players could obtain
these coins by finishing the level with lasers directed through
the coin; considering that players could simply choose to skip
them if they so desired, that their presence would negatively
affect player behavior was surprising. The experiment was
conducted on a Flash game website with no access to play-
ers, making it difficult to understand exactly why they were
quitting sooner.

By using Playtracer to examine the behavior of players who
had and did not have coins, we can begin to understand
the basis for this effect. For example, the second last level
of Refraction, as seen in Figure 4, has particularly tricky
coins. Of the 2000 players who played the regular game,
27.4% gave up. Of the 174 players who reached the level in
the no coins condition, 21.8% gave up. The solution to the
level that also allows the player to win the coins is much
more complex, both spatially and mathematically, than the
simplest possible solution.

Because the coins have unique fractions, we can analyze
player behavior by just knowing the fractions they are trying
to produce. This is exactly the fringe laser strength feature,
which represents the lasers players make at the edge of the
laser graph. Thus we ran Playtracer on player data using
fringe lasers as our feature, with the distance metric be-
ing the number of fringe lasers not in common between two
states. The result was the visualizations in Figure 4(b). Re-
gion A corresponds to the complex solution, which entails
turning the 1/3 laser into a 1/24 laser, and the 1/4 laser into

71

(a) Coins (b) Coins

(c) No Coins (d) No Coins

Figure 4: Level 53, the second last level of Refrac-
tion, and its optional coins. In our experiments
on optional rewards, players with coins played less
than players without coins. 4(b) shows 2000 play-
ers playing the normal game with coins. 4(d) shows
174 players from the experimental version with coins
removed playing the same level. Cursory inspection
shows that most players with coins restrict their ex-
ploration to complicated solutions in region A, while
those without coins are willing to explore the space
of simpler solutions. Thus coins can be used to
strongly influence player strategies and make levels
easier or harder depending on their placement.

a 6/24 laser. Region B corresponds to the simple solution,
where the 1/3 laser is turned into a 4/24 laser, and the 1/4
laser is turned into a 3/24 laser.

Immediately we can see that players with coins tend to ex-
plore the region of space with a 1/6 and 1/24 fringe laser,
in region A. Players in the no coins condition rarely do this;
instead they spend their time assembling the easy solution.
Thus, the presence of the coins is severely impacting player
behavior. More specifically, they cause players to narrow
their search space to solutions that satisfy them, which are
more difficult and almost certainly more frustrating. This
suggests that optional rewards are a very strong modulator
of gameplay behavior, and can be used by designers to focus
player attention on certain strategy spaces to make levels
easier or harder.

4.2 Moments of Insight
While large, Refraction’s state space is much smaller than
the theoretically infinite state space of continuous games.
This was a severe limitation of the original Playtracer, mak-
ing it unable to handle games whose state spaces included
any continuous variables. Using features, however, we are
now able to use Playtracer on such games. We demonstrate
this on two games with continuous state spaces.

Figure 5: Hello Worlds! The character exists in mul-
tiple worlds at once. The boxes represent important
progress regions, a feature we use to discretize the
continuous space of character location to allow us
to use Playtracer on this game. These progress re-
gions identify key areas the player may reach that
reveal important state about his progress through
the level.

Hello Worlds, shown in Figure 5, is a puzzle-platformer game
created by a team of undergraduate students for a video
game design capstone class. The goal of the game is to guide
the character through a series of spatial reasoning puzzles
to collect all the stars in the game. The trick is that the
character interacts with many worlds at the same time. For
example, if the character hits a wall in one world, he stops
in every world. The puzzle is in deciding which worlds to
open and close, which influences the locations on the level
the player can access.

The most obvious features of a game state in Hello Worlds
are the character’s location rounded to the nearest pixel, the
set of open worlds, and the percentage of coins they have so
far collected. If we want to analyze how players move about
the environment and which world combinations they use,
we could consider combining the world set and character
location as our features to use for Playtracer.

Unfortunately, pixel location is too low-level to use; not only
would it produce states proportional to the number of pixels
on the screen(800x600), but it would produce inaccurate vi-
sualizations - two players one pixel apart are almost certainly
in the same conceptual state, but would not share the same
pixel location feature. Another natural approach, then, is
to discretize position to a set of designer-specified key re-
gions, or ’progress’ regions within that level. Figure 5 shows
such progress regions on a simple level. Four of the regions
are above blocks which the character must climb to make
progress. The fifth is below these blocks and shows that the
character has made negative progress by falling down before
they were able to reach the large wall. Players who reach the
same progress region are therefore in the same conceptual
state.

