
Real-Time Vision for Human-Computer Interaction

Edited by

Branislav Kisačanin
Delphi Corporation

Vladimir Pavlović
Rutgers University

Thomas S.Huang
University of Illinois at Urbana-Champaign

Sample Title Page



Sample Copyright Page



To Saška, Milena, and Nikola

BK

To Karin, Irena, and Lara

VP

To Pei

TSH





Contents

Part I Introduction

RTV4HCI: A Historical Overview
Matthew Turk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Real-Time Algorithms: From Signal Processing to Computer
Vision
Branislav Kisačanin, Vladimir Pavlović . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Part II Advances in RTV4HCI

Recognition of Isolated Fingerspelling Gestures Using Depth
Edges
Rogerio Feris, Matthew Turk, Ramesh Raskar, Kar-Han Tan, Gosuke
Ohashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appearance-Based Real-Time Understanding of Gestures
Using Projected Euler Angles
Sharat Chandran, Abhineet Sawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Flocks of Features for Tracking Articulated Objects
Mathias Kölsch, Matthew Turk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Static Hand Posture Recognition Based on Okapi-Chamfer
Matching
Hanning Zhou, Dennis J. Lin, Thomas S.Huang . . . . . . . . . . . . . . . . . . . . . 85

Visual Modeling of Dynamic Gestures Using 3D Appearance
and Motion Features
Guangqi Ye, Jason J.Corso, Gregory D.Hager . . . . . . . . . . . . . . . . . . . . . . . 103



VIII Contents

Head and Facial Animation Tracking Using Appearance-
Adaptive Models and Particle Filters
Franck Davoine, Fadi Dornaika . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A Real-Time Vision Interface Based on Gaze Detection –
EyeKeys
John J.Magee, Margrit Betke, Matthew R. Scott, Benjamin N.Waber . . . 141

Map Building from Human-Computer Interactions
Artur M. Arsenio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Real-Time Inference of Complex Mental States from Facial
Expressions and Head Gestures
Rana El Kaliouby, Peter Robinson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Epipolar Constrained User Pushbutton Selection in Projected
Interfaces
Amit Kale, Kenneth Kwan, Christopher Jaynes . . . . . . . . . . . . . . . . . . . . . . 203

Part III Looking Ahead

Vision-Based HCI Applications
Eric Petajan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

The Office of the Past
Jiwon Kim, Steven M. Seitz, Maneesh Agrawala . . . . . . . . . . . . . . . . . . . . . . 235

MPEG-4 Face and Body Animation Coding Applied to HCI
Eric Petajan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Multimodal Human-Computer Interaction
Matthew Turk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Smart Camera Systems Technology Roadmap
Bruce Flinchbaugh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293



Foreword

2001’s Vision of Vision

One of my formative childhood experiences was in 1968 stepping into the
Uptown Theater on Connecticut Avenue in Washington, DC, one of the few
movie theaters nationwide that projected in large-screen cinerama. I was there
at the urging of a friend, who said I simply must see the remarkable film
whose run had started the previous week. “You won’t understand it,” he said,
“but that doesn’t matter.” All I knew was that the film was about science
fiction and had great special effects. So I sat in the front row of the balcony,
munched my popcorn, sat back, and experienced what was widely touted as
“the ultimate trip:” 2001: A Space Odyssey.

My friend was right: I didn’t understand it. . . but in some senses that didn’t
matter. (Even today, after seeing the film 40 times, I continue to discover its
many subtle secrets.) I just had the sense that I had experienced a creation
of the highest aesthetic order: unique, fresh, awe inspiring. Here was a film
so distinctive that the first half hour had no words whatsoever; the last half
hour had no words either; and nearly all the words in between were banal and
irrelevant to the plot – quips about security through Voiceprint identification,
how to make a phonecall from a space station, government pension plans,
and so on. While most films pose a problem in the first few minutes – Who
killed the victim? Will the meteor be stopped before it annihilates earth? Can
the terrorists’s plot be prevented? Will the lonely heroine find true love? –
in 2001 we get our first glimmer of the central plot and conflict nearly an
hour into the film. There were no major Hollywood superstars heading the
bill either. Three of the five astronauts were known only by the traces on their
life support systems, and one of the lead characters was a bone-wielding ape!

And yet my eyes were riveted to the screen. Every shot was perfectly
composed, worthy of a fine painting; the special effects (in this pre-computer
era production) made life in space seem so real. The choice of music – from
Johannes Strauss’ spinning Beautiful Blue Danube for the waltz of the humon-



X Foreword

gous space station and shuttle, to György Ligeti’s dense and otherworldly Lux
Aeterna during the StarGate lightshow near the end – was brilliant.

While most viewers focused on the outer odyssey to the stars, I was always
more captivated by the film’s other – inner – odyssey, into the nature of
intelligence and the problem of the source of good and evil. This subtler
odyssey was highlighted by the central and the most “human” character, the
only character whom we really care about, the only one who showed “real”
emotion, the only one whose death affects us: The HAL 9000 computer.

There is so much one could say about HAL that you could put an entire
book together to do it. (In fact, I have [1] – a documentary film too [2].)
HAL could hear, speak, plan, recognize faces, see, judge facial expressions,
and render judgments on art. He could even read lips! In the central scene
of the film, astronauts Dave Bowman and Frank Poole retreat to a pod and
turn off all the electronics, confident that HAL can’t hear them. They discuss
HAL’s apparent malfunctions, and whether or not to disconnect HAL if flaws
remain. Then, referring to HAL, Dave quietly utters what is perhaps the
most important line in the film: “Well I don’t know what he’d think about
it.” The camera, showing HAL’s view, pans back and forth between the
astronauts’ faces, centered on their mouths. The audience quickly realizes
that HAL understands what the astronauts are saying – he’s lipreading! It is
a chilling scene and, like all the other crisis moments in the film, silent.

It has been said that 2001 provided the vision, the mold, for a technological
future, and that the only thing left for scientists and technologists was to fill
in the stage set with real technology. I have been pleasantly surprised to learn
that many researchers in artificial intelligence were impressed by the film:
2001 inspired my generation of computer scientists and AI researchers the
way Buck Rogers films inspired the engineers and scientists of the nascent
NASA space program. I, for one, was inspired by the film to build computer
lipreading systems [3]. I suspect many of the contributors to this volume, were
similarly affected by the vision in the film.

So. . . how far have we come in building a HAL? Or more specifically, build-
ing a vision system for HAL? Let us face the obvious, that we are not close to
building a computer with the full intelligence or visual ability of HAL. Despite
the optimism and hype of the 1970s, we now know that artificial intelligence
is one of the most profoundly hard problems in all of science and that general
computer vision is AI complete.

As a result, researchers have broken the general vision problem into a
number of subproblems, each challenging in its own way, as well as into specific
applications, where the constraints make the problem more manageable. This
volume is an excellent guide to progress in the subproblems of computer vision
and their application to human-computer interaction. The chapters in Parts I
and III are new, written for this volume, while the chapters in Part II are
extended versions of all papers from the 2004 Workshop on Real-Time Vision



Foreword XI

for Human-Computer Interaction held in conjunction with IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) in Washington, DC.

Some of the most important developments in computing since the release of
the film is the move from large mainframe computers, to personal computers,
personal digital assistants, game boxes, the dramatic reduction in cost of
computing, summarized in Moore’s Law, as well as the rise of the web. All
these developments added impetus for researchers and industry to provide
natural interfaces, including ones that exploit real-time vision.

Real-time vision poses many challenges for theorist and experimentalist
alike: feature extraction, learning, pattern recognition, scene analysis, multi-
modal integration, and more. The requirement that fielded systems operate
in real-time places strict constraints on the hardware and software. In many
applications human-computer interaction requires the computer to “under-
stand” at least something about the human, such as goals.

HAL could recognize the motions and gestures of the crew as they repaired
the AE-35 unit; in this volume we see progress in segmentation, tracking,
and recognition of arms and hand motions, including finger spelling. HAL
recognized the faces of the crewmen; here we read of progress in head facial
tracking, as well as direction of gaze. It is likely HAL had an internal map
of the spaceship, which would allow him to coordinate the images from his
many ominous red eye-cameras; for mobile robots, though, it is often more
reliable to allow the robot to build an internal representation and map, as we
read here. There is very little paper or hardcopy in 2001 – perhaps its creators
believed the predictions about the inevitability of the “paperless office.” In
this volume we read about the state of the art in vision systems reading paper
documents, scattered haphazardly over a desktop.

No selection of papers could cover the immense and wonderfully diverse
range of vision problems, but by restricting consideration to real-time vision
for human-computer interaction, the editors have covered the most important
components. This volume will serve as one small but noteworthy mile marker
in the grand and worthy mission to build intelligent interfaces – a key com-
ponent of HAL, as well as a wealth of personal computing devices we can as
yet only imagine.

1. D. G. Stork (ed.), HAL’s Legacy: 2001’s Computer as Dream and Reality,
MIT Press, 1997.

2. 2001: HAL’s Legacy, by D. G. Stork and D. Kennard (InCA Productions),
funded by the Alfred P. Sloan Foundation for PBS Television, 2001.

3. D. G. Stork and M. Hennecke (eds.), Speechreading by Humans and Ma-
chines: Models, Systems, and Applications, Springer-Verlag, 1996.

David G. Stork
Ricoh Innovations and Stanford University





Preface

As computers become prevalent in many aspects of human lives, the need
for natural and effective Human-Computer Interaction (HCI) becomes more
important than ever. Computer vision and pattern recognition remain to play
an important role in the HCI field. However, pervasiveness of computer vi-
sion methods in the field is often hindered by the lack of real-time, robust
algorithms. This book intends to stimulate the thinking in this direction.

What is the book about?

Real-Time Vision for Human-Computer Interaction or RTV4HCI for short, is
an edited collection of contributed chapters of interest for both researchers and
practitioners in the fields of computer vision, pattern recognition, and HCI.
Written by leading researchers in the field, the chapters are organized into
three parts. Two introductory chapters in Part I provide overviews of history
and algorithms behind RTV4HCI. Ten chapters in Part II are a snapshot
of the state-of-the-art real-time algorithms and applications. The remaining
chapters form Part III, a compilation of trend-and-idea articles by some of
the most prominent figures in this field.

RTV4HCI paradigm

Computer vision algorithms are notoriously brittle. In a keynote speech one
of us (TSH) gave at the 1996 International Conference of Pattern Recognition
(ICPR) in Vienna, Austria, he said that viable computer vision applications
should have one or more of the following three characteristics:

1. The application is forgiving. In other words, some mistakes are tolerable.
2. It involves human in the loop. So human intelligence and machine intelli-

gence can be combined to achieve the desired performance.



XIV Preface

3. There is the possibility of using other modalities in addition to vision.
Fusion of multiple modalities such as vision and speech can be very pow-
erful.

Most applications in Human Computer Interface (HCI) possess all these
three characteristics. By its very nature HCI systems have humans in the
loop. And largely because of that, some mistakes and errors are tolerable. For
example, if a person uses hand pointing to control a cursor in the display,
the location estimation of the cursor does not have to be very accurate since
there is immediate visual feedback. And in many HCI applications, a combi-
nation of different modalities gives the best solution. For example, in a 3D
virtual display environment, one could combine visual hand gesture analysis
and speech recognition to navigate: Hand gesture to indicate the direction
and speech to indicate the speed (to give one possibility).

However, computer vision algorithms used in HCI applications still need
to be reasonably robust in order to be viable. And another big challenge for
HCI vision algorithms is: In most applications they have to be real-time (at
or close to video rate). In summary: We need real-time robust HCI vision
algorithms. Until a few years ago, such algorithms were virtually nonexistent.
However, more recently a number of such algorithms have emerged; some as
commercial products. But we need more!

Developing real-time robust HCI vision algorithms demands a great deal
of “hack.” The following statement has been attributed to our good friend
Berthold Horn: “Elegant theories do not work; simple ideas do.” Indeed, many
very useful vision algorithms are pure hack. However, we think Berthold would
agree that the ideal thing to happen is: An elegant theory leads to a very useful
algorithm. It is nevertheless true that the path from elegant theory to useful
algorithm is paved with much hack. It is our opinion that a useful (e.g., real-
time robust HCI) algorithm is far superior to a useless theory (elegant or
otherwise). We have been belaboring these points in order to emphasize to
current and future students of computer vision that they should be prepared
to do hack work and they had better like it.

Goals of this book

Edited by the team that organized the workshop with the same name at
CVPR 2004, and aiming to satisfy the needs of both academia and industry
in this emerging field, this book provides food for thought for researchers and
developers alike. By outlining the background of the field, describing the state-
of-the-art developments, and exploring the challenges and building blocks for
future research, it is an indispensable reference for anyone working on HCI or
other applications of computer vision.



Preface XV

Part I – Introduction

The first part of this book, Introduction, contains two chapters. “RTV4HCI:
A Historical Overview” by M. Turk reviews recent history of computer vision’s
role in HCI from the personal perspective of a leading researcher in the field.
Recalling the challenges of the early 1980s when a “modern” VAX computer
could not load a 512×512 image into memory at once, the author points
to basic research questions and difficulties modern RTV4HCI faces. Despite
significant progress in the past quarter century and growing interest in the
field, RTV4HCI still lags behind other fields that emerged around the same
time. Important issues such as the fundamental question of user awareness,
practical robustness of vision algorithms, and the quest for a “killer app”
remain to be addressed.

In their chapter “Real-Time Algorithms: From Signal Processing to Com-
puter Vision,” B. Kisačanin and V. Pavlović illustrate some algorithmic as-
pects of RTV4HCI while underlining important practical implementation
and production issues an RTV4HCI designer faces. The chapter presents a
overview of low-level signal/image processing and vision algorithms, given
from the perspective of real-time implementation. It illustrates the concepts
by examples of several standard image processing algorithms, such as DFT
and PCA. The authors begin with standard mathematical formulations of the
algorithms. They lead the reader to the algorithms’ computationally efficient
implementations, shedding the light on important hardware and production
constraints that are easily overlooked by RTV4HCI researchers.

Part II – Advances in RTV4HCI

The second part of the book is a collection of chapters that describe ten ap-
plications of RTV4HCI. The task of “Looking at people” is a common thread
behind the ten chapters. An important aspect of this task are detection, track-
ing, and interpretation of the human hand and facial poses and movements.

“Recognition of Isolated Fingerspelling Gestures Using Depth Edges” by
R. Feris et al. introduces an interesting new active camera system for fast and
reliable detection of object contours. The system is based on a multi-flash
camera and exploits depth discontinuities. The authors illustrate the use of
this camera on a difficult problem of fingerspelling, showcasing the system’s
robustness needed for a real-time application.

S. Chandran and A. Sawa in “Appearance-Based Real-Time Understand-
ing of Gestures Using Projected Euler Angles” consider sign language alpha-
bet recognition where gestures are made with protruded fingers. They propose
a simple, real-time classification algorithm based on 2D projection of Euler
angles. Despite its simplicity the approach demonstrates that the choice of
“right” features plays an important role in RTV4HCI.

M. Kölsch and M. Turk focus on another hand tracking problem in their
“Flocks of Features for Tracking Articulated Objects” chapter. Flocks of Fea-
tures is a method that combines motion cues with learned foreground color



XVI Preface

for tracking non-rigid and highly articulated objects such as the human hand.
By considering a flock of such features, the method achieves robustness while
maintaining high computational efficiency.

The problem of accurate recognition of hand poses is addressed by H. Zhou
et al. in their chapter “Static Hand Posture Recognition Based on Okapi-
Chamfer Matching.” The authors propose the use of a text retrieval method,
inverted indexing, to organize visual features in a lexicon for efficient retrieval.
Their method allows very fast and accurate recognition of hand poses from
large image databases using only the hand silhouettes. The approach of using
simple models with many examples will, perhaps, lead to an alternative way
of solving the gesture recognition problem.

A different approach to hand gesture recognition that uses a 3D model as
well as motion cues is described in the chapter “Visual Modeling of Dynamic
Gestures Using 3D Appearance and Motion Features” by G. Ye et al. Instead
of constructing an accurate 3D hand model, the authors introduce simple 3D
local volumetric features that are sufficient for detecting simple hand-object
interactions in real time.

Face modeling and tracking is another task important for RTV4HCI. In
“Head and Facial Animation Tracking Using Appearance-Adaptive Models
and Particle Filters,” F. Davoine and F. Dornaika propose two alternative
methods to solve the head and face tracking problems. Using a 3D deformable
face model, the authors are able to track moving faces undergoing various ex-
pression changes over long image sequences in close-to-real-time.

Eye gaze is sometimes easily overlooked yet very important HCI cue.
J. Magee et al. in “A Real-Time Vision Interface Based on Gaze Detection –
EyeKeys” consider the task of detecting eye gaze direction using correlation-
based methods. This simple approach results in a real-time system built on a
consumer quality USB camera that can be used in a variety of HCI applica-
tions, including interfaces for the disabled.

The use of active vision may yield important benefits when developing vi-
sion techniques for HCI. In his chapter “Map Building from Human-Computer
Interactions” A. Arsenio relies on cues provided by a human actor interact-
ing with the scene to recognize objects and reconstruct the 3D environment.
This paradigm has particular applications in problems that require interactive
learning or teaching of various computer interfaces.

“Real-Time Inference of Complex Mental States from Facial Expressions
and Hand Gestures” by R. El Kaliouby and P.Robinson considers the impor-
tant task of finding optimal ways to merge different cues in order to infer
the user’s mental state. The challenges in this problem are many: accurate
extraction of different cues at different spatial and temporal resolutions as
well as the cues’ integration. Using a Dynamic Bayesian Network modeling
approach, the authors are able to obtain real-time performance with high
recognition accuracy.

Immersive environments with projection displays offer an opportunity to
use cues generated from the interaction of the user and the display system in



Preface XVII

order to solve the difficult visual recognition task. In “Epipolar Constrained
User Pushbutton Selection in Projected Interfaces,” A. Kale et al. use this
paradigm to accurately detect user actions under difficult lighting conditions.
Shadows cast by the hand on the display and their relation to the real hand
allow a simplified, real-time way of detecting contact events, something that
would be difficult if not impossible when tracking the hand image alone.

Part III – Looking Ahead

Current state of RTV4HCI leaves many open problems and unexplored oppor-
tunities. Part III of this book contains five chapters. They focus on applica-
tions of RTV4HCI and describe challenges in their adoption and deployment
in both commercial and research settings. Finally, the chapters offer different
outlooks on the future of RTV4HCI systems and research.

“Vision-Based HCI Applications” by E.Petajan provides and insider view
of the present and the future of RTV4HCI in the consumer market. Cam-
eras, static and video, are becoming ubiquitous in cell phones, game consoles
and, soon, automobiles, opening the door for vision-based HCI. The author
describes his own experience in the market deployment and adoption of ad-
vanced interfaces. In a companion chapter, “MPEG-4 Face and Body Anima-
tion Coding Applied to HCI,” the author provides an example of how existing
industry standards, such as MPEG-4, can be leveraged to deliver these new
interfaces to the consumer markets of today and tomorrow.

In the chapter “The Office of the Past” J. Kim et al. propose their vision of
the future of an office environment. Using RTV4HCI the authors build a phys-
ical office that seamlessly integrates into the space of digital documents. This
fusion of the virtual and the physical spaces helps eliminate daunting tasks
such as document organization and retrieval while maintaining the touch-and-
feel efficiency of real paper. The future of HCI may indeed be in a constrained
but seamless immersion of real and virtual worlds.

Many of the chapters presented in the this book solely rely on the visual
mode of communication between humans and machines. “Multimodal Human-
Computer Interaction” by M. Turk offers a glimpse of the benefits that multi-
modal interaction modes such as speech, vision, expression, and touch, when
brought together, may offer to HCI. The chapter describes the history, state-
of-the-art, important and open issues, and opportunities for multimodal HCI
in the future. In the author’s words, “The grand challenge of creating pow-
erful, efficient, natural, and compelling multimodal interfaces is an exciting
pursuit, one that will keep us busy for some time.”

The final chapter of this collection, “Smart Camera Systems Technology
Roadmap” by B. Flinchbaugh, offers an industry perspective on the present
and future role of real-time vision in three market segments: consumer elec-
tronics, video surveillance, and automotive applications. Low cost, low power,
small size, high-speed processing and modular design are among the require-
ments imposed on RTV4HCI systems by the three markets. Embedded DSPs



XVIII Preface

coupled with constrained algorithm development may together prove to play
a crucial role in the development and deployment of smart camera and HCI
systems of the future.

Acknowledgments

As editors of this book we had the opportunity to work with many talented
people and to learn from them: the chapter contributors, RTV4HCI Workshop
Program Committee members, and the Editors from the publisher, Springer:
Wayne Wheeler, Anne Murray, and Ana Božičević. Their enthusiastic help
and support for the book is very much appreciated.

Kokomo, IN Branislav Kisačanin
Piscataway, NJ Vladimir Pavlović
Urbana, IL Thomas S.Huang
February 2005



Part I

Introduction





RTV4HCI: A Historical Overview

Matthew Turk

University of California, Santa Barbara
mturk@cs.ucsb.edu

Computer vision has made significant progress in recent decades, with steady
improvements in the performance and robustness of computational methods
for real-time detection, recognition, tracking, and modeling. Because of these
advances, computer vision is now a viable input modality for human-computer
interaction, providing visual cues to the presence, identity, expressions, and
movements of users. This chapter provides a personal view of the development
of this intersection of fields.

1 Introduction

Real-time vision for human-computer interaction (RTV4HCI) has come a long
way in a relatively short period of time. When I first worked in a computer
vision lab, as an undergraduate in 1982, I naively tried to write a program
to load a complete image into memory, process it, and display it on the lab’s
special color image display monitor (assuming no one else was using the dis-
play at the time). Of course, we didn’t actually have a camera and digitizer,
so I had to read in one of the handful of available stored image files we had on
the lab’s modern VAX computer. I soon found out that it was a foolish thing
to try and load a whole image – all 512×512 pixel values – into memory all
at once, since the machine didn’t have that much memory. When the image
was finally processed and ready to display, I watched it slowly (very slowly!)
appear on the color display monitor, a line at a time, until finally the whole
image was visible. It was a painstakingly slow and frustrating process, and
this was in a state of the art image processing and computer vision lab.

Only a few years later, I rode inside a large instrumented vehicle – an eight-
wheel, diesel-powered, hydrostatically driven all-terrain undercarriage with a
fiberglass shell, about the size of a large van, with sensors mounted on the
outside and several computers inside – the first time it successfully drove along
a private road outside of Denver, Colorado completely autonomously, with no
human control. The vehicle, “Alvin,” which was part of the DARPA-sponsored



4 M.Turk

Autonomous Land Vehicle (ALV) project at Martin Marietta Aerospace, had
a computer onboard that grabbed live images from a color video camera
mounted on top of the vehicle, aimed at the road ahead (or alternatively
from a laser range scanner that produced depth images of the scene in front
of the vehicle). The ALV vision system processed input images to find the
road boundaries, which were passed onto a navigation module that figured
out where to direct the vehicle so that it drove along the road. Surprisingly,
much of the time it actually accomplished this. A complete cycle of the vi-
sion system, including image capture, processing, and display, took about two
seconds.

A few years after this, as a PhD student at MIT, I worked on a vision
system that detected and tracked a person in an otherwise static scene, lo-
cated the head, and attempted to recognize the person’s face, in “interactive
time” – i.e., not at frame-rate, but at a rate fast enough to work in the in-
tended interactive application [24]. This was my first experience in pointing
the camera at a person and trying to compute something useful about the
person, rather than about the general scene, or some particular inanimate
object in the scene. I became enthusiastic about the possibilities for real-time
(or interactive-time) computer vision systems that perceived people and their
actions and used this information not only in security and surveillance (the
primary context of my thesis work) but in interactive systems in general. In
other words, real-time vision for HCI. I was not the only one, of course: a num-
ber of researchers were beginning to think this could be a fruitful endeavor,
and that this area could become another driving application area for the field
of computer vision, along with the other applications that motivated the field
over the years, such as robotics, modeling of human vision, medical imaging,
aerial image interpretation, and industrial machine vision.

Although there had been several research projects over the years directed
at recognizing human faces or some other human activity (most notably the
work of Bledsoe [3], Kelly [11], Kanade [12], Goldstein and Harmon [9]; see
also [18, 15, 29]), it was not until the late 1980s that such tasks began to seem
feasible. Hardware progress driven by Moore’s Law improvements, coupled
with advances in computer vision software and hardware (e.g., [5, 1]) and the
availability of affordable cameras, digitizers, full-color bitmapped displays, and
other special-purpose image processing hardware, made interactive-time com-
puter vision methods interesting, and processing images of people (yourself,
your colleagues, your friends) seemed more attractive to many than processing
more images of houses, widgets, and aerial views of tanks.

After a few notable successes, there was an explosion of research activity
in real-time computer vision and in “looking at people” projects – face de-
tection and tracking, face recognition, gesture recognition, activity analysis,
facial expression analysis, body tracking and modeling – in the 1990s. A quick
subjective perusal of the proceedings of some of the major computer vision
conferences shows that about 2% of the papers (3 out of 146 papers) in CVPR
1991 covered some aspect of “looking at people.” Six years later, in CVPR



RTV4HCI: A Historical Overview 5

1997, this had jumped to about 17% (30 out of 172) of the papers. A decade
after the first check, the ICCV 2001 conference was steady at about 17% (36
out of 209 papers) – but by this point there were a number of established
venues for such work in addition to the general conferences, including the
Automatic Face and Gesture Recognition Conference, the Conference on Au-
dio and Video Based Biometric Person Authentication, the Auditory-Visual
Speech Processing Workshops, and the Perceptual User Interface workshops
(later merged with the International Conference on Multimodal Interfaces).
It appears to be clear that the interest level in this area of computer vision
soared in the 1990s, and it continues to be a topic of great interest within the
research community.

Funding and technology evaluation activities are further evidence of the
importance and significance of these activities. The Face Recognition Tech-
nology (FERET) program [17], sponsored by the U.S. Department of Defense,
held its first competition/evaluation in August 1994, with a second evalua-
tion in March 1995, and a final evaluation in September 1996. This program
represents a significant milestone in the computer vision field in general, as
perhaps the first widely publicized combination of sponsored research, sig-
nificant data collection, and well-defined competition in the field. The Face
Recognition Vendor Tests of 2000 and 2002 [10] continued where the FERET
program left off, including evaluations of both face recognition performance
and product usability. A new Face Recognition Vendor Test is planned for
late 2005, conducted by the National Institute of Standards and Technology
(NIST) and sponsored by several U.S. government agencies.

In addition, NIST has also begun to direct and manage a Face Recogni-
tion Grand Challenge (FRGC), also sponsored by several U.S. government
agencies, which has the goal of bringing about an order of magnitude im-
provement in performance of face recognition systems through a series of
increasingly difficult challenge problems. Data collection will be much more
extensive than previous efforts, and various image sources will be tested, in-
cluded high resolution images, 3D images, and multiple images of a person.
More information on the FERET and FRVT activities, including reports and
detailed results, as well as information on the FRGC, can be found on the
web at http://www.frvt.org.

DARPA sponsored a program to develop Visual Surveillance and Moni-
toring (VSAM) technologies, to enable a single operator to monitor human
activities over a large area using a distributed network of active video sensors.
Research under this program included efforts in real-time object detection and
tracking (from stationary and moving cameras), human and object recogni-
tion, human gait analysis, and multi-agent activity analysis.

DARPA’s HumanID at a Distance program funded several groups to con-
duct research in accurate and reliable identification of humans at a distance.
This included multiple information sources and techniques, including face,
iris, and gait recognition.



6 M.Turk

These are but a few examples (albeit some of the most high profile ones)
of recent research funding in areas related to “looking at people.” There are
many others, including industry research and funding, as well as European,
Japanese, and other government efforts to further progress in these areas.
One such example is the recent European Union project entitled Computers
in the Human Interaction Loop (CHIL). The aim of this project is to create
environments in which computers serve humans by unobtrusively observing
them and identifying the states of their activities and intentions, providing
helpful assistance with a minimum of human attention or distraction.

Security concerns, especially following the world-changing events of Septem-
ber 2001, have driven many of the efforts to spur progress in this area –
particularly those with person identification as their ultimate goal – but the
same or similar technologies may be applied in other contexts. Hence, though
RTV4HCI is not primarily focused on security and surveillance applications,
the two areas can immensely benefit each other.

2 What is RTV4HCI?

The goal of research in real-time vision for human-computer interaction is to
develop algorithms and systems that sense and perceive humans and human
activity, in order to enable more natural, powerful, and effective computer
interfaces. Intuitively, the visual aspects that matter when communicating
with another person in a face-to-face conversation (determining identity, age,
direction of gaze, facial expression, gestures, etc.) may also be useful in com-
municating with computers, whether stand-alone or hidden and embedded in
some environment. The broader context of RTV4HCI is what many refer to
as perceptual interfaces [27], multimodal interfaces [16], or post-WIMP inter-
faces [28] central to which is the integration of multiple perceptual modalities
such as vision, speech, gesture, and touch (haptics). The major motivating
factor of these thrusts is the desire to move beyond graphical user interfaces
(GUIs) and the ubiquitous mouse, keyboard, and monitor combination – not
only for better and more compelling desktop interfaces, but also to better fit
the huge variety and range of future computing environments.

Since the early days of computing, only a few major user interface
paradigms have dominated the scene. In the earliest days of computing, there
was no conceptual model of interaction; data was entered into a computer via
switches or punched cards and the output was produced, some time later, via
punched cards or lights. The first conceptual model or paradigm of user in-
terface began with the arrival of command-line interfaces in perhaps the early
1960s, with teletype terminals and later text-based monitors. This “type-
writer” model (type the input command, hit carriage return, and wait for the
typed output) was spurred on by the development of timesharing systems and
continued with the popular Unix and DOS operating systems.



RTV4HCI: A Historical Overview 7

In the 1970s and 80s the graphical user interface and its associated desk-
top metaphor arrived, and the GUI has dominated the marketplace and HCI
research for over two decades. This has been a very positive development for
computing: WIMP-based GUIs have provided a standard set of direct ma-
nipulation techniques that primarily rely on recognition, rather than recall,
making the interface appealing to novice users, easy to remember for occa-
sional users, and fast and efficient for frequent users [21]. The GUI/direct
manipulation style of interaction has been a great match with the office pro-
ductivity and information access applications that have so far been the “killer
apps” of the computing industry.

However, computers are no longer just desktop machines used for word
processing, spreadsheet manipulation, or even information browsing; rather,
computing is becoming something that permeates daily life, rather than some-
thing that people do only at distinct times and places. New computing envi-
ronments are appearing, and will continue to proliferate, with a wide range of
form factors, uses, and interaction scenarios, for which the desktop metaphor
and WIMP (windows, icons, menus, pointer) model are not well suited. Ex-
amples include virtual reality, augmented reality, ubiquitous computing, and
wearable computing environments, with a multitude of applications in com-
munications, medicine, search and rescue, accessibility, and smart homes and
environments, to name a few.

New computing scenarios, such as in automobiles and other mobile envi-
ronments, rule out many of the traditional approaches to human-computer
interaction and demand new and different interaction techniques. Interfaces
that leverage natural human capabilities to communicate via speech, gesture,
expression, touch, etc., will complement (not entirely replace) existing interac-
tion styles and enable new functionality not otherwise possible or convenient.
Despite technical advances in areas such as speech recognition and synthesis,
artificial intelligence, and computer vision, computers are still mostly deaf,
dumb, and blind. Many have noted the irony of public restrooms that are
“smarter” than computers because they can sense when people come and go
and act accordingly, while a computer may wait indefinitely for input from
a user who is no longer there or decide to do irrelevant (but CPU intensive)
work when a user is frantically working on a fast approaching deadline [25].

This concept of user awareness is almost completely lacking in most mod-
ern interfaces, which are primarily focused on the notion of control, where the
user explicitly does something (moves a mouse, clicks a button) to initiate
action on behalf of the computer. The ability to see users and respond ap-
propriately to visual identity, location, expression, gesture, etc. – whether via
implicit user awareness or explicit user control – is a compelling possibility,
and it is the core thrust of RTV4HCI.

Human-computer interaction (HCI) – the study of people, computer tech-
nology, and the ways they influence each other – involves the design, evalu-
ation, and implementation of interactive computing systems for human use.
HCI is a very broad interdisciplinary field with involvement from computer



8 M.Turk

science, psychology, cognitive science, human factors, and several other dis-
ciplines, and it involves the design, implementation, and evaluation of inter-
active computer systems in the context of the work or tasks in which a user
is engaged [7]. The user interface – the software and devices that implement
a particular model (or set of models) of HCI – is what people routinely ex-
perience in their computer usage, but in many ways it is only the tip of the
iceberg. “User experience” is a term that has become popular in recent years
to emphasize that the complete experience of the user – not an isolated in-
terface technique or technology – is the final criterion by which to measure
the utility of any HCI technology. To be truly effective as an HCI technology,
computer vision technologies must not only work according to the criteria of
vision researchers (accuracy, robustness, etc.), but they must be useful and
appropriate for the tasks at hand. They must ultimately deliver a better user
experience.

To improve the user experience, either by modifying existing user interfaces
or by providing new and different interface technologies, researchers must
focus on a range of issues. Shneiderman [21] described five human factors
objectives that should guide designers and evaluators of user interfaces: time
to learn, speed of performance, user error rates, retention over time, and
subjective satisfaction. Researchers in RTV4HCI must keep these in mind –
it’s not just about the technology, but about how the technology can deliver
a better user experience.

3 Looking at People

The primary task of computer vision in RTV4HCI is to detect, recognize, and
model meaningful communication cues – that is, to “look at the user” and
report relevant information such as the user’s location, expressions, gestures,
hand and finger pose, etc. Although these may be inferred using other sensor
modalities (such as optical or magnetic trackers), there are clear benefits in
most environments to the unobtrusive and unencumbering nature of computer
vision. Requiring a user to don a body suit, to put markers on the face or body,
or to wear various tracking devices, is unacceptable or impractical for most
anticipated applications of RTV4HCI.

Visually perceivable human activity includes a wide range of possibilities.
Key aspects of “looking at people” include the detection, recognition, and
modeling of the following elements [26]:

• Presence and location – Is someone there? How many people? Where are
they (in 2D or 3D)? [Face and body detection, head and body tracking]

• Identity – Who are they? [Face recognition, gait recognition]
• Expression – Is a person smiling, frowning, laughing, speaking . . . ? [Facial

feature tracking, expression modeling and analysis]
• Focus of attention – Where is a person looking? [Head/face tracking, eye

gaze tracking]



RTV4HCI: A Historical Overview 9

• Body posture and movement – What is the overall pose and motion of the
person? [Body modeling and tracking]

• Gesture – What are the semantically meaningful movements of the head,
hands, body? [Gesture recognition, hand tracking]

• Activity – What is the person doing? [Analysis of body movement]

The computer vision problems of modeling, detecting, tracking, recogniz-
ing, and analyzing various aspects of human activity are quite difficult. It’s
hard enough to reliably recognize a rigid mechanical widget resting on a ta-
ble, as image noise, changes in lighting and camera pose, and other issues
contribute to the general difficulty of solving a problem that is fundamentally
ill-posed. When humans are the objects of interest, these problems are magni-
fied due to the complexity of human bodies (kinematics, non-rigid musculature
and skin), and the things people do – wear clothing, change hairstyles, grow
facial hair, wear glasses, get sunburned, age, apply makeup, change facial ex-
pression – that in general make life difficult for computer vision algorithms.
Due to the wide variation in possible imaging conditions and human appear-
ance, robustness is the primary issue that limits practical progress in the area.

There have been notable successes in various “looking at people” tech-
nologies over the years. One of the first complete systems that used computer
vision in a real-time interactive setting was the system developed by Myron
Krueger, a computer scientist and artist who first developed the VIDEO-
PLACE responsive environment around 1970. VIDEOPLACE [13] was a full
body interactive experience. It displayed the user’s silhouette on a large screen
(viewed by the user as a sort of mirror) and incorporated a number of inter-
esting transformations, including letting the user hold, move, and interact
with 2D objects (such as a miniature version of the user’s silhouette) in real-
time. The system let the user do finger painting and many other interactive
activities. Although the computer vision was relatively simple, the complete
system was quite compelling, and it was quite revolutionary for its time. A
more recent system in a similar spirit was the “Magic Morphin Mirror / Mass
Hallucinations” by Darrell et al. [6], an interactive art installation that al-
lowed users to see modified versions of themselves in a mirror-like display.
The system used computer vision to detect and track faces via a combination
of stereo, color, and grayscale pattern detection.

The first computer programs to recognize human faces appeared in the late
1960s and early 1970s, but only in the past decade have computers become
fast enough to support real-time face recognition. A number of computational
models have been developed for this task, based on feature locations, face
shape, face texture, and combinations thereof; these include Principal Com-
ponent Analysis (PCA), Linear Discriminant Analysis (LDA), Gabor Wavelet
Networks (GWNs), and Active Appearance Models (AAMs). Several compa-
nies, such as Identix Inc., Viisage Technology Inc., and Cognitec Systems,
now develop and market face recognition technologies for access, security, and
surveillance applications. Systems have been deployed in public locations such



10 M.Turk

as airports and city squares, as well as in private, restricted access environ-
ments. For a comprehensive survey of face recognition research, see [34].

The MIT Media Lab was a hotbed of activity in computer vision research
applied to human-computer interaction in the 1990s, with notable work in
face recognition, body tracking, gesture recognition, facial expression model-
ing, and action recognition. The ALIVE system [14] used vision-based tracking
(including the Pfinder system [31]) to extract a user’s head, hand, and foot
positions and gestures to enable the user to interact with computer-generated
autonomous characters in a large-screen video mirror environment. Another
compelling example of vision technology used effectively in an interactive en-
vironment was the Media Lab’s KidsRoom project [4]. The KidsRoom was
an interactive, narrative play space. Using computer vision to detect the loca-
tions of users and to recognize their actions helped to deliver a rich interactive
experience for the participants. There have been many other compelling pro-
totype systems developed at universities and research labs, some of which
are in the initial stages of being brought to market. A system to recognize a
limited vocabulary of American Sign Language (ASL) was developed, one of
the first instances of real-time vision-based gesture recognition using Hidden
Markov Models (HMMs).

Other notable research progress in important areas includes work in hand
modeling and tracking [19, 32], gesture recognition [30, 22], facial expression
analysis [33, 2], and applications to computer games [8].

In addition to technical progress in computer vision – better modeling
of bodies, faces, skin, dynamics, movement, gestures, and activity, faster
and more robust algorithms, better and larger databases being collected and
shared, the increased focus on learning and probabilistic approaches – there
must be an increased focus on the HCI aspects of RTV4HCI. Some of the
critical issues include a deeper understanding of the semantics (e.g., when is a
gesture a gesture, how is contextual information properly used?), clear policies
on required accuracy and robustness of vision modules, and sufficient creativ-
ity in design and thorough user testing to ensure that the suggested solution
actually benefits real users in real scenarios. Having technical solutions does
not guarantee, by any means, that we know how to apply them more appro-
priately – intuition may be severely misleading. Hence, the research agenda
for RTV4HCI must include both development of individual technology com-
ponents (such as body tracking or gesture recognition) and the integration of
these components into real systems with lots and lots of user testing.

Of course, there has been great research in various areas of real-time vision-
based interfaces at many universities and labs around the world. The Univer-
sity of Illinois at Urbana-Champaign, Carnegie Mellon University, Georgia
Tech, Microsoft Research, IBM Research, Mitsubishi Electric Research Labo-
ratories, the University of Maryland, Boston University, ATR, ETL, the Uni-
versity of Southampton, the University of Manchester, INRIA, and the Univer-
sity of Bielefeld are but a few of the places where this research has flourished.
Fortunately, the barrier to entry in this area is relatively low; a PC, a digital



RTV4HCI: A Historical Overview 11

camera, and an interest in computer vision and human-computer interaction
are all that is necessary to start working on the next major breakthrough in
the field. There is much work to be done.

4 Final Thoughts

Computer vision has made significant progress through the years (and espe-
cially since my first experience with it in the early 1980s). There have been
notable advances in all aspects of the field, with steady improvements in the
performance and robustness of methods for low-level vision, stereo, motion,
object representation and recognition, etc. The field has adopted more appro-
priate and effective computational methods, and now includes quite a wide
range of application areas. Moore’s Law improvements in hardware, advance-
ments in camera technology, and the availability of useful software tools (such
as Intel’s OpenCV library1) have led to small, flexible, and affordable vision
systems that are available to most researchers. Still, a rough back-of-the-
envelope calculation reveals that we may have to wait some time before we
really have the needed capabilities to perform very computationally intensive
vision problems well in real-time. Assuming relatively high speed images (100
frames per second) in order to capture the temporal information needed for hu-
mans moving at normal speeds, relatively high resolution images (1000×1000
pixels) in order to capture the needed spatial resolution, and an estimated
40k operations per pixel in order to do the complex processing required by
advanced algorithms, we are left needing a machine that delivers 4×1012 oper-
ations per second [20]. If Moore’s Law holds up, it’s conceivable that we could
get there within a (human) generation. More challenging will be figuring out
what algorithms to run on all those cycles! We are still more limited by our
lack of knowledge than our lack of cycles. But the progress in both areas is
encouraging.

RTV4HCI is still a nascent field, with growing interest and awareness
from researchers in computer vision and in human-computer interaction. Due
to how the field has progressed, companies are springing up to commercialize
computer vision technology in new areas, including consumer applications.
Progress has been steadily moving forward in understanding fundamental is-
sues and algorithms in the field, as evidenced by the primary conferences and
journals. Useful large datasets have been collected and widely distributed,
leading to more rapid and focused progress in some areas. An apparent “killer
app” for the field has not yet arisen, and in fact may never arrive; it may
be the accumulation of many new and useful abilities, rather than one par-
ticular application, that finally validates the importance of the field. In all
of these areas, significant speed and robustness issues remain; real-time ap-
proaches tend to be brittle, while more principled and thorough approaches
1 http://www.intel.com/research/mrl/research/opencv



12 M.Turk

tend to be excruciatingly slow. Compared to speech recognition technology,
which has seen years of commercial viability and has been improving steadily
for decades, RTV4HCI is still in the Stone Age.

At the same time, there is an increased amount of cross-pollination between
people in the computer vision and HCI communities. Quite a few conferences
and workshops have appeared in recent years devoted to intersections of the
two fields. If the past provides an accurate trajectory with which to anticipate
the future, we have much to look forward to in this interesting and challenging
endeavor.

References

1. M. Annaratone, E. Arnould, T. Gross, H. Kung, and J.Webb, “The Warp com-
puter: architecture, implementation and performance,” IEEE Trans on Com-
puters, C-36(12), pp. 1523-1538, 1987.

2. M. Black, and Y. Yacoob, “Tracking and recognizing rigid and non-rigid facial
motions using local parametric models of image motion,” Proceedings of the
International Conference on Computer Vision, pp. 374-381, Cambridge, MA,
1995.

3. W.W. Bledsoe, “Man-machine facial recognition,” Technical Report PRI 22,
Panoramic Research Inc., Palo Alto, CA, August 1966.

4. A. Bobick, S. Intille, J. Davis, F. Baird, C. Pinhanez, L. Campbell, Y. Ivanov,
A. Schütte, and A. Wilson, “The KidsRoom: a perceptually-based interactive
and immersive story environment,” PRESENCE: Teleoperators and Virtual
Environments, 8(4), pp. 367-391, August 1999.

5. P. J. Burt, “Smart sensing with a pyramid vision machine,” Proceedings of the
IEEE, Vol. 76, pp. 1006-1015, 1988.

6. T. Darrell, G. Gordon, W. Woodfill, and H. Baker, “A Magic Morphin Mirror,”
SIGGRAPH ’97 Visual Proceedings, ACM Press. 1997.

7. A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-Computer Interaction,
Second Edition, Prentice Hall Europe, 1998.

8. W. Freeman, K. Tanaka, J. Ohta, and K. Kyuma, “Computer vision for com-
puter games,” Proc. Second International Conference on Automatic Face and
Gesture Recognition. Killington, VT, 1996.

9. A. J. Goldstein, L. D. Harmon, and A. B. Lesk, “Identification of human faces,”
Proc. IEEE, Vol. 59, pp. 748-760, 1971.

10. P. J. Grother, R. J. Micheals and P. J. Phillips, “Face Recognition Vendor
Test 2002 Performance Metrics,” Proceedings 4th International Conference on
Audio Visual Based Person Authentication, 2003.

11. M. D. Kelly, “Visual identification of people by computer,” Stanford Artificial
Intelligence Project Memo AI-130, July 1970.

12. T. Kanade, “Picture processing system by computer complex and recognition
of human faces,” Dept. of Information Science, Kyoto University, Nov. 1973.

13. M. W. Krueger, Artificial Reality II, Addison-Wesley, Reading, MA, 1991.
14. P. Maes, T. Darrell, B. Blumberg, and A. Pentland, “The ALIVE system: wire-

less, full-body interaction with autonomous agents,” ACM Multimedia Systems,
Special Issue on Multimedia and Multisensory Virtual Worlds, Spring 1996.



RTV4HCI: A Historical Overview 13

15. J. O’Rourke and N. Badler, “Model-based image analysis of human motion
using constraint propagation,” IEEE Transactions on PAMI, vol.2, no.6, pp.522-
536, 1980.

16. S. Oviatt, T. Darrell, and M. Flickner, “Multimodal interfaces that flex, adapt,
and persist,” Communications of the ACM, Vol. 47, No. 1, pp. 30-33, January
2004.

17. P. J. Phillips, H. Moon, P. J. Rauss, and S. Rizvi, “The FERET evaluation
methodology for face recognition algorithms,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 22, No. 10, October 2000.

18. R.F. Rashid, “Towards a system for the interpretation of Moving Light Dis-
plays,” IEEE Transactions on PAMI, vol.2, no.6, pp.574-581, Nov. 1980.

19. J. Rehg and T. Kanade, “Visual tracking of high DOF articulated structures:
an application to human hand tracking,” Proceedings of the 3rd European
Conference on Computer Vision (ECCV ’94), Volume II, pp. 35-46, May 1994.

20. S. Shafer, personal communication, 1998.
21. B. Shneiderman, Designing the User Interface: Strategies for Effective Human-

Computer Interaction, Addison Wesley, 3rd edition, March 1998.
22. M. Stark and M. Kohler, “Video based gesture recognition for human computer

interaction,” in W. D. Fellner (Ed.), Modeling - Virtual Worlds - Distributed
Graphics, 1995.

23. M. Turk, “Computer vision in the interface,” Communications of the ACM,
Vol. 47, No. 1, pp. 60-67, January 2004.

24. M. Turk, “Interactive-time vision: face recognition as a visual behavior,” Ph.D.
Thesis, MIT Media Lab, September 1991.

25. M. Turk, “Perceptive media: machine perception and human computer inter-
action,” Chinese Computing Journal, 2001.

26. M. Turk and M. Kölsch, “Perceptual Interfaces,” G. Medioni and S.B. Kang
(eds.), Emerging Topics in Computer Vision, Prentice Hall, 2004.

27. M. Turk and G. Robertson, “Perceptual User Interfaces,” Communications of
the ACM, Vol. 43, No. 3, pp. 33-34, March 2000.

28. A. van Dam, “Post-wimp user interfaces,” Communications of the ACM,
40(2):63-67, 1997.

29. J.A. Webb and J. K. Aggarwal, “Structure from motion of rigid and jointed
objects,” Artificial Intelligence, vol.19, pp.107-130, 1982.

30. C. Vogler and D. Metaxas, “Adapting Hidden Markov models for ASL recogni-
tion by using three dimensional computer vision methods,” IEEE International
Conference on Systems, Man and Cybernetics, pp. 156-161, October 1997.

31. C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: real-time
tracking of the human body,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 19, No. 7, pp. 780-785, July 1997.

32. Y. Wu and T. S. Huang, “Hand modeling, analysis, and recognition,” IEEE
Signal Processing Magazine, May 2001.

33. A. Zelinsky and J. Heinzmann, “Real-time visual recognition of facial gestures
for human-computer interaction,” Proc. Second International Conference on
Automatic Face and Gesture Recognition. Killington, VT, 1996.

34. W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: a
literature survey,” ACM Computing Surveys, Vol. 35, No. 4, pp. 399-458, 2003.





Real-Time Algorithms:
From Signal Processing to Computer Vision

Branislav Kisačanin1 and Vladimir Pavlović2

1 Delphi Corporation
b.kisacanin@ieee.org

2 Rutgers University
vladimir@cs.rutgers.edu

In this chapter we aim to describe a variety of factors influencing the design
of real-time vision systems, from processor options to real-time algorithms.
By touching upon algorithms from different fields, from data and signal pro-
cessing to low-level computer vision and machine learning, we demonstrate
the diversity of building blocks available for real-time vision design.

1 Introduction

In general, when faced with a problem that involves constraints on both the
system response time and the overall system cost, one must carefully consider
all problem assumptions, simplify the solution as much as possible, and use
the specific conditions of the problem. Very often, there is much to gain just
by using an alternative algorithm that provides similar functionality at a lower
computational cost or in a shorter time.

In this chapter we talk about such alternatives, real-time algorithms, in
computer vision. We begin by discussing different meanings of real-time and
other related terminology and notation. Next, we describe some of the hard-
ware options available for real-time vision applications. Finally, we present
some of the most important real-time algorithms from different fields that
vision for HCI (Human-Computer Interaction) relies on: data analysis, digital
signal and image processing, low-level computer vision, and machine learning.

2 Explaining Real-Time

What do we mean by real-time when we talk about real-time systems and
real-time algorithms? Different things, really, but similar and related. These
separate uses of real-time have evolved over the years, and while their differ-
ences might cause a bit of confusion, we do not attempt to rectify the situation.



16 B.Kisačanin, V. Pavlović

Researchers have been investigating much more complex topics without first
defining them properly. To quote Sir Francis Crick and Christof Koch [8]:

If it seems like a cop-out, try defining the word “gene” – you will not
find it easy.

We will not completely avoid the subject either: we will explain, rather
than define, what is usually meant by real-time. At the same time we will
introduce other common terminology and notation.

There are at least two basic meanings to real-time. One is used in the de-
scription of software and hardware systems (as in real-time operating system).
We will discuss this and related terminology shortly, in Sect. 2.1.

The other meaning of real-time is employed in the characterization of algo-
rithms, when it is an alternative to calling an algorithm fast (e.g., Fast Fourier
Transform – FFT). This meaning is used to suggest that the fast algorithm
is more likely to allow the entire system to achieve real-time operation than
some other algorithm. We talk about this in Sect. 2.2.

2.1 Systems

For systems in general, the time it takes a system to produce its output,
starting from the moment all relevant inputs are presented to the system, is
called the response time. We say that a system is real-time if its response time
satisfies constraints imposed by the application. For example, an automotive
air-bag must be deployed within a few milliseconds after contact during a
crash. This is dictated by the physics of the event. Air-bag deployment systems
are an example of hard real-time systems, in which the constraints on the
response time must always be satisfied.

Some applications may allow deadlines to be occasionally missed, result-
ing in performance degradation, rather than failure. For example, your digital
camera may take a bit longer than advertised to take a picture of a low-light
scene. In this case we say its performance degrades with decreasing illumina-
tion. Such systems are called soft real-time systems. Real-time HCI systems
can often be soft real-time. For example, a 45ms visual delay is not noticeable,
but anything above that will progressively degrade visual interfaces [35].

2.2 Algorithms

To illustrate the use of real-time to qualify algorithms, consider the Discrete
Fourier Transform. It can be implemented directly from its definition

Xk =
n−1∑
m=0

xme−j2πkm/n (k = 0, 1, . . . , n − 1) (1)

This implementation, let us just call it the DFT algorithm for simplicity,
requires 3n2 real multiplications. This is true if we assume that exponential



Real-Time Algorithms 17

factors are calculated offline and the complex multiplication is implemented
so that the number of real multiplications is minimized:

(a + jb)(p + jq) = ap − bq + j(aq + bp)
= ap − bq + j((a + b)(p + q) − ap − bq)

Usually we are most concerned with the number of multiplications, but the
number of additions is also important in some implementations. In any case,
we say that DFT is an O(n2) algorithm. This so-called O-notation [7] means
there is an upper bound on the worst case number of operations involved in
execution of the DFT algorithm, and that this upper bound is a multiple of
n2, in this case 3n2.

In general, an algorithm is O(f(n)) if its execution involves ≤ αf(n) op-
erations, where α is some positive constant. This notation is also used in
discussions about NP-completeness of algorithms [7].

This same function, the Discrete Fourier Transform, can also be imple-
mented using one of many algorithms collectively known as FFT, such as
Cooley-Tukey FFT, Winograd FFT, etc. [10, 28, 40]. Due to the significant
speed advantage offered by these algorithms, which are typically O(n log n),
we say that the FFT is a real-time algorithm. By this we mean that the FFT
is more likely than DFT to allow the entire system to achieve real-time.

Note that the O-notation is not always the best way to compare algo-
rithms, because it only describes their asymptotic behavior. For example, with
sufficiently large n we know that an O(n3) algorithm will be slower that an
O(n2) algorithm, but this notation tells us very little about what happens for
smaller values of n. This is because the O-notation absorbs any multiplicative
constants and additive factors of lesser order.

Often we do not work with a “sufficiently large n” and hence must be
careful not to jump to conclusions. A common example is the matrix multi-
plication. The standard way to multiply two n × n matrices requires O(n3)
scalar multiplications. On the other hand, there are matrix algorithms of
lesser asymptotic complexity. Historically, the first was Strassen’s O(n2.81)
algorithm [38]. However, due to the multiplicative constants absorbed by the
O-notation, the Strassen’s algorithm should be used only for n ≈ 700 and
greater. Have you ever had to multiply matrices that big? Probably not, but
if you have they were probably sparse or had some structure. In that case
one is best off using a matrix multiplication algorithm designed specifically
for such matrices [11, 19].

2.3 Design Considerations

Designing a real-time system is often a complex task. It involves multiple
trade-offs, such as choosing the right processor: one that will offer enough
“horsepower” to do the job in a timely manner, but will not cost a lot or
consume too much power. We discuss processor selection in Sect. 3.



18 B.Kisačanin, V. Pavlović

Needless to say, we can make any system real-time by using faster resources
(processors, memory, sensors, I/O) or waiting for them to become available,
but that is not the way to design for success. This is where we need real-time
algorithms, to allow us to use less expensive hardware while still achieving
real-time performance. We discuss real-time algorithms in Sect. 4.

Other things to consider when designing a real-time system: carefully de-
termine real-time deadlines for the system, make sure the system will meet
these deadlines even in the worst case scenario, and choose development tools
to enable you to efficiently design your real-time system (for example, com-
piling the software should not take hours). One frequently overlooked design
parameter is the system lag. For example, an interactive vision system may
be processing frames at a frame rate, but if the visual output lags too much
behind the input, it may be useless or nauseous. This often happens because of
the delay introduced by the frame-grabbing pipeline and similarly, the video
output pipeline.

3 Hardware Options

Before discussing real-time algorithms (Sect. 4), we must discuss hardware
options. Algorithms do not operate in a vacuum, they are implemented either
directly in hardware or in software that operates on hardware.

Given a design problem, one must think about what kinds of processing
will be required. Different types of processing have varying levels of success
mapping onto different hardware architectures. For example, a chip specifically
designed to efficiently handle linear filtering will not be the best choice for
applications requiring many floating-point matrix inversions or large control
structures.

3.1 Useful Hardware Features

In general, since computer vision involves processing of images, and image
processing is an extreme case of digital signal processing, your design will
benefit from using fast memory, wide data busses with DMA, and processor
parallelism:

• Fast memory. Fast, internal (on-chip) memory is required to avoid idle
cycles due to read and write latencies characteristic of external memory.
Configuring the internal memory as cache helps reduce the memory size
requirements and is often acceptable in image processing, because imaging
functions tend to have a high locality of reference for both the data and
the code.

• Wide data bus with DMA. Considering the amount of data that needs
to be given to the processor in imaging and vision applications, it is under-
standable that wide data busses (at least 64-bit wide) are a must. Another



Real-Time Algorithms 19

must is having a DMA (Direct Memory Access) unit, which performs data
transfers in the background, for example from the frame buffer to the
internal memory, freeing the processor to do more complex operations.

• Parallelism. Regarding the processor parallelism, we distinguish [36]:
temporal parallelism, issue parallelism (superscalar processors), and intra-
instruction parallelism (SIMD, VLIW):
– Temporal. The temporal parallelism is now a standard feature of mi-

croprocessors. It refers to pipelining the phases of instruction process-
ing, commonly referred to as F (Fetch), D (Decode), E (Execute), and
W (Write).

– Superscalar processors. The issue parallelism is achieved using su-
perscalar architectures, a commonplace for general purpose micropro-
cessors such as Pentium and PowerPC families. Superscalar processors
have special-purpose circuitry that analyzes the decoded instructions
for dependences. Independent instructions present an opportunity to
parallelize their execution. While this mechanism is a great way to
increase processor performance, the associated circuitry adds signifi-
cantly to the chip complexity, thus increasing the cost.

– SIMD, VLIW. Intrainstruction parallelism is another way to par-
allelize processing. SIMD (Single Instruction Multiple Data) refers to
multiple identical processing units operating under control of a single
instruction, each working on different input data. A common way to use
this approach is, for example, to design 32-bit multipliers so that they
can also do 4 simultaneous 8-bit multiplications. VLIW (Very Long
Instruction Word) refers to a specific processor architecture employing
multiple non-identical functional units running in parallel. For example,
an 8-way VLIW processor has eight parallel functional units (e.g., two
multipliers and six arithmetic units). To support their parallel execu-
tion it fetches eight 32-bit instructions each cycle. The full instruction
is then up to 256 bits long, thus the name, VLIW. Note that unlike
superscalar processors, which parallelize instructions at run-time, the
VLIW processors are supported by sophisticated compilers that ana-
lyze the code and parallelize at compile-time.

3.2 Making a Choice

While there is no universal formula to determine the best processor for your
application, much less a processor that would best satisfy all combinations of
requirements, there are things that you can do to ensure you are making a good
choice. Here are some questions to ask yourself when considering hardware
options for your computer vision problem:

• Trivial case. Are you developing for a specific hardware target? Your
choice is then obvious. For example, if you are working on lip reading



20 B.Kisačanin, V. Pavlović

software for the personal computer market, then you will most likely work
with a chip from the Pentium or PowerPC families.

• High volume: > 1,000,000. Will your product end up selling in high
volumes? For example, if you expect to compete with game platforms
such as PlayStation, or if your product will be mounted in every new car,
then you should consider developing your own ASIC (Application Specific
Integrated Circuit). This way you can design a chip with exactly the silicon
you need, no more, no less. In principle, you do not want to pay for silicon
you will not use. Only at high volumes can the development cost for an
ASIC be recovered. You may find it useful to start your development on
some popular general purpose processor (e.g., Pentium). Soon you would
migrate to an FPGA (Field Programmable Gate Array), and finally, when
the design is stable, you would produce your own ASIC. Tools exist to
help you with each of these transitions. Your ASIC will likely be a fairly
complex design, including a processor core and various peripherals. As
such, it qualifies to be called a System-on-a-Chip (SoC).

• Medium volume: 10,000–100,000. Are you considering medium vol-
ume production? Is your algorithm development expected to continue even
after the sales start? In this case you will need the mix of flexibility and cost
effectiveness offered by a recently introduced class of processors, called me-
dia processors. They typically have a high-end DSP core employing SIMD
and VLIW methodologies, married on-chip with some typical multimedia
peripherals such as video ports, networking support, and other fast data
ports. The most popular examples are TriMedia (Philips), DM64x (TI),
Blackfin (ADI), and BSP (Equator).

• Low volume: < 1,000. Are you working on a military or aerospace appli-
cation or just trying to quickly prove the concept to your management or
customer? These are just a few examples of low volume applications and
situations in which the system cost is not the biggest concern or develop-
ment time is very short. If so, you need to consider using a general purpose
processor, such as Pentium or PowerPC. They cost more than media pro-
cessors, but offer more “horsepower” and mature development tools. With
available SIMD extensions (MMX/SSE/SSE2 and AltiVec) they are well
suited for imaging and vision applications. Pentium’s MMX/SSE/SSE2
and PowerPC’s AltiVec can do two and eight floating-point operations
per cycle, respectively. You may find it useful to add an FPGA for some
specific tasks, such as frame-grabbing and image preprocessing. Actually,
with ever-increasing fabric density of FPGAs and the availability of entire
processing cores on them, an FPGA may be all you need. For example,
the brains of NASA’s Mars rovers Spirit and Opportunity have been im-
plemented on radiation-tolerant FPGAs [45]. Furthermore, FPGAs may
be a viable choice for even slightly higher volumes. As their cost is getting



Real-Time Algorithms 21

lower every year, they are competing with DSPs and media chips for such
markets.

• Difficult case. If your situation lies somewhere in between the cases de-
scribed above, you will need to learn more about different choices and
decide based on the specific requirements of your application. You may
need to benchmark different chips using a few representative pieces of
your code. It will also be useful to understand the primary application
for which the chips have been designed and determine how much common
ground there is (in terms of types of processing and required peripherals)
with your problem.

Another thing you may want to consider is the choice between fixed-point
and floating-point processors. Typically, imaging and vision applications do
most of their processing on pixels, which are most often 8-bit numbers. Even
at higher precision, fixed-point processors will do the job. If the fixed-point
processor is required to perform floating-point operations, vendor-supplied
software libraries usually exist that emulate floating-point hardware. Since
hardware floating-point is much more efficient than software emulation, if you
require a lot of floating-point operations, you will have to use a floating-point
processor. Also, the cost of floating-point hardware is usually only 15–20%
higher than the corresponding fixed-point hardware. The ease of development
in a floating-point environment may be a sufficient reason to pay the extra
cost.

Before finalizing your choice, you should make sure the chip you are about
to select has acceptable power consumption, appropriate qualifications (mili-
tary, automotive, medical, etc.), mature development tools, defined roadmap,
and is going to be supported and manufactured in the foreseeable future.
Last, but certainly not least, make sure the official quoted price of the chip
at volume is close to what you were initially told by vendor’s marketing.

3.3 Algorithms, Execution Time, and Required Memory

Next, we discuss the mapping of algorithms onto hardware. In more practi-
cal terms, we address the issue of choosing among different algorithms and
processors. If we have a choice of several algorithms for the same task, is
there a theoretical tool or some other way to estimate their execution times
on a particular processor? Of course, we are trying to avoid making actual
time measurements, because that implies having to implement and optimize
all candidate algorithms. Alternatively, if we are trying to compare execution
times of several processors for the same algorithm, can we do it just based on
processor architecture and algorithm structure? Otherwise we would have to
implement the algorithm on all candidate processors. An even more difficult
problem is when we have two degrees of freedom, i.e., if we can choose between
both algorithms and processors. Practice often deals us even greater problems
by adding cost and other parameters into the decision making process.



22 B.Kisačanin, V. Pavlović

In general, unfortunately, there is no such tool. However, for some process-
ing architectures and some classes of algorithms we can perform theoretical
analysis. We will discuss that shortly, in Sect. 3.4. A trivial case is, for exam-
ple, comparing digital filtering on several media processors. By looking at how
many MAC (Multiply and Accumulate) operations the chip can do every cycle
and taking into account the processor clock frequency, we can easily compare
their performance. However, this analysis is valid only for data that can fit
into the on-chip memory. The analysis becomes much more complex and non-
deterministic if the on-chip memory has to be configured as cache [27]. The
problem becomes even more difficult if our analysis is to include superscalar
processors, such as Pentium and PowerPC. Even if these major obstacles could
disappear, there would remain many other, smaller issues, such as differences
between languages, compilers, and programming skills.

The memory required by different algorithms for the same task may also be
important. For example, as will be discussed in Sect. 4, Quicksort is typically
up to two times faster than Heapsort, but the latter does sorting in-place,
i.e., it does not require any memory in addition to the memory containing the
data. This property may become critical in cases when the available fast (on-
chip) memory is only slightly larger than the data to be sorted: Quicksort with
external memory will likely be much slower than the Heapsort with on-chip
memory.

3.4 Tensor Product for Matching Algorithms and Hardware

For a very important class of algorithms there is a theoretical tool that can
be of use in comparing different algorithms as they map on different processor
architectures [13, 14, 40]. This tool applies to digital filtering and transforms
with a highly recursive structure. Important examples are [13]:

• Linear convolution, e.g., FIR filtering, correlation, and projections in PCA
(Principal Component Analysis)

• Discrete and Fast Fourier Transform
• Walsh-Hadamard Transform
• Discrete Hartley Transform
• Discrete Cosine Transform
• Strassen Matrix Multiplication

To investigate these algorithms, the required computation is first represented
using matrix notation. For example, DFT (Discrete Fourier Transform) can
be written as

X = Fnx

where X and x are n × 1 vectors representing the transform and the data,
respectively, while Fn is the so-called DFT matrix



Real-Time Algorithms 23

Fn =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)2


where ω = e−j2π/n. This representation is equivalent to (1).

The recursive structure of algorithms implies the decomposability of the
associated matrices. For example, for the DFT matrix Fn numerous decom-
positions can be found, each corresponding to a different FFT algorithm. For
example, the Cooley-Tukey FFT (radix-2 decimation-in-time) algorithm can
be derived for n = 2r from the following recursive property:

Fn =

 In/2 In/2

In/2 −In/2

 In/2 0

0 Dn/2

Fn/2 0

0 Fn/2

Pn,2 (2)

where

Dn/2 = diag(1, ω, . . . , ωn/2−1)

In/2 is the size-n/2 unity matrix, and Pn,2 is the stride-by-two permutation
matrix representing the familiar data shuffling in the FFT.

At this point the formalism of the tensor product (also known as Kronecker
or direct product) of matrices becomes useful. If A and B are p× q and r × s
matrices, respectively, their tensor product is denoted by A ⊗ B. If A and B
are given by

A =


a11 a12 . . . a1q

a21 a22 . . . a2q

...
...

. . .
...

ap1 ap2 . . . apq

 and B =


b11 b12 . . . b1s

b21 b22 . . . b2s

...
...

. . .
...

br1 br2 . . . brs


their tensor product is a pr × qs matrix defined as

A ⊗ B =


a11B a12B . . . a1qB
a21B a22B . . . a2qB

...
...

. . .
...

ap1B ap2B . . . apqB


Using this formalism, the recursive property (2) can be written as

Fn = (F2 ⊗ In/2)diag(In/2, Dn/2)(I2 ⊗ Fn/2)Pn,2

Applying the same recursion to Fn/2, Fn/4, . . . down to F2 we find a fast
algorithm for DFT and see that it can be explained using this decomposition
of Fn into a product of sparse matrices.



24 B.Kisačanin, V. Pavlović

In particular, this recursion shows us that T (n), the number of operations
required for the size-n problem using the fast algorithm, can be described
recursively by

T (n) =
{

0 n = 1
2T (n/2) + αn n > 1

where α is some constant. The solution of this recursion [7] is an O(n log n)
function. Therefore, FFT is an O(n log n) algorithm.

Alternative decompositions yield different FFT algorithms [40]. A similar
formalism exists for other algorithms [13]. Most importantly, this same formal-
ism can be used to determine which one of many mathematically equivalent
algorithms is most suitable for a particular processor architecture [14].

For example, consider a part of an algorithm involving multiplication by
a pr × pr block diagonal matrix C whose p blocks are all equal to an r × r
matrix B

C =


B

B
. . .

B


This can be written using the tensor product notation as C = Ip ⊗ B and
can be efficiently implemented on a SIMD architecture involving p functional
units, each performing multiplication by B.

Unfortunately, this method does not take into account non-deterministic
effects of cache memory and superscalar issue parallelism.

4 Real-Time Algorithms

In this section, we present some of the most important real-time algorithms
from the fields related to vision for HCI: data analysis, optimization, signal
and image processing, computer vision, and machine learning. The selection
and depth of coverage are a trade-off between several conflicting requirements:
limited space, need for versatility and depth, and desire to cover the funda-
mental techniques while providing a glimpse at some related developments.
Since most of the described algorithms are available as function calls in stan-
dard software libraries, we do not provide any code. Our goal is to illustrate
enough for understanding and practical application of these algorithms. For
interested readers we provide a number of references.

4.1 Sorting

A common task in data analysis is sorting of data in numerical order. The-
oretical analysis and practice [7, 31] show that for problems with small-size



Real-Time Algorithms 25

data (n < 20) the best choice is straight insertion [25], for medium-size data
(20 ≤ n ≤ 50) the best approach is Shell’s method [25], while for larger data
sets (n > 50) the fastest sorting algorithm is Sir C. A. R. Hoare’s Quicksort
algorithm [18]. Instead of Quicksort, one may prefer to use J. W. J.Williams’
Heapsort algorithm [44], which is slightly slower (typically around half the
speed of Quicksort) but does an in-place sorting and has better worst-case
asymptotics. In Table 1 we show some more information on asymptotic com-
plexity.

Table 1. Guide to choosing a sorting algorithm

algorithm worst case average best for

Straight insertion O(n2) O(n2) n < 20
Shell’s method O(n1.5) O(n1.25) 20 ≤ n ≤ 50
Quicksort O(n2) O(n log n) n > 50 and high speed
Heapsort O(n log n) O(n log n) n > 50 and low memory

For a detailed explanation of these and other sorting algorithms we refer
the reader to [7, 25, 31].

4.2 Golden Section Search

Frequently we need to optimize a function, for example to find the maximum of
some index of performance. Minimization of f(x) can be done by maximization
of −f(x). Here we present a simple but very effective algorithm to find a
maximum of a function: Golden Section Search [4, 31]. Our basic assumption is
that getting the value of the function is expensive because it involves extensive
measurements or calculations. Thus, we want to estimate the maximum of
f(x) using the minimum number of actual values of f(x) as possible. The
only prerequisites are that f(x) is “well-behaved” (meaning that it does not
have discontinuities or other similar mathematical pathologies), and that by
using some application-specific method, we can guarantee that there is one,
and only one, maximum in the interval given to the algorithm.

At all times, the information about what we learned about the maximum
of function f(x) will be encoded by three points: (a, f(a)), (b, f(b)), (c, f(c)),
with a < b < c. After each iteration we will get a new, narrower triplet,
(a′, f(a′)), (b′, f(b′)), (c′, f(c′)), which can be used as input to the next iter-
ation, or can be used to estimate the peak of f(x) by fitting a parabola to
the three points and finding the maximum of the parabola. This assumes that
f(x) is a “well-behaved” function and looks like a parabola close to the peak.

If we know that the maximum is in the interval (a, c), we start by measuring
or calculating f(x) at the interval boundaries, x = a and x = c, and at a
point x = b somewhere inside the interval. We will specify what “somewhere”



26 B.Kisačanin, V. Pavlović

means shortly. Now we begin our iterative procedure (see Fig. 1): A new
measurement, at x = m, is made inside the wider of the two intervals (a, b)
or (b, c).

f(m) < f(b)

measurementinitial triplet

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

���

m

m

c′b′a′

c′b′a′ba c

ba c

a b c f(m) > f(b)

updated triplet

Fig. 1. Each iteration of the Golden Section Search algorithm results in shrinking of
the interval containing the desired maximum. Iterations start from the input triplet,
take a new measurement, and output the updated triplet, which can be used in the
next iteration or in the final step – fitting a parabola and finding its peak

Assume m ∈ (b, c). If f(m) < f(b), we set the resulting triplet so that
a′ = a, b′ = b, and c′ = m, otherwise, for f(m) > f(b), we set the resulting
triplet so that a′ = b, b′ = m, and c′ = c. Similar rules hold for m ∈ (a, b).

How should b and m be selected? Let b divide the interval (a, c) in pro-
portions α and 1 − α, i.e.,

b − a

c − a
= α and

c − b

c − a
= 1 − α

and let m be such that
m − b

c − a
= β

For all iterations to be the same, we want the rules for choosing b and m
to be identical, i.e.,

β

1 − α
= α

Additionally, we want to maximize the worst-case rate of convergence (the
rate of interval shrinking). This is done by setting the two larger intervals
equal, c − m = b − a, when



Real-Time Algorithms 27

β = 1 − 2α

The only solution in interval (0, 1) for α, and correspondingly for 1 − α, is

α =
3 −√

5
2

and 1 − α =
√

5 − 1
2

Note that 1 − α equals φ = 0.618 . . . , a mathematical constant called the
golden section, which is related to Fibonacci numbers and appears in many
unexpected places (geometry, algebra, biology, architecture, . . . ) [12, 22]. After
n iterations, the interval width is c(n) − a(n) ≤ φn(c − a).

Note that a similar method, called Fibonacci search, achieves a slightly
better convergence rate by not employing the same rule for the new measure-
ment in each iteration [4]. In the Fibonacci search the rule used in the k-th
iteration is based on the ratio of consecutive Fibonacci numbers (1, 1, 2, 3,
5, 8, 13, 21, 34, . . . ; in general Fn+2 = Fn+1 + Fn with F1 = F2 = 1). If we
allow a total of n iterations, then

αk = 1 − Fn−k+1

Fn−k+2

Since the ratio of consecutive Fibonacci numbers quickly converges to φ, most
αk are very close to α = 1 − φ.

4.3 Kalman Filtering

Kalman filter is an estimator used to estimate states of dynamic systems
from noisy measurements. While the attribute “filter” may be a bit confusing,
according to Mohinder Grewal and Angus Andrews [15] the method itself is

. . . certainly one of the greater discoveries in the history of statistical
estimation theory and possibly the greatest discovery in the twentieth
century.

Invented by R. E. Kalman in 1958, and first published in [20], it has been
quickly applied to the control and navigation of spacecraft, aircraft, and many
other complex systems. Kalman filter offers a quadratically optimal way to es-
timate system states from indirect, noisy, and even incomplete measurements.

In the context of estimation theory, it represents an extension of recursive
least-squares estimation to problems in which the states to be estimated are
governed by a linear dynamic model. What makes this method particularly
attractive is the recursive solution, suitable for real-time implementation on
a digital computer.

The fact that the solution is recursive means that at each time instant
the estimate is formed by updating the previous estimate using the latest



28 B.Kisačanin, V. Pavlović

measurement. If there was no recursive solution, we would have to calculate
the current estimate using all measurements.

Consider a discrete-time linear dynamic system that is fully described by
an n × 1 state vector x. If these states are not directly measurable, we can
estimate them from a noisy m×1 measurement vector y, provided the system
is observable [15, 23] and the noise has certain properties. Let the system be
described by the following variables and parameters

x[k] . . . n × 1 state vector
u[k] . . . m × 1 deterministic input vector
y[k] . . . r × 1 measurement vector
w[k] . . . n × 1 system noise vector
e[k] . . . r × 1 measurement noise vector
A . . . n × n state transition matrix
B . . . n × m input coupling matrix
C . . . r × n measurement sensitivity matrix

The dynamic model consists of update and measurement equations

x[k + 1] = Ax[k] + Bu[k] + w[k]
y[k] = Cx[k] + e[k]

where the system noise w[k] and the measurement noise e[k] are zero-mean,
white, and Gaussian. Furthermore, w[k] is uncorrelated with e[k]. If the noise
covariances are

E{w[k]w′[l]} = Qδ[k − l]
E{e[k]e′[l]} = Rδ[k − l]

then the steady-state Kalman estimator is given by

x̂[k] = z[k] + L(y[k] − Cz[k])

where

z[k] = Ax̂[k − 1] + Bu[k − 1] (z[0] = x[0] = x0)

and the gain L is given by L = PC′(R + CPC′)−1, where P is a solution of
the algebraic Riccati equation

P = Q + APA′ − APC′(R + CPC′)−1CPA

The algebraic Riccati equation is solved offline. Matlab and other de-
velopment and simulation tools offer functions to solve this equation and de-
termine the steady-state Kalman filter gain L. As can be seen from these



Real-Time Algorithms 29

equations, the estimate x̂[k] is recursive. In other words, it is based on the
previous estimate, x̂[k − 1], and the latest measurement, y[k].

A slightly more complicated formulation may be useful, in which the
Kalman filter gain L is not treated as a constant matrix, but is determined
for each recursion, as Lk. In that case we do not solve the algebraic Riccati
equation ahead of time. Instead, we recursively calculate Pk at each stage. In
that case Pk can be interpreted as the covariance matrix of the estimate x̂[k].
More details can be found in [15, 23].

In computer vision one often encounters the following dynamic model used
in object tracking. For the x−axis (cx is the x−coordinate, vx is the associated
velocity, and T is the sampling period), we write

 cx[k + 1]

vx[k + 1]

 =

 1 T

0 1

 cx[k]

vx[k]

+

wcx[k]

wvx[k]



y[k] =
[

1 0
] cx[k]

vx[k]

+ e[k]

Similar equations can be written for the y− and z−axes. These equations
model object motion as random. The noise covariances determine how much
weight is given to the new measurement y[k] and how much to the previous
estimate, x̂[k − 1], as they are combined to form the new estimate, x̂[k].

Since the above model is only order-2, the matrix calculations involved in
its implementation are almost trivial. Many more details on efficient imple-
mentation of higher-order Kalman filters, which involve matrix factorization
and matrix inversion, can be found in [11, 15, 19]. This is useful, for example,
in application of Kalman filtering to model complex articulated structures,
such as human body [32].

Other, more complicated formulations of Kalman filter exist [15]: some al-
low colored noise, others can account for unknown system model parameters,
and some can deal with nonlinearities (extended Kalman filter). In recent
years, a more general framework called particle filtering has been used to
extend applicability of Kalman’s approach to non-Gaussian stochastic pro-
cesses [1, 30].

The main idea is to recursively propagate the conditional probability dis-
tribution function for the value of the state vector, given all measurements.
In the case of a linear dynamic system and Gaussian noise, this becomes the
Kalman filter. In general, for nonlinear models and non-Gaussian noise, the
equations only have approximate solutions.



30 B.Kisačanin, V. Pavlović

4.4 FFT

Fast Fourier Transform (FFT) is a common name for a number of O(n log n)
algorithms used to evaluate the Discrete Fourier Transform (DFT) of n data
points. The DFT itself was initially most important to physicists in modeling
and analysis of periodic phenomena (string vibrations, planetary orbits, tides,
daily temperature variations, etc.). Since the 1940s crystallographers used
DFT, actually its inverse, to infer the crystal structure and properties from X-
ray diffraction patterns. For example, in 1953, the calculations that Rosalind
Franklin made from diffraction images of DNA taken by her and Maurice
Wilkins, confirmed the brilliant double-helix hypothesis proposed earlier that
year by James Watson and Francis Crick. Not knowing which algorithm she
used for her calculations, we can only speculate that she would have made the
big discovery herself had she used the FFT.

The discovery of FFT algorithms has a fascinating history [6]. Like many
other mathematical discoveries it can be traced back to Carl Friedrich Gauss
[17], who developed it to analyze the orbit parameters of the asteroid Pallas
in 1805. He used N = N1N2 astronomical observations and performed the
DFT analysis (he didn’t call it DFT – Fourier himself entered the scene only
in 1807) by dividing calculations into smaller blocks, thus having to do only
N(N1 + N2) calculations instead of N2. He commented on the computational
savings and also on the possibility to improve his method by dividing factors
of N further into smaller factors. This work was published much later, posthu-
mously, in 1866. In the meantime, better methods for orbit determination had
been developed. Thus, Gauss’ method fell into oblivion. As it happens, the
algorithm was rediscovered, used, and forgotten on several later occasions.

It was rediscovered one last time, in 1964, by James Cooley and John
Tukey [5] and almost immediately gained wide acceptance. The time was ripe
because many fields of science and engineering had an immediate application
for such an algorithm. At the same time, the use of digital computers was on
the rise, providing an ideal platform for implementation. The Cooley-Tukey
FFT was soon followed by other FFT algorithms [10, 28, 40].

The FFT is commonly available as a function in signal/image processing
libraries. Additionally, the body of literature dedicated to implementation
details is proportional to its importance, to list just a few [2, 10, 28, 33, 40].
Therefore, we move on to the topics more relevant to real-time vision, to
describe several ways the FFT can be used to speed up seemingly unrelated
operations, such as convolution, correlation, and morphological operations.
We also mention some other fast algorithms for convolution that are non-
FFT based.

Fast convolution and correlation. We limit the following discussion
to sequences, but note that these methods are easily generalized to two di-
mensions and higher. Convolution of two sequences u = (u0, . . . , um) and
h = (h0, . . . , hn) yields a new sequence y = u ∗ h = (y0, . . . , ym+n) given by



Real-Time Algorithms 31

yk =
k∑

i=0

uihk−i (k = 0, . . . , m + n) (3)

We assume that a sequence equals zero outside the specified range. For exam-
ple, h−1 = hn+1 = 0. Convolution has diverse uses, for example, as represen-
tation for digital filtering or for multiplication of polynomials.

Correlation of sequences u and h produces another sequence c given by

ck =
k∑

i=0

uihn+i−k (k = 0, . . . , m + n) (4)

Although correlation is used differently than convolution, the formal similarity
between (3) and (4) allows fast convolution algorithms to be adapted for fast
correlation.

To simplify the notation, let m = n. Then calculation of sequence y di-
rectly from (3) requires O(n2) multiplications. There are, however, O(n log n)
algorithms to do this using several different approaches [2, 28, 33]. Very much
like the FFT, a large convolution can be written in terms of shorter convolu-
tions, yielding computational savings.

There is also a fast convolution algorithm based on the FFT. It uses the
following property of the DFT and convolution. If sequences A, B, and C are
(m + n + 1)-length DFTs of a, b, and c, respectively, and c = a ∗ b, then

Ck = AkBk (k = 0, . . . , m + n)

The FFT-based fast convolution algorithm is not faster than many of
the non-FFT algorithms. It may also suffer from round-off errors on fixed-
point processors, whereas many of the non-FFT algorithms typically do not.
However, FFT-based fast convolution has a major advantage: due to wide
applicability of the FFT itself, the FFT routines are widely available, while
non-FFT fast convolution algorithms are generally not.

Windowing and data transfers. As noted earlier, an O(n log n) algo-
rithms is not always more efficient than an O(n2) algorithm, due to mul-
tiplicative constants that are absorbed by the O-notation. Such is the case
for convolutions in which one sequence (or image) is much shorter (smaller)
than the other sequence (image). Then the implementation directly from (3)
is computationally more efficient.

Processors with SIMD functionality (as discussed in Sect. 3.1) are well
suited to do convolution as in (3), but one may find that data throughput is
the limiting factor. The technique to be presented next improves the execution
time by significantly reducing the number of data transfers.

In order to be able to use SIMD operations, one usually needs to ensure
that the input data is aligned with 32-bit boundaries in the memory. This is
trivial when, for example, we need to calculate the absolute difference (AD)



32 B.Kisačanin, V. Pavlović

of two images: we just make sure that both images start at 32-bit boundaries,
and the rest is automatic, because each SIMD operation will use 4 bytes from
each image, hence the next SIMD call will again be on the 32-bit boundary.

However, if we need to find the best match for a small image (mask)
within a bigger image, then we need to slide the mask over the bigger image
and calculate some measure of fit, e.g., sum of absolute differences (SAD)
or normalized cross-correlation (NCC), for each displacement. As we move
the mask over the image, the data in the mask remains in the same place
in memory. Therefore, if the mask data is initially aligned, there will be no
misalignment issues. However, the image data under the mask is misaligned
in 3 out of 4 possible cases, (b), (c), and (d) in Fig. 2.

(d)(c)

(b)(a)

4−byte word8−bit pixel

image

mask

Fig. 2. Illustration of memory alignment issues: as the mask slides over the image,
the image data is ready for SIMD operations only in one of four cases (a), when
aligned with 32-bit word boundaries

The simplest solution is to copy the image data under the mask to a
different part of memory that is 32-bit aligned and then invoke the SIMD
operation. This, as we discuss below, is a rather inefficient solution. If the
image is M×N while the mask is m×n, then for 3 out of 4 mask displacements
we need to copy m × n bytes of image data for realignment. Since there are
(M − m + 1) × (N − n + 1) different mask displacements, this amounts to
3
4 (M − m + 1)(N − n + 1)mn byte transfers.

For example, implementing the minimum SAD module in this way on TI’s
popular media processor DM642 with M = 128, N = 64, m = 72, and n = 48,
requires transfer of 2.5 million bytes. The module takes 16.5ms to execute,
which is far from acceptable in an application that needs to do many more
things and has a 25 or 30Hz video refresh rate. We need something much
faster.

The main idea is to create three additional copies of the entire image, each
copy shifted by one byte compared to the previous copy. Let the original im-
age be denoted by A, its 1-byte-shifted copy by B, B’s 1-byte-shifted copy by



Real-Time Algorithms 33

C, and C’s 1-byte-shifted copy by D. Then we use A for mask displacements
that have no misalignment (cases typified by (a) in Fig. 2), B for mask dis-
placements causing 1-byte misalignments (such as (b) in Fig. 2), C for mask
displacements causing 2-byte misalignments (such as (c) in Fig. 2), and D for
mask displacements causing 3-byte misalignments (such as (d) in Fig. 2).

The only data transfer in this method occurs during creation of three
shifted copies of the original image, requiring only 3MN byte transfers. Using
this technique, the minimum SAD module requires only around 25,000 byte
transfers and the execution time is around 0.75ms.

Fast morphology. Binary dilation and erosion are basic operations in
mathematical morphology, a branch of image processing [16, 34]. Dilation
of image A by a structuring element S causes all binary objects in A to
expand (dilate), with S providing the prescription for this growth through
the following definition

D(x, y) = A ⊕ S = max
S(u,v)=1

A(x−u, y−v)

Similarly, erosion of image A by structuring element S shrinks (erodes) binary
objects in A as defined by

E(x, y) = A � S = min
S(u,v)=1

A(x−u, y−v)

All other morphological operators are constructed from dilation and ero-
sion, for example

O = A ◦ S = (A � S) ⊕ S opening

C = A • S = (A ⊕ S) � S closing

T = ÂS = A − (A ◦ S) top-hat

B = ǍS = (A • S) − A bottom-hat

where “−” denotes the set-theoretic difference.
Morphological operators are nonlinear, and as defined above, operate on

binary images. There are corresponding operators defined for grayscale images
as well.

It may be unexpected to see that morphological operations, which are
nonlinear, can be represented using convolution, a linear operation, and bina-
rization (thresholding) [21]

A ⊕ S = bin1/2(A ∗ S)

This representation is the basis for a fast algorithm for dilation, using fast
convolution, either FFT or non-FFT type. There is a similar representation
for erosion, relating it to correlation.



34 B.Kisačanin, V. Pavlović

4.5 PCA Object Detection and Recognition

Principal Component Analysis (PCA), also known as eigenpictures or eigen-
faces, is a popular computer vision technique for object detection and classifi-
cation, especially in the context of faces [37, 41]. It has its roots in statistical
and signal processing methods known as Karhunen-Loeve Transform (KLT)
or Hotelling Transform. The first example of KLT in computer vision was for
compression of images from a face database. To quote Lawrence Sirovich and
Michael Kirby [37]:

... we demonstrate that any particular face can be economically repre-
sented in terms of a best coordinate system that we term eigenpictures.
These are the eigenfunctions of the averaged covariance of the ensem-
ble of faces. To give some idea of the data compression gained from
this procedure, we first observe that a fairly acceptable picture of a
face can be constructed from the specification of gray levels at 214

pixel locations. Instead of this, we show, through actual construction,
that roughly 40 numbers giving the admixture of eigenpictures char-
acterize a face to within 3% error.

Historically, the next big step was to apply these ideas to face detection
and recognition. Here we quote Matthew Turk and Alex Pentland [42]:

... It occurred to us that if a multitude of face images can be re-
constructed by weighted sums of a small collection of characteristic
images, then an efficient way to learn and recognize faces might be
to build the characteristic features from known face images and to
recognize particular faces by comparing the feature weights needed to
(approximately) reconstruct them with the weights associated with
the known individuals.

The success of this approach inspired a vast amount of further research
and development. A simple search for “eigenface” on IEEExplore, the IEEE
online digital library, produces more than a hundred results.

Reduced dimensionality. The reason we consider PCA to be a real-time
technique is the reduction in problem dimensionality. In general, if we work
with M ×N images, the problem has dimensionality m = MN . Since images
of objects contain a lot of redundancies, we can use the energy-compaction
property of KLT to significantly reduce the dimensionality of the problem,
down to r 
 m. This is done by keeping only r eigenvectors φk of the data
covariance matrix corresponding to r largest eigenvalues λk. In order to esti-
mate how many eigenvectors are sufficient to give enough variance coverage
(i.e., what reduced order r to use), the following formula for the ratio of the
covered variance σ2

r and the total variance of the class σ2 is useful

σ2
r

σ2
=
∑r

1 λk∑n
1 λk



Real-Time Algorithms 35

Matrix trick. In order to construct eigenpictures for a class, one needs to
start from a set of n training M×N images of objects from the class. Typically,
n 
 m = MN . After reshaping, they form n column vectors x(1), . . . , x(n).
First we need to estimate the mean µ and covariance matrix C of the class
from the training data. We use the sample mean as an estimate of µ, so let

µ =
1
n

n∑
k=1

x(k)

If we form a centered data matrix

D = [ x(1)−µ . . . x(n)−µ ]

then C can be estimated as the sample covariance, so let

C =
1

n − 1
DDT

This is an m × m matrix, typically huge. Fortunately, all that is needed are
the eigenvectors and eigenvalues of C, nothing else. The non-zero eigenvalues
λk coincide with the eigenvalues of a much smaller matrix [23, 41],

L =
1

n − 1
DT D

which is n × n. Recall that n 
 m. For numerical stability, this calculation
is usually accomplished using the singular value decomposition (SVD) of D,
because the singular values of D are by definition the square roots of eigen-
values of its Gram matrix, DT D. The eigenvectors of C can be determined
from the eigenvectors of L, here denoted by ψk, as follows

φk = Dψk (k = 1, . . . , n)

This is important to know for offline calculation of eigenpictures and may
be useful to know for some online learning scheme, where the computational
savings could be critical.

Pythagorean trick. The most common PCA classification scheme is
based on the reconstruction error. The image data is reformatted into an
m× 1 vector x, this vector is centered using the average of the object class µ
and projected into the eigenspace using the r ×m matrix Φ, formed from the
first r 
 m of the appropriately ordered eigenvectors – by the magnitude of
their respective eigenvalues, Φ = [φ1 . . . φr]. The result are r weights

w = [w1 . . . wr]T = ΦT (x − µ) (5)

Next, the eigenspace reconstruction x̂ of the data x is calculated

x̂ = µ + w1φ1 + . . . + wrφr = µ + Φw (6)



36 B.Kisačanin, V. Pavlović

Finally, the reconstruction error is calculated as

e2 = ‖x − x̂‖2 =
m∑

i=1

(xi − x̂i)2 (7)

Note that it is computationally more efficient to use the formula derived
using the Pythagorean theorem. Instead of constructing x̂ as a weighted sum
of eigenvectors φk as in (6) and then using it to calculate the reconstruction
error as in (7), the orthonormality of eigenvectors is used to determine this
error directly as

e2 = ‖x − µ‖2 −
r∑

k=1

w2
k (8)

A simple comparison of formulas (7) and (8) shows that (8) requires ap-
proximately half of the computations implied in (7). To prove (8) we start
from the definition of the reconstruction error

e2 = ‖y − ŷ‖2 = ‖y − (µ + Φw)‖2 = ‖(y − µ) − Φw‖2

Since Φw is the orthogonal projection of (y − µ) onto the eigenspace, we
can use the Pythagorean Theorem to write

e2 = ‖y − µ‖2 − ‖Φw‖2

Finally, since the columns of Φ are orthonormal we obtain (8). Similar
reasoning can be found in [41].

Fixed-point PCA. If PCA is implemented using a set of orthonormal
eigenvectors, this implies use of the floating-point precision. This is not good
news if you are using a fixed-point processor, such as TI’s DM642. However,
projections in PCA can be viewed in terms of linear filtering, because (5) is a
matrix formulation of a linear filter. Linear filtering is often done using fixed-
point hardware [29]. Thus, by sacrificing some precision, we can significantly
improve the execution time, typically around 70 times [24].

To represent the eigenvectors in fixed-point we first scale them so that
their components are between −128 and +127, then round them to the nearest
integer:

φ̃k = round

[
127φk

maxi |φ(i)
k |

]
(k = 1, . . . , r)

After that all projection calculations are done using 8-bit operations. Of
course, the results are scaled back using the reciprocal of that same scale
factor. On a TI DM642 processor, this technique has reduced the execution
time of PCA classification by a factor of seventeen. The execution time is
further reduced (by a factor of four) when utilizing the SIMD operations



Real-Time Algorithms 37

available on the chip. These operations utilize 32-bit multipliers and adders
to do four simultaneous 8-bit operations.

To estimate the numerical error introduced by fixed-point representation
we can model the quantization error as uniform noise with variance [29]

σ2
e =

2−2BXm

12

where B + 1 is the number of bits in the representation, hence B = 7, and
Xm = 128 (the maximum amplitude). As a result of going from a 32-bit
floating-point representation to an 8-bit fixed-point representation, the SNR
change due to quantization error is ∆(SNR) = 20 log 2B0−B1 ≈ −144 dB,
where B0 = 8 bit and B1 = 32bit. By itself this may seem like a large degra-
dation, but we are still left with around 48dB of SNR (corresponding to
quantization noise in 8-bit representation). Is that sufficient? The best way
to answer that question is to compare the performance of the system with
and without quantization. In general, unless your design relies on marginal
differences between classes, you do not have to worry about losing accuracy
and robustness [24].

Scanning. So far we discussed PCA-based object recognition, in which a
candidate image is analyzed and classified as belonging or not belonging to
one of the classes. The projections in (5) are simple dot-products and there is
not much that can be done to speed them up, other than using the Fixed-point
PCA.

Object detection is a related but different problem of finding candidate
images to be used in recognition. PCA can be used for detection as well [41],
when the entire scene is scanned by sliding the PCA classifier in search of
objects such as faces. In this case, projections in (5) turn into correlations. As
we discussed earlier in this section, fast correlation algorithms exist, similar
to fast convolution algorithms, based on FFT or other approaches.