Thus we arrive at our features for Hello Worlds, progress re-
gion and set of open worlds. To define the distance between
two states, we equally weight the distance between the two
features. The distance metric for sets of open worlds is just
the number of worlds not in common between the two states.
The distance metric for progress regions is similar to the

72

Figure 6: The level Slide in Hello Worlds. In this
level, the player needs to use the blue doors to ’slide’
the platforms side to side. This sliding also moves
the blocks at the top of the screen. Moving the plat-
forms and blocks into the right configuration gives
the character access to the higher parts of the level,
and ultimately the finish door.

goal distance metric used in the original work on Playtracer.
Each progress region is labeled by the designer with a major
number representing its position on different possible paths
to victory, as well as a minor number designating which path
that region belongs to. We then define the distance between
two progress regions as the difference in major number, or
if the major number was the same, the difference in minor
number. This tends to cluster together regions which play-
ers would reach in succession, as their major numbers are
similar.

Combining the open worlds feature with the progress region
feature allows us to generate valuable visualizations with
Playtracer. Slide, shown in Figure 6, is an advanced level in
Hello Worlds in which only 36% of attempts end in a success-
ful completion of the level. To win the level the character
needs to slide the platforms from left to right, and possibly
back again, by opening and closing worlds with the doors
on each platform. Sliding these platforms also moves the
block covering the finish door. The player needs to figure
out the correct configuration of slides which will both reveal
the finish door and provide the necessary platforms to reach
the upper levels.

Figure 7(a) shows Playtracer’s output on Slide. We can see
that many people are getting lost in all the sliding that needs
to occur. However, there seems to be a key state that, once
reached, leads to a large jump in players’ chances of success
to 55%. Figure 7 shows this ’aha’ state in the level itself.
If players reach this point in the level, it means that they
have been able to successfully slide the large block which
has been blocking their path to the upper tier. Playtracer’s
output makes it immediately visually apparent that this is
the key state for players to understand how the level works.
The high loss rate suggests this level should be redesigned
so that players have fewer options near the start of the level,
allowing them to more quickly discover this key state.

4.3 Causes of Failure
Foldit is a protein folding game designed to crowdsource pro-
tein folding [5, 6], shown in Figure 8. Discovering the struc-
ture of proteins through computational methods or through

(a) (b)

Figure 7: Playtracer output on 368 players of the
level Slide from Hello World. In this visualization,
states are colored based on the percentage of players
who win after visiting that state. Bluer states rep-
resent a higher probability of winning, while redder
states have a higher probability of losing. The cir-
cled point is the key moment of insight after which
players become much more likely to win, made ap-
parent by its bluer coloring and transition to states
much closer to the goal. In this ’aha’ state, play-
ers now have access to the upper platforms for the
first time. Given the sudden increase in probability
of winning, we can conclude that this state is the
primary challenge for the players in this level.

x-ray crystallography is slow and expensive; thus, Foldit uses
humans’ natural spatial intuition to find the most likely can-
didate protein structures. In the game, players manipulate
proteins to bend them into the lowest energy configuration
possible, with the best solutions being forwarded to biolo-
gists to test in the lab.

Foldit’s nature makes it particularly challenging to analyze.
First, even small proteins can have on the order of hundreds
of degrees of freedom. Second, it is difficult to define which
states are equivalent, given that we are trying to compare
two 3-dimensional structures which have certain constraints.
Finally, there are generally no set solutions or paths to vic-
tory; players explore the space of possible protein foldings
until they reach a threshold score which measures the good-
ness of that particular protein configuration, making it very
difficult to aggregate common player strategies.

All that being said, we can still use Playtracer to gain in-
sight into how people play introductory levels. The feature
we use to compare states is the protein’s contact map, a 2-
dimensional array specifying which amino acids in the pro-
tein are close to each other. If element ij is present, it means
amino acids i and j on the protein chain are close together.
Proteins which share many entries in the contact map will
be structurally similar, as the individual amino acids are in
the same configuration. The most natural distance metric is
simply the number of dissimilar entries in the contact map.