5 Conclusions

In this chapter we discussed two different meanings of real-time, one very pre-
cise, related to system specification, the other a bit vague, used to characterize
algorithms as suitable for real-time systems. After introducing relevant termi-
nology and notation we described a variety of factors that must be considered
for real-time vision design in general. They range from processor selection to
real-time algorithms.

We chose to describe algorithms coming from diverse fields, as diverse as
computer vision itself. We begun by discussing algorithms for sorting and
optimization. This was followed by a summary of Kalman filtering. Then we
described the FFT and its application to fast convolution and correlation and



38 B.Kisačanin, V. Pavlović

fast morphology. Finally, we analyzed some computational aspects of PCA-
based classification.

Numerous references have been provided for the interested reader, because
there is so much to learn from what others have done. Most importantly, this
chapter is designed to provide the reader with a sample of the building blocks
available for real-time vision. Hopefully, this will provide the inspiration to
cultivate new ideas and research.

Acknowledgments

The authors wish to thank Eric Yoder, Mathias Kölsch, and Matthew Turk
for their helpful comments and suggestions.

References

1. M. S.Arulampalam, et al. A tutorial on particle filters for online nonlinear/non-
Gaussian Bayesian tracking. IEEE Trans Signal Proc, pp. 174–188, 2002.

2. R. E.Blahut. Fast Algorithms for Digital Signal Processing. Addison-Wesley,
1985.

3. C. M.Brown and D.Terzopoulos (Editors). Real-Time Computer Vision. Cam-
bridge University Press, 1994.

4. E.K.P.Chong and S.H.Zak. An Introduction to Optimization. Wiley, 2001.
5. J. W.Cooley and J. W.Tukey. An algorithm for the machine calculation of the

complex Fourier series. Math Comput, pp. 297-301, 1965.
6. J. W.Cooley. How the FFT gained acceptance. IEEE Signal Proc Mag, pp. 10–

13, 1992.
7. T. H.Cormen, et al. Introduction to Algorithms. MIT Press, 1990.
8. F.Crick and C. Koch. The problem of consciousness. Special Issue of Scientific

American: Mind and Brain. W H Freeman, 1992.
9. E.R.Dougherty and P.A. Laplante. Introduction to Real-Time Imaging. IEEE

Press, 1995.
10. H.K.Garg. Digital Signal Processing: Number Theory, Convolution, Fast

Fourier Transforms, and Applications. CRC Press, 1998.
11. G.H.Golub and C.F. Van Loan. Matrix Computations, Second Ed. The Johns

Hopkins University Press, 1989.
12. R. L.Graham, et al. Concrete Mathematics: A Foundation for Computer Sci-

ence. Addison-Wesley, 1989.
13. J. Granata, et al. Recursive fast algorithm and the role of the tensor product.

IEEE Trans Signal Proc, pp. 2921–2930, 1992.
14. J. Granata, et al. The tensor product: a mathematical programming language

for FFTs and other fast DSP operations. IEEE Signal Proc Mag, pp. 40–48,
1992.

15. M. S.Grewal and A.P.Andrews. Kalman Filtering. Wiley, 2001.
16. R.Haralick, et al. Image analysis using mathematical morphology. IEEE Trans

PAMI, pp. 523–550, 1987.



Real-Time Algorithms 39

17. M. T.Heideman, et al. Gauss and the history of Fast Fourier Transform. IEEE
ASSP Mag, pp. 14–21, 1984.

18. C. A.R.Hoare. Quicksort. Computer Journal, pp. 10–15, 1962.
19. T. Kailath and A.H. Sayed. Fast Reliable Algorithms for Matrices With Struc-

ture. SIAM, 1999.
20. R. E.Kalman. A new approach to linear filtering and prediction problems.

ASME J of Basic Engineering, pp. 34–45, 1960.
21. B. Kisačanin and D.Schonfeld. A fast thresholded convolution representation

of morphological operators. IEEE Trans Image Proc, pp. 455–457, 1994.
22. B. Kisačanin. Mathematical Problems and Proofs. Plenum, 1998.
23. B. Kisačanin and G. C.Agarwal. Linear Control Systems. Kluwer, 2001.
24. B. Kisačanin and G. J. Witt. Getting ahead of competition with real-time com-

puter vision. Delphi Technical Conf, PS-1, 2004.
25. D.E.Knuth. The Art of Computer Programming Vol. 3, Sorting and Searching.

Addison-Wesley, 1973.
26. P.A. Laplante and A.D. Stoyenko. Real-Time Imaging. IEEE Press, 1996.
27. C. C.McGeoch. Experimental analysis of algorithms. Notices of Am Math Soc,

pp. 304–311, 2001.
28. H.Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer,

1982.
29. A.Oppenheim and R. Schafer. Discrete-Time Signal Processing. Prentice Hall,

1989.
30. P. Pérez, et al. Data fusion for visual tracking with particles. Proc IEEE,

pp. 495–513, 2004.
31. W.H.Press, et al. Numerical Recipes in C. Cambridge University Press, 1992.
32. J. M.Rehg and T. Kanade. Visual tracking of high DOF articulated structures:

an application to human hand tracking. ECCV (2), pp. 35–46, 1994.
33. M. Schroeder. Number Theory in Science and Communication, 3rd Ed.

Springer, 1997.
34. Image Analysis and Mathematic Morphology. Academic Press, 1982.
35. T. B. Sheridan and W.R.Ferrell. Remote manipulative control with transmis-

sion delay. IEEE Trans Human Factors in Electronics, pp. 25–29, 1963.
36. D. Sima. Decisive aspects in the evolution of microprocessors. Proc IEEE,

pp. 1896–1926, 2004.
37. L. Sirovich and M. Kirby. Low-dimensional procedure for the characterization

of human faces. J Opt Soc Am A, pp. 586–591, 1987.
38. V. Strassen. Gaussian elimination is not optimal. Numer Math, pp. 354–356,

1969.
39. M. O.Tokhi, et al. Parallel Computing for Real-Time Signal Processing and

Control. Springer, 2003.
40. R.Tolimieri, et al. Algorithms for Discrete Fourier Transform and Convolution.

Springer, 1989.
41. M. Turk and A.Pentland. Eigenfaces for recognition. J Cognitive Neuroscience,

1991.
42. M. Turk and A.Pentland, Face recognition using eigenfaces. Proc IEEE CVPR

Conf, 1991.
43. J. Vanhoof, et al. High-Level Synthesis for Real-Time Digital Signal Processing.

Kluwer, 1993.
44. J. W. J.Williams. Algorithm 232 (heapsort). Comm of the ACM, pp. 347–348,

1964.
45. http://www.xilinx.com





Part II

Advances in RTV4HCI





Recognition of Isolated Fingerspelling Gestures
Using Depth Edges

Rogerio Feris1, Matthew Turk1, Ramesh Raskar2, Kar-Han Tan3, and
Gosuke Ohashi4

1 University of California, Santa Barbara
rferis@cs.ucsb.edu

mturk@cs.ucsb.edu
2 Mitsubishi Electric Research Labs
raskar@merl.com

3 University of Illinois at Urbana-Champaign
tankh@vision.ai.uiuc.edu

4 Shizuoka University
tegooha@ipc.shizuoka.ac.jp

Although steady progress has been made on developing vision-based gesture
recognition systems, state-of-the-art approaches are still limited to discrimi-
nate hand configurations with high amounts of finger occlusions, a common
scenario in most fingerspelling alphabets. In this article, we propose a novel
method for recognition of isolated fingerspelling gestures based on depth edge
features. Our approach is based on a simple and inexpensive modification
of the capture setup: a multi-flash camera is used with flashes strategically
positioned to cast shadows along depth discontinuities in the scene, allowing
efficient and accurate extraction of depth edges. We then use a shift and scale
invariant shape descriptor for fingerspelling recognition, demonstrating great
improvement over methods that rely on features acquired by traditional edge
detection and segmentation algorithms.

1 Introduction

Sign language is the primary communication mode used by most deaf people.
It consists of two major components: 1) word level sign vocabulary, where ges-
tures are used to communicate the most common words and 2) fingerspelling,
where the fingers on a single hand are used to spell out more obscure words
and proper nouns, letter by letter. Facial expressions can also be employed to
distinguish statements, questions and directives.

Over the past decade, great effort has been made to develop systems ca-
pable of translating sign language into speech or text, aiming to facilitate



44 R.Feris, M.Turk, R.Raskar, K.Tan, G.Ohashi

Fig. 1. (a) Letter ’R’ in ASL alphabet. (b) Canny edges. Note that important
internal edges are missing, while edges due to wrinkles and nails confound scene
structure. (c) Depth edges obtained with our multi-flash technique

the interaction between deaf and hearing people. Extensive research has been
done in both word level and fingerspelling components.

Previous approaches to word level sign recognition rely heavily on statis-
tical models such as Hidden Markov Models (HMMs) [17, 18, 4]. Excellent
recognition rates were obtained for small word lexicons, but scalability is still
an issue for glove-free sign recognition. For fingerspelling recognition, most
successful approaches are based on instrumented gloves [8, 14], which provide
information about finger positions.

In general, non-intrusive vision-based methods, while useful for recogniz-
ing a small subset of convenient hand configurations [7, 1], are limited to
discriminate configurations with high amounts of finger occlusions – a com-
mon scenario in most fingerspelling alphabets. In such cases, traditional edge
detectors or segmentation algorithms fail to detect important internal edges
along the hand shape (due to the low intensity variation in skin-color), while
keeping edges due to nails and wrinkles, which may confound scene structure
and the recognition process (see Fig. 1b). Also, some signs might look very
similar to each other, with small differences on finger positions, thus posing a
problem for appearance-based approaches [7].

We address this problem by using a technique we have recently proposed
for conveying shape in non-photorealistic rendering [13]. Our approach is
based on a simple and inexpensive modification of the capture setup: a multi-
flash camera is used with flashes strategically positioned to cast shadows along
depth discontinuities in the scene, allowing efficient and accurate hand shape
extraction, as shown in Fig. 1c. Our method was also extended to handle
dynamic scenes, being suitable for real-time processing.

We show that depth discontinuities (also known as depth edges) may be
used as a signature to reliably discriminate among complex hand configura-
tions in the ASL alphabet, which would be difficult with current glove-free
vision methods. For classification, we have used a shape descriptor similar in
spirit to shape context matching [2], which is invariant with respect to image
translation and scaling.

The remainder of this chapter is organized as follows: we discuss related
work in Sect. 2 and describe our multi-flash technique for extraction of depth



Recognition of Isolated Fingerspelling Gestures Using Depth Edges 45

edges in Sect. 3. Section 4 covers our shape descriptor and classification
method. We report our experimental results in Sect. 5 and discuss issues and
perspectives of our technique in Sect. 6. Finally, conclusions and future work
are addressed in Sect. 7.

2 Related Work

Regarding word level sign recognition, most successful approaches are based
on statistical, generative models. Starner and Pentland [17] presented a video-
based system for the recognition of short sequences of American Sign Lan-
guage (ASL) based on HMMs. Using a 40 word lexicon, they achieved 92%
word accuracy with a desk mounted camera and 98% accuracy with a camera
mounted in a cap worn by the user. Vogler and Metaxas [18] described an
HMM-based system for continuous ASL recognition, using three video cam-
eras with an electromagnetic tracking system for obtaining 3D motion. They
achieved 90% word accuracy on a 53 word lexicon. More recently, Chen et
al. [4] proposed a system to handle a large vocabulary of the Chinese Sign
Language (5113 signs). Using CyberGloves and a method based on a fuzzy
decision tree and HMMs, they reported a recognition rate of 91.6%. On the
other hand, scalability is still an issue for glove-free word level sign recognition.

For fingerspelling recognition, most proposed methods rely on instru-
mented gloves, due to the hard problem of discriminating complex hand con-
figurations with vision-based methods. Lamar and Bhuiyant [8] achieved letter
recognition rates ranging from 70% to 93%, using colored gloves and neural
networks. More recently, Rebollar et al. [14] used a more sophisticated glove
to classify 21 out of 26 letters with 100% accuracy. The worst case, letter ’U’,
achieved 78% accuracy.

Shadows, the main cue used in our work, have already been exploited
for gesture recognition and interactive applications. Segen and Kumar [15]
describes a system which uses shadow information to track the user’s hand
in 3D. They demonstrated applications in object manipulation and computer
games. Leibe et al. [9] presented the concept of a perceptive workbench, where
shadows are exploited to estimate 3D hand position and pointing direction.
Their method used infrared lighting and was demonstrated in augmented
reality gaming and terrain navigation applications. In this book, Kale, Kwan,
and Jaynes, demonstrate an interesting method for user pushbutton selection
in projected interfaces.

These approaches consider light sources far away from the camera center of
projection and casted shadows are separated from the objects. In contrast, our
approach consider light sources with small baseline distance from the camera,
allowing them to be built in a self-contained device, no larger than existing
digital cameras.



46 R.Feris, M.Turk, R.Raskar, K.Tan, G.Ohashi

Fig. 2. Imaging geometry. Shadows of the gray object are created along the epipolar
ray. We ensure that depth edges of all orientations create shadow in at least one
image while the same shadowed points are lit in some other image

3 Multi-Flash Imaging

The technique for detecting shape features in images was recently described
in [13], for non-photorealistic rendering. For completeness we review the basic
idea here.

The method is motivated by the observation that when a flashbulb (close
to the camera) illuminates a scene during image capture, thin slivers of cast
shadow are created at depth discontinuities. Moreover, the position of the
shadows is determined by the relative position of the camera and the flashbulb:
when the flashbulb is on the right, the shadows are created on the left, and so
on. Thus, if we can shoot a sequence of images in which different light sources
illuminate the subject from various positions, we can use the shadows in each
image to assemble a depth edge map using the shadow images.

3.1 Imaging Geometry

In order to capture the intuitive notion of how the position of the cast shad-
ows are dependent on the relative position of the camera and light source,
we examine the imaging geometry, illustrated in Fig. 2. Adopting a pinhole
camera model, the projection of the point light source at Pk is at pixel ek on
the imaging sensor. We call this image of the light source the light epipole. The
images of (the infinite set of) light rays originating at Pk are in turn called
the epipolar rays, originating at ek. We use the terms depth discontinuities
and depth edges interchangeably here.

There are two simple observations that can be made about cast shadows:

• A shadow of a depth edge pixel is constrained to lie along the epipolar
ray passing through that pixel.

• When a shadow is induced at a depth discontinuity, the shadow and the
light epipole will be at opposite sides of the depth edge.

These two observations suggest that if we can detect shadow regions in
an image, then depth edges can be localized by traversing the epipolar rays



Recognition of Isolated Fingerspelling Gestures Using Depth Edges 47

Fig. 3. (a) Our prototype to capture depth discontinuities. (b) Setup for static
scenes. (c) Setup for dynamic scenes

starting at the light epipole and identifying the points in the image where the
shadows are first encountered.

3.2 Removing and Detecting Shadows

Our approach for reliably removing and detecting shadows in the images is
to position lights so that every point in the scene that is shadowed in some
image is also captured without being shadowed in at least one other image.
This can be achieved by placing lights strategically so that for every light,
there is another on the opposite side of the camera to ensure that all depth
edges are illuminated from two sides. Also, by placing the lights close to the
camera, we minimize changes across images due to effects other than shadows.

To detect shadows in each image, we first compute a shadow-free image,
which can be approximated with the MAX composite image, which is an image
assembled by choosing at each pixel the maximum intensity value among
the image set. The shadow-free image is then compared with the individual
shadowed images. In particular, for each shadowed image, we compute the
ratio image by performing a pixel-wise division of the intensity of the shadowed
image by the intensity of the MAX image. The ratio image is close to 1 at
pixels that are not shadowed, and close to 0 at pixels that are shadowed.
This serves to accentuate the shadows and remove intensity transitions due
to surface material changes.

3.3 Algorithm

Codifying the ideas discussed we arrive at the following algorithm:

Given n light sources positioned at P1, P2, . . . , Pn,
• Capture n pictures Ik, k = 1, . . . , n with a light source

at Pk

• For all pixels x, Imax(x) = maxk(Ik(x)), k = 1, . . . , n



48 R.Feris, M.Turk, R.Raskar, K.Tan, G.Ohashi

Fig. 4. Detecting depth edges. (a) Hand image. (b) Ratio image (right flash). (c) De-
tected edges

• For each image k,
� Create a ratio image, Rk, where

Rk(x) = Ik(x)/Imax(x)
• For each image Rk

� Traverse each epipolar ray from epipole ek

� Find pixels y with step edges with negative transition
� Mark the pixel y as a depth edge

3.4 Building Multi-Flash Cameras

We propose using the following configuration of light sources: four flashes at
left, right, top and bottom positions (Fig. 3). This setup makes the epipolar
ray traversal efficient. For the left-right pair, the ray traversal is along hori-
zontal scan lines and for the top-bottom pair, the traversal is along vertical
direction. Figure 4 illustrates depth edge detection using this setup.

We have also extended our method to dynamic scenes. As in the static case,
we bypass the hard problem of finding the rich per-pixel motion representation
and focus directly on finding the discontinuities, i.e., depth edges in motion.
We refer to [13] for a description of the algorithm. The setup is similar to
the static case with flashes around the camera, but triggered in a rapid cyclic
sequence, one flash per frame (see Fig. 3c).

Our basic prototype for static scenes (Fig. 3b) makes use of a 4 MegaPixel
Canon Powershot G3 digital camera. The four booster (slaved Quantarray
MS-1) 4ms duration flashes are triggered by optically coupled LEDs turned
on sequentially by a PIC microcontroller, which in turn is interrupted by the
hot-shoe of the camera. For dynamic scenes, our video camera (Fig. 3c) is
a PointGrey DragonFly camera at 1024×768 pixel resolution, 15 fps which
drives the attached 5W LumiLeds LED flashes in sequence. Another alterna-
tive setup for dynamic scenes based on colored lights, which we are currently
investigating, will be discussed in Sect. 6.1.



Recognition of Isolated Fingerspelling Gestures Using Depth Edges 49

4 Shape Descriptor and Classification

In this section, we present a shape descriptor for depth edges which is invariant
with respect to image translation and scale. Our approach is simple and yet
very effective. It has been recently evaluated on a large dataset for content-
based image retrieval [11].

Fig. 5. Shape descriptor used for classification

The basic idea is illustrated in Fig. 5. For each edge pixel of interest,
we first analyze its context by counting the number of other edge pixels in
eight neighboring regions, as shown in Fig. 5a. This gives us a vector of eight
elements Ci, 1 ≤ i ≤ 8 (Fig. 5b). We then normalize each element for scale
invariance (Fig. 5c) by denoting Si = Ci/C, where C =

∑8
i Ci. Finally,

thresholding is applied (Fig. 5d), so that each element encodes the information
of either high or low density of edge pixels along a specific direction of the
pixel of interest. The threshold value 0.15 is obtained empirically.



50 R.Feris, M.Turk, R.Raskar, K.Tan, G.Ohashi

Fig. 6. (a) Letter ’K’ of ASL alphabet. (b),(c) Mean Shift segmentation algorithm
with different parameter settings. (d) Output of our method

Inspired by the concept of Local Binary Patterns [12] in the field of tex-
ture analysis, the values “0”s and “1”s are arranged counter-clockwise from
a reference region (in our example, the bottom-right region) to express an
8-bit binary number. The correspondent decimal number d, 0 ≤ d ≤ 255 is
used to vote for the respective bin in the histogram shown in Fig. 5e. A 256-
dimensional feature vector is then obtained by applying the above mentioned
process to all edge pixels in the depth edge image.

Since the descriptor is based on the relative position of edge pixels, it is
clear that it is invariant with respect to image translation. Scale invariance is
obtained in the normalization step. The descriptor can also be made rotation
invariant [11]. However, this may not be appropriated for some fingerspelling
alphabets (e.g., Japanese Sign Language), which might have letters that are
rotated versions of the others.

We have used a nearest-neighbor technique for classification. Initially, su-
pervised learning is carried out by acquiring a set of images for each letter
in the fingerspelling alphabet. Depth edges are then extracted and the shape
descriptor technique is applied, so that a training database comprised of la-
beled 256-dimensional feature vectors is formed. Given a test image, features
are extracted and the class of the best match training sample according to
Euclidean distance is reported.

5 Experiments

We compared the hand contours obtained using our technique with the output
of a traditional Canny edge detector [3] and a state-of-the-art Mean Shift
segmentation algorithm [5]. We refer to Fig. 1 for a comparison of our method
with Canny edges. Changing parameter settings in the Canny algorithm could
reduce the amount of clutter, but important edges along the hand shape would
still not be detected. Figure 6 shows a comparison with Mean Shift algorithm.
Clearly, due to the low intensity skin-color variation in the inner hand region,
the segmentation method is not able to detect important boundaries along
depth discontinuities. Our method accurately locates depth edges and also
offers the advantage that no parameter settings are required.



Recognition of Isolated Fingerspelling Gestures Using Depth Edges 51

Fig. 7. From left to right: input image, Canny edges and depth edges. Note that
our method misses finger boundaries due to the absence of depth discontinuities.
This turns out to be helpful to provide unique signatures for each letter

We realized that depth edges are good features to discriminate among
signs of fingerspelling alphabets. Even when the signs look very similar (e.g.,
letters ’E’, ’S’ and ’O’ in ASL alphabet), the depth edge signature is quite
discriminative (see Fig. 7). This poses an advantage over vision methods that
rely on appearance or edge-based representations. Note that our method does
not detect edges in finger boundaries with no depth discontinuity. It turns out
that this is helpful to provide more unique signatures for each letter.

In order to quantitatively evaluate the advantages of using depth edges
as features for fingerspelling recognition, we considered an experiment with
the complete ASL alphabet, except letters ’J’ and ’Z’, which require motion
analysis to be discriminated. We collected a small set of 72 images using our
multi-flash camera (three images per letter, taken at different times, with
resolution 640×480). The images showed variations in scale, translation and
slight variations in rotation. The background was plain, with no clutter, since
our main objective is to show the importance of obtaining clean edges in the
interior of the hand. It is worth mentioning that textured but flat/smooth
backgrounds would not affect our method, but would make an edge detection
approach (used for comparison) much more difficult.

For each image, features were extracted as described in Sects. 3 and 4.
For sake of comparison, we also considered shape descriptors based on Canny
edges. Recognition rate was obtained using a leave-one-out scheme in the
collected dataset. Our approach achieved 96% of correct matches, compared
with 88% when using Canny edges.



52 R.Feris, M.Turk, R.Raskar, K.Tan, G.Ohashi

Rebollar [14] mentioned in his work that letters ’R’, ’U’ and ’V’ represented
the worst cases, as their class distributions overlap significantly. Figure 8 shows
these letters and their corresponding depth edge signatures. Note that they are
easily discriminated with our technique. In the experiment described above,
the method based on Canny edges fails to discriminate them.

Fig. 8. Letters ’R’, ’U’ and ’V’, the worst cases reported in [14]. Note that the use
of a depth edge signature can easily discriminate them

Figure 9 shows a difficult case for traditional methods, where our method
also fails to discriminate between letters ’G’ and ’H’. In this particular case, we
could make use of additional information, such as the intensity variation that
happens between the index and the middle finger in letter ’H’ and not ’G’.

Fig. 9. A difficult case for traditional algorithms (letters ’G’ and ’H’), where our
method may also fail

All the images in our experiment were collected from the same person. We
plan to build a more complete database with different signers. We believe that
our method will better scale in this case, due to the fact that texture edges
(e.g., wrinkles, freckles, veins) vary from person to person and are eliminated
in our approach. Also, shape context descriptors [2] have proven useful for
handling hand shape variation from different people. For cluttered scenes, our
method would also offer the advantage of eliminating all texture edges, thus
considerably reducing clutter (see Fig. 10)

For segmented hand images with resolution 96×180, the computational
time required to detect depth edges is 4 ms on a 3GHz Pentium IV. The
shape descriptor computation requires on average 16ms. Thus, our method
is suitable for real-time processing. For improving hand segmentation, depth
edges could be computed in the entire image. In this case, the processing time
for 640×480 images is 77ms.



Recognition of Isolated Fingerspelling Gestures Using Depth Edges 53

Fig. 10. (a) Canny edges (b) Depth edges. Note that our method considerably
reduces the amount of clutter, while keeping important detail in the hand shape

We intend to adapt our method for continuous sign recognition in video.
Demonstration of detection of depth edges in motion are showed in our previ-
ous work [13]. We are currently exploiting a frequency division multiplexing
scheme, where flashes with different colors (wavelength) are triggered simul-
taneously (see Sect. 6.1). We hope this will allow for efficient online tracking
of depth edges in sign language analysis.

6 Discussion

In this section, we discuss issues related to our method and propose ways to
overcome failure situations. Then we follow with a brief discussion on related
work.

There is a tradeoff in choosing the baseline distance between camera
and light sources. A larger baseline is better to cast a wider detectable
shadow in the internal edges of the hand, but a smaller baseline is needed
to avoid separation of shadow from the fingers (shadow detachment) when
the background is far away. The width of the abutting shadow in the im-
age is d = fB (z2 − z1)/(z1z2), where f is the focal length, B is baseline in
mm, and z1, z2 are depths, in mm, to the shadowing and shadowed edge.
Shadow detachment occurs when the width, T , of the object is smaller than
(z2 − z1)B/z2. Fortunately, with rapid miniaturization and sophistication of
digital cameras, we can choose a small baseline while increasing the pixel
resolution (proportional to f), so that the product fB remains constant.

What if there is no cast shadows due to lack of background? In these
cases only the outermost depth edge, the edge shared by foreground and dis-
tant background, is missed in our method. This could be detected with a
foreground-background estimation technique. The ratio of I0/Imax (where I0

is the image acquired with no flash and Imax is the max composite of flash
images), is near 1 in background and close to zero in interior of the foreground.

Another solution for both problems cited above is to consider a larger
baseline and explore it to detect only internal edges in the hand, while using



54 R.Feris, M.Turk, R.Raskar, K.Tan, G.Ohashi

traditional methods (such as skin-color segmentation or background subtrac-
tion) to obtain the external hand silhouette.

We noticed that depth edges might appear or disappear with small changes
in viewpoint (rotations in depth). This was in fact explored in the graphics
community with the concept of suggestive contours [6]. We believe this may
be a valuable cue for hand pose estimation [1].

A common thread in recent research on pose estimation involves using a
3D model to create a large set of exemplars undergoing variation in pose,
as training data [16, 1]. Pose estimation is formulated as an image retrieval
problem in this dataset. We could use a similar approach to handle out-of-
plane hand rotations. In this case, a 3D hand model would be used to store
a large set of depth edge signatures of hand configurations under different
views.

We have not seen any previous technique that is able to precisely acquire
depth discontinuities in complex hand configurations. In fact, stereo methods
for 3D reconstruction would fail in such scenarios, due to the textureless skin-
color regions as well as low intensity variation along occluding edges.

Many exemplar-based [1] and model-based [10] approaches rely on edge
features for hand analysis. We believe that the use of depth edges would
lead to significant improvements in these methods. Word level sign language
recognition could also benefit from our technique, due to the high amounts of
occlusions involved. Flashes in our setup could be replaced by infrared lighting
for user interactive applications.

6.1 Perspectives: Variable Wavelength

In real-world scenarios, our method would require a high speed camera, with
flashes triggered in a rapid cyclic sequence, to account for the fast gesture
motion in sign language analysis. However, current off-the-shelf high speed
cameras are still expensive and limited to store just a few seconds of data
because of the huge bandwidths involved in high speed video.

We are currently exploring a different approach for video-based gesture
recognition that could be used with standard inexpensive cameras. The idea
is to use light sources with different colors, so that we can trigger them all
in the same time, in one single shot, and then exploit the colored shadows to
extract depth edges.

Figure 11 shows a preliminary result using a camera with three lights of
different color: red, green, and blue. Details about our algorithm using colored
lights will be described in another article.

7 Conclusions

We have introduced the use of depth edges as features for reliable, vision-based
fingerspelling recognition. We basically bypass dense 3D scene reconstruction



Recognition of Isolated Fingerspelling Gestures Using Depth Edges 55

Fig. 11. (a) Our setup for dynamic scenes with different wavelength light sources.
(b) Input image. The shadows appear with different colors. (c) Depth edge detection

and exploit only depth discontinuities, which is a valuable information to rec-
ognize hand postures with high amounts of finger occlusions, without making
use of instrumented gloves.

Our method is simple, efficient and requires no parameter settings. We
demonstrated preliminary but very promising experimental results, showing
that the use of depth edges outperforms traditional Canny edges even consid-
ering simple scenarios with uncluttered background. In more complex scenar-
ios, our technique significantly reduces clutter by eliminating texture edges
and keeping only contours due to depth discontinuities.

Evaluating our method in a large database with different signers and ad-
dressing the problem of continuous signing in dynamic scenes are topics of
future work.

Acknowledgments

This work was partially supported under the auspices of the U.S. Department
of Energy by the Lawrence Livermore National Laboratory under contract
No. W-7405-ENG-48.

References

1. V. Athitsos and Stan Sclaroff. Estimating 3D hand pose from a cluttered im-
age. In International Conference on Computer Vision and Pattern Recognition,
Madison, USA, 2003.

2. S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition
using shape contexts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(4):509–522, 2002.

3. J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

4. Y. Chen, W. Gao, G. Fang, C. Yang, and Z. Wang. CSLDS: Chinese sign
language dialog system. In International Workshop on Analysis and Modeling
of Faces and Gestures, Nice, France, 2003.



56 R.Feris, M.Turk, R.Raskar, K.Tan, G.Ohashi

5. C. Christoudias, B. Georgescu, and Peter Meer. Synergism in low level vision. In
International Conference on Pattern Recognition, Quebec City, Canada, 2002.

6. D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive con-
tours for conveying shape. ACM Transactions on Graphics, 22(3):848–855, 2003.

7. M. Kolsch and M. Turk. Robust hand detection. In International Conference
on Automatic Face and Gesture Recognition (to appear), Seoul, Korea, 2004.

8. M. Lamar and M. Bhuiyant. Hand alphabet recognition using morphological
PCA and neural networks. In International Joint Conference on Neural Net-
works, pages 2839–2844, Washington, USA, 1999.

9. B. Leibe, T. Starner, W. Ribarsky, Z. Wartell, D. Krum, J. Weeks, B. Singletary,
and L. Hodges. The perceptive workbench: Toward spontaneous and natural
interaction in semi-immersive virtual environments. IEEE Computer Graphics
and Applications, 20(6):54–65, 2000.

10. S. Lu, D. Metaxas, D. Samaras, and J. Oliensis. Using multiple cues for hand
tracking and model refinement. In International Conference on Computer Vision
and Pattern Recognition, Madison, USA, 2003.

11. G. Ohashi and Y. Shimodaira. Edge-based feature extraction method and its
application to image retrieval. In 7th World Multi-conference on Systemics,
Cybernetics and Informatics, Florida, USA, 2003.

12. T. Ojala, M. Pietikainen, and D. Harwood. A comparative study of texture
measures with classification based on feature distributions. Pattern Recognition,
29(1):51–59, 1996.

13. R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk. A non-photorealistic cam-
era: Depth edge detection and stylized rendering with multi-flash imaging. In
SIGGRAPH 2004 (to appear).

14. J. Rebollar, R. Lindeman, and N. Kyriakopoulos. A multi-class pattern recogni-
tion system for practical fingerspelling translation. In International Conference
on Multimodal Interfaces, Pittsburgh, USA, 2002.

15. J. Segen and S. Kumar. Shadow gestures: 3D hand pose estimation using a
single camera. In International Conference on Computer Vision and Pattern
Recognition, pages 479–485, Fort Collins, USA, 1999.

16. G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with param-
eter sensitive hashing. In International Conference on Computer Vision, Nice,
France, 2003.

17. T. Starner, J. Weaver, and A. Pentland. Real-time american sign language
recognition using desk- and wearable computer-based video. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(12):1371–1375, 1998.

18. C. Vogler and D. Metaxas. ASL recognition based on a coupling between HMMs
and 3D motion analysis. In International Conference on Computer Vision, pages
363–369, Mumbai, India, 1998.



Appearance-Based Real-Time Understanding
of Gestures Using Projected Euler Angles

Sharat Chandran and Abhineet Sawa

Indian Institute of Technology
sharat@cse.iitb.ac.in

abhineet.sawa@gmail.com

Over the years gesture recognition with a static camera has become a well
studied problem in computer vision. Many current methods use complex 3D
model of non-rigid hands and involved paradigms in solving the general prob-
lem. The problem of representing or recognizing motion captured by moving
camera with a moving actor is particularly non-trivial.

We believe that an appearance based scheme has significant advantages for
real-time scenarios. In this chapter we look at a subproblem of sign language
alphabet recognition where gestures are made with protruded fingers. In con-
trast to the more intricate schemes, we propose a simple, fast classification
algorithm using two-dimensional projection of Euler angles.

1 Introduction

Apart from language, the use of hands and fingers in gesturing is a hallmark
of information transfer in social conversations. It is no wonder therefore that
significant research in human-computer interaction seeks to replicate under-
standing hand gestures much the way we humans do in our day to day tasks.
This chapter focuses on an appearance based scheme in the computer vision
problem of gesture recognition.

The general problem appears difficult for several non-mutually exclusive
reasons as outlined below

• The notions on what a gesture means is not unambiguous.
• Gestures might be made with either hand. The size, shape, and orientation

of the palm and the fingers are not standard across the “actors.”
• Computer vision algorithms are sensitive to lighting changes, occlusion,

and viewpoint changes, especially as they try to track three-dimensional
gestures in video sequences.



58 S.Chandran, A. Sawa

When we take into account that in day-to-day activities, both the camera
(the eye of the listener) and the actor (the speaker) move, the problem the
visual understanding problem seems intractable. Possibly as a result, many of
the current work use a fairly complicated model of the hand, and follow it up
by a fairly involved solution paradigm. Our main result in this work is that by
making certain mild assumptions on the nature of the problem (see below in
Sect. 2), we can use projected Euler angles to recover English “alphabets” in
sign language (see Fig. 1). The result is a much simpler and direct algorithm.

Fig. 1. Gestured alphabets

The rest of this chapter is organized as follows. In the next section, we
discuss related work, and our contributions. An overview of our scheme is given
in Sect. 3. In Sect. 4, we provide empirical results based on our implementation
to support our approach. The input data for many of these results come from
a publicly available database on the Internet. Some concluding remarks are
made in Sect. 5, where we refer the general problem in the context of this
chapter.

2 Related Research

A short survey of general issues in vision-based gesture recognition has been
given in [18]. We direct the interested reader to this and similar [11, 5] work
for various aspects of gesture research such as the application to user interface,
types of gestures, the features for gesture recognition, and the temporal aspect
of gesture understanding.



Protruded Fingers 59

This chapter is related to sign languages but is different from other re-
ported work. In [4] a recognition system for French sign sentences has been
used. This work, however, uses a data glove. In [7] also, a dataglove is used
to recognize Taiwanese sign language. In [14], a video-based system is used
for recognizing short sentences in the American sign language (ASL). In [17]
three video cameras are used along with an electromagnetic tracking system
for obtaining 3D movement parameters. All the above use the Hidden Markov
Model paradigm. Indeed, since different applications demand different levels
of accuracy, it is natural that there are systems that use a combination of
non-vision based and vision based ideas.

Our focus is in what might be termed as isolated gestures as opposed to
the continuous gestures. We assume that a key frame in a video sequence
has isolated an image containing a “hand” under fronto-parallel camera with
uniform lighting, and the palm in the hand occupies a significant portion
of the image. Similar assumptions are made in [10] where a neural network
scheme is used in a three dimensional model of a hand consisting of cylinders,
and prisms. A neural network scheme is also employed in [9]. The method in
[2] is also appearance-based, but attempts to solve a more general problem,
that of recovering the three-dimensional shape. The methods also use different
similarity measures (edge information, and geometric moments) whereas we
use projected angles. A graph based scheme for representing objects using
skeletons is described in [15], and in this sense overlaps with the way our
angles are computed.

A “bunch graph” [16] based model has also been suggested earlier and con-
tains one of the best (in terms of recognition) results on complex background.
The authors in this work state that real-time performance is not their focus;
indeed, no computational times have been reported in their work.

2.1 Our Contributions

We list our main contributions here

• Our method (see Sect. 3) is simpler than many of the above schemes.
As a result it lends itself to real-time implementation; our unoptimized
naive approach using standard Linux tools runs in 30 milliseconds or less
on an unbranded P4 Linux workstation with 256MB main memory. To
our knowledge, this particular idea of projected Euler angles has not been
demonstrated earlier.

• Our method has been tested experimentally with about 40% of our in-
put coming from a public Internet available database [16]. Many of these
have cluttered background. The rest of our results are on our homegrown
database which contain postures in the American sign language not present
in [16].



60 S.Chandran, A. Sawa

3 Details of Our Proposal

Our algorithm is made up of
the following steps. It is in-
structive to look at the exam-
ple input image (Fig. 2) ideally
on a color monitor to follow the
sequence of steps.

Fig. 2. An input, depicted to de-

scribe the algorithm. No assump-

tion is made that a typical input

should be as clean

1. A color model (Fig. 3) of skin is employed to detect areas which potentially
correspond to the hand. The Gaussian model [13] used (shown below) is

Fig. 3. Building a color model

reasonably resilient to skins of various colors (lighting appears to be a
bigger factor than skin color). There is no assumption made that ‘skin’ is
present in only a single portion of the image. Therefore we first compute
the probability that a pixel is ‘skin’ (shown as higher intensity in the left
of Fig. 4).
A connected component analysis on the binarized image leads us to the
hand, defined to be the largest component that has skin color.



Protruded Fingers 61

Fig. 4. Connected components to identify the hand

2. A contour building algorithm
is employed to trace the out-
line of the hand.

Fig. 5. Identifying the carpo-

metacarpal joint
3. The extremities of the fin-

ger are detected (Fig. 5 and
Fig. 6) based on the curva-
ture. The method used for
this is similar to the con-
tour following idea in [6] ex-
cept that the goal is to come
up with a polygon represent-
ing the palm. To achieve this
either the carpo-metacarpal
joints are detected (again by
contour following) or by per-
forming a flood fill followed
by-erosion. An approximate
“centroid” is computed and
deemed to be the center of the
palm.

Fig. 6. Arrows represent significant

detected points



62 S.Chandran, A. Sawa

4. The steps mentioned above enable the computation of projected Euler
angles. Some angles are shown in Fig. 7; this represents a typical situa-
tion. The angles are then used as points in a low-dimensional space; the
dimension depends on the number of protruded fingers.

Fig. 7. Projected Euler angles

5. Classification can be done provided prior offline training has been per-
formed. In the training stage, a database of 3 images per gesture is used
to learn the gesture. More specifically, for each gesture we calculate 2n+1
angles where n is the number of protruded fingers. An example of n = 2
appears in Fig. 7 where 4 angles are shown. The 2n + 1th (last) angle
corresponds to the angle between the skeleton of the leftmost protruding
finger (if any) with the vertical. This enables us to distinguish, for in-
stance, the letter d from g in Fig. 9. The features corresponding to these
are stored as points in feature space. For a query input, we first use the
dimension of the space to identify the number of protruded fingers. Given
this, a second step is used to find the closest gesture and thus a letter
classification (as in Fig. 1) is made. We have used the Euclidean distance
here.

4 Experimental Results

We tested our program on a self-collected database and a (different) publicly
available database (the file BochumGestures1998.tgzat http://cloudbreak.
ucsd.edu/~triesch/data) on the Internet. The running time (including all



Protruded Fingers 63

the steps) was about 30 milliseconds suggesting a real-time classification. A
few representative results have been shown in Fig. 9 where the gestures have
been correctly identified. Some of these figures (best viewed in color) illustrate
the cluttered background that could potentially distract the algorithm. The

Fig. 8. A “rejected” gesture

algorithm is also capable of rejecting characters (based on threshold values)
that do not fall within the gambit of its database, thereby preventing false
positives. An example appears in Fig. 8.

Although the public database contained more than 1000 images, not all
of the gestures containing protruded fingers in Fig. 1 were available. Further,
many of the images have been taken (possibly deliberately) in poorly illumi-
nated areas where the palm has no skin color regions. These two facts, and
the fact that segmentation of the hand was not our main focus, necessitated
the capture of about 60 images in our database. In all, 60 assorted person-
independent gestures (several on complex backgrounds) in our database, and
45 images in the public database were tried. Some of the results on the latter
appear in Fig. 10.

Our success rate was about 91% which compares well with some of the
recent [16] results given that our approach

• Is considerably faster
• Has no manual intervention in the training phase or the testing phase
• Does not require any choice of weighting parameters of the type of filters

used.

Unlike [16] our focus is not on the segmentation problem; sometimes the seg-
mentation module provides poor clustering which leads our algorithm astray.

In summary, when all the protruded fingers are available, classification is
worth attempting using projected angles.



64 S.Chandran, A. Sawa

Fig. 9. Successful classification of v, d, y, q, l, g, w, and i. Notice the clutter in the
background of several images

5 Final Remarks

The shape of the human hand is useful in a variety of applications such as
human-computer interaction, sign language recognition, gestural communi-
cation, and multimedia transmission. The nature of the application dictates
the use of electromagnetic and non-vision based techniques. In this chapter,
we looked at the low level alphabet recognition problem in isolated person-
independent gestures using a single camera.

Even at this level, many of the current algorithms [2, 12] generalize the
problem, and create a three-dimensional model of the hand resulting in a state
space of high dimensions. Appearance based classification schemes [2, 8, 1, 3]
are attractive, but we need to experiment with different similarity measures
in order to achieve better results. In this work, we have used projected Euler
angles as the basis for classification. To get to these angles from an image, we
have described and used a skin color model to detect the hand, and a contour
algorithm to determine salient points. While the hand orientation could be
obtained using other means such as the principal component analysis [8], a
simple geometric model seems to be efficient, when the hand is assumed to be
approximately upright, an assumption made by several authors. Our results
on our self-collected database, and other person independent public databases
are encouraging; they demonstrate that there is enough information in Euler
angles for classification.



Protruded Fingers 65

Fig. 10. Successful classification of gestures available from a public database. Im-
proper segmentation as in the top right does not distract the algorithm

An image of a scene at a given time represents a projection of the scene
which depends on the position of the camera. There are eight possibilities for
the dynamic nature of the camera, actor, and world setup. However since all
this processing is done in the reference frame of the camera, they can classified
into the following categories:

• Stationary camera and stationary Region Of Interest (ROI). This is the
case that has been considered in the bulk of the chapter above.

• Stationary camera and moving ROI. This is a generalization of the above
step.

• Moving camera and stationary ROI. This is similar to stereo vision, and
techniques explored from stereo can be used here.

• Moving camera and moving ROI. An appearance based scheme would be
quite useful here.

References

1. Michael J. Black and Allan D. Jepson. Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation. In ECCV,
pages 329–342, 1996.

2. I. A. Essa, S. Scarloff, and A. Pentland. A Unified Approach for Physical and
Geometric Modeling for Graphics and Animation. In Proceedings of Eurograph-
ics, volume 11, pages C130–C138, 1992.



66 S.Chandran, A. Sawa

3. W. Freeman and M. Roth. Orientation histogram for hand gesture recognition.
In International Workshop on Automatic Face and Gesture-Recognition, 1995.

4. P. Harling and E. Edwards. ARGo: An architecture for sign language recognition
and interpretation. Progress in Gestural Interaction, pages 17–30, 1996.

5. Myron Krueger. Artificial Reality. Addison-Wesley, 1991.
6. S. Kumar and J. Segen. Gesture-based 3D man-machine interaction using a

single camera. In IEEE Conf. on Multimedia Computing and Systems, pages
630–635, 1999.

7. R. H. Liang and M. Ouhyoung. A real-time continuous gesture recognition
system for sign language. In Proceedings of the Third International Conference
on Automatic Face and Gesture Recognition, pages 558–565, 1998.

8. Jerome Martin and James L. Crowley. An appearance-based approach to
gesture-recognition. In International Conference on Image Analysis and Pro-
cessing, pages 340–347, 1997.

9. Sebastien Martin and Oliver Bernier. Hand Posture Recognition in a Body-Face
Centered Space. In International Gesture Workshop, volume LNAI 1739, pages
97–100. Springer, 1999.

10. Claudia Nölker and Helge Ritter. Visual Recognition of Hand Postures. In
International Gesture Workshop, volume LNAI 1739, pages 61–72. Springer,
1999.

11. Vladimir Pavlovic, Rajeev Sharma, and Thomas S. Huang. Visual interpretation
of hand gestures for human-computer interaction: A review. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19:677–695, 1997.

12. Jim Rehg and Takeo Kanade. Visual tracking of high DOF articulated struc-
tures: An application to human hand tracking. In Proceedings of the 3rd Eu-
ropean Conference on Computer Vision (ECCV ’94), volume II, pages 35–46,
May 1994.

13. B. Schiele and A. Waibel. Estimation of the head orientation based on a face–
color–intensifier. 3rd International Symposium on Intelligent Robotic Systems,
July 1995.

14. Thad Starner, Joshua Weaver, and Alex Pentland. Real-time American sign
language recognition using desk and wearable computer based video. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(12):1371–1375,
1998.

15. H. Sundar, Deborah Silver, Nikhil Gagvani, and Sven J. Dickinson. Skeleton
based shape matching and retrieval. In Shape Modeling International, volume 29,
pages 130–142, 2003.

16. J. Triesch and C. von der Malsburg. A system for person-independent hand
posture recognition against complex backgrounds. IEEE PAMI, 29:1449–1453,
2001.

17. C. Vogler and D. Metaxas. Adapting Hidden Markov models for ASL recogni-
tion by using three-dimensional computer vision methods. IEEE International
Conference on Systems, Man and Cybernetics, pages 156–161, October 1997.

18. Ying Wu and Thomas S. Huang. Vision-based gesture recognition: A review.
In International Gesture Workshop, volume LNAI,1939, pages 103–115, 1999.



Flocks of Features for Tracking Articulated
Objects

Mathias Kölsch1 and Matthew Turk2

1 Computer Science Department, Naval Postgraduate School, Monterey
matz@nps.edu

2 Computer Science Department, University of California, Santa Barbara
mturk@cs.ucsb.edu

Tracking non-rigid and articulated objects in live video is a challenging task,
particularly because object geometry and appearance can undergo rapid
changes between video frames. Color-based trackers do not rely on geome-
try, yet they have to make assumptions on the background’s color as to avoid
confusion with the foreground object. This chapter presents “Flocks of Fea-
tures,” a tracking method that combines motion cues and a learned foreground
color distribution for fast and robust 2D tracking of highly articulated objects.
Many independent image artifacts are tracked from one frame to the next, ad-
hering only to local constraints. This concept is borrowed from nature since
these tracks mimic the flight of flocking birds – exhibiting local individualism
and variability while maintaining a clustered entirety. The method’s benefits
lie in its ability to track objects that undergo vast and rapid deformations, its
ability to overcome failure modes from the motion cue as well as the color cue,
its speed, and its robustness against background noise. Tracker performance
is demonstrated on hand tracking with a non-stationary camera in uncon-
strained indoor and outdoor environments. When compared to a CamShift
tracker on the highly varied test data, Flocks of Features tracking yields a
threefold improvement in terms of the number of frames of successful target
tracking.

1 Introduction

Flocks of Features is a fast method for tracking the 2D location of highly
articulated objects from monocular views, for example, human hands. By
integrating image cues obtained from optical flow and a color probability dis-
tribution, a flock of features is able to follow rapid hand movements despite
arbitrary finger configuration changes (postures). It can deal with dynamic
backgrounds, gradual lighting changes, and significant camera motion such as
experienced with a hand-held camera during walking. It does not require a



68 M.Kölsch, M. Turk

geometry model or a shape model of the target, thus it is in principle appli-
cable to tracking any deformable or articulated object. Tracking performance
increases with a more distinct and more uniform object color. The Flocks of
Features method was first presented at the IEEE Workshop on Real-Time
Vision for Human-Computer Interaction [13].

1.1 Flocking Behavior

The method’s core idea was motivated by the seemingly chaotic clustering
behavior of a school of fish or a flock of birds, for example, pigeons. While no
single bird has any global control, the entire flock still stays tightly together.
This decentralized organization has been found to mostly hinge upon two
simple constraints that can be evaluated on a local basis: birds like to maintain
a minimum safe flying distance to the other birds, but they also desire not to
be separated from the flock by more than a certain maximum distance [19].

A Flocks of Features tracker utilizes a set of small image areas, or fea-
tures, that move from frame to frame in a way similar to a flock of birds. The
features’ “flight paths” are determined by optical flow, resulting in indepen-
dent feature movements. Thereafter, every feature’s location is constrained to
observe a minimum distance from all other features, and to not exceed a max-
imum distance from the feature median. If one or both of these conditions are
violated, the feature is repositioned to a new location that is in compliance
again. In addition, an attempt is made to select new locations with a high
skin color probability. This consultation of a second image cue counters the
drift of features onto nearby background artifacts as it might happen if these
exhibit strong gray-level gradients.

Fig. 1. Hand tracking despite a moving camera, hand rotations and articulations,
changing lighting conditions and backgrounds. (The images are selected frames from
sequence #5, see Table 1)

The speed of pyramid-based KLT feature tracking (see Sect. 3.1 and ref-
erences [4, 17, 22]) allows Flocks of Features to overcome the computational



Flocks of Features for Tracking Articulated Objects 69

limitations of model-based approaches to tracking, easily achieving the real-
time performance that is required for vision-based interfaces. The flocking
behavior in combination with the color cue integration is responsible for the
quality of the results: in experiments (see Sect. 4), hands were tracked repeat-
edly for more than a minute, despite all efforts to distract the tracker. Several
examples are shown in the video clip that is associated with the book and is
available from the first author’s web page.3 A few frame snapshots are also
shown in Fig. 1. Section 5 covers extensive experiments with hands, demon-
strating significant performance improvement over another popular tracking
method, called CamShift [2].

1.2 HandVu

Human-computer interfaces that observe and utilize hand gestures have the
potential to open new realms of applications and functionalities, especially
for non-traditional computing environments such as augmented reality and
mobile and worn computing devices. Recognizing hand motions and config-
urations by means of computer vision is a particularly promising approach
as it allows a maximum of versatility without encumbering the user. The
tracker described here is an integral part of HandVu,4 the first vision-based
hand gesture interface that is publicly available and that allows quick and
easy interface deployment (see [12]). For example, HandVu is used to operate
a mobile computer [15] solely through hand gesture recognition. A head-worn
camera provides the input, and a head-worn display in the same physical unit
is responsible for the visual output. All other components need not be accessed
and are stowed away in a conventional backpack.

In HandVu, robust hand detection (see [14]) initializes the vision system
which then tracks the hand with the method described here. Key postures
are recognized and, along with the 2D hand location, drive input to the ap-
plications. Posture recognition also serves as re-initialization of the tracking,
reducing feature drift and accommodating for lighting changes. Key aspects
of the vision components are user independence, their robustness to arbitrary
environments, and their computational efficiency as they must run in concert
on a laptop computer, providing real-time and low-latency responses to user
actions.

2 Related Work

Rigid objects with a known shape can be tracked reliably before arbitrary
backgrounds in gray-level images [1, 8]. However, when the object’s shape
varies vastly over time such as with gesturing hands, most approaches resort to
3 Currently at http://www.cs.ucsb.edu/~matz/RTV4HCI.wmv
4 Currently at http://www.cs.ucsb.edu/~matz/HGI/HandVu.html



70 M.Kölsch, M. Turk

shape-free color information or background differencing [5, 16, 20]. This makes
assumptions about the background color or requires a stationary camera and
a fixed background, respectively. Violation of just one of these assumptions
has to be considered a unimodal failure mode. The Flocks of Features method,
on the other hand, uses a multimodal technique to overcome these vulnera-
bilities. Other multi-cue approaches integrate, for example, texture and color
information and can then recognize and track a small number of fixed shapes
despite arbitrary backgrounds [3]. A flock of features tracks without a priori
knowledge of possible postures and can handle any number of them. However,
it makes no attempt at estimating the articulation of the hand’s phalanges
or finger configurations, this is left for subsequent processing (for example,
see [25, 23, 15]).

Object segmentation based on optical flow can produce good results for
tracking objects that exhibit a limited amount of deformations during global
motions and thus have a fairly uniform flow [18, 5]. Flocks of Features relaxes
this constraint and can track despite concurrent articulation and location
changes (see Fig. 3). Depth information combined with color also yields a
robust hand tracker [6], yet stereo approaches have their own limitations and
are more expensive than the single imaging device required for monocular
approaches.

The Flocks of Features approach is different from Monte Carlo methods
(often called particle filters, condensation, or particle swarm optimization)
[21, 7, 11]. The features in a flock react to local observations only and do not
have global knowledge as the samples or particles in Monte Carlo methods
do. The features’ realm is the two-dimensional image data (optical flow), not
a higher-level model space. But most of all, they move in a deterministic way,
rather than probabilistically sampling their state space. Having said that, the
repositioning of features that have violated the flocking conditions could be
interpreted as an attempt to probabilistically model a global “distribution”
of the tracked object (for example, the hand), with feature distance and color
as its two marginalizations.

3 Method

The motivation for this approach stems from the difficulty of tracking highly
articulated objects such as hands during rapid movements. This is particularly
challenging when real-time constraints have to be met and only a monocular
view in the visible light spectrum is available. If the environment can not be
constrained, for example, to a static or uniformly colored background, single-
modality methods fail if only one assumption is violated. The approach that
Flocks of Features takes integrates two image cues in a very natural manner.

The first image cue exploits the fact that object artifacts can be followed re-
liably if their appearance remains fairly constant between frames. The method



Flocks of Features for Tracking Articulated Objects 71

of choice is a popular tracking method that was conceived by Kanade, Lu-
cas, and Tomasi [17, 22], frequently referred to as pyramid-based KLT feature
tracking. It delivers good accuracy on quickly moving rigid objects and it can
be computed very efficiently. The flocking feature behavior was introduced to
allow for tracking of objects whose appearance changes over time, to make
up for features that are “lost” from one frame to another because the image
mark they were tracking disappeared.

The second image cue is color: mere feature re-introduction within prox-
imity of the flock can not provide any guarantees on whether it will be located
on the object of interest or some background artifact. Placing these features
at image locations that exhibit a color similar to the hand’s color, however,
increases the chances of features being located on hand artifacts. An overview
of the entire algorithm is given in Fig. 2.

input:

bound_box - rectangular area containing hand

hand_mask - probability of every pixel in bound_box to be hand

min_dist - minimum pixel distance between features

n - number of features to track

winsize - size of feature search windows

initialization:

learn foreground color histogram based on bound_box and hand_mask,

and background color histogram based on remaining image areas

find n*k good-features-to-track with min_dist

rank them based on color and fixed hand_mask

pick the n highest-ranked features

tracking:

update KLT feature locations with image pyramids

compute median feature

for each feature

if less than min_dist from any other feature

or outside bound_box, centered at median

or low between-frames appearance match correlation

then relocate feature onto good color spot

that meets the flocking conditions

output:

the average feature location

Fig. 2. The Flocks of Features tracking algorithm. Good-features-to-track [22] are
those that have a strong gray-level image gradient in two or more directions, that
is, corners. k is an empirical value, chosen so that enough features end up on good
colors; k = 3 was found to be sufficient. The offline-learned hand mask is a spatial
distribution for pixels belonging to some part of the hand in the initial posture



72 M.Kölsch, M. Turk

3.1 KLT Features and Tracking Initialization

KLT features are named after Kanade, Lucas, and Tomasi who found that a
steep brightness gradient along at least two directions makes for a promis-
ing feature candidate to be tracked over time (“good features to track,”
see [22]). In combination with image pyramids (a series of progressively
smaller-resolution interpolations of the original image [4, 17]), a feature’s im-
age area can be matched efficiently to the most similar area within a search
window in the following video frame. The feature size determines the amount
of context knowledge that is used for matching. If the feature match corre-
lation between two consecutive frames is below a threshold, the feature is
considered “lost.”

In the mentioned HandVu system [12], a hand detection method [14] sup-
plies both a rectangular bounding box and a probability distribution to ini-
tialize tracking. The probability mask is learned offline and contains for every
pixel in the bounding box the likelihood that it belongs to the hand. Next,
approximately 100 features are selected within the bounding box according to
the goodness criterion and observing a pairwise minimum distance. These fea-
tures are then ranked according to the combined probability of their locations’
mask- and color probabilities. The target number highest-ranked features form
the subset that is chosen for tracking. This cardinality will be maintained
throughout tracking by replacing lost features with new ones.

Each feature is tracked individually from frame to frame. That is, its new
location becomes the area with the highest match correlation between the two
frame’s areas. The features will not move in a uniform direction; some might
be lost and others will venture far from the flock.

3.2 Flocks of Features

As one of the method’s key characteristics, fast-moving and articulating ob-
jects can be tracked without the need for an object model.5 Flocking is a way
of enforcing a loose global constraint on the feature locations that keeps them
spatially confined. During tracking, the feature locations are first updated like
regular KLT features as described in the previous subsection and their me-
dian is computed. Then, two conditions are enforced: no two features must
be closer to each other than a threshold distance, and no feature must be
further from the median than a second threshold distance. Unlike birds that
will gradually change their flight paths if these “flocking conditions” are not
met, affected features are abruptly relocated to a new location that fulfills the
conditions. The flock of features can be seen in Fig. 3 as clouds of little dots.

The effect of this method is that individual features can latch on to ar-
bitrary artifacts of the object being tracked, such as the fingers of a hand.
5 The color distribution can be seen as a model, yet it is not known a priori but

learned on the fly.



Flocks of Features for Tracking Articulated Objects 73

Fig. 3. These images are taken from individual frames of the video with highly
articulated hand motions, sequence #3. Areas with 200×230 pixel were cropped from
the 720×480-sized frames. The cloud of little dots represents the flock of features,
the big dot is their mean. Note the change in size of the hand appearance between
the first and fifth image and its effect on the feature cloud

They can then move independently along with the artifact, without disturb-
ing most other features and without requiring the explicit updates of model-
based approaches, resulting in flexibility and speed. Too dense concentrations
of features that would ignore other object parts are avoided because of the
minimum-distance constraint. Similarly, stray features that are likely to be
too far from the object of interest are brought back into the flock with the
help of the maximum-distance constraint.

Choosing the median over the mean location to enforce the maximum-
distance constraint is advantageous because of its robustness towards spatial
outliers. In fact, the furthest 15% of features are also skipped for the median
computation to achieve temporally more stable results. However, the location
of the tracked object as a whole is considered to be the mean of all features
since this measure changes more smoothly over time than the median. The
gained precision is important for the vision-based interface’s usability.

3.3 Color Modality and Multi-Cue Integration

When the hand is first detected, the observed hand color is learned in a
normalized-RGB histogram and contrasted to the background color. The back-
ground color is sampled from a horseshoe-shaped area around the location
where the hand was detected (see Fig. 4). This assumes that no other ex-
posed skin body parts of the same person who’s hand is to be tracked is
within that background reference area. Since most applications for HandVu
assume a forward- and downward-facing head-worn camera, this assumption
is reasonable. It was ensured that in the initialization frames of the test videos



74 M.Kölsch, M. Turk

(which also included other camera locations) the reference area did not show
the tracked person’s skin. The color distribution was not restricted in subse-
quent frames. The segmentation quality that this dynamic learning achieves
is very good for as long as the lighting conditions do not change dramatically
and the reference background is representative for the actual background. The
color cue is not a good fall-back method in cases where skin-colored objects
that were not within the reference background area during learning come into
view shortly thereafter.

Fig. 4. The areas for learning the skin color model: The color in the hand-masked
area (white) is learned in the foreground color histogram. The pixelized look stems
from scaling the 30×20 sized hand mask to the detected hand’s size. The background
color histogram is learned from the horseshoe-shaped area around the hand (black);
it is presumed to contain only background. The gray area is not used

The color information is used as a probability map (of a pixel’s color
belonging to the hand) in three places. First, the CamShift method – which
Flocks of Features was compared to – solely operates on this modality. Second,
at tracker initialization time, the KLT features are placed preferably onto
locations with a high skin color probability. This is true even for the two
tracking styles that did not use color information in subsequent tracking steps,
see Sect. 4.

Third, the new location of a relocated feature (due to low match corre-
lation or violation of the flocking conditions) is chosen to have a high color
probability, currently above a fixed 50 percent threshold. If this is not possible
without repeated violation of the flocking conditions, it is chosen randomly.
A change in lighting conditions that results in poor color classification causes
gracefully degrading tracking performance: only relocated features suffer while
most features will continue to follow gray-level artifacts.



Flocks of Features for Tracking Articulated Objects 75

Feature relocation does not take the gray-level gradient information, the
goodness-to-track, into account to save processing time. However, this is pre-
sumed to not significantly improve tracking because in application the features
automatically move to those locations after a few frames.

The described consultation of the color cue leads to a very natural multi-
modal integration, combining cues from feature movement based on gray-level
image texture with cues from texture-less skin color probability. The relative
contribution of the modalities can be controlled by changing the threshold
of when a KLT features is considered lost between frames. If this threshold
is low, features are relocated more frequently, raising the importance of the
color modality, and vice versa.

4 Experiments

The main objective of the experiments described in the following is to assess
Flocks of Features’ performance in comparison to a frequently used, state
of the art tracking method. A CamShift tracker [2] was chosen because it is
widely available and because it is representative of single-cue approaches. The
contribution of both the flocking behavior and of the multi-cue integration to
the overall performance was also of interest. Therefore, five tracking styles
were compared:

• 1 – CamShift: The OpenCV implementation of CamShift [2] was sup-
plied with the learned color distribution. A pilot study using a fixed HSV
histogram yielded inferior results.

• 2 – KLT features only: The KLT features were initialized on the de-
tected hand and subject to no restrictions during subsequent frames. If
their match quality from one to the next frame was below a threshold,
they were reinitialized randomly within proximity of the feature median.

• 3 – KLT features with flocking behavior: As style 2, but the con-
straints on minimum pairwise feature distance and maximum distance
from the median were enforced (see Sect. 3.2).

• 4 – KLT features with color: As style 2, but resurrected features were
placed onto pixels with high skin-color probabilities (see Sect. 3.3).

• 5 – Combined flocking and color cue: The actual Flocks of Features,
this tracker combines styles 3 and 4 as described in Sect. 3.

All styles used color information that was obtained in identical ways. All
KLT-based styles used the same feature initialization technique, based on
a combination of known hand area locations and learned hand color. This
guaranteed equal starting conditions to all styles.

Feature tracking was performed with three-level pyramids in 720×480
video, which arrived at the tracking method at approximately 13 fps. The
tracking results were available after 2–18ms processing time, depending on
search window size and the number of features tracked.



76 M.Kölsch, M. Turk

Aside from comparing different tracking styles, some of the experiments
investigated different parameterizations of the Flocks of Features method. In
particular, the the following independent variables were studied: the num-
ber features tracked, the minimum pairwise feature distance, and the feature
search window size.

4.1 Video Sequences

A total of 518 seconds of video footage was recorded in seven sequences. Each
sequence follows the motions of the right hand of one of two people, some
filmed from the performer’s point of view, some from an observer’s point of
view. For 387 seconds (or 4979 frames) at least one of the styles success-
fully tracked the hand. Table 1 details the sequences’ main characteristics.
The videos were shot in an indoor laboratory environment and at various
outdoor locations, the backgrounds including walkways, random vegetation,
bike racks, building walls, etc. The videos were recorded with a hand-held DV
camcorder, then streamed with firewire to a 3GHz desktop computer and pro-
cessed in real-time. The hand was detected automatically when in a certain
“initialization” posture with a robust hand detection method [14]. Excerpts
of the sequences can be found in the video associated with this chapter (see
Introduction).

Table 1. The video sequences and their characteristics: three sequences were taken
indoors, four in the outdoors. In the first one, the hand was held in a mostly rigid
posture (fixed finger flexion and orientation), all other sequences contained posture
changes. The videos had varying amounts of skin-colored background within the
hand’s proximity. Their full length is given in seconds, counting from the frame in
which the hand was detected and tracking began. The maximum time in seconds
and the maximum number of frames that the best method tracked a given sequence
are stated in the last two columns

id outdoors posture changes skin background total length max tracked

1 no no yes 95s 79.3s 1032f

2 no yes yes 76s 75.9s 996f

3 no lots little 32s 18.5s 226f

4 yes yes little 72s 71.8s 923f

5 yes yes yes 70s 69.9s 907f

6 yes yes yes 74s 31.4s 382f

7 yes yes yes 99s 40.1s 513f

5 Results

Tracking was defined to be lost when the mean location is not on the hand
anymore, with extremely concave postures being an exception. The tracking



Flocks of Features for Tracking Articulated Objects 77

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
ac

tio
n 

of
 s

eq
ue

nc
e 

tr
ac

ke
d

camshift
worst flock per sequence
mean flock per sequence
overall best flock

Fig. 5. This graph shows the time until tracking was lost for each of the different
tracking styles, normalized to the best style’s performance for each video sequence.
Groups 1-7 are the seven video sequences. Group 8 is the sum of all sequences,
normalized to the sum of each sequence’s best style’s performance. The Flocks of
Features method tracks the hand much longer than the comparison tracker

for the sequence was stopped then, even though the hand might later have
coincidentally “caught” the tracker again due to the hand’s path intersecting
the erroneously tracked location. Since the average feature location can not be
guaranteed to be on the center of the hand or any other particular part, merely
measuring the distance between the tracked location and some ground truth
data can not be an accurate measure for determining tracking loss. Thus, the
tracking results were visually inspected and manually annotated.

5.1 General Performance

Figure 5 illustrates the method’s performance in comparison to the CamShift
tracker that is purely based on color. The leftmost bar for each of the seven
sequences shows that CamShift performs well on sequences three and four due
to the limited amount of other skin-colored objects nearby the tracked hand.
In all other sequences, however, the search region and the area tracked quickly
expand too far and lose the hand in the process.



78 M.Kölsch, M. Turk

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CamShift 

KLT 

flock 

color 

Flock of
Features 

Fig. 6. Contribution of flocking versus color to the Flocks of Features’ performance
which combines both flocking and color information. Shown is the normalized sum
of the number of frames tracked with each tracker style, similar to the eighth group
in Fig. 5. Tracking with the Flocks of Features method distinctively shows synergy
effects over the other methods’ performances

The other bars are from twelve Flocks of Features trackers with 20–100
features and search window sizes between 5 and 17 pixels squared. Out of
these twelve trackers, the worst and mean tracker for the respective sequence is
shown. In all but two sequences, even the worst tracker outperforms CamShift,
while the best tracker frequently achieves an order of magnitude better per-
formance (each sequence’s best tracker is normalized to 1 on the y−axis and
not explicitly shown). The rightmost bar in each group represents a single
tracker’s performance: the overall best tracker which had 15×15 search win-
dows, 50 features and a minimum pairwise feature distance of 3 pixels.

Next, the relative contributions of the flocking behavior and the color cue
integration on the combined tracker’s performance were investigated. Figure 6
indicates that adding color as an additional image cue contributes more to the
combined tracker’s good performance than the flocking behavior in isolation.
The combination of both techniques achieves the vast improvements over the
CamShift tracker across the board.



Flocks of Features for Tracking Articulated Objects 79

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

target number of features

fr
ac

tio
n 

of
 s

eq
ue

nc
e 

tr
ac

ke
d

mean
seq 1
seq 2
seq 3
seq 4
seq 5
seq 6
seq 7

Fig. 7. How varying the number of features influences the performance for each
of the video sequences. The KLT features were updated within an 11×11 search
window and a pairwise distance of 2.0 pixels was enforced. The bars are normalized
for each sequence’s best tracker, of which only one (40 features, sequence #6) is
shown here

5.2 Parameter Optimizations

Figure 7 presents the tracking results after varying the target number of fea-
tures that the flocking method maintains. The mean fraction’s plateau sug-
gests that 50 features are able to cover the hand area equally well as 100
features. The search window size of 11×11 pixels allows for overlap of the
individual feature areas, making this a plausible explanation for no further
performance gains after 50 features.

In a related result (not shown), no significant effect related to the minimum
pairwise feature distance was observed in the range between two and four.
Smaller threshold values however (especially the degenerative case of zero)
allow very dense feature clouds that retract to a confined part on the tracked
hand, decreasing robustness significantly.

Just as the previous two parameters, the search window size should ideally
depend on the size of the hand and possibly on the size of its articulations.
These values were constants in the experiments since they were conducted



80 M.Kölsch, M. Turk

exclusively on hands. Further, the hand sizes did not vary by more than a
factor of roughly two. An example for scale change are the hand appearances
in the first and fifth image in Fig. 3. The window size has two related implica-
tions. First, a larger size should be better at tracking global motions (position
changes), while a smaller size should perform advantageously at following fin-
ger movements (hand articulations). Second, larger areas are more likely to
cross the boundary between hand and background. Thus it should be more
difficult to pronounce a feature lost based on to its match correlation. How-
ever, Fig. 8 does not explicitly show these effects. One possible explanation
is that other factors play a role in how well the sequences fared, or the effect
is not strong enough for the size of the data. On the other hand, the general
trend is very pronounced and the tracker parameters were chosen accordingly.

3 5 7 9 11 13 15 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

feature search window size (squared)

fr
ac

tio
n 

of
 s

eq
ue

nc
e 

tr
ac

ke
d

mean
seq 1
seq 2
seq 3
seq 4
seq 5
seq 6
seq 7

Fig. 8. How tracker performance is affected by search window size (square, side
length given on x−axis). Larger window sizes improve tracking dramatically for
sequences with very rapid hand location changes (sequences 3, 4, 5), but tracking
of fast or complicated configuration variations suffer with too large windows (se-
quences 3, 7)



Flocks of Features for Tracking Articulated Objects 81

6 Discussion

The experiments showed that the performance improvement must be at-
tributed to two factors. First, the purely texture-based and thus within-
modality technique of flocking behavior contributes about 20 percent increase
over KLT, as witnessed by comparing KLT features with and without flocking
(see Fig. 6). Second, the cross-modality integration adds to the performance,
visible in improvements from flocking-only and color-only to the combined
approach.

A perfect integration technique for multiple image cues would reduce the
failure modes to simultaneous violations of all modalities’ assumptions. To
achieve this for the presented method and its on-demand consultation of the
color cue, a failure in the KLT/flocking modality would have to be detectable
autonomously (without help from the color cue). To the best of our knowl-
edge, this cannot be achieved theoretically. In practice, however, each feature’s
match quality between frames is a good indicator for when the modality might
not be reliable. This was confirmed by the experiments as the features flocked
towards the center of the hand (and its fairly stable appearance there) as op-
posed to the borders to the background where rapid appearance changes are
frequent.

The presented method’s limitations can thus be attributed to two causes,
undetected failure of the KLT tracking and simultaneous violation of both
modalities’ assumptions. The first case occurs when features gradually drift
off to background areas without being considered lost nor violating flocking
constraints. The second case occurs if the background has a high skin-color
probability, has high gray-level gradients to attract and capture features, and
the tracked hand undergoes transformations that require many features to
reinitialize.

Flocks of features frequently track the hand successfully despite partial
occlusions. Full object occlusions can be impossible to handle at the image
level and are better dealt with at a higher level, such as with physical and
probabilistic object models [9, 24]. The Flocks’ output improves the input to
these models, providing them with better image observations that will in turn
result in better model parameter estimates. Enforcing temporal consistency
by applying a Kalman filter [10] or Monte Carlo methods (see Sect. 2) is
another way to improve tracking robustness.

There is a performance correlation between the target number of features,
the minimum distance between features, and the search window size. The opti-
mal parameters also depend on the size of the hand, which is assumed to vary
after initialization with no more than approximately a factor of two in each
dimension. It is left for further investigation to quantify these relationships
and to derive optimal parameters for different object sizes.

The Flocks of Features approach was conceived for coarse hand tracking for
a time span in the order of ten seconds. It is to provide 2D position estimates
to an appearance-based posture recognition method that does not require



82 M.Kölsch, M. Turk

an overly precise bounding box on the hand area. Thus, it was sufficient to
obtain the location of some hand area, versus that of a particular spot such as
the index finger’s tip. In HandVu, the complete vision-based gesture interface
(see [15, 12]), every successful posture classification re-initializes tracking and
thus extends the tracking period into the long-term range.

The reported frame rate was limited by the image acquisition and transmis-
sion hardware and not by the tracking algorithm. During a second set of exper-
iments with live video capture and processing, consistent frame rates of 30Hz
were achieved (color firewire camera in 640×480 resolution). Higher frame
rates allow “superlinear” performance improvements because KLT feature
tracking becomes increasingly faster and less error prone with less between-
frame object motion.

7 Conclusions

Flocks of Features is a new 2D tracking method for articulated objects such as
hands. The method integrates two image cues, motion and color, to surpass
the robustness of unimodal trackers towards lighting changes, background
artifacts, and articulations. It operates indoors and outdoors, with different
people, and despite dynamic backgrounds and camera motion. The method
does not utilize a geometric object model, but, instead, enforces a loose global
constraint on otherwise independently moving features. It is very fast (2–
18ms computation time per 720×480 RGB frame), resulting in high frame
rates (typical 30Hz on a 3 GHz Xeon), but also leaving CPU cycles for other
computation. For example, the vision-based hand gesture interface HandVu
combines Flocks of Features with hand posture recognition methods in order
to tap more than just the location of the hand for human-computer interac-
tion. These novel interfaces point the way for natural, intuitive communication
with machines in non-traditional environments such as wearable computing
and augmented reality.

Acknowledgments

This work was partially supported under the auspices of the U.S. Department
of Energy by the Lawrence Livermore National Laboratory under contract
No. W-7405-ENG-48.

References

1. Stan Birchfield. Elliptical head tracking using intensity gradients and color
histograms. In Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 232–237, June 1998.



Flocks of Features for Tracking Articulated Objects 83

2. Gary R. Bradski. Real-time face and object tracking as a component of a
perceptual user interface. In Proc. IEEE Workshop on Applications of Computer
Vision, pages 214–219, 1998.

3. Lars Bretzner, Ivan Laptev, and Tony Lindeberg. Hand Gesture Recognition
using Multi-Scale Colour Features, Hierarchical Models and Particle Filtering.
In Proc. IEEE Intl. Conference on Automatic Face and Gesture Recognition,
pages 423–428, Washington D.C., 2002.

4. Peter J. Burt and Edward H. Adelson. The Laplacian Pyramid as a Compact
Image Code. IEEE Trans. on Communication, 31(4):532–540, 1983.

5. Ross Cutler and Matthew Turk. View-based Interpretation of Real-time Optical
Flow for Gesture Recognition. In Proc. IEEE Intl. Conference on Automatic
Face and Gesture Recognition, pages 416–421, April 1998.

6. S. Grange, E. Casanova, T. Fong, and C. Baur. Vision-based Sensor Fusion
for Human-Computer Interaction. In Intl. Conference on Intelligent Robots and
Systems, October 2002.

7. M. Isard and A. Blake. Condensation – Conditional Density Propagation for
Visual Tracking. Int. Journal of Computer Vision, 1998.

8. Michael Isard and Andrew Blake. A mixed-state CONDENSATION tracker
with automatic model-switching. In Proc. Intl. Conference on Computer Vision,
pages 107–112, 1998.

9. N. Jojic, M. Turk, and T. Huang. Tracking Self-Occluding Articulated Ob-
ject in Dense Disparity Maps. In Proc. Intl. Conference on Computer Vision,
September 1999.

10. R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME Journal of Basic Engineering, pages 34–45, 1960.

11. James Kennedy and Russell Eberhart. Particle Swarm Optimization. In Proc.
IEEE Intl. Conference on Neural Networks, volume 4, pages 1942–1948, 1995.

12. Mathias Kölsch. Vision Based Hand Gesture Interfaces for Wearable Com-
puting and Virtual Environments. PhD thesis, Computer Science Department,
University of California, Santa Barbara, September 2004.

13. Mathias Kölsch and Matthew Turk. Fast 2D Hand Tracking with Flocks of
Features and Multi-Cue Integration. In IEEE Workshop on Real-Time Vision
for Human-Computer Interaction (at CVPR), 2004.

14. Mathias Kölsch and Matthew Turk. Robust Hand Detection. In Proc. IEEE
Intl. Conference on Automatic Face and Gesture Recognition, May 2004.

15. Mathias Kölsch, Matthew Turk, and Tobias Höllerer. Vision-Based Interfaces for
Mobility. In Intl. Conference on Mobile and Ubiquitous Systems (MobiQuitous),
August 2004.

16. Takeshi Kurata, Takashi Okuma, Masakatsu Kourogi, and Katsuhiko Sakaue.
The Hand Mouse: GMM Hand-color Classification and Mean Shift Tracking. In
Intl. Workshop on Recognition, Analysis and Tracking of Faces and Gestures in
Real-time Systems, July 2001.

17. Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique
with an Application to Stereo Vision. In Proc. Imaging Understanding Work-
shop, pages 121–130, 1981.

18. Francis K. H. Quek. Unencumbered Gestural Interaction. IEEE Multimedia,
4(3):36–47, 1996.

19. C. W. Reynolds. Flocks, Herds, and Schools: A Distributed Behavioral Model.
ACM Trans. on Graphics (Proc. SIGGRAPH), 21(4):25–34, 1987.



84 M.Kölsch, M. Turk

20. J. Segen and S. Kumar. GestureVR: Vision-Based 3D Hand Interface for Spatial
Interaction. In Proc. ACM Intl. Multimedia Conference, September 1998.

21. Caifeng Shan, Yucheng Wei, Tieniu Tan, and Frédéric Ojardias. Real Time
Hand Tracking by Combining Particle Filtering and Mean Shift. In Proc. IEEE
Intl. Conference on Automatic Face and Gesture Recognition, 2004.

22. Jianbo Shi and Carlo Tomasi. Good features to track. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, Seattle, June 1994.

23. B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla. Filtering Using
a Tree-Based Estimator. In Proc. 9th International Conference on Computer
Vision, volume II, pages 1063–1070, Nice, France, October 2003.

24. Christopher R. Wren and Alex P. Pentland. Dynamic Models of Human Motion.
In Proc. IEEE Intl. Conference on Automatic Face and Gesture Recognition,
pages 22–27, April 1998.

25. Ying Wu and Thomas S. Huang. Hand Modeling, Analysis, and Recognition.
IEEE Signal Processing Magazine, May 2001.



Static Hand Posture Recognition Based on
Okapi-Chamfer Matching

Hanning Zhou, Dennis J. Lin, and Thomas S. Huang

ECE Department
University of Illinois at Urbana-Champaign
hzhou@ifp.uiuc.edu

djlin@ifp.uiuc.edu

huang@ifp.uiuc.edu

Recent years have witnessed the rise of many effective text information re-
trieval systems. By treating local visual features as terms, training images as
documents and input images as queries, we formulate the problem of posture
recognition into that of text retrieval. Our formulation opens up the oppor-
tunity to integrate some powerful text retrieval tools with computer vision
techniques. In this chapter, we propose to improve the efficiency of hand pos-
ture recognition by an Okapi-Chamfer matching algorithm. The algorithm is
based on the inverted index technique.

The inverted index is used to effectively organize a collection of text doc-
uments. With the inverted index, only documents that contain query terms
are accessed and used for matching. To enable inverted indexing in an image
database, we build a lexicon of local visual features by clustering the features
extracted from the training images. Given a query image, we extract visual
features and quantize them based on the lexicon, and then look up the in-
verted index to identify the subset of training images with non-zero matching
score. To evaluate the matching scores in the subset, we combined the modified
Okapi weighting formula with the Chamfer distance. The performance of the
Okapi-Chamfer matching algorithm is evaluated on a hand posture recogni-
tion system. We test the system with both synthesized and real-world images.
Quantitative results demonstrate the accuracy and efficiency our system.

1 Introduction

Hand posture recognition is an important task for many human-computer
interaction (HCI) applications. The problem of hand posture recognition
can be considered as a special case of object recognition. There are two
types of approaches for object recognition. One is 3D-model-based, the other
is appearance-based. Appearance-based object recognition typically involves



86 H.Zhou, D. J. Lin, T. S.Huang

matching an input image with an image of the object from a database in-
cluding several characteristic views. According to the matching criterion, the
appearance-based approaches can be categorized into two kinds. The first is
based on matching salient local features [27, 37, 17, 9, 15, 24]. This kind of
approach detects salient points and uses local invariant feature descriptors
to represent the object class. They have been very successful in recognizing
rigid objects under partial occlusion and slight pose variation. They usually
require the object to have consistent and distinct texture. The second kind
of appearance-based approaches rely on global-shape descriptors, such as mo-
ment invariants, Fourier descriptor or shape context [4, 35, 2]. They can handle
objects of little texture, but usually require clean segmentation.

The object classes we are interested in are postures of articulated objects,
e.g., the human hand. Their deformations have many degrees of freedom. It
requires a large image database to cover all the characteristic shapes under dif-
ferent views. Matching a query image with all training images in the database
is time-consuming unless one uses a PC cluster [11]. To improve the efficiency,
[1] proposes to embed the manifold of hand shapes into a lower-dimensional
Euclidean space. [28] proposes to use parameter sensitive hashing. [34] pro-
poses tree-based filtering. Most of these approaches are based on global-shape
matching, because there is very little salient texture on the hand, and the
traditional local feature based approaches are not directly applicable.

This chapter takes a different approach to improve the efficiency in rec-
ognizing postures of hand. We formulate the problem of posture recognition
as that of text retrieval. A training image is treated as a document; a test
image is treated as a query. This formulation enables us to accelerate the
database matching with the inverted index. The inverted index is a widely
used technique to effectively organize a collection of text documents. A brief
description of the inverted index can be found in Sect. 4.4. Based on the in-
verted index, we can identify the subset of training images that share at least
one quantized visual feature with the query image at constant computational
cost. This technique significantly improves the efficiency of image retrieval,
because we only have to match with training images in the subset.

Another effective tool in text retrieval systems is the Okapi weighting
formula. It matches a query with a document based on a weighted sum of the
terms that appears in both the document and the query. However the Okapi
weighting formula is not sufficient for matching images, because it disregards
the location of a term in the document. In the case of image retrieval, the
image positions of local features are very important. Therefore, we propose to
combine the Okapi weighting formula with the Chamfer distance. We assign
to each local feature a spatial tag recording its relative image position, and
use this tag to calculate the Chamfer distance.

From a computer vision point of view, the Okapi-Chamfer matching algo-
rithm integrates local features into a global shape matching algorithm. The
local features are extracted from the binary patches along the boundary be-



Static Hand Posture Recognition Based on Okapi-Chamfer Matching 87

tween foreground and background. The geometry of the boundary is modeled
by the spatial tags.

The rest of the chapter is organized as follows. Section 2 briefly reviews the
related work. Section 3 describes visual feature extraction and quantization.
Section 4 introduces the vector space model and the Okapi-Chamfer matching
algorithm based on the inverted index. Section 5 provides experimental results
in both quantitative and visual forms. Section 6 summaries our work and
points out future directions.

2 Related Work

In the content-based image retrieval community, the idea of indexing low-
level features has been proposed [25, 31]. For instance, [32] uses a N -depth
binary tree to index N -dimensional binary features; [19] indexes the image
database with a code book for color features; [26] uses the ratio between the
two dimensions of an image as the index. However, to our best knowledge,
there has not been any image retrieval system that takes advantage of the
inverted index technique.

In terms of combining local feature with global matching, the proposed
Okapi-Chamfer algorithm is related to the idea of connecting local invariant
features with a deformable geometrical model [5, 20], but our method does
not require manual specification of the geometric model. Therefore it can
accommodate a wide range of deformations of articulated objects.

In terms of quantizing local feature descriptors, our work bears some simi-
larity with [30]. The difference is that [30] uses the original SIFT descriptor [16]
to characterize textured regions, while our method simplifies SIFT and use
a group of local features to describe the silhouette of low texture objects. In
the signal processing community, contourlet [6] and ridgelet are investigated
to give a sparse representation of images. They usually specify a general set
of directional filters to model the local patterns, while our method trains the
pattern from the image database.

Another line of research that links visual primitives with text information
is [7], which complements image retrieval with its associated text annotation.
In our case, there is no text annotation. The image itself is treated as a text
document.

The problem of articulated posture estimation (of hand or human body)
has been investigated in the context of tracking. One category of tracking al-
gorithms [13, 21, 38, 33, 18] searches the configuration space of a 3D kinematic
model, and estimates the posture with an analysis-by-synthesis approach. The
second category [29, 2], which this chapter belongs to, uses the segmented
hand region as a query image to retrieve similar images in database of labeled
training images. Tomasi et al. [36] pointed out the link between tracking and
sequential recognition.



88 H.Zhou, D. J. Lin, T. S.Huang

3 Extracting and Quantizing Visual Features

Fig. 1. (a) An example of training image. (b) An example of test image. (c) Illus-
tration of the feature extraction process

For a query image of the hand (Fig. 1b), the basic steps for feature ex-
traction are:

• Segment the hand region based on the skin-color histograms.
• Find discriminative patches along the boundary between the hand region

and the background.
• Extract local orientation histogram feature from each patch.
• Quantize the local feature based on a pre-trained lexicon.

For a training image generated with computer graphics (Fig. 1a), we can get
the hand region directly. The next two steps are the same as those for a query
image. The lexicon is trained by clustering the local features extracted from
all the training images. The details of each step are given in the following
subsections.

3.1 Skin Color Histogram Based Segmentation

For a query image, we convert it into HSI (hue, saturation and intensity) color
space. The HSI image is mapped to a likelihood ratio image L. The value of
pixel (u, v) in L is defined as:

L(u, v) =
p(H(u, v)|skin)

p(H(u, v)|nonskin)
(1)



Static Hand Posture Recognition Based on Okapi-Chamfer Matching 89

where H(u, v) is the hue and saturation value of pixel (u, v). We train the like-
lihood p(H(u, v)|skin) and p(H(u, v)|nonskin) by collecting color histogram
from manually segmented images of the hand and the background regions.
We segment the hand region by thresholding L [12]. In contrast to tradi-
tional matching algorithms based on global measurements (e.g., Chamfer dis-
tance between two sets of contour points), our matching algorithm collectively
matches local features. Therefore it is more robust against mis-segmentation.
We can use a low threshold (so that more pixels are segmented into the hand
region) which fits the general scenarios.

3.2 Local Orientation Histogram Feature Descriptor

Figure 1c illustrates the visual feature extraction. The local features are gen-
erated from a binary image of the segmented hand. We do not use salient
point detector such as Harris corner detector or difference of Gaussian de-
tector, because there is no reliable texture in a query image. On the binary
image, 24×24 subwindows (denoted by di, i = 1, . . . , n) are selected if at least
20% but no more than 80% of the pixels in the subwindow belongs to the
hand region. The thresholds are set to eliminate subwindows that are almost
entirely within the hand region or in the background.

We characterize the shape in the subwindow with a local orientation his-
togram feature descriptor as described in [16]. The histogram covers from 0
degree to 360 degrees, with 8 bins. The difference is that we do not subdivide
the subwindow into smaller blocks, because cascading features from the sub-
divided blocks in the same subwindow will make the feature descriptor orien-
tation dependent. The final descriptor for each subwindow is an 8-dimensional
vector fi.

To ensure the descriptor is invariant with respect to the rigid motion of
the hand (including in-plane rotation, scaling and 2D translation), we take
the following steps (the notations are illustrated in Fig. 1):

1. Find the centroid O of the hand region.
2. Measure the radius γi between O and the center of each subwindow di.
3. Normalize γi by dividing it with the median of all γi (i = 1, . . . , n).
4. Measure the angle θi.
5. Take the mode among all θi (i = 1, . . . , n), and define it as the principal

angle θprincipal.
6. Calculate relative angle θrel

i = θi − θprincipal. Since we are mapping from
Manifold S1 to R, we have to handle the problem of sudden jump between
0 degree and 360 degrees1.

1 We apply the following mapping to make sure θrel
i is always positive: θrel

i =
θrel

i + 360, if θrel
i < 0. When measuring distance between two angles θrel

i and θrel
j

inside DistChamfer in (5), we first ensure θrel
i < θrel

j and then define dist(θrel
i , θrel

j ) =
min{(θrel

j − θrel
i ), (θrel

i − θrel
j + 360)}



90 H.Zhou, D. J. Lin, T. S.Huang

Each 8-dimensional feature vector is assigned a tag of its relative spa-
tial information, denoted by si = (γi, θi). At this stage, an image d can be
represented by a list {fi, si}i=1,...,n.

3.3 Building the Lexicon and Quantizing the Image

Given a collection of training images, we can generate a large number2 of
feature vectors denoted by fi (i = 1, . . . , D). To build a lexicon for the feature
vectors, we used the EM algorithm [10] to find |V | clusters, where |V | is the
pre-specified lexicon size. We run EM clustering with increasing |V |, until the
average quantization error is smaller than a threshold. The center cj (j =
1, . . . , |V |) of each cluster represents a unique term in the lexicon. Figure 2
shows some examples of the patches in a cluster.

Fig. 2. Examples of patches in a particular cluster

The majority of the patches in this cluster correspond to the angular shape
between the proximal phalanges of two adjacent fingers. Given the lexicon, a
feature vector fi can be quantized into a term

ti = arg min
j=1,...,|V |

Dist(fi, cj) (2)

where Dist is Euclidean distance.
2 In our case, D = 11,647,966.



Static Hand Posture Recognition Based on Okapi-Chamfer Matching 91

In building the lexicon, we only use the feature descriptor part fi (but not
the spatial tag si), so multiple occurrences of the same term with different
spatial tags are not distinguished.

With the lexicon, a training image of n local features can be represented
by a list {ti, si}i=1,...,n. This is similar to a document consisting of n terms.
The difference is that in most text retrieval systems, the spatial information
of one occurrence of one term is not recorded3, while in our image retrieval
system, each term ti has a 2D spatial tag si. The spatial tags are used for
evaluating Chamfer distance in (5).

The local features in the test image are also quantized using (2).

4 Matching with the Okapi-Chamfer Weighting Formula

Having defined the lexicon in Sect. 3.3, we can formulate the problem of
posture recognition as that of text retrieval. In the following subsections a
training image is called a document; an image database is called a collection
of documents; a test image is called a query. Both a document and a query
are a list of terms. The following subsections give the details on the Okapi-
Chamfer matching algorithm.

4.1 Vector Space Model

Assuming the size of the lexicon is |V |, a document (or query) can be repre-
sented by a vector x = [x1, . . . , x|V |], where xi is an importance weight of a
term wi in the document (or query). The vector space of x is denoted by Π .
Typically xi = 0, if wi does not appear in the document (or query). Therefore
the vector x is very sparse.

The similarity score between the query q and document d can be measured
by an inner product Sim(q,d) =

∑|V |
i=1 qidi, which can be evaluated on co-

occurring terms in both the document and the query, as (3) shows.

Sim(q,d) =
∑

w∈q∩d

W (w) (3)

The function W is a weighting function that is typically defined on the basis of
two popular heuristics: term frequency (TF) and inverse document frequency
(IDF).

TF = c(w,d) counts the number of occurrences of a term w in document
d. The intuition is that w is more important if it occurs more frequently in
a document/query. IDF = ln N+1

fd(w) , where fd(w) is the number of documents
that include term w, and N is the total number of documents in the collection.
The intuition is w is more discriminative if it only appears in a few documents.
3 In other words, multiple occurrences of the same term are not distinguished among

each other. Only the term frequency within the document matters.



92 H.Zhou, D. J. Lin, T. S.Huang

The vector space model is so general that many similarity measurements
originally deducted from probabilistic model [23] or language model [14] can
be implemented as (3) with different weighting function W . In some sense,
one can think of W as a kernel function that transforms the vector space Π
into a higher-dimensional feature space. Therefore the linear function in (3)
can approximate various matching functions.

4.2 The Modified Okapi Weighting

This chapter uses the modified Okapi weighting, because it satisfies a set of
prescribed constraints and performances among the best in extensive text
information retrieval experiments [8].

In the original Okapi formula, a negative IDF occurs when the a query
term has very high document frequency (e.g., a verbose query4). When the
IDF part of the original Okapi formula is negative, it will give a misleading
importance weight, because a higher TF will only push the weight further to
the negative side, and this defeats the purpose of the TF heuristic.

In the case of posture recognition, the query image is verbose. From an
arbitrary input query image, many non-disseminative local features will be
extracted and included in the query. Therefore we need to adopt the modifi-
cation suggested in [8]. The modified version changes the IDF part so that it
is always positive, as in the following equation.

Sim(q,d) =
∑

w∈q∩d

(k1 + 1) c(w,d)

k1 (1 − b + b |d|
a ) + c(w,d)

(k3 + 1) c(w,q)

k3 + c(w,q)
ln

N + 1
fd(w)

(4)

where |d| denotes the length of document d and a is the average length of
documents in the collection. k1, k2 and b are the same parameters as defined
in the original Okapi weighting formula [22].

4.3 Okapi-Chamfer Matching

The original Okapi weighting formula considers the content of a document
invariant under permutation of terms. However, the image position of the
local features will affect the label of an image. Therefore we need to model
the spatial distribution of the local features and integrate it to the weighting
formula.

To record the spatial information, we use the spatial tag si, which records
the relative spatial location that term ti occurs in the document, as defined
in Sect. 3.2.

To match the spatial tags in the query with those in the document, we use
the Chamfer distance, which has proved to be an effective way of matching
spatial distributions of silhouette points [1]. It is computationally expensive

4 As opposed to a key-word query, which only include discriminative terms.



Static Hand Posture Recognition Based on Okapi-Chamfer Matching 93

to compute the Chamfer distance between two point-sets. Fortunately, in our
case, we are computing the Chamfer distance between two sets of local fea-
tures. The number of elements in each set is much smaller.

Combining the modified Okapi with the Chamfer distance, we define the
similarity measure as follows.

Sim(q,d) =
∑

w∈q∩d

(k1 + 1) c(w,d)

k1 (1 − b + b |d|
a ) + c(w,d)

(k3 + 1) c(w,q)

k3 + c(w,q)
ln

N + 1
fd(w)

+

+ µDistChamfer(Sq,w, Sd,w) (5)

where µ is the coefficient that decides how much effect the spatial distribu-
tion has upon the matching score. DistChamfer denotes the Chamfer distance
between two sets of spatial tags. They are defined as follows.