Figure 9 shows Playtracer’s output on an introductory level
of Foldit. The visualization is complex and difficult to inter-
pret; this is not surprising, given Foldit’s complexity. The
visualization does convey a few key points, however. There
are many states with a wide variety of structures, apparent
by the many states and the wide distances between them -

73

Figure 8: The scientific discovery game Foldit. Play-
ers compete to find the lowest energy structure by
manipulating proteins using direct interactions and
optimizations. Playtraces from Foldit are partic-
ularly difficult to analyze due to the huge state
space and difficulty of comparing different struc-
tures. Even for levels in which there are set goals,
designers do not know all the possible solution con-
figurations, and every player will find a solution in
a different way.

this means players tried many different ideas on this level.
The pattern of movement by winners and losers also allows
us to get a sense of how they do or do not differ. For example,
one might hypothesize that players who quit in introductory
levels did so because they could not find good protein struc-
tures. This would show up as movement away from the goal
states. In reality, what we see is that both winners and losers
explore regions near and far from the goal states. Losers are
not simply becoming lost in the complexity of the game -
something more interesting is happening. We can see that
they are able to find good high-level structures based on how
close they approach goal states, but can not or do not per-
form the last amounts of optimization to eke out the score
needed to pass the level.

This visualization suggests several possible changes to this
Foldit level. Given that this is an introductory level meant
to teach one particular concept, the wide exploration of the
search space suggests players are not following the tutorial.
Some restraints on certain parts of the protein or static im-
age guides may help constrain players to regions near the
goal where they can learn the concept this level is meant
to teach. In addition, because players who quit sometimes
get very close to an acceptable solution without recogniz-
ing it, the game could tell players when they have found a
good high-level structure and suggest they spend some time
adjusting that structure instead of radically changing it. Fi-
nally, the game can remind players of the existence of its
built-in optimization tools when they near a solution, pre-
venting them from becoming frustrated with minute move-
ments of different parts of the protein in their effort to reach
the score threshold.

(a) Foldit winners

(b) Foldit losers

Figure 9: Winners and losers from 83 players of
an introductory level in Foldit. These visualizations
are complex, which is not surprising given Foldit’s
many degrees of freedom; however, we can still dis-
cern some characteristics of player behavior. Even
though winning structures are near the starting con-
figuration, players still explored wide swaths of the
state space, suggesting they did not immediately see
the path to victory. As such, one might guess that
those who quit did so because they became lost in
poor protein configurations, which would show up
as movement away from goal states. However, play-
ers who eventually quit often explored quite exten-
sively near goal structures. Thus they had the cor-
rect high-level ideas, but for some reason did not
perform the remaining optimization on these ’good’
structures to finish the level.

74

(a) (b)

Figure 10: Conceptually identical states should have
the same value of the corresponding feature, or else
the visualization becomes unclear. For example, us-
ing exact piece placements as our feature for Re-
fraction results in states which represent the same
strategy, yet appear in different places in the vi-
sualizations. Because each of the different spokes
represent the same pattern of bending the laser up,
then right, these should all be considered the same
state.

5. FEATURE SELECTION
As we have shown, extending Playtracer allows it to serve
as a powerful visual datamining system for a wide array of
games. Its generality and effectiveness depend crucially on
the features that designers specify; incorrect choice of fea-
tures will create output too cluttered to understand, or with-
out the information the designer wishes to examine. The
following three principles have proven helpful to us in our
own choice of features in these games.

First, high-level features cluster states together more ag-
gressively, making the visualizations cleaner but decreasing
precision. This clustering effect is useful for data with many
unique states, but may obscure what the designer wants to
see. In Refraction, for example, using the fringe laser fea-
ture strips out almost all piece location information. Thus
Figures 3(a) and 3(c) would be collapsed to the same state.
The fringe laser metric is therefore inappropriate for anal-
ysis of players’ spatial reasoning; it throws out too much
information.

Second, states which are conceptually the same in some way
should share the same value for the corresponding feature.
Not doing this is the inverse problem of making features too
general, and leads to visualizations where the same concep-
tual state appears in many places, unnecessarily cluttering
the state space. This was a problem present in the original
work on Playtracer. Defining states with exact piece place-
ments in Refraction, for example, generates multiple paths
to victory in the level shown in Figure 10, when really the
paths are all equivalent.