Sq,w = {si ∈ q|ti = w}
Sd,w = {si ∈ d|ti = w} (6)

Fig. 3. An illustration of Chamfer distance between matched terms in a query image
and a training image. The red boxes indicates the locations where the matched term
w appears in the two images

The pair-wise distance between individual spatial tags is Euclidean. Fig-
ure 3 illustrates the Chamfer distance between a query image and a training
image according to a particular term w. In Fig. 3 the matched term w hap-
pens to represent the arch pattern of the finger tips. In practice, w can be any
matched shape pattern.

4.4 Fast Matching with the Inverted Index

Formulating the image retrieval problem as that of text retrieval based on a
vector space model, we are ready to use a powerful tool in the area of text
retrieval: the inverted index.



94 H.Zhou, D. J. Lin, T. S.Huang

An inverted index includes two components: a lexicon of distinct terms
and for each term, a list of documents that contain the term. Consider the
following two documents:

D1: This is an interesting paper.
D2: That is a boring paper.
The inverted index for these two documents would be:

This → {D1}
is → {D1, D2}

an → {D1}
interesting → {D1}

paper → {D1, D2}
That → {D2}

a → {D2}
boring → {D2}

With the inverted index, only documents that contain at least one query
term are accessed and matched with the query, in order to retrieve the match-
ing results.

In a collection of N documents, the computational cost of matching with
inverted index is O(B|Vq |), where B is the average number of training docu-
ments in which a query term appears. |Vq| is the vocabulary size of a query.
In comparison, the cost of matching with every documents in the collection is
O(N |Vq |).

To take advantage of the inverted index, B should be as small as possible.
One typical way to reduce B is to eliminate the stop words from the lexicon.
Stop words are terms that appear in many documents. According to the IDF
heuristic, stop words are not very discriminative and will give low weight in
the Okapi formula. For details, please refer to [3].

By organizing the database of training images with the inverted index and
eliminating stop words from the lexicon of visual features, we accelerate the
speed of processing one query by a factor of 82.2 on average.

5 Experimental Results

To evaluate the performance of the Okapi-Chamfer matching algorithm, we
test it on a database of 16,384 images of hand at different postures. We use
a 3D kinematic mesh model to generate 1024 hand shapes. Each shape is
rendered from 16 different view angles. We follow a similar procedure as [11]
in choosing the 1024 hand shapes and the 16 view angles.

Assuming all three flexing joint angles in one finger are linearly related
and the abduction angles are fixed, we parameterize the finger configuration
with θ = [θthumb θindex θmiddle θring θpinky]. Each component of θ determines



Static Hand Posture Recognition Based on Okapi-Chamfer Matching 95

the three flexing joint angles of one finger. We take four different values for
each of the five components, which are 8, 26, 48, and 75 degrees.

The 16 view angles are the combinations of 4 discrete rotations along
x−axis and 4 discrete rotations along y−axis. The rotation angles are 0, 20,
40, and 60. We do not need to generate multiple images of the same hand
shape under different in-plane rotations (i.e., rotation along z−axis), because
the local visual feature is invariant to in-plane rotations.

During testing, we used two kinds of query images. One kind of query
images are generated with a 3D kinematic hand model from several view
points. The rotation angles along x−axis and y−axis range from 0 to 60
degrees. The angle along z−axis range from 0 to 360 degrees. We also added
Gaussian noise the synthesized query images to imitate the segmentation error
due to sensor noise. We tested only 500 synthesized query images and their
finger configurations are randomly sampled.

The second kind is real-world images. The real hand geometry is slightly
different from the 3D computer graphics model used to generate the image
database. The finger configurations are manually labeled.

Figure 4 shows some samples of retrieval results of synthesized query im-
ages without in-plane rotation. The left most column is the query image and
the other columns

Figure 5 shows some samples of retrieval results of synthesized query im-
ages with in-plane rotations. This demonstrates that our local feature is in-
variant to in-plane rotations.

Figure 6 shows some samples of retrieval results of real-world query im-
ages. This demonstrates that our matching algorithm is robust against clutter
background and variation in the geometry of the hand.

The goal of our recognition system is to recover the finger configurations
(i.e., the joint angles) from an input image. We take the label of rank one
retrieval result as the estimation result for a query image. In the quantitative
evaluations, instead of showing a precision-recall curve, we measure the root
mean square error between the estimated parameter θ̂ and the ground truth

parameter θ which is defined as
√

E{‖θ̂ − θ‖2}, where ‖ · ‖ is L2-norm.
In Fig. 7, the vertical axis is the root mean square error (RMSE). The hori-

zontal axis is the variance of Gaussian noises that are added to the synthesized
input image. The figure demonstrates that using the modified Okapi or the
Chamfer distance alone will give larger errors. With a proper coefficient µ the
Okapi-Chamfer matching algorithm (the curve labeled with ‘♦’) gives much
smaller errors. When µ is set too large, using the Okapi-Chamfer matching
(the curve labeled with ‘◦’) will be almost equivalent to using the Chamfer
distance alone (the curve labeled with ‘+’). The recognition error when using
the modified Okapi alone is not very sensitive to image noise. This is because
the modified Okapi disregards the position of the local features. The image
noise only affects the TF part of the weighting formula, but will not affect the



96 H.Zhou, D. J. Lin, T. S.Huang

Fig. 4. Some samples of retrieval results of synthesized query images without in-
plane rotation. The left most column is the query image and the other columns
are the retrieval results. The size of the retrieved images are proportional to their
matching scores

IDF part of the weighting, as long as at least one of the previously detected
local feature survives the noise.

The four curves are different only in terms of matching algorithm. The
same inverted index is used for all four curves.

The speed of our posture recognition system is around 3 seconds/query
on a 1GHz Pentium III PC in a database of 16384 training images. Although
the current Matlab implementation is meant to validate the framework and
is not optimized for speed, its speed is comparable to the state of the art. [11]
reported 3.7 seconds/query and [1] reported 2.3 seconds/query. Both are in a
comparable setup as that of our experiments. After optimizing the implemen-
tation and porting the code to C/C++, we can reach the goal of real-time
posture recognition.



Static Hand Posture Recognition Based on Okapi-Chamfer Matching 97

Fig. 5. Some samples of retrieval results of synthesized query images with in-plane
rotation. The retrieval results are ordered according to their matching score. The
size of the retrieved images are proportional to their matching scores

6 Conclusions

The main contributions of our work are:

• Formulated the problem of posture recognition as that of text retrieval.
• Introduced the inverted index technique to organize an image database.
• Proposed and implemented a matching algorithm that combines the

modified-Okapi weighting formula with the Chamfer distance.

The current framework of posture recognition is briefly summarized into
the following steps:

1. Extract and quantize local features from a query image.
2. For each local feature in the test image, find a subset of training images

that contains at least one local feature in the query.



98 H.Zhou, D. J. Lin, T. S.Huang

Fig. 6. Some samples of retrieval results of real-world query images

3. Within the subset, match the Chamfer distance between the two sets of
spatial tags that are associated with a mutual local feature.

4. Combine the Chamfer distance with the modified Okapi formula to get
the weight of current local feature.

5. Sum up the weights of all local features as the final matching score.

There are many possible improvements that we are still investigating. For
example, in Step 3, we could obtain more accurate matching score by incor-
porating the original visual feature into the Chamfer distance. This can reduce
the effect of quantization error in building the lexicon. On the other hand, we
chose linear combination of Okapi weighting and Chamfer distance, because it
is the most simple form and involves only one coefficient. However other ways
of combining the two measurements might further improve the accuracy. More
specifically, we can put Chamfer distance inside the Okapi weight formula by
discounting the TF part according to the Chamfer distance.

In order to integrate the current algorithm into a real-time HCI system,
we need to solve the problem of temporal segmentation, that is, detecting



Static Hand Posture Recognition Based on Okapi-Chamfer Matching 99

Fig. 7. RMSE of parameter θ. The curve labeled with ‘∗’ corresponds to results by
using modified Okapi only, i.e., µ = 0 in (4). The curve labeled with ‘+’ corresponds
to results by using Chamfer distance only. The curve labeled with ‘◦’ is corresponds
to results by using Okapi-Chamfer matching with µ = 15. The curve labeled with
‘♦’ is corresponds to results by using Okapi-Chamfer matching with µ = 5

the event that a user is signaling to the computer and activating the recogni-
tion algorithm. This could involve defining a dedicated region to activate the
system as the EyeToy game in PlayStation2.

Acknowledgments

This work was supported in part by National Science Foundation Grant IIS
01-38965.

References

1. Vassilis Athitsos, J. Alon, G. Kollios, and Stan Sclaroff. Boostmap: a method
for efficient approximate similarity rankings. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, volume II, pages 268–275, Washington DC,
July 2004.

2. Vassilis Athitsos and Stan Sclaroff. Estimating 3d hand pose from a cluttered
image. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Madson, Wisconsin, June 2003.



100 H.Zhou, D. J. Lin, T. S.Huang

3. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, 2000.

4. S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recogni-
tion using shape contexts. Technical Report UCB//CSD00-1128, UC Berkeley,
January 2001.

5. M. C. Burl, M. Weber, and P. Perona. A probabilistic approach to object
recognition using local photometry and global geometry. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, 1998.

6. M. N. Do and M. Vetterli. The contourlet transform: an efficient directional
multiresolution image representation. IEEE Transactions on Image Processing,
2003.

7. Jaety Edwards, Ryan White, and David Forsyth. Words and pictures in the
news. In In HLT-NAACL03 Workshop on Learning Word Meaning from Non-
Linguistic Data, 2003.

8. Hui Fang, Tao Tao, and ChengXiang Zhai. A formal study of information re-
trieval heuristics. In In Proceedings of the international ACM SIGIR conference
on Research and development in information retrieval, pages 40–54, South York-
shire, UK, July 2004. Springer-Verlag, New York, Inc.

9. V. Ferrari, T. Tuytelaars, and L. Van Gool. Simultaneous object recognition and
segmentation by image exploration. In Proc. European Conference on Computer
Vision, volume I, pages 40–54. Springer-Verlag, May 2004.

10. H. Hartley. Maximum likelihood estimation from incomplete data. Biometrics,
14:174C194, 1958.

11. Akihiro Imai, Nobutaka Shimada, and Yoshiaki Shirai. 3d hand posture recog-
nition by training contour variantion. In Proc. IEEE International Conference
on Automatic Face and Gesture Recognition, Korea, June 2004.

12. M. Jones and J. Rehg. Statistical color models with application to skin detection.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, volume I,
pages 274–280, Fort Collins, 1999.

13. James J. Kuch and T. S. Huang. Vision-based hand modeling and tracking for
virtual teleconferencing and telecollaboration. In Proc. of IEEE International
Conf. on Computer Vision, pages 666–671, Cambridge, MA, June 1995.

14. J. Lafferty and C. Zhai. Probabilistic relevance models based on document and
query generation. In W. B. Croft and J. Lafferty, editors, Language Modeling
and Information Retrieval. Kluwer Academic, 2003.

15. S. Lazebnik, C. Schmid, and J. Ponce. Semi-local affine parts for object recog-
nition. In In Proceedings of the British Machine Vision Conference, volume 2,
pages 959–968, September 2004.

16. David Lowe. Object recognition from local scale-invariant features. In Proc.
IEEE International Conference on Computer Vision, pages 1150–1157, Corfu,
Greece, September 1999.

17. David Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60:91–110, 2004.

18. Shan Lu, Dimitris Metaxas, Dimitris Samaras, and John Oliensis. Using multiple
cues for hand tracking and model refinement. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, volume II, pages 443–450, Madson, June 2003.

19. A. Mojsilovic, J. Kovacevic, J. Hu, and R.J. Safranek. Matching and retrieval
based on the vocabulary and grammar of color patterns. IEEE Transactions on
Image Processing, 9:38–54, 2000.



Static Hand Posture Recognition Based on Okapi-Chamfer Matching 101

20. D. Ramanan and D. A. Forsyth. Using temporal coherence to build models of
animals. In Proc. IEEE International Conference on Computer Vision, 2003.

21. J. Rehg and T. Kanade. Model-based tracking of self-occluding articulated
objects. In Proc. of IEEE International Conf. Computer Vision, pages 612–
617, 1995.

22. S. E. Robertson and S. Walker. Some simple effective approximations to the
2-poisson model for probabilistic weighted retrieval. In In Proceedings of the
international ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 232–241. Springer-Verlag, New York, Inc., 1994.

23. S.E. Robertson, C.J. Van Rijsbergen, and M.F. Porter. Probabilistic models
of indexing and searching. In Oddy R.N. et al, editor, Information Retrieval
Research. Butterworths, London, 1981.

24. F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Learning methods for
generic object recognition with invariance to pose and lighting. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, July 2004.

25. Y. Rui, T.S. Huang, and S. Chang. Image retrieval: Current techniques, promis-
ing directions and open issues. Journal of Visual Communication and Image
Representation, 10:1–23, 1999.

26. Raimondo Schettini, Isabella Gagliardi, and Gianluigi Ciocca. Quick look sys-
tem, Oct. 2004.

27. C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19:530–535, May
1997.

28. G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter
sensitive hashing. In Proc. IEEE International Conference on Computer Vision,
Nice, France, October 2003.

29. Nobutaka Shimada, Kousuke Kimura, and Yoshiaki Shirai. Real-time 3-d hand
posture estimation based on 2-d appearance retrieval using monocular camera.
In Proc. of Intl. Workshop on Recognition, Analysis and Tracking of Faces and
Gestures in Realtime Systems, pages 23–30, Vancouver, Canada, July 2001.

30. J. Sivic and A. Zisserman. Video data mining using configurations of view-
point invariant regions. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, volume I, pages 488–495, Washington DC, 2004.

31. Arnold W.M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta,
and Ramesh Jain. Content-based image retrieval at the end of the early years.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:1349–
1380, Dec. 2000.

32. J.R. Smith and S.F. Chang. Automated binary feature sets for image retrieval.
In In Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1996.

33. B. Stenger, P. R. S. Mendonça, and R. Cipolla. Model based 3D tracking of
an articulated hand. In Proc. Conf. Computer Vision and Pattern Recognition,
volume II, pages 310–315, Kauaii, USA, December 2001.

34. B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla. Filtering using
a tree-based estimator. In Proc. IEEE International Conference on Computer
Vision, volume 2, Nice, France, October 2003.

35. A. Thayananthan, B. Stenger, P. H. S. Torr, and R. Cipolla. Shape context
and chamfer matching in cluttered scenes. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, volume I, pages 127–133, Madison, USA, June
2003.



102 H.Zhou, D. J. Lin, T. S.Huang

36. Carlo Tomasi, Slav Petrov, and Arvind Sastry. 3d tracking = classification +
interpolation. In Proc. IEEE International Conference on Computer Vision,
volume 2, Nice, France, October 2003.

37. Tinne Tuytelaars and Luc J. Van Gool. Content-based image retrieval based
on local affinely invariant regions. In In Proceedings of the Third International
Conference on Visual Information and Information Systems, pages 493–500,
Washington DC, 1999. Springer-Verlag.

38. Y. Wu, John Lin, and T. S. Huang. Capturing natural hand articulation. In
Proc. of International Conference on Computer Vision, pages 426–432, Vancou-
ver, July 2001.



Visual Modeling of Dynamic Gestures Using
3D Appearance and Motion Features

Guangqi Ye, Jason J. Corso, and Gregory D. Hager

Computational Interaction and Robotics Laboratory
The Johns Hopkins University
grant@cs.jhu.edu

jcorso@cs.jhu.edu

hager@cs.jhu.edu

We present a novel 3D gesture recognition scheme that combines the 3D ap-
pearance of the hand and the motion dynamics of the gesture to classify
manipulative and controlling gestures. Our method does not directly track
the hand. Instead, we take an object-centered approach that efficiently com-
putes 3D appearance using a region-based coarse stereo matching algorithm.
Motion cues are captured by differentiating the appearance feature with re-
spect to time. An unsupervised learning scheme is carried out to capture the
cluster structure of these features. Then, the image sequence of a gesture is
converted to a series of symbols that indicate the cluster identities of each
image pair. Two schemes, i.e., forward HMMs and neural networks, are used
to model the dynamics of the gestures. We implemented a real-time system
and performed gesture recognition experiments to analyze the performance
with different combinations of the appearance and motion features. The sys-
tem achieves recognition accuracy of over 96% using both the appearance and
motion cues.

1 Introduction

Gestures have been one of the important interaction media in current human-
computer interaction (HCI) systems [3, 4, 11, 12, 14, 16, 18, 22, 25, 26, 28].
Furthermore, for 3D virtual environments (VE) in which the user manipu-
lates 3D objects, gestures are more appropriate and potentially powerful than
traditional interaction media, such as a mouse or a joystick. Vision-based ges-
ture processing also provides more convenience and immersiveness than those
based on mechanical devices.

We are interested in modeling manipulative and controlling gestures [14]
for direct manipulation and natural interaction. These gestures have a tem-
poral nature that involves complex changes of hand configurations. Further-



104 G.Ye, J. J. Corso, G.D.Hager

more, human hands and arms are highly articulate and deformable objects.
As a result, gestures normally consist of complex 3D global and local motion
of the hands and arms. The complex spatial properties and dynamics of such
gestures render the problem extremely difficult for pure 2D (e.g., template
matching) methods. Ideally, we would capture the full 3D information of the
hands to model the gestures [11]. However, the difficulty and computational
complexity of visual 3D localization [19] prompts us to question the necessity
of doing so for gesture recognition.

Most reported gesture recognition work in the literature (see Sect. 1.1) re-
lies heavily on visual tracking and template recognition algorithms. However,
general human motion tracking is well-known to be a complex and difficult
problem [8, 17]. Additionally, while template matching may be suitable for
static gestures, its ability to capture the spatio-temporal nature of dynamic
gestures is in doubt.

To that end, we present a novel scheme to model and recognize 3D tem-
poral gestures using 3D appearance and motion cues without tracking and
explicit localization of the hands. Instead, we follow the site-centered compu-
tation fashion of Visual Interaction Cues (VICs) paradigm [3, 25].

We propose that interaction gestures can be captured in a local neigh-
borhood around the manipulated object based on the fact that the user only
initiates manipulative gestures when his or her hands are close enough to the
objects. The advantages of this scheme are its efficiency and flexibility. The
dimension of the volume of the local neighborhood around the manipulated
object can be adjusted conveniently according to the nature of the partic-
ular interaction environment and the applicable gestures. For example, in a
desktop interaction environment, the interaction elements are represented as
small icons on a flat panel. Manipulative gestures are only initiated when the
user’s hand is near the surface of the panel, so we only need to observe a small
volume above the panel with the icon sitting at the center of the bottom. The
height and diameter of the volume is also limited to be able to capture enough
visual cues to carry out successful gesture recognition.

The remainder of this chapter is structured as follows. In Sect. 2 we present
a novel method to efficiently capture the 3D spatial information of the ges-
ture without carrying out a full-scale disparity computation. We discuss how
to learn the cluster structure of the appearance and motion features via an
unsupervised learning process in Sect. 3. Two ways to model the dynamics
of the gestures — forward Hidden Markov Models (HMMs) [10, 20] and mul-
tilayer neural networks [6] — are also presented. In Sect. 4 we demonstrate
our real-time system that implements the proposed method and present the
results of gesture recognition. Section 5 concludes the chapter.

1.1 Related Work

In [23], Wu and Huang presented a general overview of the state of the art in
gesture analysis for vision-based human-computer interaction. Robust hand



Visual Modeling of Dynamic Gestures 105

localization and tracking, modeling the constraints of hand motion and rec-
ognizing temporal gesture patterns are among the most difficult and active
research areas. Compared to other techniques, such as neural network and
rule-based methods [14], HMMs [24, 25] and its extensions [2] are a popular
scheme to model temporal gestures.

Many HCI systems [12, 14, 16, 22, 23] have been reported that enable the
user to use gestures as a controlling or communicative media to manipulate
interaction objects. The hand or fingertips are detected based on such cues as
visual appearance, shape, and human body temperature via infrared cameras.
A variety of algorithms have been applied to track the hand [23], such as the
Kalman filter and particle filter [5].

With a model-based approach [1, 13], it is possible to capture the gesture
in higher dimensionality than 2D. In [1] the 3D hand model is represented as a
set of synthetic images of the hand with different configurations of the fingers
under different viewpoints. Image-to-model matching is carried out using a
Chamfer distance-based computation. One of the difficulties of this approach
is constructing a good 3D model of the hand that can deal with variance
between different users. Furthermore, efficient algorithms are necessary to
handle the matching between models and input images. Another approach to
capture 3D data is to use special cameras [11], such as 3D cameras or other
range sensors. However, the hardware requirement limits its application to
general HCI systems.

2 Capturing 3D Features of Manipulative Gestures

Manipulative and controlling gestures have a temporal 3D nature involving the
interaction between human hands and other objects. Example subjects include
the tools and toys in a VE, interaction elements in an HCI interface, and so
forth. One of the most difficult problems in visual modeling of gestures is data
collection and feature representation [23]. We propose an efficient scheme to
capture 3D gesture appearance and motion in an object-centered fashion. We
use the Visual Interaction Cues (VICs) [27] paradigm in this work. We provide
a brief summary of the paradigm in Sect. 2.1. Under the VICs paradigm, we
are able to make the assumption that the content of a manipulative gesture can
be captured in a local region around the manipulated object. This assumption
is valid in many HCI scenarios [27], such as a WIMP-style interface [21].

2.1 The Visual Interaction Cues Paradigm

As we discussed earlier, manipulative and controlling gestures involve the
interaction between human hands and objects in the environment. Typical
methods for vision-based interaction attempt to perform continuous, global
user tracking to model the interaction. Such techniques are computationally



106 G.Ye, J. J. Corso, G.D.Hager

expensive, prone to error and the re-initialization problem, prohibit the in-
clusion of arbitrary numbers of users, and often require a complex gesture-
language the user must learn.

However, under the VICs paradigm [27], we focus on the components of
the interface itself instead of on the user. The VICs paradigm is a methodol-
ogy for vision-based interaction operating on the fundamental premise that, in
general vision-based human-computer interaction settings, global user mod-
eling and tracking are not necessary. There are essentially two parts to the
VICs paradigm.

First, we define and maintain a mapping between the interface components
and their respective projections in the images (Fig. 1). Let I be an image
defined by a set of pixel locations (points in R2). Let W be the space in which
the components of the interface reside. In general,W is the 3D Euclidean space
R3 but it can be the Projective plane P2 or the Euclidean plane R2. Define
an interface component mapping M : C → X , where C ⊂ W and X ⊂ I. In
Fig. 1, we show an example of this concept for stereo cameras. In this case,
two mappings are required with one for each image. Intuitively, the mapping
defines a region in the image to which an interface component projects.

W
M

Ca
me
ras

C

IL IR

XL XR

Fig. 1. Schematic explaining the principle of local image analysis for the VICs
paradigm: M is the component mapping that yields a region of interest in the stereo
images IL and IR for analyzing actions on component C

Second, if, for each interface component and the current images, a map is
known, detecting a user action reduces to analyzing a local region in the image.
This is a fairly general statement and the subject of this chapter. We provide a
simple example here for expository purposes. Let the interface component be
a standard push-button. Then, to detect a button-press by a user, we expect a
certain sequence of interaction cues to occur in the image region. An example
of such cues might be motion → skin-color → finger-shape → finger pauses
→ motion and absence of skin-color. Such cues may be heuristically defined
or learned as in this chapter.



Visual Modeling of Dynamic Gestures 107

2.2 3D Gesture Volume

Given a pair of stereo images of a scene, a disparity map can be computed
using a standard correspondence search algorithm. Since we only care about
the local neighborhood around the object, we can constrain the stereo search
to a limited 3D space around the object. This brings about two advantages:
first, we only care about the small patch of the image centered at the object;
second, we only need to search through a small number of disparities (depths),
which is a limited range around the depth of the object. To simplify the
computation, we carry out the stereo matching process for a discrete number
of image patches, not for each pixel position.

Formally, let Il and Ir be a pair of images of the scene. We split the
images into tiles of equal size of w × h. Here w and h refer to the width and
height of the tile, respectively. Suppose we only consider a local area of size of
m×n tiles, starting at patch (x0, y0). Define SIM as a similarity measurement
between two image tiles. Example measurements include the sum of absolute
differences and sum of squared differences. Given a discrete parallax search
range of [0, (p−1)×w], we can characterize the scene using a m×n×p volume
V as:

Vx,y,z = SIM(Il(x0+x,y0+y), Ir(x0+x+z,y0+y)) (1)

where x ∈ {0, . . . , m − 1}, y ∈ {0, . . . , n − 1}, and z ∈ {0, . . . , p − 1}. Note
that in (1) the image index indicates a tile of the image, not a particular pixel.

We convert the color images into hue images to reduce the impact of
changes in lighting intensity because hue is a good color-invariant model [9].
Furthermore, we perform a comprehensive color normalization process [7] on
each image to overcome the variance of illumination and lighting geometry
across different interaction sessions. These techniques ensure the relative sta-
bility of the appearance feature under different imaging conditions.

Following this scheme, we can extract the features of the image as a very
simple vector with the size of m × n × p. The typical size of the extracted
appearance vector is from 125 to 1000. In contrast, the size of the original
image is 640×480 and the size of the local image around a typical object
in our experiments is approximately 150×150. Thus, this feature extraction
scheme significantly reduces the size of the the input data.

Figure 2 shows examples of the stereo image pair and the extracted 3D
features of the scene. It can be seen that the extracted feature volume charac-
terizes the different configuration of the user’s hand with respect to the target
interaction subject.

2.3 Motion by Differencing

Since we represent the 3D appearance of the gesture images using feature
vectors, one simple way to capture the motion information of the gestures is



108 G.Ye, J. J. Corso, G.D.Hager

Fig. 2. Examples of the image pair and extracted appearance feature. The left and
middle columns display left images and right images of the scene, respectively. The
right column shows the bottom layer of the feature volume (i.e., Vx,y,z with z = 0)

to compute the displacement in this feature space. In our real-time system, the
change between consecutive frames is normally very small because of the high
frame rate. Thus we compute the difference between the appearance feature
of the current frame and that of several frames before.

Motioni = Vi − Vi−k (i = k + 1, . . . , M) (2)

One way to combine the appearance feature and the motion feature is to
concatenate the two vectors to form a larger vector. This new vector contains
both the static and temporal information of the gesture.

2.4 Analysis of the 3D Features

Given an image sequence that contains a particular manipulative gesture,
we convert the sequence into a series of vectors, or points in the appearance
or motion space. Thus, the gesture can be conceptualized as a directed path
connecting these points in the appropriate order. Intuitively we can model the
gesture by learning the parameters of such a path. However, this appearance or
motion space is still a relatively high-dimensional space, making the learning
and recognition difficult to handle.

Furthermore, for a set of a 3D appearance or motion feature points that
are extracted from a dataset of gesture sequences, we can expect that there
will be much redundancy of information. The reason is that the training set
contains repeatable gestures and there are only a limited number of gestures
in the set. To analyze the data redundancy, we use principal components anal-
ysis (PCA) technique on a dataset that consists of 622 gesture sequences. We
experiment with representing the 125-dimensional appearance feature space



Visual Modeling of Dynamic Gestures 109

using different numbers of principal components. Figure 3 shows the relation-
ship between the average reconstruction error and the number of principal
components. It can be seen that, using the first 25 principal components, we
can achieve an average reconstruction error of less than 5%. Therefore, we
expect to be able to characterize the appearance or motion feature of the ges-
tures using data of much lower dimensionality without losing the capability
to discriminate between them.

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50
Analysis of PCA Reconstruction

Number of Principal Components

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n 

E
rr

or
 (

%
)

Fig. 3. PCA analysis on the 125-dimensional appearance feature space

In Sect. 3, we will discuss the techniques to learn the cluster structures
of the 3D features and to model the dynamics of the temporal gestures in a
feature space of reduced dimensionality.

3 Learning the Gesture Structure

In this section, we address the problem about how to efficiently reduce the
dimensionality of these features for statistical modeling of dynamic gestures.

3.1 Unsupervised Learning of the Cluster Structures of 3D
Features

One of the popular ways to model temporal signals is to learn a statistical
model [6]. However, the size of training data needed for statistical learning
normally increases exponentially with the dimensionality of input features.
This curse of dimensionality is one of the reasons that visual modeling of



110 G.Ye, J. J. Corso, G.D.Hager

gestures is difficult. Thus we propose to reduce the dimensionality of the 3D
feature by learning its cluster configuration.

We propose an unsupervised method to learn the cluster structure of the
high-dimensional raw feature. Basically, we implement a K-means algorithm to
learn the centroid of each of the clusters of the feature set. Then, the feature
vectors are clustered using a Vector Quantization (VQ) [10] algorithm. We
represent each feature vi with one of the k clusters C = {C1, C2, . . . , Ck}
based on nearest-neighbor criterion.

VQ(vi) = argmin
Cj∈C

Dist(Cj , vi) (3)

Here, Dist is computed as the Euclidean distance between two feature points.
The choice of the number of clusters to initialize the VQ algorithm is a

difficult model selection problem. We handle this problem based on the anal-
ysis of the average representation error. The representation error is defined as
the distance between feature point vi and its corresponding cluster centroid
VQ(vi). In theory, as the number of clusters k increases, the average represen-
tation error decreases. On the other hand, our aim of feature dimensionality
reduction prefers smaller k. A trade-off is achieved by increasing the number
of clusters until the average representation error only decreases slightly as k
grows larger.

Figure 4 shows an example of the relationship between k and the represen-
tation error for a dataset of 125D appearance features. We can see that, when
the cluster number is larger than 8, increasing the cluster number can only
slightly reduce the average error. Thus, we can select the number of clusters
to be 8. In Sect. 4, we include an experimental validation of this analysis.

Fig. 4. The average representation error against number of clusters



Visual Modeling of Dynamic Gestures 111

This learning scheme allows different ways of combining appearance and
motion cues. Let V appr and V mot denote the extracted appearance and motion
feature, respectively. The first way is to normalize each visual feature to the
same scale and then concatenate the feature vectors to form a new feature
(V appr, V mot). The dimensionality of this new feature space is the sum of
the dimensionality of the individual feature spaces. Then we can carry out
VQ on this new feature space. The second way to combine these two visual
cues is to carry out VQ on each feature space separately. Let VQappr and
VQmot denote the VQ projection in the appearance and motion feature space,
respectively. The overall representation of the visual features thus can be
expressed as a discrete vector (VQappr(V

appr), VQmot(V
mot)). Furthermore,

since we know the number of clusters in each feature space, which is equivalent
to the dimensionality of corresponding element of the 2D discrete vector, we
can further convert the 2D vector into a scalar.

3.2 Gesture Modeling Using HMMs

We use typical forward HMMs to model the dynamics of the temporal ges-
tures. The input to the HMMs is the gesture sequence represented as a series
of symbols with each symbol indicating the cluster identity of current frame.
The basic idea is to construct a HMM for each gesture and learn the parame-
ters of the HMM from the training sequences that belong to this gesture using
the Baum-Welch algorithm [10, 15]. The probability that each HMM gener-
ates the given sequence is the criterion of recognition. The gesture sequence
is recognized as the class with the highest probability. Rejection of invalid
gestures is based on the thresholding of the best probability. If the highest
probability that a sequence achieves on all HMMs is lower than a threshold,
the sequence will be rejected. This threshold is chosen to be smaller than the
lowest probability that each HMM generates the sequences that belong to
that class in the training set.

In our experiment, we use a 6-state forward HMM to model each of the
six manipulative gestures. Figure 5 shows the topology of the HMMs.

1 2 4 5 63

Fig. 5. HMM structure for the interaction gestures

The choice of the number of the states in the forward HMM is based on
the intuitive analysis of the temporal properties of the gestures to be modeled.
In our current experiment, each of the gestures can be decomposed into less



112 G.Ye, J. J. Corso, G.D.Hager

than 6 distinct stages. For example, if we use 3 spatial layers to represent the
vicinity of a manipulated object, the gesture of swiping an icon to the left
can be viewed as such a configuration sequence of the hand: (1) entering the
outer layer of the vicinity of the icon, (2) entering the inner layer (3) touching
the icon to select it and (4) swiping the icon by moving the finger to the
left side of the icon. Ideally, each of the distinct stages can be modeled by a
certain state of the forward HMM. The parameter sets of the trained HMMs
verify our expectation, in which the observation probability of each symbol
of a gesture is high in one of the states and very small in the other states.
Generally speaking, a dynamic process with n stages can be modeled using an
n-state forward HMM with similar topology. For example, in [20], four-state
HMMs are used to recognize American Sign Language.

3.3 Gesture Modeling Using a Multilayer Neural Network

Another way to learn gestures is to use multilayer neural networks. The input
to the neural network is the entire gesture sequence, which is now a sequence
of symbols. The output is the identity of the gesture. To meet the requirement
of the neural network, we need to fix the length of each input sequence. We
align each sequence to a fixed length by carrying out sub-sampling on those
sequences that are longer than the predefined length and interpolation on
those that are shorter. The parameters of the network are also learned from
training data using the standard backpropagation algorithm [6].

In our current system, the neural network consists of 3 layers, i.e., the
input and output layer and the hidden layer. The number of nodes in the
hidden layer is chosen to be 50.

4 Experimental Results

To test the efficiency and efficacy of the proposed scheme for gesture modeling,
we present our experimental setup and some results in this section.

4.1 Experimental Setup

We use the 4D Touchpad [3, 27] as our experimental platform. It is based
on the 3D-2D projection-based mode of the VICs framework (see Sect. 2.1).
We use a pair of color cameras to observe the interaction desktop which is
presented as a flat panel on which the interaction elements are rendered. The
system is calibrated using a pair of homographies thereby defining the required
interface component mappings between the rendered image and the images
captured from the cameras. The user interacts with the objects on the panel
using manipulative and controlling gestures. Figure 6 shows the configuration
of our experiment platform.



Visual Modeling of Dynamic Gestures 113

Fig. 6. The 4D Touchpad HCI platform

In our current experiments, we collect gesture sequences consisting of 6
interactive gestures, i.e., pushing a button, twisting a dial clockwise, twisting
a dial anti-clockwise, toggling a switch, swiping an icon to the left and swiping
an icon to the right. Table 1 shows several snapshots of the typical image
sequences of the gestures.

Table 1. Example images of the gestures

Gesture Push Twist Twist Anti Toggle Swipe Left Swipe Right

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5



114 G.Ye, J. J. Corso, G.D.Hager

We implement the system on a PC with dual Pentium III processors.
The system achieves real-time speed; the processing is limited by the cam-
eras (30Hz). The system processes the continuous video in the following fash-
ion. For each captured image pair, the appropriate appearance and/or motion
features are extracted and the corresponding cluster identity of current fea-
tures is computed based on trained cluster centroids. We define an “empty
scene” as the configuration without the user’s hand in the vicinity of the ob-
ject. We can check whether current frame is an empty scene by comparing
the cluster identity of the current frame with that of an empty configuration.
We begin the processing of a sequence when the system observes a non-empty
scene, which means the hand has entered the vicinity of the object. We carry
out the recognition of the current sequence and notify the user when a valid
gesture is recognized. The recording of the current sequence is then termi-
nated and the system enters a new cycle. Another case for ending the current
sequence is that the system continuously observes the empty configuration for
several frames.

4.2 Gesture Recognition Results

To perform training of the HMMs and the neural network, we record over 100
gesture sequences for each of the 6 gestures. A separate test set contains over
70 sequences of each gesture.

We carry out the training and testing on several feature sets. These dif-
ferent sets are characterized by the dimensionality of our 3D gesture volume
described in Sect. 2 and different combination of the appearance and motion
cues.

In our experiment, we record the data as subimages around the manip-
ulated object. The size of the area is 220×210 pixels. When computing the
appearance volume using (1), we split this local area into tiles of appropriate
dimension according to the choice of the dimensionality of the appearance vol-
ume, i.e., m and n. The dimension is calculated as w = 220/m and h = 210/n.
For example, in the first appearance dataset, we choose m = n = 5. So the
dimensionality of the image tiles is 44×42. For convenience, in all the datasets,
we set m = n = p.

1. Appearance Only (125D)
In this set, we only use the appearance feature. We set m = m = p = 5
and thus the dimensionality is 5 × 5 × 5 = 125.

2. Appearance Only (1000D)
Similar to the first set, except that the dimensionality of the appearance
feature is 10 × 10 × 10 = 1000.

3. Motion Only (1000D)
We compute the motion feature by taking the difference between two
1000D appearance vectors.



Visual Modeling of Dynamic Gestures 115

4. Concatenation of Appearance and Motion
In this set, we concatenate the 125D appearance feature with the 1000D
motion vector to form a 1125D vector.

5. Combination of Appearance (125D) and Motion
We carry out K-means on the 125D appearance feature and 1000D mo-
tion features separately. Then each frame is represented as a 2D discrete
vector containing both the appearance cluster identity and motion cluster
character.

6. Combination of Appearance (1000D) and Motion
Similar to the previous setting except that we use the 1000D appearance
feature.

We perform the training and testing on these sets for the HMM models and
the neural network. For the neural network, we align each gesture sequence
to the fixed length of 20. For the HMM models, we also carry out comparison
experiments between using the same aligned sequences as the neural network
and applying the raw unaligned sequence. Table 2 shows the gesture recogni-
tion results for all the feature sets and both gesture models. For each model we
report both the recognition accuracy on the training set (left) and on the test
set (right). We also present the number of clusters used to carry out the VQ.

Table 2. Gesture recognition results for different feature spaces

Set Clusters HMM NN Unaligned

Appearance(125D) 8 99.5 99.5 100.0 98.8 99.4 99.4
Appearance(1000D) 8 99.5 100.0 98.4 94.4 98.4 98.0
Motion(1000D) 15 98.4 98.1 97.7 86.3 97.9 98.8
Concatenation 18 98.9 99.0 98.9 87.7 96.7 96.1
Combination 1 120 100.0 100.0 100.0 96.6 98.2 97.3
Combination 2 120 99.8 99.8 99.8 97.1 99.2 99.5

The results show that aligning the sequences to the same length improves
the recognition accuracy. It can also be seen that the motion feature alone
seems to perform slightly worse than those with appearance cues. However,
combining appearance features with the motion features achieves the best
recognition accuracy for our current gesture set.

Another interesting comparison between the HMM model and neural net-
work shows that our multilayer neural network tends to over-train on the
feature sets. The neural network model achieves equivalent or higher accu-
racy on the training set as the HMM model, but performs worse on the test
set. During the training of the HMMs, the Baum-Welch algorithm runs for less
than 5 iterations before the overall system entropy reaches a local minimum.
During the neural network training process, the backpropagation algorithm
typically runs for over 1000 iterations. We stop the the procedure when the de-



116 G.Ye, J. J. Corso, G.D.Hager

crease of the output error between consecutive runs is lower than a threshold,
which is typically a very small number such as 0.00001.

Alternatively, one could stop the backpropagation algorithm interactively
by measuring the performance on a validation set after each iteration and
halting the training process if the classification on this validation set degen-
erates. However, we choose a fixed threshold to preserve the generality of the
method and keep the training process automatic.

We also compare the gesture modeling using HMMs based on the raw
sequences and those using collapsed sequences. Each raw sequence containing
a gesture is packed in such a way that we only record a symbol if it is different
from its previous one. In essence, we only record the order of the appearance
of each feature, excluding the duration in the original temporal sequence.
This is similar to the rule-based and state-based gesture modeling [2, 23].
Table 3 shows the gesture recognition results based on the datasets of collapsed
sequences.

Table 3. Gesture recognition results for collapsed sequences

Feature Sets Training Test

Appearance(125D) 89.3% 88.8%
Appearance(1000D) 88.3% 86.1%
Motion(1000D) 98.4% 96.6%
Concatenation 90.8% 89.0%
Combination 1 94.2% 96.8%
Combination 2 99.8% 98.8%

Compared to the results using raw sequences, the gesture recognition using
collapsed sequences performs slightly worse. Still, for the combination of the
appearance and the motion features, this scheme of gesture modeling based
only on key frames achieves very good recognition performance.

We also carry out the HMM recognition experiments using different num-
bers of clusters for the VQ algorithm. Figures 7 and 8 summarize the training
and testing results for the first four datasets. For the two datasets where we
combine the clustering result of appearance and motion into a 2D vector, we
present the experimental results in Fig. 9.

It can be seen that, the recognition accuracy generally increases with the
growth of the number of clusters. The reason is that gestures are represented
by trajectories in a feature space of higher dimensionality, so that more char-
acteristic detail of the gestures will be modeled. However, when the number
of clusters increases beyond a certain limit, the HMMs tend to overtrain on
the training data and the accuracy on the test set deteriorates. A trade-off
between training and testing accuracy must be made.



Visual Modeling of Dynamic Gestures 117

4 8 16 32 128
60

65

70

75

80

85

90

95

100
Training Accuracy for Different Number of Clusters

Number of Clusters

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
on

 T
ra

in
in

g 
S

et

App.(125−D)
App.(1000−D)
Motion
Concat.

Fig. 7. Training accuracy using different number of clusters

4 8 16 32 128
20

30

40

50

60

70

80

90

100

Number of Clusters

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
on

 T
es

tin
g 

S
et

Testing Accuracy for Different Number of Clusters

App.(125−D)
App.(1000−D)
Motion
Concat.

Fig. 8. Testing accuracy using different number of clusters

5 Conclusions

In this chapter, we present a novel real-time 3D gesture recognition system
that combines the 3D appearance of the hand and the motion dynamics of the
gesture to classify manipulative and controlling gestures. Instead of tracking



118 G.Ye, J. J. Corso, G.D.Hager

(4,4) (8,4) (8,8) (16,8) (16,16)
86

88

90

92

94

96

98

100

Number of Motion and Appearance Clusters

R
ec

og
ni

tio
n 

A
cc

ur
ac

y

Recognition Result with Different Combinations

Training Accuracy of Combination 1
Testing Accuracy of Combination1
Training Accuracy of Combination 2
Testing Accuracy of Combination 2

Fig. 9. Training and testing result for different combinations of appearance and
motion features. The label on the x−axis represents the number of clusters for the
appearance and motion features in the format of (number of appearance clusters,
number of motion clusters)

the user’s hand, we capture the 3D appearance of the local volume around
the manipulation subject. Motion is computed as the difference of the appear-
ance features between frames. We reduce the dimensionality of the 3D fea-
ture by employing unsupervised learning. We implemented a real-time system
based on the 4D Touchpad platform and tested the system using two different
approaches to model the temporal gestures, forward HMMs and multilayer
neural networks. By combining the appearance and motion cues, both HMM
models and the neural network achieved a recognition accuracy of over 96%.
The proposed scheme is a flexible and efficient way to capture 3D visual cues
in a local neighborhood around an object. The experiment results show that
these local appearance and motion features capture the necessary visual cues
to recognize different manipulative gestures.

In our current experiment setup, the manipulated objects are 2D icons
that lie on a 2D plane. The geometry between the cameras and each object
is similar and relatively fixed. The proposed appearance feature is not invari-
ant to geometric transforms, such as rotation and translation. For general
VEs, the interaction subjects can occupy a relatively large space, such that
the geometry of each object with respect to the cameras can vary greatly.
To overcome this variance, improvement to the feature extraction scheme is
necessary.



Visual Modeling of Dynamic Gestures 119

The gesture vocabulary in our current experiment only consists of six
dynamic gestures. In the future, we intend to address more complex gestures
and a larger gesture vocabulary. We also plan to investigate other ways to
model the gesture dynamics, such as HMMs that achieve minimal classification
errors.

Acknowledgments

We are grateful to Darius Burschka for help with the Visual Interaction Cues
project. This material is based upon work supported by the National Science
Foundation under Grant No. 0112882. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

References

1. Vassilis Athitsos and Stan Sclaroff. Estimating 3D Hand Pose from a Cluttered
Image. In Computer Vision and Pattern Recognition, volume 2, pages 432–439,
2003.

2. Aaron Bobick and Andrew Wilson. A State-based Approach to the Representa-
tion and Recognition of Gesture. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(12):1325–1337, 1997.

3. Jason J. Corso, Darius Burschka, and Gregory D. Hager. The 4DT: Unencum-
bered HCI With VICs. In Proceedings of CVPRHCI, 2003.

4. James Davis and Aaron Bobick. The Representation and Recognition of Action
Using Temporal Templates. In Computer Vision and Pattern Recognition, pages
928–934, 1997.

5. Jonathan Deutscher, Andrew Blake, and Ian Reid. Articulated Body Motion
Capture by Annealed Particle Filtering. Computer Vision and Pattern Recog-
nition, 2, 2000.

6. Richard Duda, Peter Hart, and David Stork. Pattern Classification. John Wiley
and Sons, Inc, 2001.

7. Graham D. Finlayson, James Crowley, and Bernt Schiele. Comprehensive
Colour Image Normalization. In Proceedings of the European Conference on
Computer Vision, number 1, pages 475–490, 1998.

8. D. Gavrila. The visual analysis of human movement: a survey. Computer Vision
and Image Understanding, 73:82–98, 1999.

9. Theo Gevers. Color based object recognition. Pattern Recognition, 32(3):453–
464, 1999.

10. Frederick Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1999.
11. S. Malassiotis, N. Aifanti, and M. Strintzis. A Gesture Recognition System

Using 3D Data. In Proceedings of the First International Symposium on 3D
Data Processing Visualization and Transmission, pages 190–193, 2002.

12. Kenji Oka, Yoichi Sato, and Hideki Koike. Real-Time Fingertip Tracking and
Gesture Recognition. IEEE Computer Graphics and Applications, 22(6):64–71,
2002.



120 G.Ye, J. J. Corso, G.D.Hager

13. Vasu Parameswaran and Rama Chellappa. View Invariants for Human Action
Recognition. In Computer Vision and Pattern Recognition, volume 2, pages
613–619, 2003.

14. F. Quek. Unencumbered Gesture Interaction. IEEE Multimedia, 3(3):36–47,
1996.

15. Lawrence Rabiner. A Tutorial on Hidden Markov Models and Selected Appli-
cations in Speech Recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

16. Aditya Ramamoorthy, Namrata Vaswani, Santanu Chaudhury, and Subhashi
Banerjee. Recognition of Dynamic Hand Gestures. Pattern Recognition,
36:2069–2081, 2003.

17. J.M. Rehg and T. Kanade. Visual tracking of high DOF articulated structures:
An application to human hand tracking. In Computer Vision – ECCV ’94,
volume B, pages 35–46, 1994.

18. Christopher Wren, Ali Azarbayejani, Trevor Darrell, and Alex Paul Pentland.
Pfinder: Real-time tracking of the Human Body. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):780–784, 1997.

19. D. Scharstein and R. Szeliski A Taxonomy and Evaluation of Dense Two-
Frame Stereo Correspondence Algorithms. International Journal of Computer
Vision, 47:7-42, 2002.

20. T. Starner and A. Pentland. Real-time american sign language recognition from
video using hidden markov models. Technical Report TR-375, M.I.T. Media
Laboratory, 1996.

21. Andries van Dam. Post-wimp user interfaces. Communications of the ACM,
40(2):63–67, 1997.

22. Christian von Hardenberg and Francois Berard. Bare-Hand Human-Computer
Interaction. In Workshop on Perceptive User Interfaces, 2001.

23. Ying Wu and Thomas S. Huang. Hand Modeling, Analysis, and Recognition.
IEEE Signal Processing Magazine, 18(3):51–60, 2001.

24. Junji Yamato, Jun Ohya, and Kenichiro Ishii. Recognizing Human Actions in
Time-sequential Images Using Hidden Markov Model. In Computer Vision and
Pattern Recognition, pages 379–385, 1992.

25. Guangqi Ye, Jason J. Corso, Darius Burschka, and Gregory D. Hager. VICs:
A modular vision-based hci framework. In Proceedings of 3rd International
Conference on Computer Vision Systems(ICVS 2003), pages 257–267, 2003.

26. Guangqi Ye and Gregory D. Hager. Appearance-based visual interaction. Tech-
nical report, 2002. CIRL Lab Technical Report, Department of Computer Sci-
ence, The Johns Hopkins University.

27. Guangqi Ye, Jason J. Corso, Darius Burschka, and Gregory D. Hager. VICs: A
Modular HCI Framework Using Spatio-Temporal Dynamics. Machine Vision
and Applications, 16(1), pages 13-20, 2004.

28. Zhengyou Zhang, Ying Wu, Ying Shan, and Steven Shafer. Visual Panel: Vir-
tual Mouse Keyboard and 3D Controller with an Ordinary Piece of Paper. In
Workshop on Perceptive User Interfaces, 2001.



Head and Facial Animation Tracking Using
Appearance-Adaptive Models and Particle

Filters

Franck Davoine and Fadi Dornaika

HEUDIASYC Mixed Research Unit
CNRS / Compiegne University of Technology, FRANCE
franck.davoine@hds.utc.fr

dornaika@cvc.uab.es

In this chapter, we address the problem of tracking a face and its actions in
real video sequences, considering two approaches. The first approach is based
on a particle filter tracker capable of tracking the 3D head pose of a person.
In this case, the distribution of observations is derived from an eigenspace de-
composition. The second approach introduces an appearance-adaptive tracker
capable of tracking both the 3D head pose and facial animations. It consists of
an online adapted observation model of the face texture, together with adap-
tive dynamics in the sense that they are guided by a deterministic search in a
state space. This approach extends the concept of online appearance models
to the case of tracking 3D non-rigid face motion (3D head pose and facial
animations). Experiments on real video sequences show the effectiveness of
the developed methods. Accurate tracking was obtained even in the presence
of perturbing factors such as significant head pose or local facial occlusions.

1 Introduction

This chapter addresses the problem of tracking in a single video the global
motion of a face as well as the local motion of its inner features, due to ex-
pressions, for instance, or other facial behaviors. This task is required in many
emerging applications, like surveillance, teleconferencing, emotional computer
interfaces, motion capture for video synthesis, automated lipreading, driver
drowsiness monitoring, etc. Face tracking poses challenging problems because
of the variability of facial appearance within a video sequence, most notably
due to changes in head pose, expressions, lighting or occlusions. Much research
has thus been devoted to the problem of face tracking, as a specially difficult
case of non-rigid object tracking.

In the object tracking literature, the following formulation of the track-
ing problem is conveniently used: at each time step t, the goal is to infer the



122 F.Davoine, F.Dornaika

unobserved state of the object, denoted bt ∈ B, given all the observed data
until time t, denoted y1:t ≡ {y1, . . . ,yt}. When tracking a face in 3D, the un-
observed state bt includes motion or pose parameters like the position, scale
and orientation of the face; when facial features are also tracked, the unob-
served state should contain parameters describing their independent motion.
The observed data yt consists of measurements derived from the current video
frame, such as gray-level patches, edges, or color histograms. In order to eval-
uate a hypothesized state, the measurements are actually only considered in
the image area corresponding to the hypothesized location. For instance, the
most natural measurement consists of the pixel gray-level values themselves.
Basically, a given state bt (motion parameters) is then evaluated by compar-
ing the motion-compensated gray-level image patch x(bt) with a gray-level
template face patch gmodel.

The tracking task then essentially consists in searching the current state
b̂t ∈ B that matches at best the measurements yt in the current image. The
tracking history b̂1:(t−1) is mainly used as a prior knowledge in order to search
only a small subset of the state space B. More specifically, for a hypothesized
state bt, measurements x(bt) are extracted from the image patch at the hy-
pothesized location, and those measurements are matched against some model
of the object. The various tracking methods can be categorized according to
the considered class of measurements, joint model of state and measurements
and induced matching criterion (error functional to minimize or probability to
maximize), and inference technique (deterministic or stochastic). According
to this classification, a brief and non-exhaustive survey of tracking approaches
is given below.

In a non-probabilistic formulation of the tracking problem, the state bt

is usually sought so as to minimize an error functional d [x(bt);gmodel], e.g.,
an Euclidean or robust distance. Actually, in a tracking setting, the state
is supposed to evolve little between consecutive time steps. The solution is
thus inferred from the previous frame estimation: b̂t = b̂t−1 + ∆̂bt. The op-
timal displacement is typically obtained by a gradient-like descent method.
The well-known Lucas-Kanade algorithm [12] is a particular case of such a
formulation, and has been recently generalized in [2]. Instead of being spec-
ified by a single face gray-level template gmodel, the face model can span a
subspace of gray-level patches, learnt by principal component analysis from a
face training set. The error functional is then a distance from the image patch
x(bt) to the face subspace, usually taken to be the distance to the projection
in face subspace. The subspace modeling allows to account for some variabil-
ity of the global face appearance. The eigentracking method is based on such
a principle [3]. Using also principal component analysis, the Active Appear-
ance Models (AAMs) encode the variations of face appearance by learning
the shape and texture variations [5]. They enable thus the tracking of both
global motion and inner features. In the case of AAMs, the gradient matrix
(Jacobian matrix) is pre-computed in order to reduce the processing time.
In practice, tracking using the deterministic AAM search appears to work



Head and Facial Animation Tracking 123

well while the lighting conditions remain stable and only small occlusions are
present. However, large occlusions often make the AAM search converge to
incorrect positions and loose track of the face.

In probabilistic formulations, the hidden state and the observations are
linked by a joint distribution; this statistical framework offers rich modeling
possibilities. A Markovian dynamic model describes how the state evolves
through time. An observation model specifies the likelihood of each hypothe-
sized state, i.e., the probability that the considered state may generate the ob-
served data. Such generative models can represent the variability in the motion
and appearance of the object to track. Note that even the non-probabilistic
minimization of an error functional can be recast as the maximization of a
likelihood:

p(xt|bt) ∝ exp (−d [x(bt);gmodel]) .

Based on such a generative model, Bayesian filtering methods recursively eval-
uate the posterior density of the target state at each time step conditionally
to the history of observations until the current time.

Stochastic implementations of Bayesian filtering are generally based on
sequential Monte Carlo estimation, also known as particle filtering [8]. When
compared with the analytical solution provided by the well-known Kalman
filter, particle filtering has two advantages: it is not restricted to the case
of linear and Gaussian models, and it can maintain multiple hypotheses of
the current state, a desirable property when the background is complex and
contains distracting clutter.

For video tracking, the condensation algorithm was first proposed in
conjunction with edge measurements produced by an edge detector [10]. Since
then, this algorithm has attracted much interest, and other kinds of measure-
ments have given valuable variants. For instance, tracking based on color his-
tograms has gained recent interest due to the development of efficient search
techniques, whether based on the deterministic mean-shift search paradigm [4]
or the stochastic particle filtering framework [15]. In the case of particle filter-
ing, motion is used as an additional information in order remove ambiguities
due to color used alone. However, since color histograms are global, they do
not allow to track the motion of internal facial features as is the goal here. A
gray-level patch is used as measurement vector by Zhou et al. [16]. In order
to cope with the changing appearance of the face, the likelihood is taken to
be a mixture of three appearance templates, and the parameters of the mix-
ture are re-estimated during the tracking. They consider a modified version
of the online appearance model (OAM) proposed by Jepson et al. [11]. Their
model considers global inter-frame face motion and appearance templates in
the likelihood, and global motion parameters in the state vector. In order to
track the local motion of facial features, De la Torre et al. [6] model the face
appearance as a set of image patches taken at feature points.

This chapter has two main contributions. The first one consists in combin-
ing a modified version of the AAM as developed in [1] with the condensation



124 F.Davoine, F.Dornaika

stochastic search in order to augment its robustness to occlusions and strong
out-of-plane face rotations. This approach uses a 3D wireframe model of a
human face. It is developed to track the global 3D head pose of a person. The
second contribution consists in combining a modified version of the OAM as
proposed in [16, 11] with the 3D parameterized wireframe model deformed
by Animation Units (AUs) that describe deformations that are possible to
perform by a human face. This second contribution extends the concept of
OAM to the case of tracking 3D non-rigid face motion (3D head pose and
facial animations).

The chapter is organized as follows. Section 2 describes the deformable
3D face model that we use to create shape-free facial patches from input im-
ages. Section 3 describes the condensation-based 3D head tracking. Section 4
describes the head and facial animation tracking using an adaptive facial ap-
pearance model and an adaptive transition model. In Sects. 3 and 4 we also
present some experimental results and conclude this chapter with Sect. 5.

2 Modeling Faces

In this section, we introduce a deformable 3D face model and briefly discuss
the shape-free facial patches.

2.1 A Deformable 3D Model

We introduce here the 3D face model Candide. This 3D deformable wire-
frame model was first developed for the purpose of model-based image coding
and computer animation. The 3D shape of this wireframe model is directly
recorded in coordinate form. It is given by the coordinates of the 3D vertices
Pi (i = 1, . . . , n) where n is the number of vertices. Thus, the shape up to a
global scale can be fully described by the 3n-vector g; the concatenation of
the 3D coordinates of all vertices Pi. The vector g is written as:

g = g + Sτs + Aτa (1)

where g is the standard shape of the model, τs and τa are shape and animation
control vectors, respectively, and the columns of S and A are the Shape and
Animation Units. A Shape Unit provides a way to deform the 3D wireframe
such as to adapt the eye width, the head width, the eye separation distance
etc. Thus, the term Sτs accounts for shape variability (inter-person variability)
while the term Aτa accounts for the facial animation (intra-person variability).
The shape and animation variabilities can be approximated well enough for
practical purposes by this linear relation. Also, we assume that the two kinds
of variability are independent.

In this study, we use twelve modes for the Shape Units matrix and six
modes for the Animation Units matrix. Without loss of generality, we have



Head and Facial Animation Tracking 125

chosen the six following AUs: jaw drop, lip stretcher, lip corner depressor,
upper lip raiser, eyebrow lowerer and outer eyebrow raiser. These AUs are
enough to cover most common facial animations (mouth and eyebrow move-
ments).

In (1) the 3D shape is expressed in a local coordinate system. However,
one should relate the 3D coordinates to the image coordinate system. To
this end, we adopt the weak perspective projection model. We neglect the
perspective effects since the depth variation of the face can be considered as
small compared to its absolute depth. Therefore, the mapping between the 3D
face model and the image is given by a 2×4 matrix, M, encapsulating both
the 3D head pose and the camera parameters.

Thus, a 3D vertex Pi = (Xi, Yi, Zi)T ⊂ g will be projected onto the image
point pi = (ui, vi)T given by:

(ui, vi)T = M (Xi, Yi, Zi, 1)T (2)

For a given person, τs is constant. Estimating τs can be carried out using
either feature-based or featureless approaches. Thus, the state of the 3D wire-
frame model is given by the 3D head pose parameters (three rotations and
three translations) and the internal face animation control vector τa. This is
given by the 12-dimensional state vector b:

b =
[
θx θy θz tx ty tz τa

T
]T

(3)

2.2 Shape-Free Facial Patches

A face texture is represented as a shape-free texture (geometrically normalized
image). The geometry of this image is obtained by projecting the standard
shape g using a centered frontal 3D pose onto an image with a given resolution.
The texture of this geometrically normalized image is obtained by texture
mapping from the triangular 2D mesh in the input image (see Fig. 1) using
a piece-wise affine transform, W . The warping process applied to an input
image y is denoted by:

x(b) = W(y,b) (4)

where x denotes the shape-free texture patch and b denotes the geometri-
cal parameters. Two resolution levels have been considered for the shape-free
textures, encoded by 1310 or 5392 pixels. Regarding photometric transforma-
tions, a zero-mean unit-variance normalization is used to partially compensate
for contrast variations. The complete image transformation is implemented as
follows: (i) transfer the texture y using the piece-wise affine transform asso-
ciated with the vector b, and (ii) perform the gray-level normalization of the
obtained patch.



126 F.Davoine, F.Dornaika

Fig. 1. Left column: two input images with correct adaptation. Right column: the
corresponding shape-free facial patches

3 Condensation-Based Head Pose Tracking

Given a video sequence depicting a moving face, the tracking consists in esti-
mating, for each frame, the head pose as well as the facial animations encoded
by the control vector τa [7]. In other words, one would like to estimate the
vector bt, defined in (3) at time t. In a tracking context, the model parameters
associated with the current frame will be handed over to the next frame.

In this section, we are interested in tracking the global 3D head pose.
Therefore, the state vector b is given by b = [θx θy θz tx ty tz]T . In this
particular case, the animation parameters τa are set to zero. We propose a
condensation-based method for tracking the six degrees of freedom asso-
ciated with the head motion where the face model is given by the Candide
model.

Particle filtering approximates the posterior state density p(bt|y1:t) by a
set of J weighted samples (particles) at each time step. The condensation al-
gorithm consists in propagating this sample set {b(j)

t , w
(j)
t }J

j=1 through time
using a dynamic model and in weighting each sample proportionally to its
likelihood function value [10] (the particles explore the state space following
independent realizations from a state evolution model, and are redistributed
according to their consistency with the observations). Finally, the state esti-
mate b̂t at time t can be set to the maximum a posteriori :

b̂t = argmax
bt

p(bt|y1:t) ≈ argmax
bt

w
(j)
t (5)



Head and Facial Animation Tracking 127

In this work, we use the following simple state evolution model:

bt = b̂t−1 + Ut (6)

Ut is a random vector having a centered normal distribution, N(0, Σ). The
covariance matrix Σ is learned offline from the state vector differences bt −
bt−1 associated with previously tracked video sequences.

Since image data y are represented as shape-free texture patches x, we can
set the observation likelihood p(yt|bt) to p(xt|bt). It quantifies the consistence
of the texture x(bt) with the statistical texture model represented by texture
modes (eigenvectors). For this purpose, we use a likelihood measure such as
the one proposed in [13]:

p(xt|bt) = c exp

(
−1

2

M∑
i=1

ξ2
i

λi

)
exp
(
−e2(xt)

2ρ�

)
(7)

where e2(xt) is the “distance-from-feature-space,” λis are the eigenvalues asso-
ciated with the first M eigenvectors, ξis are the first M principal components,
and ρ� is the arithmetic average of the remaining eigenvalues.

1. Initialization t = 0: Generate J state samples a
(1)
0 , . . . ,a

(J)
0 according to some

prior density p(b0) and assign them identical weights, w
(1)
0 = . . .=w

(J)
0 =1/J

2. At time step t, we have J weighted particles (a
(j)
t−1, w

(j)
t−1) that approximate

the posterior distribution of the state p(bt−1|x1:(t−1)) at previous time step

a) Resample the particles proportionally to their weights, i.e., keep only par-
ticles with high weights and remove particles with small ones. Resampled
particles have the same weights

b) Draw J particles according to the dynamic model p(bt|bt−1 = a
(j)
t−1)

These particles approximate the predicted distribution p(bt|x1:(t−1))
c) Compute the geometrically normalized texture x(bt) according to (4)
d) Weight each new particle proportionally to its likelihood:

w
(j)
t =

p(xt|bt = a
(j)
t−1)∑J

m=1
p(xt|bt = a

(m)
t−1)

The set of weighted particles approximates the posterior p(bt|x1:t)
e) Give an estimate of the state b̂t as the MAP:

b̂t = arg max
bt

p(bt|y1:t) ≈ arg max
a
(j)
t

w
(j)
t

Fig. 2. condensation algorithm

The sketch of the condensation algorithm is recalled in Fig. 2. For a good
introduction to the algorithm, the reader is referred to the seminal paper of
Isard and Blake [10].



128 F.Davoine, F.Dornaika

During a filtering iteration, due to the resampling step, samples with a high
weight may be chosen several times while others with relatively low weights
may not be chosen at all. Note that the initial distribution p(b0) can be either
a Dirac or Gaussian distribution centered on a solution provided by a detector
algorithm or manually specified.

3.1 Experiments

Figure 3 displays the tracking results associated with several frames of a long
test sequence. It corresponds to the condensation-based tracking algorithm
using a statistical texture model. The number of particles is set to 300. For
each frame in this figure, only the MAP solution is displayed. The statistical
facial texture is built with 330 training face images and the number of the
principal eigenvectors is 20. Figure 4 displays the weights associated with the
bottom-right image.

Fig. 3. condensation-based 3D head tracking with a statistical facial texture
model



Head and Facial Animation Tracking 129

Fig. 4. Drawing of the 300 particle weights associated to the bottom-right image
of Fig. 3

4 Head and Facial Animation Tracking Using an
Adaptive Appearance Model

In this section, we consider now the 3D head pose as well as the facial anima-
tions, that is, the state vector b is given by b = [θx θy θz tx ty tz τa

T ]T .

4.1 Motivation

The efficiency of the stochastic tracking algorithm presented in Sect. 3 depends
on different factors. However, the main factor which limits the efficiency of
stochastic tracking algorithms is the lack of a suitable state evolution model.
Indeed, there are two ways for handling the transition model. (i) the first is to
learn state transition models directly from training video sequences. For ex-
ample, in [14] the authors use Expectation-Maximization combined with the
condensation algorithm to learn multiclass dynamics associated with a jug-
gled ball. However, such models may not necessarily succeed when presented
with testing videos featuring different types of motions. (ii) the second is to
use a fixed model with fixed noise variance for simplicity, that is, the predicted
state is simply the previous state (or a shifted version of it) to which a random
noise with fixed variance is added (this methodology was adopted in Sect. 3).
If the variance is very small, it is hard to model rapid movements; if the vari-
ance is large, it is computationally inefficient since many more particles are
needed to accommodate large noise variance.

In addition to the problems associated with the state transition model,
the observation model has its own limitations. For example, if the observa-
tion model (observation likelihood) is built upon a statistical texture model,
any significant change in the imaging conditions will make the corresponding
learned observation model useless and one should build a new observation
model based on a new statistical texture model.

For all these factors, we develop a new tracking framework capable of
coping with the limitations mentioned above. Our approach is to make both



130 F.Davoine, F.Dornaika

observation and state transition models adaptive in the framework of a particle
filter, with provisions for handling outliers embedded. The main features of
the developed approach are:

• Adaptive observation model. We adopt an appearance-based approach,
using the concept of online appearance model (OAM) developed in [11]
and modified in [16], where the appearance is learned online from the
tracked video sequence. However, in our case, we extend this paradigm to
the case of tracking the 3D non-rigid face motion (3D head pose together
with facial animations). Therefore, the observation model is adaptive as
the appearance of the texture.

• Adaptive state transition model. Instead of using a fixed state transition
model, we use an adaptive model, where the motion velocity is predicted
using a registration technique between the incoming observation and the
current appearance configuration. We also use an adaptive noise compo-
nent whose magnitude is a function of the registration error. We vary the
number of particles based on the noise component.

• Handling occlusion. Occlusion and large image variations are handled using
robust statistics. We improve the robustness of the likelihood measurement
and the motion estimate by downweighting the outlier pixels.

4.2 Adaptive Observation Model

The appearance model at time t, At, is a time-varying on that it models
the appearances present in all observations x up to time (t − 1). For each
frame, the observation is simply the warped texture patch associated with the
computed geometric parameters bt. We use the hat symbol for the tracked
parameters and textures. For a given frame t, b̂t represents the computed
geometric parameters and x̂t the corresponding texture patch, that is,

x̂t = x(b̂t) = W(yt, b̂t) (8)

The appearance model At obeys a Gaussian with a center µ and a vari-
ance σ. Notice that µ and σ are vectors consisting of d pixels (d is the size
of x) that are assumed to be independent of each other. In summary, the
observation likelihood is written as

p(yt|bt) = p(xt|bt) =
d∏

i=1

N(xi; µi, σi) (9)

where N(x; µi, σi) is the normal density:

N(x; µi, σi) = (2πσ2
i )−1/2 exp

[
−1

2

(
x − µi

σi

)2
]

(10)

We assume that At summarizes the past observations under an exponential
envelop with a forgetting factor α. When the appearance is tracked for the



Head and Facial Animation Tracking 131

current input image, i.e., the texture x̂t is available, we can compute the
updated appearance and use it to track in the next frame.

It can be shown that the appearance model parameters, i.e., µ and σ can
be updated using the following equations (see [11] for more details on OAMs):

µt+1 = α µt + (1 − α) x̂t (11)

σ2
t+1 = α σ2

t + (1 − α) (x̂t − µt)2 (12)

In the above equations, all µs and σ2s are vectorized and the operation is
element-wise. This technique, also called recursive filtering, is simple, time-
efficient and therefore, suitable for real-time applications.

Note that µ is initialized with the first patch x. However, (12) is not used
until the number of frames reaches a certain value (e.g., the first 40 frames).
For these frames, the classical variance is used, i.e., (12) is utilized with α
being set to 1 − 1

t .

4.3 Adaptive Transition Model

Instead of using a fixed function to predict the transition state from time
(t − 1) to time t, we use the following adaptive transition model:

bt = b̂t−1 + ∆bt + Ut (13)

where ∆bt is the shift in the geometric parameters and Ut is the random
noise. Our basic idea allowing to recover the solution bt or equivalently the
deterministic part of (13) is to use region-based registration techniques. In
other words, the current input image yt is registered with the current appear-
ance model At. For this purpose, we minimize an error measure between the
warped texture and the current appearance mean,

min
bt

e(bt) = min
bt

d [x(bt), µt] =
d∑

i=1

(
xi − µi

σi

)2

(14)

Note the appearance parameters µt and σt are known. The above criterion
can be minimized using iterative first-order linear approximation.

Gradient-descent registration

We assume that there exists a bt = b̂t−1 + ∆bt such that the warped texture
will be very close to the appearance mean, i.e.,

W(yt,bt) = x(bt) � µt

Approximating x(bt) via a first-order Taylor series expansion around b̂t−1

yields



132 F.Davoine, F.Dornaika

x(bt) � x(b̂t−1) + Gt∆bt

where Gt is the gradient matrix, and G+
t its pseudo-inverse. By combining

the above two equations we have:

µt = x(b̂t−1) + Gt∆bt

Therefore, the shift in the parameter space is given by:

∆bt = bt − b̂t−1 = −G+
t (x(b̂t−1) − µt) (15)

In practice, the solution bt (or equivalently the shift ∆bt) is estimated by
running several iterations until the error cannot be improved. We proceed as
follows.

Starting from b = b̂t−1, we compute the error vector (x(b̂t−1) − µt) and
the corresponding error measure e(b), given by (14). We find a shift ∆b by
multiplying the error vector with the negative pseudo-inverse of the gradient
matrix using (15). ∆b gives a displacement in the search space for which the
error, e, can be minimized. We compute a new parameter vector and a new
error:

b′ = b + θ ∆b (16)

e′ = e(b′) (17)

where θ is a positive real.
If e′ < e, b is updated according to (16) and the process is iterated until

convergence. If e′ ≥ e, smaller update steps are tested, using the same direc-
tion (i.e., smaller θ is used). Convergence is declared when the error cannot
be improved anymore.

Gradient matrix computation

The gradient matrix is given by:

G =
∂W(yt,bt)

∂b
=

∂xt

∂b

It is approximated by numerical differences, as explained in [5]. Once the
solution b̂t becomes available for a given frame, it is possible to compute
the gradient matrix from the associated input image. The jth column of G
(j = 1, . . . , dim(b)) is given by:

Gj =
∂W(yt,bt)

∂bj



Head and Facial Animation Tracking 133

and is estimated using differences

Gj � x(bt) − x(bt + δ qj)
δ

where δ is a suitable step size and qj is a vector with all elements zero except
the jth element that equals one. To gain more accuracy, the jth column of G
is estimated using several steps around the current component value bj, and
then averaging over all these, we get our final Gj as

Gj =
1
K

∑
0<|k|≤K/2

x(bt) − x(bt + k δj qj)
k δj

where δj is the smallest perturbation associated with the parameter bj and K
is the number of steps (in our experiments, K is set to 8).

Note that the computation of the gradient matrix Gt at time t is carried
out using the estimated geometric parameters b̂t−1 and the associated input
image yt−1 since the adaptation for the time t has not been computed. It is
worthwhile noting that the gradient matrix is computed for each time step.
The advantage is twofold. First, a varying gradient matrix is able to accom-
modate appearance changes. Second, it will be closer to the exact gradient
matrix since it is computed for the current geometric configuration (3D head
pose and facial animations) whereas a fixed gradient matrix can be a source
of errors for some kinds of motions such as out-of-plane motions.

4.4 Handling Outliers and Occlusions

We assume that occlusion and large image differences can be treated as out-
liers. Outlier pixels cannot be explained by the underlying process (the current
appearance model At) and their influences on the estimation process should
be reduced. Robust statistics provide such mechanisms [9].

The mechanism will have impact on three items: (i) the likelihood measure,
(ii) the gradient descent method, and (iii) the update of the online appearance
model At.

Following the ideas developed in Zhou et al. [16], we use the Huber’s cost
function ρ defined as follows [9]:

ρ(x) =

{
1
2 x2 if |x| ≤ h

h |x| − 1
2 h2 if |x| > h (outlier detection)

where x is the value of a pixel, i, in the patch x, normalized by the mean and
the variance of the appearance at the same pixel, i.e., µi and σi. This function
is a hybrid between the L1 and least-squares function. It is continuous, with
continuous first derivative. The cutoff threshold h controls the outlier rate. In
our application, we take h = 3 based on experimental experience.



134 F.Davoine, F.Dornaika

Likelihood measure

To make the likelihood measure robust, we replace the one-dimensional normal
density N(x; µi, σi) by

N̂(x; µi, σi) =
1
Z

exp
[
−ρ

(
x − µi

σi

)]
where Z is a constant.

Gradient method

To downweight the influence of the outlier pixels in the registration technique,
we introduce a d × d diagonal matrix Lt with its ith diagonal element being
Lt(i) = η(xi) where xi is the ith element of the difference image (x(b̂t−1)−µt)
normalized by the corresponding variance σi and

η(x) =
1
x

dρ(x)
dx

=

{
1 if |x| ≤ h

h
|x| if |x| > h (outlier detection)

η(x) is used to attenuate the influence of the outliers. Therefore, the shift
used in the gradient-descent registration becomes

∆bt = −G+
t Lt (x(b̂t−1) − µt) (18)

Appearance update

Once the solution bt is ready, the corresponding patch x will be used to
update the appearance. For non-outlier pixels the update equations are given
by (11) and (12); for outlier pixels the corresponding means and variances are
not updated. This mechanism is very useful for preventing occlusions from
deteriorating the online appearance model.

4.5 The Tracking Algorithm

Tracking the 3D head pose and the facial animations is performed as follows.
Starting from the solution, b̂t−1, associated with the previous frame, we pre-
dict the state using (13) in which the deterministic part of the prediction, i.e.,
b̂t−1 + ∆bt, is computed by the registration technique and the noise variance
was set as a monotonically increasing function of the registration error ob-
tained at convergence. Once a set of particles is obtained, the MAP of (9) is
again chosen to be the solution of the current frame.

As can be seen, unlike the classical particle filtering, the propagation con-
cerns the MAP solution only and not the whole particle set. It is worthwhile
noting that although the solutions provided by the deterministic and stochas-
tic parts of (13) have utilized the same observation model, there are some



Head and Facial Animation Tracking 135

differences. The deterministic solution is obtained by a directed continuous
search starting from the solution associated with the previous frame. The
stochastic solution is obtained by diffusing the deterministic solution in order
to obtain possible refinement.

4.6 Experiments

Figure 5 displays the head and facial animation tracking results associated
with a 800 frame long (only four frames are shown). These results corre-
spond to the real-time tracker based on appearance-adaptive model (described
above).

Fig. 5. Illustration of our framework for tracking the 3D head pose and the facial
animations with an appearance-adaptive model. The sequence length is 800 frames.
In the upper left corner, from left to right: the current adaptive appearance and the
current shape-free texture

The sequence features quite large head pose variations as well as large
facial animations. The sequence is of resolution 640×480 pixels. As can be
seen with the very little prior information, the 3D motion of the face as well
as the facial animations associated with the mouth and the eyebrows are
accurately recovered. The upper left corner shows the current appearance µt

and the current shape-free texture x̂t.



136 F.Davoine, F.Dornaika

0 100 200 300 400 500 600 700 800

−40

−30

−20

−10

0

10

20

30

40

Frames

D
eg

.

Pitch

0 100 200 300 400 500 600 700 800

−40

−30

−20

−10

0

10

20

30

40

Frames

D
eg

.

Yaw

0 100 200 300 400 500 600 700 800

−40

−30

−20

−10

0

10

20

30

40

Frames

D
eg

.

Roll

0 100 200 300 400 500 600 700 800
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Frames

 

Scale

0 100 200 300 400 500 600 700 800
−100

−80

−60

−40

−20

0

20

40

60

80

100

Frames

P
ix

el
s

X Translation

0 100 200 300 400 500 600 700 800
−100

−80

−60

−40

−20

0

20

40

60

80

100

Frames

P
ix

el
s

Y Translation

0 100 200 300 400 500 600 700 800
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frames

 

Lower lip depressor

0 100 200 300 400 500 600 700 800
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frames

 

Inner brow lowerer  

Fig. 6. The tracked parameters as a function of time associated with the 800 frame
long sequence. The first six plots display the six degrees of freedom of the 3D head
pose. The two bottom plots display the lower lip depressor and inner brow parame-
ters, respectively

Figure 6 displays the estimated values of the 3D head pose parameters (the
three rotations and the three translations) as well as the lower lip depressor,



Head and Facial Animation Tracking 137

and the inner brow lowerer as a function of the frames of the same sequence.
Figure 7 displays the face and facial animation results associated with a 602
frame long sequence. The left column displays the tracking results of the real-
time tracker using the appearance-adaptive model with a fixed gradient matrix
computed at the first video frame. The right column displays the tracking
results when a time-varying gradient matrix has been used. We have noticed,
for this sequence, that whenever the face performs an out-of-plane motion
the tracker with a time-varying gradient is more accurate than the one using
a fixed gradient. Moreover, in other experiments, the tracker using a fixed
gradient matrix has totally lost the track.

Fig. 7. From left to right: frames 94, 201, 376, and 569. The upper raw displays the
head and facial animation tracking using the appearance-adaptive framework with
a fixed gradient. The lower raw displays the tracking result when a time-varying
gradient is used

Figure 8 displays the face and facial animation results associated with
another 402 frame long sequence featuring two occlusions (only the second
occlusion is displayed). The two occlusions are caused by putting the hand in
front of the face. The frames 218 and 265 show the start and the end of the
second occlusion, respectively. As can be seen on the the bottom row, pixels
associated with the region of smiling and occlusions are considered as outliers.

On a 2 GHz PC, a non-optimized C code of the algorithm computes the
adaptation parameters associated to one image in about 50ms assuming that
the patch resolution is 1310 pixels, K is eight. 80% of the CPU power is
devoted to the gradient matrix computation.

In order to explore the behavior of the time-varying gradient based reg-
istration method in the presence of fast head movements and facial anima-
tions, we have conducted the following experiment. A video sequence was
captured. This 708 frame long sequence features a bearded subject putting on
his glasses. The sequence was tracked by the registration technique. Figure 9
displays the tracking results associated with four frames of the sequence. In
order to simulate rapid movements, the sequence was subjected to a temporal



138 F.Davoine, F.Dornaika

Fig. 8. Tracking another test sequence featuring two occlusions. Frames 36, 58, 218,
and 265 are displayed. Frames 218 and 265 show respectively the start and the end of
the second occlusion present in the video. The bottom row shows the corresponding
shape-free map of the outlier pixels (shown in black)

downsampling factor of four. In other words, every fourth image of the original
sequence was used. As can be seen, the tracking is still accurate and almost
the same accurate tracking results were obtained in both cases.

5 Conclusion

In this chapter, we have proposed two tracking methods. The first method
is fully stochastic and uses a particle filter with an observation likelihood
based on statistical facial textures. This method has been utilized for 3D
head tracking. The second method combines the merits of both stochastic
and deterministic methods and is capable of tracking the head and facial
animation. It employs an Online Appearance Model where both the obser-
vation and transition models are adaptive. The deterministic part exploits
a directed continuous search aiming at minimizing the discrepancy between
the upcoming observation and the current appearance model. Tracking long
video sequences demonstrated the effectiveness of the developed methods. Ac-
curate tracking was obtained even in the presence of perturbing factors such
as illumination changes, significant head pose and facial expression variations
as well as occlusions. Currently, we are investigating the recognition of facial
expressions and gestures from the tracked parameters.



Head and Facial Animation Tracking 139

Fig. 9. Face and facial animation tracking results obtained with a 708 frame long
sequence using the gradient-based registration method. At the end of the sequence
the person is putting on his glasses. The two upper raws display tracking results
obtained without any temporal downsampling. The two lower raws display tracking
results obtained when every fourth image was used, i.e., the temporal downsampling
factor is set to four



140 F.Davoine, F.Dornaika

References

1. J. Ahlberg. An active model for facial feature tracking. EURASIP Journal on
Applied Signal Processing, 2002(6):566–571, June 2002.

2. S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying framework.
Int. Journal of Computer Vision, 56(3):221–255, February 2004.

3. M. Black and A. Jepson. Eigen-tracking: Robust matching and tracking of
articulated objects using a view-based representation. Int. Journal of Computer
Vision, 36(2):101–130, 1998.

4. D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 25(5)::564–577, 2003.

5. T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–684,
2001.

6. F. de la Torre, Y. Yacoob, and L. Davis. A probabilistic framework for rigid
and non-rigid appearance based tracking and recognition. In Proc. 4th IEEE
Int. Conf. on Automatic Face and Gesture Recognition, pages 491–498, 2000.

7. F. Dornaika, F. Davoine, and M. Dang. 3d head tracking with particle filters.
In 5th International Workshop on Image Analysis for Multimedia Interactive
Services, Lisbo, Portugal, 2004.

8. A. Doucet, J. F. G. De Freitas, and N. Gordon. Sequential Monte Carlo Methods
in Practice. Springer-Verlag, 2001.

9. P.J. Huber. Robust Statistics. John Wiley and Sons, 1981.
10. M. Isard and A. Blake. Condensation - conditional density propagation for

visual tracking. Int. Journal of Computer Vision, 29(1):5–28, 1998.
11. A.D. Jepson, D.J. Fleet, and T.F. El-Maraghi. Robust online appearance mod-

els for visual tracking. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(10):1296–1311, 2003.

12. B. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In Proc. Int. Joint Conf. on Artificial Intelligence,
pages 674–679, 1981.

13. B. Moghaddam and A. Pentland. Probabilistic visual learning for object rep-
resentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(7):696–710, 1997.

14. B. North, A. Blake, M. Isard, and J. Rittscher. Learning and classification
of complex dynamics. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(9):1016–1034, 2000.

15. P. Pérez, C. Hue, J. Vermaak, and M. Gangnet. Color-based probabilistic track-
ing. In Proc. Europ. Conf. Computer Vision, pages 661–675, 2002.

16. S. Zhou, R. Chellappa, and B. Moghaddam. Visual tracking and recognition
using appearance-adaptive models in particle filters. IEEE Trans. on Image
Processing, 13(11), November 2004.



A Real-Time Vision Interface Based on Gaze
Detection – EyeKeys

John J. Magee, Margrit Betke, Matthew R. Scott, and Benjamin N. Waber

Computer Science Department
Boston University
mageejo@cs.bu.edu

betke@cs.bu.edu

mrscott@cs.bu.edu

bwabes@cs.bu.edu

There are cases of paralysis so severe the ability to control movement is lim-
ited to the muscles around the eyes. In these cases, eye movements or blinks
are the only way to communicate. Current computer interface systems are
often intrusive, require special hardware, or use active infrared illumination.
An interface system called EyeKeys is presented. EyeKeys runs on a consumer
grade computer with video input from an inexpensive USB camera. The face
is tracked using multi-scale template correlation. Symmetry between left and
right eyes is exploited to detect if the computer user is looking at the cam-
era, or to the left or right side. The detected eye direction can then be used
to work with applications that can be controlled with only two inputs. The
game “BlockEscape” was developed to gather quantitative results to evaluate
EyeKeys with test subjects.

1 Introduction

Some people may be so severely paralyzed that their voluntary movements
are limited to movements of the eyes. To communicate with family, friends,
and care givers, they look in a certain direction or blink for “yes” and “no” re-
sponses. Innovative assistive technologies are needed to enable them to access
the computer for communication, education, and entertainment. As progress
toward that goal, we present an interface called EyeKeys that simulates com-
puter keyboard input and is based on gaze detection that exploits the sym-
metry between left and right eyes.

There has been much previous work in computer assistive technologies,
e.g., [2, 3, 6, 16, 17, 23, 29]. Most of these methods, though successful and
useful, also have drawbacks. Many currently available or early systems are
often intrusive, or use specialized hardware [29]. For example, the EagleEyes



142 J. J. Magee, M. Betke, M.R. Scott, B.N.Waber

system [6] uses electrodes placed on the face to detect the movements of
the eyes and has been used by disabled adults and children to navigate a
computer mouse. Another approach [2] uses head mounted cameras to look
at eye movements. It takes advantage of the fact that the face will always
be in the same location in the video image if the head moves around. Large
headgear is not suited for all users, especially small children. One of our goals
is to design a non-intrusive system that does not need attachments.

Another successful system is the Camera Mouse [3]. People with disabili-
ties can control a mouse pointer by moving their head, finger, or other limbs,
while the system uses video to track the motion. This is successful for those
who can move their heads or limbs; however, people who can only move their
eyes are unable to use it. These are the people for whom we aim to pro-
vide a communication device. A goal of our system is therefore to use only
information from the eyes.

Many systems that analyze eye information use specialized hardware. The
use of active infrared illumination is one example [8, 12, 13, 14, 18, 28]. The
infrared light reflects off the back of the eye to create a distinct “bright eye”
effect in the image. If switching the infrared light on and off is synchronized
with the camera, the pupils can be located by differencing the bright eye
image obtained with infrared illumination from the subsequent image without
infrared illumination. The illumination also creates a “glint,” a reflection off
the surface of the eye. One technique to find the gaze direction is to analyze the
difference vector between pupil center and glint. There are concerns about the
safety of prolonged exposure to infrared lighting. Another issue is that some
of these systems require a complicated calibration procedure that is difficult
for small children to follow.

Avoiding specialized hardware is another important goal of our system.
This means that our system must run on a consumer grade computer. In
addition to avoiding infrared light sources and cameras, we decided to build
the system around an inexpensive USB camera. The system can therefore
be run on any computer without the need for an expensive frame grabber
or pan/tilt/zoom cameras as required in some previous work [5]. Our system
must be able to work with images that have a lower resolution than the images
used in previous approaches [15, 22, 25].

To be a useful human-computer interface, the system must run in real-time.
This excludes existing approaches that do not run in real-time. In addition,
the system can not use all of the processing power of the computer because
the same computer will have to run both the vision based interface as well as
user programs such as web browsers or games.

EyeKeys tracks the face using multi-scale template correlation. The left
and right eyes are compared to determine if the user is looking center, or to the
left or right side. This is accomplished by exploiting the symmetry between
the left and the right eyes. If one eye image is mirrored and subtracted from
the other, the large differences will be due to the difference in pupil location.



EyeKeys 143

The output of our system can be used to control applications such as spelling
programs or games.

We tested EyeKeys on the BlockEscape game. This game was developed
specifically as an engaging way to test our interface system while reporting
quantitative results. This is important because it motivates users and test
subjects to try the system. We can use the game to gather statistics on how
well the interface works for various situations that we create.

This chapter is organized in the following manner: Section 2 discusses the
methods employed in the EyeKeys system itself, including a thorough descrip-
tion of the EyeKeys’ modules and the BlockEscape game. Section 3 details
our experiments and results, while Sect. 4 presents an in-depth discussion of
our results, comparisons to other HCI systems, and plans for future extensions
to our system.

2 Method

The EyeKeys system performs two main tasks: (1) face detection and tracking,
and (2) eye analysis. Throughout the system, efficient processing techniques
are used to enable real-time performance. Major components of the system
are presented in Fig. 1.

Color and motion
analysis

Template correlation
over image pyramid

Motion stabilization

Projection of
difference between
left and right
eye images

Face Tracker

Comparison of min and
max to thresholds

Eye Analysis

Video Input Output:

or Center (Default)
Left, Right event

Fig. 1. System Diagram for EyeKeys

In order to facilitate working with the eyes, we developed a fast two-
dimensional (2D) face tracker. From the scale and location of the face located
by this tracker, regions of interest for the eye analysis are obtained. The eye
analysis algorithm then determines if the eyes are looking toward the center,
or have moved to the left, or to the right of the camera.

The output from the eye module can be the input to a computer control
interface. Usually, looking center means “do nothing.” The interface system
can then map the left and right outputs to events such as mouse movements,
left and right arrow keys, or other key combinations. This allows the system
to be configured for a variety of applications such as playing games, entering
text, or navigating a web site.



144 J. J. Magee, M. Betke, M.R. Scott, B.N.Waber

2.1 Face Detection and Tracking

The face detection and tracking method consists of various parts, some of
which were used in previous face tracking approaches, e.g., [11, 27]. Color and
motion information is combined to create a mask to exclude areas of the search
space for the correlation-based matching of a 12×16-pixel face template. To
enable detection of faces that differ in size (for example, a user may have
a large head or sit close to the camera), the system uses image pyramids [1]
along each step of the face detection. To avoid the large size difference between
traditional pyramid levels, where the image at each successive level is half the
size of the previous image, the pyramid structure has been modified to include
images with intermediate resolutions. This allows the system to find face scales
at smaller discrete steps. The resolutions of the images of the pyramids are
listed in Table 1.

Table 1. Resolutions used by the image pyramids. Coordinates in any level can
be transformed into coordinates in the 640×480 input frame by multiplying by the
scale factor. Levels 2 through 7 are used to find the face

Level Width Height Scale Factor

0 640 480 1

1 320 240 2

2 160 120 4

3 128 96 5

4 80 60 8

5 64 48 10

6 40 30 16

7 32 24 20

Color analysis. Skin color has been used to track faces previously,
e.g., [19]. Here, it is used as a preprocessing mask. The color input image
is converted into the YUV color space [24]. YUV was chosen because the
camera can be configured to provide images in that format, and the color in-
formation is contained within two dimensions. A binary image is created with
a 2D histogram lookup in UV space. If a pixel’s lookup on the histogram for
the specified UV value is over a threshold, then the pixel is marked as skin,
otherwise not. The binary image is then decimated into the other levels using
Gaussian blurring [1]. A box filter that smoothes an image by averaging with
a support of 12×16 pixels is applied to each image in the pyramid so that
each pyramid level represents the color information for the appropriate scale
of the face to search for. Thresholding then produces a binary pyramid mask
Pcolor (Fig. 2).

The color histogram was trained on 15 face images which were marked
by hand with a rectangle covering most of the facial regions. In cases where
the color segmentation fails to provide good results, the histogram can be



EyeKeys 145

Fig. 2. Pyramids Pinput, Pcolor, Pmotion before application of box filter, Pcorrelation,
and Pmasked computed by the face detection and tracking algorithm. The cross indi-
cates the maximum correlation peak in the pyramid and after applying the appro-
priate scale factor in Table 1, yields the location and scale of the face

retrained during system operation by clicking on areas of skin in the live
video. The histogram can be saved and reloaded so that it can be used again
for the same user or lighting conditions without retraining.

There are various situations when the UV-histogram might need to be
retrained. Certain changes in lighting conditions can result in changes of the
UV values of skin. A histogram trained on one person might not work well
with a person with a different skin tone. Pixels corresponding to objects such
as wooden doors or tan carpets can often have similar pixel values as skin. The
default histogram will represent a wider range of skin tones, while a histogram
trained on one person will represent that person’s skin more exclusively. Since
skin color segmentation may not yield accurate segmentation results due to
the difficulties described above, UV-based segmentation is used only as a
preprocessing mask for face localization.

Motion analysis. Frame differencing creates a motion image that is dec-
imated into a pyramid (Fig. 2). Pixels in the face with large brightness gradi-
ents also have large values in the motion image if the face is moving. The box
filter is applied again to each motion image in the pyramid to account for the
appropriate scale of the face to search for. This yields, after thresholding, a
binary pyramid mask Pmotion. The pyramid Pmotion computed from the scene
shown in Fig. 2 looks similar to the color pyramid mask Pcolor.

In cases when there is little or no motion, the motion mask must be pre-
vented from excluding the previously found face location from the correlation
search. Locations near the previous face location are therefore set to one in
the binary motion image. The other motion pyramid levels are also modified
in this way to account for movements toward or away from the camera that
are not caught by the motion segmentation. The area modified is proportional
to the scale represented by the respective pyramid level.



146 J. J. Magee, M. Betke, M.R. Scott, B.N.Waber

Correlation matching. Template matching based on the normalized cor-
relation coefficient [4] is used to find the location of the face. A small, 12×16
face template is correlated over all levels of the grayscale input pyramid Pinput

(Y channel from the YUV color image), which allows for fast processing. The
resulting correlation values yield the pyramid Pcorrelation (Fig. 2). The max-
imum correlation peak among all of the levels indicates the location of the
face. The scale of the face is known by the level of the pyramid at which the
maximum is found. To eliminate possible ambiguous correlation peaks in the
background, the color and motion information masks are applied to Pcorrelation.
An efficient implementation of the correlation function can also use the mask
to save processing time by skipping background locations excluded by the
mask.

The face template is created by averaging the brightness values of 8 face
images. This ensures that the relevant information that it represents a face
is preserved, while specific features of a particular person are smoothed, and
thus allows the correlation method to find a “general” face in the image.

2.2 Eye Analysis

Given the estimate of face location provided by the face tracker, the approxi-
mate location and scale of the eyes can be inferred from simple anthropomor-
phic properties: The eyes must be located in a region above the center of the
face, the left eye must be on the right side of this image region and the right
eye on the left. Taking advantage of these properties, the eye analysis mod-
ule crops out two subimages containing the eyes from the highest resolution
image. The size of the subimages depends on the scale at which the face was
found. To simplify the eye analysis, the system produces eye images of a fixed
size of 60×80 pixels by linear interpolation.

Motion analysis and stabilization. Ideally, the two eyes would be cen-
tered in the respective eye images as the head moves. However, slight move-
ments of the head by a few pixels may not be accurately tracked by the face
tracker. A method must be used to “stabilize” the eye images for comparison.
The method chosen here to locate the center of the eyes is frame differencing
to create binary motion images (Fig. 3), followed by computing the first-order
moments. These “centroid” points are used to adjust the estimates of the eye
locations in the face image. Using this method, the eye images do not need to
have as high a resolution as required by many feature-based eye localization
methods, e.g., [25].

Left–right eye comparisons. The left and right eyes are compared to
determine where the user is looking. The left eye image is mirrored and sub-
tracted from the right eye image. If the user is looking straight at the camera,
the difference is small. On the other hand, if the eyes are looking left, then
the mirrored left eye image appears to be looking right as shown in Fig. 4.