Finally, using multiple features allows us to more accurately
analyze player behavior, but multiplicatively increases the
number of states. Thus designers should keep the number
of features they use to the minimum necessary to under-
stand the behavior they are interested in. Any additional
features will serve only to increase the state space and ob-
scure patterns. An example of this can be seen from Play-

(a) (b)

Figure 11: An example of the state blowup that oc-
curs with the addition of new features. These two
visualizations are generated from a level of Hello
Worlds. The sole difference is that 11(b) also in-
cludes the coins feature, which represents what per-
centage of coins players have so far collected, dis-
cretized to the nearest 20%. This causes the num-
ber of unique states to increase, and should only be
done if the designer is interested in how coins influ-
ence players’ behavior in the level.

tracer output on a Hello Worlds level, seen in Figure 11. By
including the coins feature in the state definition, the num-
ber of distinct states increases several times over, making
the visualization more difficult to interpret. If we are only
interested in how players solve the puzzles in the level, the
coins are superfluous information and should be left out.

6. FUTURE WORK
We have given guidelines as to which features are likely to
be successful and their effects on the produced visualiza-
tions. However, in games with many features, it may be
difficult to tell which ones to pick. One area of future work
is thus automatic detection of useful features given a large
set of features and some particular analysis the user wants to
run. For example, if the designer wishes to understand what
separates losers from winners in a level, it could be possi-
ble to generate many graphs from different combinations of
features, calculate if they differ in some significant way by
examining the underlying state transitions, and present only
the interesting ones to the user.

Another area of future work is the inclusion of temporal and
interface information. Our goal is to understand what play-
ers are thinking based on collected behavioral data. Which
states players visit and in what order is a great deal of infor-
mation, which can shed light on players’ thoughts. However,
there is information that we could leverage which we cur-
rently ignore. Long pauses indicate thought, for example,
whereas quick sequences of actions may imply frustration.
Likewise, frantic clicking and key-pressing would tell us the
player is panicking, even though it may not alter the game
state directly. We would like to include this information in
Playtracer’s output to better understand player intent.

Finally, while we are able to use Playtracer to analyze data
gathered from several varied games, the ultimate measure
of its success would be whether or not a designer unfamiliar
with the tool could quickly learn it and also extract useful
information from player data. Thus a study comparing the

75

time spent and effectiveness of Playtracer to more standard
data analysis or replay-watching is needed to understand
how useful Playtracer is to game designers and where it fits
best in the game design process.

7. CONCLUSION
In this paper we removed two key weaknesses of Playtracer,
a powerful visual datamining system for games with states
and state transitions, by introducing the notion of state fea-
tures. These features collapse states without losing salient
information and make Playtracer output significantly easier
to understand. We show how this method allows us to use
Playtracer to analyze previously untraceable data from the
educational game Refraction, as well as two previously un-
traceable games with continuous state spaces, Hello Worlds
and Foldit.

Designers have full control over what they view as features,
and the use of different sets of features will result in out-
put that only analyzes the facets of the game those features
capture. Based on our experiences, we suggest three gen-
eral principles for the selection and use of features. First,
high-level features tend to collapse the state space more ag-
gressively, which is generally desirable for complex games.
Second, states should share the same value for a feature if
they are conceptually the same to prevent the appearance
of multiple states which are in fact identical. Finally, each
additional feature causes more fragmentation of the state
space, so only the minimum number of features should be
used. Keeping these principles in mind when choosing fea-
tures makes it much more likely that Playtracer’s output will
be useful for analyzing how players interact with a game.

8. ACKNOWLEDGMENTS
We thank Kongregate and the additional creators of Refrac-
tion, Hello Worlds, and Foldit: Ethan Apter, Michael Bee-
nen, Brian Britigan, Eric Butler, Seth Cooper, Mai Dang,
Happy Dong, Michael Eng, Jeff Flatten, Sean Gottschalk,
Justin Irwen, Christian Lee, Marianne Lee, Emma Lynch,
Stephen Sievers, and Blake Thompson. This work was sup-
ported by the University of Washington Center for Game
Science, DARPA grant FA8750-11-2-0102, an NSF Gradu-
ate Fellowship, NSF grant IIS0811902, Adobe, Intel, and
Microsoft.