The signed difference between the two images shows distinct pixel areas
where the pupils are in different locations in each image. The unsigned dif-



EyeKeys 147

Fig. 3. Motion detected by frame differencing is thresholded and used as a mask
for the differencing of left-right eye images, and for finding the centroids for motion
stabilization

ference can be seen in Fig. 5. To reduce extra information from the image
areas outside of the eyes, the images are masked by their thresholded motion
images (Fig. 3). To determine the direction of the eyes, the signed differences
are projected onto the x−axis (Fig. 6). The signed difference creates peaks in
the projection because eye sclera pixels are lighter than pupil pixels.

If the user is looking left, the signed difference operation creates large
values in the projection because the dark-gray iris and pupil pixels in the left
image are subtracted from the light-gray eye sclera pixels in the right image.
This is followed by small values in the projection because light-gray eye sclera
pixels in the left image are subtracted from dark-gray iris and pupil pixels in
the right image. Vice versa, if the user is looking right, there will be a valley
in the projection, followed by a peak (Fig. 6). If the peaks and valleys in the
projection do not exceed a certain threshold, then the eye analysis method
outputs the default value “looking center.”

(a) Right eye looking left (b) Mirrored left eye looking left

Fig. 4. Eye images automatically extracted from input video by face tracker

Fig. 5. Absolute difference between right and mirrored left eyes. Left: Eyes are
looking to the left; arrows indicate large brightness differences due to pupil location.
Right: Eyes are looking straight ahead



148 J. J. Magee, M. Betke, M.R. Scott, B.N.Waber

-1500

-Tp

 0

Tp

 1500

 0  20  40  60 m=80

B
rig

ht
ne

ss
 d

iff
er

en
ce

 a
i

Eye image width

Projection during a Left Look

>Td

-1500

-Tp

 0

Tp

 1500

 0  20  40  60 m=80

B
rig

ht
ne

ss
 d

iff
er

en
ce

 a
i

Eye image width

Projection during a Right Look

>Td

Fig. 6. Results of projecting the signed difference between right and mirrored left
eyes onto the x−axis. The top graph is the result of left-looking eyes. The bottom
graph is the result of right-looking eyes

Let I� and Ir be the m × n left and right eye images masked by motion
information. The projection of the signed difference onto vector a = a1, . . . , am

is computed by:

ai =
n∑

j=1

(Ir(i, j) − I�(m − i, j)) (1)

Two thresholds Tp and Td are used to evaluate whether a motion occurred
to the right, left, or not at all. The thresholds can be adjusted to change the
sensitivity of the system. First, the maximum and minimum components of
the projection vector a and their respective indices are computed:

amin = min
i={1,...,m}

(ai) and amax = max
i={1,...,m}

(ai) (2)

imin = argmin
i={1,...,m}

(ai) and imax = arg max
i={1,...,m}

(ai) (3)

The minimum and maximum values are then compared to the projection
threshold Tp:

amin < −Tp and amax > Tp (4)

This threshold assures that there is a sufficient brightness difference to indicate
a left or right motion. The second threshold Td is used to guarantee a minimal



EyeKeys 149

spatial difference between the minimum and maximum projection values when
motion is detected. The direction of motion is determined as follows:

imax − imin > Td ⇒ ‘right motion’ (5)
imax − imin < −Td ⇒ ‘left motion’ (6)

2.3 Classification

Information from both the motion and eye comparison analysis are combined
to determine if there was an intentional look to the left or right. The system
detects motion followed by eye direction to the left in order to trigger the “user
has looked left” event. The corresponding right event is similarly triggered.

A limit was set on how frequently events can be triggered in order to avoid
the system from becoming confused and triggering many events in quick suc-
cession. The limit was set experimentally at one event every 0.5 seconds. The
user must move his or her eyes back to the center position before attempting
to trigger another left or right event. In the future however, it may be prefer-
able to let the user keep looking to one side in order to trigger many events in
a row to simulate holding down a key. Audio feedback or multiple monitors
would be needed to let the user know when events are triggered.

2.4 BlockEscape Game

The game BlockEscape was developed as a tool to test the performance of
EyeKeys as an interface. It is a game that is easy to learn and provides an
interactive and engaging user experience, which is particularly important for
users with severe disabilities who have difficulty remaining physically active
for long periods of time. Providing an enjoyable game as a statistics gathering
device may encourage subjects to play for longer periods of time. Figure 7
shows a screenshot of BlockEscape.

The rules of the game are as follows. The walls, which are the black rect-
angles in Fig. 7, are fixed objects that move upward at a constant rate. The
user, who controls a white block, must lead it into the holes between these
walls, where it “falls through” to the next wall. The user is restricted to move
the white block horizontally left and right. The block movement is triggered
by issuing a ‘left motion’ or ‘right motion’ command. The command can be
issued using the EyeKeys interface, the mouse, or the left/right keys on the
keyboard. The block continues to move in that direction until it falls through
a hole or the user issues a new direction command. If the block reaches the
bottom of the screen, the user wins. If the block is pushed to the top of the
screen by the walls, the user loses.

There are numerous ways to configure game play. The significant configu-
ration variables are game speed and distance between walls. The game speed
specifies how often the game state is updated: by increasing this setting, the
game is made slower and therefore easier to play. The settings allow the game



150 J. J. Magee, M. Betke, M.R. Scott, B.N.Waber

Fig. 7. Screenshot of the BlockEscape game. The player navigates the block through
the holes by moving the mouse left or right or pressing keys as the block falls toward
the bottom of the screen

to be configured appropriately for the abilities of the user with a chosen in-
terface method.

Methods for gathering statistics. During playing, usage statistics, in
particular, the departure of the user-controlled block from an optimal path,
were computed based on the positions of the block, walls, and holes and
compiled into XML (Extensible Markup Language) documents. If the block
is on the rightmost side of the screen, and there is one hole on the leftmost
side of the screen, the user should obviously move the block left. In cases with
multiple holes on a particular wall, the user should move the block in the
direction to the closest hole. The following equations are used to determine
the player deviations:

dij = |xij − hi| (7)

Dij =
{

0 if dij < di j−1 or j = 0
1 otherwise (8)

where hi is the hole’s position on wall i and xij is the block’s position on
wall i at time j. Distance dij is defined as the distance from the block’s
current position to the hole and Dij determines whether the block is closer or
farther away from the nearest hole. We define the deviation for wall i as:

σi =
Wi∑
j=1

Dij (9)

where Wi is the number of game-update cycles during which the block is on
wall i. The deviation σavg, averaged over all walls, was approximately zero in
our tests with users employing a keyboard. Therefore, we can assume that all
movement errors encountered during testing are not due to user error resulting
from difficulty of the game itself, but are instead due to the interface system
being employed.

The XML document includes a coordinate-pair listing denoting the config-
uration of each individual wall during a game play. This information may then
be used to reconstruct the exact wall sequence that was seen in a previous
game, allowing the user to play the same game multiple times. This is also
useful for playing the same sequence with multiple users.



EyeKeys 151

3 Experiments and Results

This section describes experiments to evaluate the performance of EyeKeys.

3.1 EyeKeys Performance Evaluation

Experimental setup. EyeKeys is designed to be used by a person sitting
in front of a computer display. The camera is mounted on the end of an
articulated arm, which allows the camera to be optimally positioned in front
of a computer monitor. The USB camera we used is a Logitech Quickcam Pro
4000, with a retail price of $79.99. The tests were run on an Athlon 2100.

The EyeKeys system was tested by 8 able-bodied people. Tests were cre-
ated to determine if the system can detect when a user intentionally looks to
the left or to the right. The average face template used by the face detection
and tracking method was first updated with a template representing the face
of the test subject. Testers were told to look at the computer monitor. When
asked to look left, the tester should quickly move their eyes to look at a target
point to the left of the monitor. A similar target was to the right side of the
monitor. After the “look” was completed, the user should move his or her eyes
back at the monitor.

We created a random ordered sequence of twenty “looks:” ten to the left
and ten to the right. The same sequence was used for all the test subjects.
If the system did not recognize a look, the user was asked to repeat it. The
number of tries required to recognize the look was recorded. We also recorded
when the system misinterpreted a left or right look, and the test proceeded
to the next look in the sequence.

Results. The faces of all test subjects were correctly tracked in both
location and scale while they were moving between 2 and 5 feet from the
camera. Our system correctly identified 140 out of 160 intentional looks to
the left or right. This corresponds to an 87.5% success rate. For the system to
detect and classify 160 looks, the users had to make 248 attempts. On average,
1.55 actual looks are made for each correctly identified look event. The results
are summarized in Table 2.

Table 2. Number of actual and detected left and right looks in testing the EyeKeys
system

Observed

Actual

Left Right Correct

Left 72 12 90.0%

Right 8 68 85.0%

Missed 40 48

EyeKeys was more successful with some of the test subjects than others.
For example, one subject had all 20 looks correctly identified while only mak-



152 J. J. Magee, M. Betke, M.R. Scott, B.N.Waber

ing 24 actual look attempts. Cases where an incorrect recognition occurred
were likely due to a problem with alignment of the right and mirrored-left
eyes. The number of extra look attempts is due to high thresholds that were
chosen to avoid false detection of looks, since it was decided that it is better
to miss a look than to misclassify a look. Other incorrect recognitions were
due to the system missing a look in one direction, but detecting eye movement
back to the center position as a move in the opposite direction.

3.2 BlockEscape Experiment

Experimental setup. Four test subjects participating in this experiment
were read the rules of BlockEscape, followed by two demonstrations of the
game using a mouse. We chose to test the Camera Mouse in this experiment
in order to measure the effectiveness of EyeKeys against a previously devel-
oped HCI system for people with disabilities. The keyboard was chosen as
a control against the HCI systems. All subjects were unfamiliar with Block-
Escape, EyeKeys, and the Camera Mouse.

In the “practice” phase, the subjects were allowed to become familiar with
the game and the interfaces. They played up to three trial games, or for up
to three minutes, on the keyboard, Camera Mouse and EyeKeys. They were
then asked to play at least one game for 30 seconds with each device.

For the “trial” phase, the test subjects played three games on each input
device, the results are shown in Table 3.

Table 3. Results of four users employing three devices to play BlockEscape. Units
are percentage of game playing area

Device

EyeKeys Camera Mouse Keyboard

σavg 2.9 2.27 0

Median 2.54 0 0

Std.Dev. 4.01 2.68 0

Wins 10
12

(83%) 10
12

(83%) 12
12

(100%)

Results. The win percentage of EyeKeys compared to the Camera Mouse
was the same, although EyeKeys had a higher σavg, median, and standard
deviation. We also noted that a Camera Mouse failure requires manual in-
tervention to correct, while an EyeKeys user could frequently make another
look in the appropriate direction to correct a mistake. However, the median
deviation for the Camera Mouse system indicates that errors were quickly
corrected by the user in most instances. The median deviation for EyeKeys
is due to the time restriction limit between detections. The keyboard con-
trol is obviously the most accurate way to play the game for those that are
able, however, the results demonstrate that EyeKeys works well enough as an



EyeKeys 153

interface to play this game, and that it is comparable in performance to an
existing assistive-technology interface that is in current use.

Users had different levels of success playing BlockEscape with EyeKeys.
One user mastered EyeKeys quickly, winning all three games, but had trouble
with the Camera Mouse. With EyeKeys, all the other users improved their
performance on succeeding games. This did not hold true for the Camera
Mouse experiments.

3.3 Initial Experience: A Test User with Severe Disabilities

We were able to hold a preliminary test of the EyeKeys system with a user
with cerebral palsy. This user can control his eyes and has some control over
head movements. However, he also has involuntary head movements.

We asked him to use the EyeKeys system to move a window left and
right across the screen. We observed that he was frequently able to move
the window in the direction that we asked him. Sometimes, involuntary head
motion would cause the system to detect an unintentional eye event. Since
he has used the Camera Mouse on numerous occasions, he would often move
his head in a motion that would work with the Camera Mouse, but caused
problems with EyeKeys. Adjusting the thresholds in future tests may allow
the system to work better with these head motions. The system could also be
configured to ignore eye movements when head movements are detected.

3.4 Real-Time Performance of System

Our system achieves real-time performance at 15 frames per second, which is
the limit of the USB camera at 640×480 resolution. The BlockEscape game
had no problem running concurrently with the real-time vision interface sys-
tem. The performance of EyeKeys easily enables it to run concurrently with
other applications such as spelling programs and web browsers.

4 Discussion and Future Work

Real-time performance. Correlation-based face tracking is the most com-
putationally expensive procedure in our system. The face tracker employs
multi-scale techniques in order to improve real-time performance. The tem-
plate correlation over the image pyramid is more efficient than performing
multiple correlations with a scaled template. In addition to improving accu-
racy, the color and motion information could be used to reduce the search
space of the template correlation, further improving efficiency.

The eye analysis is relatively computationally inexpensive. The eye direc-
tion is computed in time proportional to the size of the eye image.



154 J. J. Magee, M. Betke, M.R. Scott, B.N.Waber

Design motivations. The approach of EyeKeys to exploit symmetry
works well with eye images of low resolution. Other approaches to gaze detec-
tion that model eye features require higher resolution eye images, e.g., [25]. If
such images cannot be obtained, and therefore eye features such as corners of
the eyes or curve of the iris cannot be used, the difference mirroring approach
allows eye direction classification to be successful.

The two thresholds that determine when the user looks right or left are
adjustable. Increasing Tp makes the system more likely to miss an intentional
look, but less likely to misclassify a look. Increasing Td has the effect of re-
quiring that the looks be faster and more deliberate. While this can decrease
false detections, it also makes the system difficult and uncomfortable to use.

The template can be updated from the current video feed by clicking on
the nose and then selecting the correct scale of the face from a slide bar. This
is useful in cases when a person’s face does not correlate well with the default
template. Detection methods based on the normalized correlation coefficient
can work well with uniform changes in brightness [4], however, problems may
occur if the user becomes more brightly lit from one side. In addition, the
template-based detection method works well if the template face and the
user’s face remain in the same orientation. If the default template is applied,
the user should face the camera and hold his or her head straight. An updated
template can work with specific head tilts and lighting conditions.

Testing experience and comparisons. Our test subjects had little dif-
ficulty learning the EyeKeys interface. After only a minute of practice, users
were able to play BlockEscape. In addition, most subjects improved after each
game, leading us to believe that EyeKeys users will become as proficient as
Camera Mouse users over time.

EyeKeys performed well in comparison to the Camera Mouse. When the
Camera Mouse loses track, the performance decreases dramatically. In our
system, a false detection can be rectified by a correct detection. This, however,
is specific to certain applications. For instance, if our system caused a web
browser to follow a hyperlink in error, then it would be difficult to return to
the original page without manual intervention. Since this system was designed
as an HCI application, it was expected that the user would be cooperative and
try to make it work. Future tests will determine the limitations for EyeKeys
to detect head tilts or rotations.

Future work and improvements. EyeKeys has the potential to be-
come an integral part of a complete HCI system, e.g., perceptual interface
systems described in references [20, 26]. Combining EyeKeys with other HCI
applications would give the user greater control over the computer, and if
utilized with other facial processing techniques, could prove to be part of an
all-purpose command interface. While the current research is focused on cre-
ating an interface system for people with severe disabilities, gaze detection
systems such as EyeKeys can be useful in other areas such as linguistic and
communication research, or monitoring a vehicle driver’s attention.



EyeKeys 155

EyeKeys can be adapted for specific applications such as text entering.
Text can be entered in a variety of ways, for example, an on-screen keyboard
can scan to the intended letter, or letters can be selected by following a binary
search of the alphabet. Some of this type of software is already in use with
current interfaces for people with disabilities [3, 6, 7, 9, 10, 21].

Another important application for EyeKeys is navigating a web browser.
The two commands, left and right looks, could map to the Tab and Enter keys
of the keyboard. This allows the user to tab through the links on a page, and
then select a link to follow. If the user starts on a web page with a hierar-
chical structure of the web, such as Yahoo, then information can be retrieved
by following a few links. This would allow access to news, weather, sports,
entertainment, and educational material. A current issue is that following an
incorrect link by mistake results in the user on the wrong page. A possible
solution would be to detect other events, such as blinks [10], to serve as an
undo command. Alternatively, a confirmation step could be built into the in-
terface before a link was followed to add one level of protection against this
kind of problem.

The EyeKeys system could be improved with an algorithm to more pre-
cisely locate the eyes. The current method relies on eye motion for position
refinement. Our system should also work better with head motion. One solu-
tion could be to not allow eye movement detection when the head is moving.
However, that may cause a problem for disabled users that have involuntary
head movements. Another extension would be an analysis of the difference
projection by fitting a polynomial function instead of thresholding. The cur-
rent system assumes that the head is held vertically and faces toward the
camera. When the user’s head tilts, the eyes are no longer symmetrical across
a vertical axis, which causes problems in detecting the gaze. Extending the
system to find the amount of head tilt would improve the detection rate.
This could be done by rotating the template, or by finding the rotated line of
symmetry of the face or between the eyes.

Future possibilities for extending this system include the addition of a blink
analysis module [10], which would give the interface three events to work with.
Unfortunately, some subjects with severe cerebral palsy cannot control their
eye blinks. Another way to extend the system is with further analysis of the
duration that the user looks left or right to allow mapping of more events to
additional commands. Eventually, it would be useful to increase the number
of gaze directions that can be detected reliably, but this is a very challenging
problem with the low-grade cameras and low-resolution eye images used here.

Acknowledgments

Funding was provided by the National Science Foundation (IIS-0308213, IIS-
039009, IIS-0093367, P200A01031, and EIA-0202067).



156 J. J. Magee, M. Betke, M.R. Scott, B.N.Waber

References

1. E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden.
Pyramid methods in image processing. RCA Engineer, 29:33–41, 1984.

2. Applied Science Laboratories, Bedford, MA. http://www.a-s-l.com.
3. M. Betke, J. Gips, and P. Fleming. The Camera Mouse: Visual tracking of

body features to provide computer access for people with severe disabilities.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(1):1–
10, March 2002.

4. M. Betke and N. C. Makris. Recognition, resolution and complexity of objects
subject to affine transformation. International Journal of Computer Vision,
44(1):5–40, August 2001.

5. M. Betke, W. J. Mullally, and J. Magee. Active detection of eye scle-
ras in real time. In Proceedings of the IEEE Workshop on Human
Modeling, Analysis and Synthesis, Hilton Head Island, SC, June 2000.
http://www.cs.bu.edu/faculty/betke/papers/betke-mullally-magee.pdf.

6. P. DiMattia, F. X. Curran, and J. Gips. An Eye Control Teaching Device for
Students without Language Expressive Capacity – EagleEyes. The Edwin Mellen
Press, 2001. See also http://www.bc.edu/eagleeyes.

7. L. A. Frey, K. P. White Jr., and T. E. Hutchinson. Eye-gaze word processing.
IEEE Transactions on Systems, Man and Cybernetics, 20(4):944–950, 1990.

8. A. Gee and R. Cipolla. Determining the gaze of faces in images. Image and
Vision Computing, 12(18):639–647, 1994.

9. J. Gips and J. Gips. A computer program based on Rick Hoyt’s spelling method
for people with profound special needs. In Proceedings of the International
Conference on Computers Helping People with Special Needs (ICCHP), pages
245–250, Karlsruhe, Germany, July 2000.

10. K. Grauman, M. Betke, J. Lombardi, J. Gips, and G. R. Bradski. Communica-
tion via eye blinks and eyebrow raises: Video-based human-computer interfaces.
Universal Access in the Information Society, 2(4):359–373, November 2003.

11. E. Hjelmas and B. K. Low. Face detection: A survey. Computer Vision and
Image Understanding, 83:236–274, 2001.

12. T. Hutchinson, K. P. White JR., W. N. Martin, K. C. Reichert, and L. A.
Frey. Human-computer interaction using eye-gaze input. IEEE Transactions on
Systems, Man and Cybernetics, 19(6):1527–1533, 1989.

13. Q. Ji and Z. Zhu. Eye and gaze tracking for interactive graphic display. In
Proceedings of the International Symposium on Smart Graphics, Hawthorne,
New York, June 2002.

14. A. Kapoor and R. W. Picard. Real-time, fully automatic upper facial feature
tracking. In Proceedings of the Fifth IEEE International Conference on Auto-
matic Face Gesture Recognition, pages 10–15, Washington, DC, May 2002.

15. K.-N. Kim and R. S. Ramakrishna. Vision-based eye-gaze tracking for human
computer interface. In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, Vol. 2, pages 324–329, Tokyo, Japan, October
1999.

16. J. J. Magee. A real-time human-computer interface based on gaze detection
from a low-grade video camera. Master’s thesis, Boston University Department
of Computer Science, May 2004.



EyeKeys 157

17. J. J. Magee, M. R. Scott, B. N. Waber, and M. Betke. EyeKeys: A real-time
vision interface based on gaze detection from a low-grade video camera. In IEEE
Workshop on Real-Time Vision for Human-Computer Interaction (RTV4HCI),
Washington, D.C., July 2004. IEEE Computer Society. 8 pp.

18. C.H. Morimoto, D. Koons, A. Amit, and M. Flickner. Pupil detection and
tracking using multiple light sources. Technical Report RJ-10177, IBM Almaden
Research Center, 1998. domino.watson.ibm.com/library/cyberdig.nsf/Home.

19. K. Schwerdt and J. L. Crowley. Robust face tracking using color. In Proceedings
of the Fourth IEEE International Conference on Automatic Face and Gesture
Recognition, Grenoble, France, March 2000.

20. R. Sharma, V. I. Pavlovic, and T. S. Huang. Toward multimodal human-
computer interfaces. Proceedings of the IEEE, 86(5):853–869, May 1998.

21. R. C. Simpson and H. H. Koester. Adaptive one-switch row-column scanning.
IEEE Transactions on Rehabilitation Engineering, 7(4):464–473, 1999.

22. S. Sirohey, A. Rosenfeld, and Z. Duric. A method of detecting and tracking
irises and eyelids in video. Pattern Recognition, 35(5):1389–1401, June 2002.

23. O. Takami, K. Morimoto, T. Ochiai, and T. Ishimatsu. Computer interface to
use head and eyeball movement for handicapped people. In IEEE International
Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st
Century, volume 2, pages 1119–1123, 1995.

24. J.-C. Terrillon and S. Akamatsu. Comparative performance of different chromi-
nance spaces for color segmentation and detection of human faces in complex
scene images. In Proceedings of the Fourth IEEE International Conference on
Automatic Face and Gesture Recognition, pages 54–61, Grenoble, France, March
2000.

25. Y. Tian, T. Kanade, and J. Cohn. Dual-state parametric eye tracking. In
Proceedings of the Fourth IEEE International Conference on Automatic Face
and Gesture Recognition, pages 110–115, Grenoble, France, March 2000.

26. M. Turk and G. Robertson. Perceptual user interfaces. Communications of the
ACM, 43(3):32–34, March 2000.

27. M. Yang, D. Kriegman, and N. Ahuja. Detecting faces in images: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):34–58,
January 2002.

28. D. H. Yoo, J. H. Kim, B. R. Lee, and M. J. Chung. Non-contact eye gaze
tracking system by mapping of corneal reflections. In Proceedings of the Fifth
IEEE International Conference on Automatic Face and Gesture Recognition,
pages 94–99, Washington, DC, May 2002.

29. L. Young and D. Sheena. Survey of eye movement recording methods. Behavior
Research Methods and Instrumentation, 7(5):397–429, 1975.





Map Building from Human-Computer
Interactions

Artur M. Arsenio

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
arsenio@csail.mit.edu

Online help from a human actor has a lot of potential to facilitate computer
perception. This manuscript proposes an innovative real-time algorithm – run-
ning on an active vision head – to build 3D scene descriptions from human
cues. The theory is supported by experimental results both for figure/ground
segregation of typical heavy objects in a scene (such as furniture) and for
object/scene recognition and 3D reconstruction.

1 Introduction

Embodied and situated perception [5] consists of boosting the vision capabil-
ities of an artificial creature by fully exploiting the opportunities created by
an embodied agent situated in the world [2].

Active vision proponents [1, 7], contrary to passive vision, argue for active
control of the visual perception mechanism so that perception is facilitated.
Percepts can indeed be acquired in a purposive way by the active control of a
camera [1]. This approach has been successfully applied to several computer
vision problems, such as stereo vision – by dynamically changing the baseline
distance between the cameras or by active focus selection [19].

We argue for solving a visual problem by not only actively controlling the
perceptual mechanism, but also and foremost actively changing the environ-
ment through experimental manipulation. The human body plays an essential
role in such a framework, being applied not only to facilitate perception, but
also to change the world context so that percepts are easily understood [5].

1.1 Motivation

Besides binocular cues, the human visual system also processes monocular
data for depth inference, such as focus, perspective distortion, among others.
Previous attempts have been made on exploring scene context for depth in-
ference [34]. However, these passive techniques make use of contextual cues



160 A.M. Arsenio

already present on the scene. They do not actively change the context of the
scene through manipulation to improve the robot’s perception. We propose
an active, embodied approach that actively changes the context of a scene,
extracting monocular depth measures (see Fig. 1).

Fig. 1. Control of contextual information in a scene. (a) Top: Two images: same
object at different depths? or distinct size objects? Bottom: Contextual information
removes ambiguity. The background image provides enough information for a human
to infer that there us a high probability for being the same object at different depths
(b) Information from viewing a car without being in context may result in categorical
ambiguity. If the car is viewed on a race track with trees, then it is probably a real
race car. But for toy cars, a human can easily control context, introducing contextual
references by manipulating the object

We propose an algorithm to infer depth and build 3-dimensional maps
from a distinct monocular cue: the relative size of objects on a monocular
image – special focus will be placed on using the human’s arm as a reference
measure. Another algorithm’s novelty is the real-time transmission of world-
structure to the perceptual system from the action of an embodied agent (the
human tutor). This real-time algorithm builds scene descriptions as a function
of objects, together with 3D coarse maps for the scene, through the analysis
of cues provided by an interacting human. Scene representations are then the
training inputs for a statistical real-time scene recognition algorithm, which
exploits world contextual cues.

1.2 Human-Robot Interactive Communication

Previous approaches for transferring skills from human to computers rely
heavily on human gesture recognition, or haptic interfaces for detecting human
motion. Environments are often over-simplified to facilitate the perception of
the task sequence [20]. Other approaches consist of visually identifying simple
guiding actions (such as direction following, or collision), for which both the
task’s structure and goal are well known [24].



Map Building from Human-Computer Interactions 161

Teaching a visual system information concerning the surrounding world is
a difficult task, which takes several years for a child, equipped with evolution-
ary mechanisms stored in its genes, to accomplish. Our approach exploits help
from a human in a robot’s learning loop to extract meaningful percepts from
the world. However, it should be emphasized that such help does not aim
at constraining the world structure (for instance by removing environment
cluttering or careful luminosity setup). The focus will be placed on communi-
cating information to a robot which boosts its perceptual skills, helping the
visual system to filter out irrelevant information. Indeed, while teaching a
toddler, parents do not remove the room’s furniture or buy extra lights to
just show the child a book. Help instead is given by facilitating the child’s
task of stimulus selection (for example, by pointing or tapping into a book’s
image [5]).

1.3 Map Building

Several techniques have been proposed for three-dimensional reconstruction of
environments, ranging from passive sensing techniques to active sensing using
laser range finders, or both [29]. Indeed, there is a wide selection of algorithms
available in the literature to infer depth or shape [18, 11, 17]:

• Monocular techniques for depth inference include, among others, Depth
from Motion or Shading [18], Depth from Disparity [11], Depth from Focus
[19] and Shape from Texture [13].

• Stereo techniques most often extract depth from a binocular system of
cameras [6] or by integrating multiple simultaneous views from a configu-
ration of several cameras. [17, 12].

We will focus on learning topological map representations [9] from cues
provided by interactive humans. It should be emphasized we will not argue
for more accurate results than other Stereo or Monocular depth inference tech-
niques. Indeed, the technique here proposed provides solely coarse depth in-
formation. Its power relies on providing an additional cue for depth inference,
which could be augmented by using cues from other scene objects besides the
human arm. In addition, the proposed algorithm has complementary proper-
ties to other depth inference algorithms, it does not require special hardware
(low-cost cameras will suffice) and it also outputs object segmentations.

2 Object Processing from Human-Robot Interactive
Cues

Real-time object segmentation on unstructured, non-static, noisy and low
resolution (128×128) images is a hard problem subject to a large variety of
disturbances,



162 A.M. Arsenio

• target object with similar color/texture as background
• multiple objects moving simultaneously in a scene
• object is the union of a large number of color regions

Robustness to luminosity and world structure variations is also of paramount
importance. Mobility constraints (such as segmenting heavy objects) poses
additional difficulties, since motion cannot be used to facilitate the problem.

We argue for a visual embodied strategy which is not limited to active
robotic heads. Instead, embodiment of an agent is exploited by probing the
world with a human arm. This strategy proves not only useful to segment ob-
ject descriptions from books [4], but also to segment large, stationary objects
(such as a table) from monocular images.

2.1 Figure-Ground Segregation

We propose a human aided object segmentation algorithm to tackle the figure-
ground problem, formulated as follows:

Given a monocular image which contains an object of interest, the
problem consists in determining the clusters of features in the image
which correspond to the correct representation of the apparent visual
appearance of the object.

Objects might have multiple colors, as well as multiple textures. Further-
more, their shape might be composed of several groups of closed contours.
In addition, this same richness in descriptive features usually applies for the
object background as well (for non-trivial environments). Hence, to solve the
aforementioned problem, one needs to:

• reject all clusters of features which belong to the object background
• group all clusters of features which make part of the object.

Embodiment of an agent is exploited through probing the world with a
human arm, creating a salient stimuli in the robot’s attentional system (which
is described in Sect. 2.2). The retinal location of the salient stimuli is thus
near the object. Hence the robot moves its head to gaze at it, and becomes
stationary thereafter. After saving a stationary image (no motion detected),
a batch sequence of images is acquired to extract the human arm oscillating
trajectory. Color clusters of perceptual elements in the stationary image which
intersect the human arm trajectory are grouped together to segment the visual
appearance of the object from the background.

Our approach is therefore to have a human actor to tell the robot, by
repetitive gestures, which are the set of feature clusters which make part of
an object, by pointing repetitively at them. Indeed, a significant amount of
contextual information may be extracted from a periodically moving actua-
tor. This can be framed as the problem of estimating p(on|vBp,ε , actper

p,S), the
probability of finding object n given a set of local, stationary features v on a



Map Building from Human-Computer Interactions 163

neighborhood ball B of radius ε centered on location p, and a periodic actuator
on such neighborhood with trajectory points in the set S ⊆ B. The follow-
ing algorithm implements the estimation process to solve this figure-ground
separation problem (see Fig. 2):

Stationary image

Object Template

Color Segmentation

Object mask

Actuator Template

Periodicity 
detection

Waving human arm

Object Depth
Object Shape

ActionPerception +

Training Data

Fig. 2. Algorithm for segmentation of heavy, stationary objects. A standard color
segmentation algorithm computes a compact cover of color clusters for the image.
A human actor shows the sofa to the robot, by waving on the objects’ surface. The
human actuator’s periodic trajectory is used to extract the object’s compact cover
– the collection of color cluster sets which composes the object

1. A standard color segmentation [10] algorithm is applied to a stationary
image

2. A human actor waves an arm on top of the target object
3. The motion of skin-tone pixels is tracked over a time interval (by the

Lucas-Kanade Pyramidal algorithm). The energy per frequency content
– using Short-Time Fourier Transform (STFT) – is determined for each
point’s trajectory [21].

4. Periodic, skin-tone points are grouped together into the arm mask [5]
5. The trajectory of the arm’s endpoint describes an algebraic variety [16]

over N2 (N stands for natural integers). The target object’s template is
then given by the union of all bounded subsets (the color regions of the
stationary image) which intersect this variety



164 A.M. Arsenio

Periodic detection is applied at multiple scales. Indeed, for an arm oscil-
lating during a short period of time, the movement might not appear periodic
at a coarser scale, but appear as such at a finer scale. If a strong periodicity
is not found at a larger scale, the window size is halved and the procedure
is repeated again. Periodicity is estimated from a periodogram built for all
signals from the energy of the STFTs over the frequency spectrum. These
periodograms are processed by a collection of narrow bandwidth band-pass
filters. Periodicity is found if, compared to the maximum filter output, all
remaining outputs are negligible.

The algorithm consists in grouping together the colors that form an object.
This grouping works by having periodic trajectory points being used as seed
pixels. The algorithm fills the regions of the color segmented image whose
pixel values are closer to the seed pixel values, using a 8-connectivity strategy.
Therefore, points taken from waving are used to both select and group a set
of segmented regions into the full object.

Other Object Segmentation Approaches

Previous research literature for figure/ground segregation is mainly divided in
object segmentation from video (i.e., a sequence of images) – [27] reports one
such approach – and object segmentation from a single monocular image –
which is perhaps best exemplified by the work at Berkeley University [30, 22].
Our approach does not fit exclusively in either of these: it segments an object
from a single monocular image, using information provided by humans and
extracted over a sequence of images.

Instead of using offline knowledge, our approach exploits online informa-
tion introduced in real-time by the human helper, using such information as
cues to agglomerate image regions into a coherent object. Hence, the robot is
able to infer which collection of features groups form a particular object.

Fig. 3. Segmentation of heavy, stationary objects. The arm trajectory links the
objects to the corresponding color regions



Map Building from Human-Computer Interactions 165

Experimental Results

Considering Fig. 3, both sofa and table segmentations are hard cases to solve.
The clustering of regions by table-like color content produces two disjoint re-
gions. One of them corresponds to the table, but it is not possible to infer
which just from the color content. But a human teacher can show the table to
the robot by waving on the table’s surface. The arm trajectory then links the
table to the correct region. For the sofa case, segmentation is hard because
the sofa appearance consists of a collection of color regions. It is necessary ad-
ditional information to group such regions without including the background.
Once more, a human tutor describes the object, so that the arm trajectory
groups several color regions into the same object – the sofa.

0

0.05

0.1

0.15

0.2

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
s

Positive Errors

Negative Errors

Total Error

1-big sofa 2-green chair 3-table 4-small sofa 5-door 6-blue door 7-chair 8-total (95 samples)
1 2 3 4 5 6 7 8

Fig. 4. Statistics for furniture items (random segmentation samples are also shown).
Errors given by (template area – object’s real area)/(real area). Positive/negative
errors stand for templates with larger/smaller area than the real area. Total stands
for both errors. The real area values were determined manually. A chair is grouped
from two disconnect regions by merging temporally and spatially close segmentations

Figure 4 shows segmentations for a random sample of objects segmen-
tations (furniture items), together with statistical results for such objects.



166 A.M. Arsenio

Clusters grouped by a single trajectory might either form (e.g., table) or not
form (e.g., black chair – a union of two disconnected regions) the smallest
compact cover which contains the object (depending on intersecting or not all
the clusters that form the object). After the detection of two or more tempo-
rally and spatially closed trajectories this problem vanishes – the black chair
is grouped from two disconnect regions by merging temporally and spatially
close segmentations. This last step for building templates from merging sev-
eral segmentations is more robust to errors than extracting templates from a
single event (such process is illustrated in Fig. 5).

Union of temporal & 
spatial close templates

Votes from templates: 
darker = less votes

Door template: impro-
bable pixels removed

a b c

Fig. 5. Merging temporally and spatially close templates. Example for segmenting
a door (a) Superposition of templates; (b) Each template pixel places one vote in
an accumulator map; (c) final template results by removing pixels with the smaller
number of votes

Typical errors result from objects with similar color to their background,
for which no perfect differentiation is possible, since the intersection of the
object’s compact cover of color regions with the object’s complementary back-
ground is not empty. High color variability within an object create grouping
difficulties (the compact cover contains too many sets – hard to group).

2.2 A Logpolar Attentional System

Newborns have a special interest in oscillatory patterns of movements. During
the first weeks of life, they focus attention on these type of movements for
long periods of time. As previously described, we developed a mechanism
that filters image data over time intervals according to its frequency content.
However, this strategy only works if the human actor is able to engage the
visual system, by having the active head gazing towards the object to be
segmented.

An attentional Visual System [35] was therefore implemented to facilitate
human-computer communication. This system combines salient stimulus from
different feature modalities into a saliency map. The human actor gets visual
attention to a desired object by creating a salient stimulus on such a target.



Map Building from Human-Computer Interactions 167

The human waving behavior then primes the attentional system (such bias
decreases with time) towards this stimulus (as shown in Fig. 6).

K1 K2 K3 K4

+
Saliency Map

Modulation

Human-Robot 
Interactions

Fig. 6. The attentional system running on the humanoid robot

2.3 Object Recognition – Color Histograms

As just described, a human-computer interactive approach was implemented
to introduce a humanoid robot to new percepts stored in its surrounding
world. Such percepts are then converted into an useful format through an
object recognition scheme, which enables the robot to recognize an object in
several contexts and under different perspective views. This object recogni-
tion algorithm needs to cluster object templates by classes according to their
identity. Such a task was implemented through color histograms – objects are
classified based on the relative distribution of their color pixels. A multi-target
tracking algorithm (which tracks good features [31] using a pyramidal imple-
mentation of the Lucas-Kanade algorithm), keeps track of object locations as
the visual percepts change due to movement of the robot’s active head.



168 A.M. Arsenio

New object templates are classified according to their similarity with other
object templates in an object database [3], as follows:

Given:
• a batch of n query images (from tracking) of object templates (no back-

ground)
• training data: 20 averaged color histograms in memory for each of the

m object categories learned
Recognize the set of objects:

• for k = 1, . . . , n,
1. Compute color histograms for query image k (denoted Gk)
2. set best=(-1,-1,-1)
3. for l = 1, . . . , m (for each object category l in the database of m

categories)
a) set pmax = (−1,−1)
b) for j = 1, . . . , 20,

i. compute the probability p =
∑83

i=1
minimum

(
nGi , nG

′lj
i

)
,

where G′lj is the j average color histogram in category l
ii. if p ≥ 0.7

– pmax = maximump(pmax, (j, p)))
c) if pmax �= (−1,−1) (a matching occurs for this category)

– bestk = maximump(bestk, (l, j, p)), where j and p are the two
elements of pmax (in that order)

• set category(1,. . . ,m+1)=0
• for k = 1, . . . , n,

1. if bestk �= (−1,−1,−1) (a match occurred)
– category(l)=category(l)+1, where l is the category given by the

first element of bestk

2. else (no match occurred)
– category(m+1)=category(m+1)+1

• find maxcat, the index of the maximum value in category
• if equal(maxcat, m + 1) (create new object category)

1. Set m = m + 1, minc = minimum(category(maxcat), 20)

2. initialize the average color histograms G
′m,{1,...,minc}
1,...,83 = G1,...,minc

1,...,83

3. histogramsavgm({1, . . . , minc}) = 1
else (match – update object category maxcat)
– for k = 1, . . . , n

1. set j as the second element of bestk

2. update (by weight average) the average histogram G′maxcat,j

with Gk

G′maxcat,j

1,...,83 =
histogramsavgm(j) × G′maxcat,j

1,...,83 + Gk
1,...,83

histogramsavgm(j) + 1

3. histogramsavgmaxcat(j) = histogramsavgmaxcat(j) + 1
• output identifier maxcat



Map Building from Human-Computer Interactions 169

Experimental Results

Figure 7 presents quantitative performance statistics for this algorithm (which
was extensively applied for building maps of scenes, a topic described in the
next section). The quantitative evaluation was performed from data extracted
while running online experiments on the humanoid robot Cog. The batch
number was reduced to n = 1 (object templates were classified one at a time),
and the training data consisted of stored object template images annotated
by the tracking algorithm. This table also shows the system running on the
humanoid robot Cog, while recognizing previously learned objects. Incorrect
matches occurred due to color similarity among different objects (such as a
big and a small sofa). Errors arising from labeling an object in the database
as a new object result are chiefly due to drastic variations in light sources.

5.5 
(109)

Total0.0 
(18)

Black 
chair

14.29 
(7)

Blue 
door

5.56 
(18)

Table

3.57 
(28)

Door18.2 
(11)

Small 
sofa

0.0  
(4)

Green 
chair

4.35 
(23)

Big 
sofa

Errors 
%

Recog.

objects

Errors 
%

Recog.

objects

Object recognition Object segmentation

Cog’s wide 
field of view

Cog’s foveal view
• human showing an object

Fig. 7. (left) Recognition errors. It shows the number of matches evaluated from
a total of 11 scenes (objects may be segmented and recognized more than once per
scene) and m = 7 object categories. A scene is composed by several objects extracted
from an unbounded number of images. The number in parenthesis shows the total
number of times a given object was recognized (correctly or incorrectly). Incorrect
matches occurred due to color similarity among big/small sofas or between different
objects. Missed matches result from drastic variations in light sources (right) sofa
is segmented and recognized. Out of around 100 samples from online experiments,
recognition accuracy averaged 95%

3 Three-Dimensional Environment Map Building

The world structure is a rich source of information for a visual system – even
without visual feedback, people expect to find books on shelves. We argue
that world structural information should be exploited in an active manner.
For instance, there is a high probability of finding objects along the pointing



170 A.M. Arsenio

direction of a human arm [26]. In addition, a human can be helpful for ambi-
guity removal: a human hand grabbing a Ferrari car implies that the latter is
a toy car model, instead of a real car. Hence, humans can control the image
context to facilitate the acquisition of percepts from a visual system.

We propose a real-time strategy to acquire depth information from monoc-
ular cues by having a human actor actively controlling the image context. It
consists in automatically extracting the size of objects and their depth as a
function of the human arm diameter. This diameter measure solves the image
ambiguity between the depth and size of an object situated in the world.

3.1 Coarse Depth Measures from Human Cues

Given the image of an object, its meaning is often a function of the surrounding
context. The human arm diameter (which is assumed to remain approximately
constant for the same depth, except for degenerate cases) is used as a reference
for extracting relative depth information – without camera calibration. This
measure is extracted from periodic signals of a human hand as follows:

1. Detection of skin-tone pixels over a image sequence
2. A blob detector labels these pixels into regions
3. These regions are tracked over the image sequence, and all non-periodic

blobs are filtered out
4. A region filling algorithm (8-connectivity) extracts a mask for the arm
5. A color histogram is built for the background image. Points in the arm’s

mask having a large frequency on such histogram are labeled as back-
ground.

6. The smallest eigenvalue of the arm’s mask gives an approximate measure
of a fraction of the arm radius (templates shown in Fig. 8).

Fig. 8. Human waving the arm to facilitate object segmentation. Upper row shows
a sequence for which the skin-tone detector performs reasonably well under light
saturation. Lower row shows background sofas with skin-like colors. The arm’s ref-
erence size was manually measured as 5.83 pixels, while the estimated value was
5.70 pixels with standard deviation of 0.95 pixels



Map Building from Human-Computer Interactions 171

Fig. 9. (left) An image of the lab. (right) Depth map (lighter=closer) for a table
and a chair. Perpendicularity is preserved for the chair’s disconnected regions (3D
plot)

Once a reference measure is available, it provides a coarse depth estimation
in retinal coordinates for each arm’s trajectory point. The following factors
affect the depth estimation process (see Fig. 9 for object reconstruction results,
and Table 1 for an error analysis):

Light sensitivity: This is mainly a limitation of the skin-color algorithm.
We noticed a variation in between 10–25% on size diameter for variations
in light intensity (no a-priori environment setup – the only requirement
concerns object visibility). High levels of light exposure increase average
errors.

Human arm diameter variability: Variations along people diversity are
negligible if the same person describes objects in a scene to the visual
system, while depth is extracted relative to that person’s arm diameter.

Background texture interference: The algorithm that we propose mini-
mizes this disturbance by background removal. But in a worst case sce-
nario of saturated, skin-color backgrounds, the largest variability detected
for the arm’s diameter was 35% larger than its real size.

Hence, we argue that this technique provides coarse depth estimates, in-
stead of precise, accurate ones (a statistical scheme which augments the power
of this algorithm by using cues from other scene objects besides the human
arm is described in [3]). The average depth of an object can be estimated
by averaging measures using a least squares minimization criterion – errors
are even further reduced if large trajectories are available. The algorithm has
complementary properties to other depth inference algorithms, it does not



172 A.M. Arsenio

Table 1. Depth estimation errors for objects from 5 scenes (as percentage of real
size). T stands for number of templates, N for average number of trajectory points
per template, S for light source, H and L for High/Low luminosity levels, respec-
tively. (left) Overall results (right) Depth errors for different luminosity conditions
are shown for the two sofas – top – and from all objects– bottom

24

11

17

31

28

46

T

17.9

8.00

15.75

8.63

-7.79

6.02

Mean 
error

3.87

34.94

5.80

3.95

19.02

19.41

Error 
Std

17.93

27.05

15.75

8.63

18.16

17.76

Mean 
abs error

703green chair

126door

326table

655black chair

326small sofa

305big sofa

NErrors in 
avg. depth

7.4410.6-0.98L

16.3525.30.74H

Mean 
abs error

Error 
Std

Mean 
error

S

33.4

-12.2

1.84

27.96

Mean 
error

NTS

1583L

36925Hsmall 
sofa

38439L

1467Hbig 
sofa

require special hardware (low-cost cameras will suffice) and it also outputs
object segmentations. And there are cases in which it can provide more accu-
rate results than standard depth inference techniques. Examples of such cases
include textureless images, or low resolution representations (e.g., a foveated
camera looking at a completely white table or a white wall, with no visible
boundaries). Stereo, Depth from Motion and most algorithms will fail for these
cases, but not our approach.

The availability of a collection of 3D trajectories (2-dimensional positions
and depth) from temporally and spatially closed segmentations makes pos-
sible to determine a coarse estimate for the shape of an object from such
data. A plane is fitted (in the least square sense) to the 3D data, for each
connected region in the object’s template – although hyperplanes of higher
dimensions or even splines could be used. Outliers are removed by imposing
upper bounds on the distance from each point to the plane (normalized by the
data standard deviation). Such fitting depends significantly on the area cov-
ered by the arm’s trajectory and the amount of available data. The estimation
problem is ill-conditioned if not enough trajectory points are extracted along
one object’s eigendirection. Therefore, the fitting estimation depends on the
human description of the object – accuracy increases with the area span by
the human trajectories and the number of extracted trajectory points.

3.2 Map Building from Human Contextual Cues

The object location p = (θ, ψ) in the active vision head’s gazing angles (ego-
centric coordinates), together with the estimated depth and the object’s size



Map Building from Human-Computer Interactions 173

Fig. 10. (left) Furniture image segmentations – on top – and depth map – bottom –
for the scene shown; (right) Coarse 3D map of the same scene. Depth is represented
on the axis pointing inside, while the two other axis correspond to egocentric gazing
angles (and hence the spherical deformation)

and orientation, are saved for further processing. Each point in the object’s
template is converted to egocentric coordinates using a motor-retinal map
(obtained by locally weighted regression).

A scene was defined as a collection of objects with an uncertain geometric
configuration, each object being within a minimum distance from at least one
other object in the scene. Figure 10 presents both coarse depth images and
3D reconstruction data for a typical scene in the robot’s lab. The geometry
of a scene was reconstructed from the egocentric coordinates of all points
lying on the most recent object’s template. Figure 11 presents further scene
reconstruction results without deformation for a typical scene on Cog’s room,
while Fig. 12 shows 3D plots for the same scene.