9. REFERENCES
[1] M. Ambinder. Valve’s approach to playtesting: The

application of empiricism. Game Developer’s Conference,
Mar. 2009.

[2] E. Andersen, Y.-E. Liu, E. Apter, F. Boucher-Genesse, and
Z. Popović. Gameplay analysis through state projection. In
FDG ’10: Proceedings of the Fifth International
Conference on the Foundations of Digital Games, pages
1–8, New York, NY, USA, 2010. ACM.

[3] E. Andersen, Y.-E. Liu, R. Snider, R. Szeto, and
Z. Popović. Placing a value on aesthetics in online casual
games. In CHI ’11: Proceedings of the SIGCHI conference
on Human factors in computing systems, New York, NY,
USA, 2011. ACM.

[4] L. Chittaro and L. Ieronutti. A visual tool for tracing users’
behavior in virtual environments. In AVI ’04: Proceedings
of the working conference on Advanced visual interfaces,
pages 40–47, New York, NY, USA, 2004. ACM.

[5] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee,
M. Beenen, A. Leaver-Fay, D. Baker, Z. Popović, and

F. Players. Predicting protein structures with a multiplayer
online game. Nature, 466(7307):756–760, August 2010.

[6] S. Cooper, A. Treuille, J. Barbero, A. Leaver-Fay, K. Tuite,
F. Khatib, A. C. Snyder, M. Beenen, D. Salesin, D. Baker,
and Z. Popović. The challenge of designing scientific
discovery games. In Proceedings of the Fifth International
Conference on the Foundations of Digital Games, FDG ’10,
pages 40–47, New York, NY, USA, 2010. ACM.

[7] P. N. Dixit and G. M. Youngblood. Understanding playtest
data through visual data mining in interactive 3d
environments. In 12th International Conference on
Computer Games: AI, Animation, Mobile, Interactive
Multimedia and Serious Games (CGAMES), 2008.

[8] A. Drachen, A. Canossa, and G. N. Yannakakis. Player
modeling using self-organization in Tomb Raider:
Underworld. In CIG’09: Proceedings of the 5th
international conference on Computational Intelligence and
Games, pages 1–8, Piscataway, NJ, USA, 2009. IEEE Press.

[9] M. Ferreira de Oliveira and H. Levkowitz. From visual data
exploration to visual data mining: a survey. Visualization
and Computer Graphics, IEEE Transactions on, 9(3):378 –
394, 2003.

[10] N. Hoobler, G. Humphreys, and M. Agrawala. Visualizing
competitive behaviors in multi-user virtual environments.
In VIS ’04: Proceedings of the conference on Visualization
’04, pages 163–170, Washington, DC, USA, 2004. IEEE
Computer Society.

[11] A. K. Jain and R. C. Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[12] D. A. Keim. Information visualization and visual data
mining. IEEE Transactions on Visualization and
Computer Graphics, 8:1–8, January 2002.

[13] J. Lee, M. Podlaseck, E. Schonberg, and R. Hoch.
Visualization and analysis of clickstream data of online
stores for understanding web merchandising. Data Mining
and Knowledge Discovery, 5:59–84, 2001.
10.1023/A:1009843912662.

[14] U. of Konstanz Algorithmics Group. MDSJ: Java library
for multidimensional scaling (version 0.2).
http://www.inf.uni-konstanz.de/algo/software/mdsj/, 2009.

[15] R. Romero. Successful instrumentation: Tracking attitudes
and behviors to improve games. Game Developer’s
Conference, Feb. 2008.

[16] R. Thawonmas and K. Iizuka. Visualization of online-game
players based on their action behaviors. Int. J. Comput.
Games Technol., 2008:5:1–5:9, January 2008.

[17] R. Thawonmas, M. Kurashige, and K.-T. Chen. Detection
of landmarks for clustering of online-game players.
International Journal of Virtual Reality, 6(3):11–16, 2007.

[18] C. Thompson. Halo 3: How microsoft labs invented a new
science of play. Wired, 2007.

[19] A. H. Youssefi, D. J. Duke, and M. J. Zaki. Visual web
mining. In Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters,
WWW Alt. ’04, pages 394–395, New York, NY, USA, 2004.
ACM.

[20] G. Zoeller. Development telemetry in video games projects.
Game Developers Conference, 2010.

76