Fig. 11. (left) Scene on Cog’s room, showing stationary objects such as a sofa and a
table. A toy car waved by a human is also shown. (center) coarse depth information
(lighter corresponds to closer). Depth information on which object is modeled by
planes. (right) coarse depth information for the stationary scene (toy car removed)



174 A.M. Arsenio

Fig. 12. (top) Two different views of coarse 3D information (with color values ren-
dered) for a stationary scene. (bottom) Two different views of coarse 3D information
for the same stationary scene plus a movable toy car

Scene reconstruction was evaluated from a set of 11 scenes built from
human cues, with an average of 4.8 objects per scene (from a set of ten differ-
ent furniture items). Seven of such scenes were reconstructed with no object
recognition error, and hence for such cases the scene organization was recov-
ered without structural errors. An average of 0.45 object recognition errors
occurred per scene.

4 Localization from World Contextual Cues

Although environmental textures are also dependent on human selection,
global features such as door placement, desks and shelf location, wall division
or furniture geometry usually follow a predetermined pattern which presents
low variability. Therefore, in order to incorporate such global constraints,
wavelets [32] are selected as contextual features.

Wavelet components are obtained by transforming input monochrome im-
ages using a Daubechies-4 wavelet tree [32]. Processing is applied iteratively
through the low frequency branch of the transform over T = 5 scales, while
higher frequencies along the vertical, horizontal and diagonal orientations are
stored (because of signal polarity, this corresponds to a compact represen-



Map Building from Human-Computer Interactions 175

Fig. 13. Reconstruction of the original image (by the inverse Wavelet transform).
As suggested by [33], this corresponds to an holistic representation of the scene.
Instead of building the holistic representation using STFTs [25] or Gabor filters (as
in [33]), our approach applies Wavelets decomposition. Original and reconstruction
images are shown in pairs, with the original placed at the left side

tation of six orientations in three images). The input is thus represented by
v(x, y) = v(p) = {vk(x, y), k = 1, . . . , N}, with N = 3T (N = 15). Each
wavelet component at the ith level has dimensions 256/2i × 256/2i, and is
downsampled to a 8×8 image:

v̄(x, y) =
∑
i,j

v(i, j)h(i − x, j − y) (1)

where h(x,y) is a Gaussian window. Thus, v̄(x, y) has dimension 960. Fig-
ure 13 shows image reconstructions from sets of features p, which are also
called image sketches or holistic representation [25] of a scene. This repre-
sentation bypasses object identities, since the scene is represented as a single
identity [25], holistically. [25] and [33] apply Windowed Fourier Transforms
(similar to STFTs) and Gabor filters, respectively, as contextual features. This
manuscript proposes instead wavelets coefficients as contextual information.

Other contextual features can be found in the research literature. The
approach presented by [14] assumes prior knowledge about regularities of a
reduced world where the system is situated. [23] assumes as well a prior model,
that of a particular fixed scene. In yet another approach presented by [8], visual
routines are selected from contextual information. Unlike these approaches,
our system does not assumes any offline information or constraint about the
real-world scene. Such information is transmitted online by a human to the
robot in real-time.

Similarly to the approach in [33], the dimensionality problem is reduced
to become tractable by applying Principal Component Analysis (PCA). The
image features v̄(p) are decomposed into basis functions provided by the PCA,
encoding the main spectral characteristics of a scene with a coarse description
of its spatial arrangement:



176 A.M. Arsenio

v̄(p) =
D∑

i=1

ciϕ
i
k(p) with ci =

∑
p,k

v̄k(p)ϕi
k(p) (2)

where the functions ϕi
k(p) are the eigenfunctions of the covariance opera-

tor given by v̄k(p). These functions incorporate both spatial and spectral
information. The decomposition coefficients are obtained by projecting the
image features v̄k(p) into the principal components ci. This is computed us-
ing a database of images automatically annotated by the robot. The vector
c = {ci, i = 1, . . . , D} denotes the resulting D-dimensional input vector, with
D = Em, 2 ≤ D ≤ Tho, where m denotes a class, Tho an upper threshold and
Em denotes the number of eigenvalues within 5% of the maximum eigenvalue.
The coefficients ci are thereafter used as input context features. They can be
viewed as a scene’s holistic representation since all the regions of the image
contribute to all the coefficients, as objects are not encoded individually.

Mixture models are applied to find interesting places to put a bounded
number of local kernels that can model large neighborhoods. In D-dimensions
a mixture model is denoted by density factorization over multivariate Gaus-
sians (spherical Gaussians for faster processing times), for each object class n.
The estimation of the parameters will follow the EM algorithm [15], denoting
Gm as the mth Gaussian with mean µm and covariance matrix Cm, M as
the number of Gaussian clusters, and bm = p(gm) as the weights of the local
models.

E-step for k-iteration: From the observed data c, this step computes the a-
posteriori probabilities ek

m,n(l) of the clusters:

ek
m,n(l) = p(cm,n|c) =

bk
m,nG(c, µk

m,n, Ck
m,n)∑M

m=1 bk
m,nG(c, µk

m,n, Ck
m,n)

(3)

M-step for k-iteration: Cluster parameters are estimated according to the
maximization of the joint likelihood of the L training data samples:

bk+1
m,n =

∑L
l=1 ek

m,n(l)
L

(4)

µk+1
m,n = <c>m =

∑L
l=1 ek

m,n(l)cl∑L
l=1 ek

m,n(l)
(5)

Ck+1
m,n =

∑L
l=1 ek

m,n(l)(cl − µk+1
m,n)(cl − µk+1

m,n)T∑L
l=1 ek

m,n(l)
(6)

All vectors are column vectors and <>m in (5) represents the weighted
average with respect to the posterior probabilities of cluster m. The EM algo-
rithm converges as soon as the cost gradient is small enough or a maximum
number of iterations is reached. The probability density function (PDF) for
an object n is then given by Bayes’ rule:



Map Building from Human-Computer Interactions 177

p(on|c) = p(c|on)p(on)/p(c) (7)

where p(c) = p(c|on)p(on)+p(c|¬on)p(¬on). The same method applies for the
out-of-class PDF p(c|¬on) which represents the statistical feature distribution
for the input data in which on is not present.

Finally, it is necessary to select the number M of gaussian clusters. This
number can be selected as the one that maximizes the joint likelihood of the
data. An agglomerative clustering approach based on the Rissanen Minimum
Description Length (MDL) order identification criterion [28] was implemented
to automatically estimate M . In summary:

Given:
• for all m scene categories learned, it has in memory for each scene l

– a maximum of hl = 800 wavelet coefficient images [3], and h vec-
tors with the components of the PCA applied to this set of images
(c{1,...,hl},l)

– the parameters of the K mixture of gaussians: e{1,...,K},l({1, . . . , hl}),
b{1,...,K},l, µ{1,...,K},l and C{1,...,K},l.

• Training Data:
– a batch of n wide-field of view scene images annotated to a scene lq

by the algorithm described in the previous section.
• Classification Data:

– a query wide-field of view scene image

• TRAINING – Update scene category l with new images of the scene:
– set hlq = minimum(800, hlq +n) and store the additional n wavelet

decomposition of scene images
– apply PCA to all images in the category, and extract the new hlq

coefficient vectors (c{1,...,hlq },lq ) obtained from the PCA
– apply EM to train the new mixture of gaussians, initializing the

number of mixtures to a large value
– after convergence, a new K is estimated (Rissanen method) for the

number of gaussians, together with a new set of parameters for the
mixture of gaussians

• CLASSIFICATION – Recognize query scene image:
– for l = 1, . . . , m (for each scene category l in the database of m

categories)
· compute the probability p(c|ol) of the query scene in the mixture

of gaussians
– best = (−1,MAXFLOAT )
– for l = 1, . . . , m

1. compute p(ol|c)
2. best = minimump(ol|c)(best, (l, p(ol|c)))

– set maxcat as the first element of best
– output scene identifier maxcat



178 A.M. Arsenio

P(scene1|c) > 0.5

P(scene2|c) > 0.5

Fig. 14. Test images (wide field of view) organized with respect to p(on|c). Top
row: on = scene1, p(scene1|c) > 0.5; Bottom row: on = scene2, p(scene2|c) > 0.5

Figure 14 shows results for classifying two different scenes, which were
built using the method described in the previous section. Each time a human
presents a scene object to the robot, both foveal and wide field of view images
are saved and automatically annotated to the corresponding scene.

5 Conclusions

This chapter presented an alternative strategy to extract depth information.
The method proposed relies on a human actor to modify image context so
that percepts are easily perceived – a waving human arm in front of an object
provides an important cue concerning the size of such object.

Throughout this discussion percepts were acquired by an active vision
head on a stationary platform (the humanoid robot). This work can be ex-
tended to a mobile platform, for performing simultaneously map building and
robot localization in real-time. Whenever a scene object is recognized, the
corresponding scene 3D model where it appears and the scene’s spatial dis-
tribution of objects are updated. Images of that scene are hence annotated
automatically. The system is then able to future recognize a scene from its
image.

This human-centered framework was also applied extensively to solve other
research problems, such as teaching robots from books [4]; generating training
data for contextual priming of the attentional focus from holistic cues [3];
or learning cross-modal properties of objects, by correlating periodic visual
events with periodic acoustic signals [3]. And there is still a hough number of
potential applications for which this approach might bring benefits.



Map Building from Human-Computer Interactions 179

Acknowledgments

Project funded by DARPA’s project “Natural Tasking of Robots Based on Human

Interaction Cues” under contract number DABT 63-00-C-10102, and by the Nip-

pon Telegraph and Telephone Corporation as part of the NTT/MIT Collaboration

Agreement. Author is supported by Portuguese grant PRAXIS XXI BD/15851/98.

References

1. J.Y. Aloimonos, I. Weiss, and A. Bandopadhay. Active vision. Int. Journal on
Computer Vision, 2:333–356, 1987.

2. M. Anderson. Embodied cognition: A field guide. Artificial Intelligence, pages
91–130, 2003.

3. A. M. Arsenio. Cognitive-Developmental Learning for a Humanoid Robot: A
Caregivers Gift. PhD thesis, MIT Electrical Engineering and Computer Science
Department, September 2004.

4. A. M. Arsenio. Teaching a humanoid robot from books. In International Sym-
posium on Robotics, March 2004.

5. A. M. Arsenio. Towards and embodied and situated AI. In International
FLAIRS conference, Florida, May 2004.

6. A. M. Arsenio and J. S. Marques. Performance analysis and characterization of
matching algorithms. In International Symposium on Intelligent Robotic Sys-
tems SIRS’97, Sweden, 1997.

7. R.K. Bajcsy. Active perception. Proceedings of the IEEE, 76(8):996–1005, Au-
gust 1988.

8. A. Bobick and C. Pinhanez. Using approximate models as source of contextual
information for vision processing. In Proceedings of the ICCV’95 Workshop on
Context-Based Vision, pages 13–21, Cambridge, MA, 1995.

9. R. Chatila and J. Laumond. Position referencing and consistent world modelling
for mobile robots. IEEE International Conference on Robotics and Automation,
1985.

10. D. Comaniciu and P. Meer. Robust analysis of feature spaces: Color image seg-
mentation. In IEEE Conference on Computer Vision and Pattern Recognition,
San Juan, Puerto Rico, 1997.

11. O. Faugeras. Three - Dimensional Computer Vision: A Geometric Viewpoint.
MIT Press, 1993.

12. O. Faugeras, Q. Luong, and T. Papadopoulo. The Geometry of Multiple Images:
The Laws That Govern the Formation of Multiple Images of a Scene and Some
of Their Applications. MIT Press, 2001.

13. D. Forsyth. Shape from texture and integrability. In International Conference
on Computer Vision, Vancouver, BC, 2001.

14. D. D. Fu, K. J. Hammond, and M. J. Swain. Vision and navigation in man-made
environments: Looking for syrup in all the right places. In Proceedings of CVPR
Workshop on Visual Behaviors, pages 20–26, Seattle, Washington, 1994. IEEE
Press.

15. N. Gershenfeld. The nature of mathematical modeling. Cambridge university
press, 1999.



180 A.M. Arsenio

16. Joe Harris. Algebraic Geometry: A First Course (Graduate Texts in Mathemat-
ics, 133). Springer-Verlag, January 1994.

17. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

18. B. K. P. Horn. Robot Vision. MIT Press, 1986.
19. E. Krotkov, K. Henriksen, and R. Kories. Stereo ranging from verging cameras.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(12):1200–
1205, December 1990.

20. Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: Extracting
reusable task knowledge from visual observation of human performance. IEEE
Transactions on Robotics and Automation, 6(10), 1994.

21. J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice Hall, Upper
Saddle River, New Jersey 07458, 1990.

22. Jitendra Malik, Serge Belongie, Jianbo Shi, , and Thomas Leung. Textons, con-
tours and regions: Cue integration in image segmentation. In IEEE International
Conference on Computer Vision, Corfu, Greece, September 1999.

23. D. J. Moore, I. A. Essa, and M. H. Hayes. Exploiting human actions and
object context for recognition tasks. In Proceedings of the IEEE International
Conference on Image Processing, volume 1, pages 80–86, Corfu, Greece, 1999.

24. Monica Nicolescu and Maja J Mataric. Experience-based learning of task rep-
resentations from human-robot interaction. In IEEE International Symposium
on Computational Intelligence in Robotics and Automation, pages 463–468, Al-
berta, Canada, July/August 2001.

25. A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic represen-
tation of the spatial envelope. International Journal of Computer Vision, pages
145–175, 2001.

26. D. I. Perrett, A. J. Mistlin, M. H. Harries, and A. J. Chitty. Understanding the
visual appearance and consequence of hand action. In Vision and action: the
control of grasping, pages 163–180. Ablex, Norwood, NJ, 1990.

27. F. M. Porikli. Object segmentation of color video sequences. In International
Conference on Computer Analysis of Images and Pattern (CAIP). Springer,
September 2001.

28. J. Rissanen. A universal prior for integers and estimation by minimum descrip-
tion length. Annals of Statistics, 11:417–431, 1983.

29. V. Sequeira. Active Range Sensing for Three-Dimensional Environment Recon-
struction. PhD thesis, Department of Electrical and Computer Engineering,
IST/UTL, 1996.

30. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, (22):888–905, 2000.

31. J. Shi and C. Tomasi. Good features to track. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pages 593 – 600, 1994.

32. G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge
Press, 1996.

33. A. Torralba. Contextual priming for object detection. International Journal of
Computer Vision, pages 153–167, 2003.

34. A. Torralba and A. Oliva. Global depth perception from familiar scene structure.
MIT AI-Memo 2001-036, CBCL Memo 213, December 2001.

35. Jeremy M. Wolfe. Guided search 2.0: A revised model of visual search. Psycho-
nomic Bulletin & Review, 1(2):202–238, 1994.



Real-Time Inference of Complex Mental States
from Facial Expressions and Head Gestures

Rana El Kaliouby and Peter Robinson

Computer Laboratory
University of Cambridge
rana.el-kaliouby@cl.cam.ac.uk

peter.robinson@cl.cam.ac.uk

In this chapter, we describe a system for inferring complex mental states from
a video stream of facial expressions and head gestures in real-time. The system
abstracts video input into three levels, each representing head and facial events
at different granularities of spatial and temporal abstraction. We use Dynamic
Bayesian Networks to model the unfolding of head and facial displays, and
corresponding mental states over time. We evaluate the system’s recognition
accuracy and real-time performance for 6 classes of complex mental states
– agreeing, concentrating, disagreeing, interested, thinking and unsure. Real-
time performance, unobtrusiveness and lack of preprocessing make our system
suitable for user-independent human-computer interaction.

1 Introduction

People exhibit and communicate a wide range of affective and cognitive mental
states. This process of mind-reading, or attributing a mental state to a person
from the observed behaviour of that person is fundamental to social interac-
tion. Mind-reading allows people to make sense of other’s actions within an
intentional framework [1]. The majority of people read the minds of others all
the time, and those who lack the ability to do so, such as people diagnosed
along the autism spectrum, are at a disadvantage [2]. Beyond social inter-
action, there is growing evidence to show that emotions regulate and bias
processes such as perception, decision-making and empathic understanding,
in a way that contributes positively to intelligent functioning [8, 13, 23].

The human face provides an important, spontaneous channel for the com-
munication of mental states. Facial expressions function as conversation en-
hancers, communicate feelings and cognitive mental states, show empathy
and acknowledge the actions of other people [6, 15]. Over the past decade
there has been significant progress on automated facial expression analysis
(see Pantic and Rothkrantz [35] for a survey). The application of automated



182 R.El Kaliouby, P.Robinson

Time (sec)

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3

0

0.2

0.4

0.6

0.8

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3
Time (sec)

pr
ob

ab
ili

ty
agreeing
concentrating
disagreeing
interested
thinking
unsure

Fig. 1. Mental state inference in a video labelled as discouraging from the Mind
Reading DVD [5]: (top) Selected frames sampled every 1 s. (bottom) Results of
mental state inference. The overall probability of disagreeing is 0.75, a correct clas-
sification

facial expression analysis to human-computer interaction (HCI) however, is
limited to basic, inconsequential scenarios. This is because the majority of
existing systems either attempt to identify basic units of muscular activity
in the human face (action units or AUs) based on the Facial Action Coding
System (FACS) [16], or only go as far as recognizing the set of basic emotions
[11, 12, 14, 29, 36, 39]. The basic emotions comprise only a small subset of
the mental states that people can experience, and are arguably not the most
frequently occurring in day-to-day interactions [38].

In this chapter, we describe a system for inferring complex mental states
from a video stream of facial expressions and head gestures in real-time. The
term complex mental states collectively refers to those mental states – both
affective and cognitive – that are not part of the classic basic emotions, and
which, as a result have not been addressed by the computer science research
community. The system makes two principal contributions. First, it classifies
different shades of complex mental state classes, and second, it does so from
a video stream of facial events in real-time. Figure 1 shows the output of the
system for a video labelled as discouraging from the Mind Reading DVD [5].
It is our belief that by building systems that recognize a wide range of mental
states, we widen the scope of HCI scenarios in which this technology can be
integrated.

2 Related Work

We begin our review of related work with Garg et al.’s approach to multimodal
speaker detection [19] as this provides the inspiration for our present work. In



Real-Time Inference of Complex Mental States 183

their work, asynchronous audio and visual cues are fused along with contex-
tual information and expert knowledge within a Dynamic Bayesian Network
(DBN) framework. DBNs are a class of graphical probabilistic models which
encode dependencies among sets of random variables evolving in time, with
efficient algorithms for inference and learning. DBNs have also been used in
activity recognition and facial event analysis. Park and Aggarwal [37] present
a DBN framework for analyzing human actions and interactions in video. Hoey
and Little [22] use DBNs in the unsupervised learning and clustering of facial
displays. Zhang and Ji [42] apply DBNs to recognize facial expressions of ba-
sic emotions. Gu and Ji [20] use DBNs to classify facial events for monitoring
driver vigilance. Other classifiers that have been applied to facial expression
analysis include static ones such as Bayesian Networks and Support Vector
Machines that classify single frames into an emotion class [11, 32].

The input to the classifiers are features extracted from still or video se-
quences. While numerous approaches to feature extraction exist, those meet-
ing the real-time constraints required for man-machine contexts are of particu-
lar interest. Methods such as principal component analysis and linear discrimi-
nant analysis of 2D face models (e.g., [34]), can potentially run in real-time but
require initial pre-processing to put images in correspondence. Gabor wavelets
as in Littlewort et al. [30] are feature independent but are less robust to rigid
head motion and require extensive (sometimes manual) alignment of frames
in a video sequence. The approach that we adopt for feature extraction is
based on the movement of points belonging to facial features [12, 36, 32]. Fa-
cial analysis based on feature-point tracking compares favourably to manual
FACS coding [12].

3 The Mind Reading DVD

Existing corpora of nonverbal expressions, such as the Cohn-Kanade facial
expression database [26], are of limited use to our research since they only
cover enactments of the classic basic emotions. Instead, we use the Mind
Reading DVD [5], a computer-based guide to emotions, developed by a team
of psychologists led by Professor Simon Baron-Cohen at the Autism Research
Centre, University of Cambridge. The DVD was designed to help individuals
diagnosed along the autism spectrum recognize facial expressions of emotions.

The DVD is based on a taxonomy of emotion by Baron-Cohen et al. [4]
that covers a wide range of affective and cognitive mental states. The tax-
onomy lists 412 mental state concepts, each assigned to one (and only one)
of 24 mental state classes. The 24 classes were chosen such that the seman-
tic distinctiveness of the emotion concepts within one class is preserved. The
number of concepts within a mental state class that one is able to identify
reflect one’s empathizing ability [3].

Out of the 24 classes, we focus on the automated recognition of 6 classes
that are particularly relevant in a human-computer interaction context, and



184 R.El Kaliouby, P.Robinson

that are not in the basic emotion set. The 6 classes are: agreeing, concentrat-
ing, disagreeing, interested, thinking and unsure. The classes include affective
states such as interested, and cognitive ones such as thinking, and encompass
29 mental state concepts, or fine shades, of the 6 mental states. For instance,
brooding, calculating, and fantasizing are different shades of the thinking class;
likewise, baffled, confused and puzzled are concepts within the unsure class.

Each of the 29 mental states is captured through six video clips. The
resulting 174 videos were recorded at 30 frames per second, and last between
5 to 8 seconds, compared to a mean duration of .67 seconds per sequence in
the Cohn-Kanade database [26]. The resolution is 320×240. The videos were
acted by 30 actors of varying age ranges and ethnic origins. All the videos
were frontal with a uniform white background. The process of labelling the
videos involved a panel of 10 judges who were asked ‘could this be the emotion
name?’ When 8 out of 10 judges agreed, a statistically significant majority,
the video was included. To the best of our knowledge, the Mind Reading DVD
is the only available, labelled resource with such a rich collection of mental
states, even if they are posed.

4 The Automated Mind-Reading System

A person’s mental state is not directly available to an observer (the machine
in this case) and as a result has to be inferred from observable behaviour
such as facial signals. The process of reading a person’s mental state in the
face is inherently uncertain. Different people with the same mental state may
exhibit very different facial expressions, with varying intensities and durations.
In addition, the recognition of head and facial displays is a noisy process.

To account for this uncertainty, we pursued a multi-level representation
of the video input, combined in a Bayesian inference framework. Our system
abstracts raw video input into three levels, each conveying face-based events at
different granularities of spatial and temporal abstraction. Each level captures
a different degree of temporal detail depicted by the physical property of the
events at that level. As shown in Fig. 2, the observation (input) at any one
level is a temporal sequence of the output of lower layers.

Our approach has a number of advantages. First, higher-level classifiers
are less sensitive to variations in the environment because their observations
are the outputs of the middle classifiers. Second, with each of the layers being
trained independently, the system is easier to interpret and improve at dif-
ferent levels. Third, the Bayesian framework provides a principled approach
to combine multiple sources of information. Finally, by combining dynamic
modelling with multi-level temporal abstraction, the model fully accounts for
the dynamics inherent in facial behaviour. In terms of implementation, the
system is user-independent, unobtrusive, and accounts for rigid head motion
while recognizing meaningful head gestures.



Real-Time Inference of Complex Mental States 185

1 5 10 15 20 25 30 35 40 45 50 55

Time scale of actions: 5 frames

Time scale of displays: 30 frames

Time scale of mental states: 60 frames

1 frame

60 65

(a) Time scales at each level of the system. On level
L a single event is shown in black. The input to this
event is a sequence of events from level L − 1 (shown
in gray). A single action spans 5 frames (166ms), a
display spans 30 frames (1 s), and a mental state spans
60 frames (2 s)

video
A

ctions
D

isplays
M

ental states
2Y yY3Y

]7[]7[]7[

]2[]2[]2[

]1[]1[]1[

21

21

121

y

y

YYY

YYY
YYY

1Z 2Z zZ

1X 2X xX

1Y

][][][ 21 ttt xXXX

]6[]6[]6[

]2[]2[]2[

]1[]1[]1[

21

21

21

z

z

z

ZZZ

ZZZ
ZZZ

(b) Matrix
representa-
tion of the
output at
each level of
the system

Fig. 2. Multi-level temporal abstraction in the system

4.1 Extraction of Head and Facial Actions

The first level of the system models the basic spatial and motion characteris-
tics of the face including the head pose. These are described by z facial actions
Z = {Z1, . . . , Zz} based on the FACS. Each action describes the underlying
motion of an abstraction across multiple frames. Figure 3 summarizes the spa-
tial abstractions currently supported by the model: head rotation along each
of the three rotation axes (pitch, yaw and roll) and facial components (lips,
mouth and eyebrows). For example, Z1[t] may represent the head pose along
the pitch axis at time t; the possible values of Z1 are {AU53, AU54, null} or
the head-up AU, head-down, or neither respectively. To determine the time
scale of head and facial actions, we timed the duration of 80 head-up and
97 head-down motions in head nod gestures, sampled from 20 videos by 15
people representing a range of complex mental states such as convinced, en-
couraging and willing. The movements lasted at least 170ms, a result similar
to that in the kinematics of gestures [9]. The system produces facial or head
actions every 5 frames at 30 fps, or approximately every 166ms.



186 R.El Kaliouby, P.Robinson

head
nod

Down
AU54

up
AU53

head
shake

turn-right
AU52

turn-left
AU51

head
tilt

tilt-right
AU56

tilt-left
AU55

head
turn

lip
corner

pull

pucker
AU18

lip-pull
AU12

lip
pucker teeth mouth

open

mouth
Stretch
AU27

jaw
Drop
AU26

lips
Part

AU25

inner
Raise
AU1

eyebrow
raise

lip
depress
AU16

lip
stretcher

AU20

disagreeingagreeing concentrating

A
ctions

D
isplays

M
ental states

Pitch Yaw Roll Lips Mouth Eyebrows

outer
Raise
AU2

interested thinking unsure

Fig. 3. A video stream is abstracted spatially into head pitch, yaw and roll actions,
and lips, mouth and eyebrow actions. The actions are in turn abstracted into displays
and mental states. The displays present in a model of a mental state are determined
by a feature selection mechanism. For clarity, the displays for only two mental states
are shown

For head and facial action extraction, feature points are first located on
the face and tracked across consecutive frames using FaceTracker [18], part
of Nevenvision’s facial feature tracking SDK. Figure 4 describes the 2D model
of the face used by the system, and how the head and facial AUs are measured.
The motion of expression-invariant feature points over successive frames such
as the nose tip, nose root, and inner and outer eye corners are used to extract
head rotation parameters. This approach has been successfully used in a num-
ber of existing systems [33, 28, 39, 27]. A more accurate, but computationally
intensive approach involves tracking the entire head region using a 3D head
model [10, 17, 41]. Since our objective was to identify head actions automati-
cally and in real-time, rather than come up with a precise 3D estimate of the
head pose, a feature-point based approach was deemed more suitable than a
model-based one. Facial actions are identified from motion, shape and colour
descriptors derived from the feature points. The shape descriptors capture the
deformation of the lips and eyebrows, while the colour-based analysis is used
to extract the mouth actions (aperture and teeth).

4.2 Recognition of Head and Facial Displays

Head and facial actions are in turn abstracted into y = 9 head and facial
displays Y = {Y1, . . . , Yy}. Displays are communicative facial events such as
a head nod, smile or eyebrow flash. Each display is described by an event
that is associated with a particular spatial abstraction as in the action level.
Like actions, display events can occur simultaneously. P (Yj [t]) describes the
probability that display event j has occurred at time t. For example, Y1 may



Real-Time Inference of Complex Mental States 187

1. Head yaw P9P10
P11P12

2. Head pitch P4[t] − P4[t − 1]

3. Head roll � P9P11

4. Eyebrow raise
(P11P21+P1P17+P12P23)t

(P11P21+P1P17+P12P23)0

5. Lip pull
(AP7+AP8)t−(AP7+AP8)0

(AP7+AP8)0
> k

6. Lip pucker
(AP7+AP8)t−(AP7+AP8)0

(AP7+AP8)0
< k

7. Lips part
∑

Aperture +
∑

Teeth ≈ 0

8. Jaw drop
∑

Aperture ≥∑Teeth ≥ a

9. Teeth
∑

Teeth ≥ t

Fig. 4. Extraction of head and facial actions: (left) the 25 fiducial landmarks tracker
per frame; (right) action descriptors. Pi represents point i in the face model

represent the head nod event; P (Y1[t]|Z1[1 : t]) is the probability that a head
nod has occurred at time t given a sequence of head pitch actions. We timed
the temporal intervals of 50 head-nod (AU53) and 50 head-shake gestures;
a single display lasted 1 second on average. Accordingly, the time scale of a
single display is 30 frames at 30 fps, or 6 actions. The output progresses one
action at a time, i.e., every 166ms.

To exploit the dynamics of displays, we use Hidden Markov Models
(HMMs) for the classification of temporal sequences of actions into a cor-
responding head or facial display. Although defining the topology of an HMM
is essentially a trial-and-error process, the number of states in each HMM were
picked such that it is proportional to the complexity of the patterns that each
HMM will need to distinguish; the number of symbols were determined by
the number of identifiable actions per HMM. Accordingly, the head nod and
head shake were implemented as a 2-state, 3-symbol ergodic HMM; episodic
head turn and tilt displays as 2-state, 7-symbol HMMs to encode intensity,
lip displays such as a smile, or pucker and mouth displays as in a jaw drop
or mouth stretch, are represented by a 2-state 3-symbol HMM; the eye-brow
raise as a 2-state, 2-symbol HMM. We decided to model the HMM level sep-
arately rather than part of the DBN to make the system more modular. For
our purposes the two approaches have the same computational complexity.

4.3 Mental State Inference

Finally, at the topmost level, the system represents x = 6 mental state
events {X1, . . . , Xx}. For example, X1 may represent the mental state agree-
ing; P (X1[t]) is the probability that agreeing was detected at time t. The
probability P (Xi[t]) of a mental state event is conditioned on the most re-



188 R.El Kaliouby, P.Robinson

cently observed displays Y[1 : t], and previous inferences of that mental state
P (Xi[1 : t − 1]). We found that two seconds is the minimum time required for
a human to reliably infer a mental state; video segments of less than 2 seconds
result in inaccurate recognition results [25]. As shown earlier in Fig. 2, we
chose to sample these 2 seconds using a sliding window of 30 frames, sliding
it 6 times, 5 frames at a time. In terms of displays, the sliding window spans
1 display and progresses 6 times one display at a time.

Representation

We use DBNs to model the unfolding of head and facial displays, and cor-
responding mental states over time. DBNs are an appealing framework for
complex vision-based inference problems. DBNs function as an ensemble of
classifiers, where the combined classifier performs better than any individual
one in the set [19]. They also incorporate multiple asynchronous cues within a
coherent framework, and can model data at multiple temporal scales making
them well suited to modelling hierarchically structured human behaviour.

To represent the x mental state classes, we decided to model each men-
tal state as a separate DBN, where the hidden mental state of each DBN
represents a mental state event. The event has two possible outcomes: it is
true whenever the user is experiencing that mental state, and false otherwise.
Having a DBN per class means that the hidden state of more than one DBN
can be true; mental states that are not mutually exclusive or may co-occur
can be represented by the system.

Like all probabilistic graphical models, a DBN is depicted by its structure
and a set of parameters. The structure of the model consists of the specification
of a set of conditional independence relations for the probability model, or a
set of (missing) edges in the graph. The parameter set θi for mental state i
is described in terms of an observation function, a state-transition function,
and a prior. The observation function Bφ is parameterized by conditional
probability distributions that model the dependencies between the two nodes.
The transition function A encodes temporal dependency between the variable
in two slices of the network. The prior π the initial state distributions. The
model is given by its joint probability distribution:

P (Xi,Y, θ) = P (Y|Xi, Bφ)P (Xi|A, π)

4.4 Parameter Learning

When the data is fully observed and the network structure is known, Maxi-
mum Likelihood Estimation (MLE) can be used to estimate the parameters
of a DBN. When all the nodes are observed, the parameters Bφ can be de-
termined by counting how often particular combinations of hidden state and
observation values occur. The transition matrix A can be viewed as a second



Real-Time Inference of Complex Mental States 189

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Display Id

P
ro

ba
bi

lit
y

Agreeing

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Display Id

P
ro

ba
bi

lit
y

Concentrating

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Display Id

P
ro

ba
bi

lit
y

Disagreeing

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Display Id

P
ro

ba
bi

lit
y

Interested

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Display Id

P
ro

ba
bi

lit
y

Thinking

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Display Id

P
ro

ba
bi

lit
y

Unsure

Fig. 5. Discriminative power of head and facial displays in complex mental states.
Display Ids: 1:nod, 2:shake, 3:tilt, 4:turn, 5:lip-pull, 6:pucker, 7:mouth open, 8:teeth
present, 9:eyebrow raise

histogram which counts the number of transitions between the hidden state
values over time.

In addition to the above parameters, we define a heuristic H that quantifies
the discriminative power of a display for a mental state: H = P (Yj |Xi) −
P (Yj |X i). The magnitude of H is an indication of which displays contribute
the most (or least) to recognizing specific mental states. The sign depicts
whether it increases or decreases the probability of the mental state. Figure 5
summarizes the discriminative power of head and facial displays for 6 different
complex mental states.

A post-hoc analysis of the results of parameter estimation yields an in-
sight into the facial expressions of complex mental states. The exercise is an
important one given the little literature there is on the facial expressions of
these states. The strongest discriminator was the head shake for disagreeing
(0.42), followed by an eyebrow raise for interested (0.40). The analysis shows
that single displays are weak classifiers that do not capture complex mental
states, verifying the suitability of DBNs.



190 R.El Kaliouby, P.Robinson

Table 1. Summary of model selection results. Column i summarizes how the prob-
ability of mental state i is affected by observing evidence on each of the displays.
Row j depicts the effect of observing display j on the probability of each of the
mental states

agreeing concentrating disagreeing interested thinking unsure

head nod +0.28 -0.08 -0.05 -0.07 -0.08 -0.07
head shake -0.11 +0.42 -0.13 +0.04
head tilt -.019 -0.06 +0.34
head turn +0.18
lip corner pull +0.17 -0.17 -0.1
lip pucker -0.10 +0.1 +0.06
mouth open -0.13 +0.07 -0.14 +0.40 -0.05
teeth present -0.14 -0.14 +0.39 -0.17
eyebrow raise -0.08 -0.17 -0.15 +0.34 -0.08

Model Selection

The results of parameter estimation show that the head and facial displays
that are most relevant in discriminating mental states are not by necessity
the same across mental states. This observation provided the motivation to
implement model selection in search for the optimal subset of head and facial
displays most relevant in identifying each of the mental states. Using only the
most relevant features for the DBN structure reduces the model dimensions
without impeding the performance of the learning algorithm, and improves
the generalization power of each class by filtering irrelevant features.

Assuming the inter-slice topology is fixed, the problem of feature selection
is an optimization one defined as follows: given the set of y displays Y, select
a subset that leads to the smallest classification error for videos in a test set
of size S. Each video in the set yields T instances of mental state inference.
The classification error per video per instance is 1 − P (Xi[t]). Accordingly,
the classification error of mental state i is given by the sum of the error over
the T instances for all S videos:

ei =
1

ST

S∑
s=1

T∑
t=1

(1 − P (Xi[t])) (1)

We implemented sequential backward elimination [31] to find the opti-
mal subset of observation nodes for each mental state. Features are removed
recursively such that the classification error, ei, of the DBN model is mini-
mized. Note that the algorithm does not guarantee a global optima since that
depends on the training and test sets used.

The results of sequential backward elimination are summarized in Table 1.
A non-blank entry at cell (j, i) implies that display j is present in the DBN
model of mental state i; the number is the value of the discriminative-power
heuristic H of display j for mental state i. A positive value means that observ-
ing display j increases P (Xi); a negative one means that observing display j



Real-Time Inference of Complex Mental States 191

decreases that probability. The magnitude depicts the extent with which the
probability will change. The columns summarize how each mental state is
affected by observing evidence on each of the displays. For instance, the ta-
ble predicts that an open mouth, teeth or eyebrow raise would increase the
probability of interested, but a head nod would decrease it (assuming it was
non-zero). The row depict the effect of observing a display on the probability
of each of the mental states. For instance, observing a head shake would in-
crease the probability of disagreeing and unsure but would decrease that of
concentrating and thinking. Note that the table only provides a prediction;
the actual behaviour of the DBNs will depend on the combination of displays
recognized, their dynamics, and the probability of the previous mental states.

5 Recognition Accuracy

The accuracy is a measure of the classification performance of the system on a
pre-defined set of classes. Those classes are agreeing, concentrating, disagree-
ing, interested, thinking and unsure. The objective of this experiment was to
test how well the system performs when the 29 mental state concepts in each
of the 6 classes are included. Each concept is represented by 6 videos from
the Mind Reading DVD for a total of 174 videos. The challenge that the test
posed is that while the concepts share the semantic meaning of the class they
belong to, they differ in intensity, in the underlying head and facial displays,
and in the dynamics of these displays. To the best of our knowledge, this is
the first time different shades of a mental state are included in the evaluation
of an automated facial expression analysis system.

5.1 Classification Rule

A classification rule is needed to determine whether or not the result of clas-
sifying each video in the test set is a correct one. The classification rule that
we have used is a combination of the least-error rule with a threshold rule.
The threshold rule was necessary because the least-error rule alone ignores the
system’s explicit representation of co-occurring mental states. The classifica-
tion result for a video that is truth-labelled as i is a correct one if ei = emin

or ei ≤ 0.4, that is, if the class with the least-error matches the label of the
video, or if on the whole the inferences result in the label of the video at least
60% of the time. Figure 6 shows an example display recognition and mental
state inference in a 6-second long video labelled as undecided from the Mind
Reading DVD. Throughout the video, a number of asynchronous displays that
vary in duration are recognized: a head shake, a head tilt, a head turn, a lip
pucker, and an eye-brow raise. The displays affect the inferred mental states
over time as shown in the figure. The error value e is shown for each of the
classes over the entire video as in (1). Since undecided belongs to the unsure
class, and unsure scored the least error (and also meets the threshold), this is
an example of a correct classification.



192 R.El Kaliouby, P.Robinson

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time sec

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time (sec)

no
d

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time (sec)

sh
ak

e

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time (sec)

til
t

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time (sec)

tu
rn

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time (sec)

lip
-p

ul
l

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time (sec)

pu
ck

er

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time (sec)

op
en

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time (sec)

te
et

h

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time (sec)

br
ow

-r
ai

se

0

0.2

0.4

0.6

0.8

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7 6.0
Time (sec)

pr
ob

ab
ili

ty

agreeing
concentrating
disagreeing
interested
thinking
unsure

agreeing concentrating disagreeing interested thinking unsure

error value e 0.96 0.90 0.91 0.61 0.52 0.11

Fig. 6. Trace of display recognition and mental state inference in a video labelled
as undecided from the DVD [5]: (top) selected frames from the video sampled every
1 second; (middle) head and facial displays; (bottom) mental state inferences for
each of the six mental state classes and corresponding table of errors. Since the
least error is unsure and undecided belongs to the unsure class, this is a correct
classification



Real-Time Inference of Complex Mental States 193

5.2 Results

Out of the 174 videos, 10 were discarded because FaceTracker failed to locate
the non-frontal face on the initial frames of the videos. We tested the system
on the remaining 164 videos, which spanned 25645 frames or approximately
855 seconds. Using a leave-one-out methodology, 164 runs were carried out,
where for each run the system was trained on all but one video, and then
tested with that video. Note that chance responding is at 16.7% since this
is effectively a 6-way forced choice procedure. Chance responding describes
a classifier that picks a class at random, i.e., does not encode any useful
information.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Pe
rc

en
ta

ge

agreeing concentrating disagreeing interested thinking unsure

agreeing

concentrating

disagreeing

interested

thinking

unsure

Truth

Result

agreeing
concentrating
disagreeing
interested
thinking
unsure

76.5

88.9 81.0 76.7
64.5

76.7

mental state agreeing concentrating disagreeing interested thinking unsure TP %

agreeing 26 4 0 1 0 3 76.5

concentrating 1 16 0 0 0 1 88.9

disagreeing 1 1 17 0 0 2 81.0

interested 2 2 0 23 0 3 76.7

thinking 1 4 0 3 20 3 64.5

unsure 2 3 1 0 1 23 76.7

FP % 5.4 9.6 0.7 3.0 0.8 9.0 77.4

Fig. 7. Recognition accuracy: (top) 3D bar chart of results (bottom) confusion
matrix. The last column of the matrix is the true positive (TP) or classification rate
for each class; the last row yields the false positive (FP) rate. For a false positive
rate of 4.7%, the overall recognition accuracy of the system is 77.4%



194 R.El Kaliouby, P.Robinson

The results are summarized in the confusion matrix and 3D bar chart
in Fig. 7. Row i of the matrix describes the classification results for mental
state i. Column i states the number of times mental state i was recognized.
The last column states the true positive (TP) or classification rate for class i.
It is given by the ratio of videos correctly classified as mental state i to the
total number of videos truth-labelled as i. The bottom row yields the false
positive (FP) rate for class i, computed as the ratio of videos falsely classified
as i to the total number of videos truth-labelled as anything but i. In the
3D bar chart, the horizontal axis describes the classification results of each
mental state class. The percentage that a certain mental state was recognized
is given along the z−axis. The classification rate is highest for concentrating
(88.9%) and lowest for thinking (64.5%). The false positive rate is highest
for concentrating (9.6%) and lowest for disagreeing (0.7%). For a mean false
positive rate of 5.1%, the overall accuracy of the system is 77.4%.

5.3 Discussion

The overall accuracy of the system (77.4%) and the classification rates of each
of the 6 classes are all substantially higher than chance responding (16.7%).
Unfortunately, it is not possible to compare the results to those of other sys-
tems since there are no prior results on the automated recognition of complex
mental states. Instead we compare the results to those reported in the liter-
ature of automated recognition of basic emotions, and to human recognition
of complex mental states.

The accuracy of automated classifiers of basic emotions typically range
between 85–95% [35]. Although this is higher than the results reported here,
it is somewhat expected since the basic emotions are by definition easier to
identify than complex ones, especially in stimuli that is stripped out of context.
From an engineering point of view, the automated recognition of complex
mental states is a challenging endeavour compared to basic emotions. This is
because basic emotions have distinct facial expressions that are exploited by
automated classifiers, while the facial expressions of complex mental states
remains an open research problem. In addition, the DVD was not developed
with automation in mind, so the videos are technically challenging compared
to existing facial expression databases in a number of ways:

• Within-class variation
• Uncontrolled rigid head motion
• Multiple, asynchronous displays
• noisy evidence

Videos within a class vary along several dimensions including the specific
mental states they communicate, the underlying configuration and dynamics
of head and facial displays, and the physiognomies of the actors. In contrast,
the stimuli used in training and evaluating existing automated facial analy-
sis systems are typically more homogeneous, confined to a single prototypic



Real-Time Inference of Complex Mental States 195

expression of an emotion class. Hence, a video that varies substantially com-
pared to other videos in the class along any of these dimension may end up
being misclassified. For instance, only 60% of the videos labelled as assertive
were correctly classified as agreeing. The rest were misclassified as concentrat-
ing or unsure since the underlying displays did not contain a head nod or a
lip-corner pull (a smile) the most frequently observed displays in the agreeing
class. The accuracy results then, will largely depend on the specific concepts
that are picked for training and testing in each class and how different are
their underlying displays. When the mental state concepts that share the un-
derlying head/facial displays are only the ones picked for training and testing
the system, the results reported are much higher. For example, in an earlier
version of the system we reported an overall accuracy of 89.5% for 106 videos
that cover 24 mental state concepts [24].

In terms of the underlying head and facial displays, there were no re-
strictions on the head or body movements of the actors, and there were no
instructions given on how to act a mental state. Hence, the resulting head
gestures and facial expressions are natural, even if the mental state is posed.
In addition, while each video is given a single mental state label, it comprises
of several asynchronous head and facial displays. Processing displays in con-
text of each other by considering the transitions between displays, boosts the
recognition results of humans for complex mental states [25]. Existing auto-
mated facial analysis systems of basic emotions, on the other hand, rely solely
on facial expressions for classification and do not support the recognition of
head gestures. Accordingly, the stimuli used in evaluating these systems is
often restricted in terms of rigid head motion: the actors of these images or
videos are either asked not to move their head, or are asked to exhibit very
controlled head motion, and typically consists of a small number of frames
limited to a single facial expression.

Finally, the head and facial display HMM classifiers are imperfect: displays
may be misclassified or may pass undetected by the system altogether. Both
cases will result in incorrect evidence being presented to the mental state
DBNs. Depending on the persistence of the erroneous evidence, its location
within the video, and its discriminative power, the resulting mental state
inferences may be incorrect. Figure 8 shows an example of misclassification
due to noisy evidence. The 5.7 second long video is labelled as vigilant, and
is in the concentrating class. The output starts with a high probability of
concentrating, which drops to 0 when a head shake is observed at 3.0 seconds.
The head shake however, is a falsely detected display that persists for 1 second.
At 5.0 seconds the head shake is no longer observed, and the probability of
concentrating shoots up again. Unfortunately though, the effect of the head
shake was such that concentrating did not score the least error and did not
meet the 0.4 threshold and the video ended up being misclassified.

In a preliminary study [25] we show that human recognition of complex
mental states from the Mind Reading DVD [5] is lower than that of the classic
basic emotions, and reaches an upper bound of 71% for videos from the DVD.



196 R.El Kaliouby, P.Robinson

Time(sec)

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7
Time (sec)

sh
ak

e

0

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7
Time (sec)

tu
rn

0

0.2

0.4

0.6

0.8

1

0.0 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 5.3 5.7
Time (sec)

pr
ob

ab
ili

ty

agreeing
disagreeing
thinking
concentrating
unsure
interested

agreeing concentrating disagreeing interested thinking unsure

error value e 0.93 0.50 0.51 1.0 0.99 0.17

Fig. 8. Incorrect classification due to noisy evidence: (top) selected frames – sampled
every 1 second – from a video labelled as vigilant from the DVD [5]; (middle) head
and facial displays; (bottom) mental state inferences for each of the six mental state
classes and corresponding table of errors. Note the effect of the false head shake on
decreasing the probability of concentrating. The rest of the displays are not shown
since there was nothing detected by the HMMs

At 77.4%, the results of the automated mind-reading system are comparable
to that of humans.

6 Real-Time Performance

Real-time performance pertains to a system’s ability to respond to an event
without a noticeable delay. Executing in real-time is crucial since the idea
is that applications adapt their responses depending on the inferred mental
state of the user; it is pointless for an application to respond to a confused
user long after she is no longer experiencing this mental state.

6.1 Objectives

The objective of this analysis is to quantify the real-time performance of the
automated mind-reading system. The throughput and the latency are typi-
cally used to quantify the real-time performance of a vision-based system [40].



Real-Time Inference of Complex Mental States 197

The throughput is the number of events that are processed per unit time.
For the automated mind-reading system, the throughput translates to the
number of mental state inferences made per second. The latency is defined
as the time elapsed, or delay, between the onset of an event and when the
system recognizes it. For the automated mind-reading system, the latency
translates to the time it takes the system to infer the mental state, from the
time a frame is captured.

6.2 Results

The processing time at each level of the system was measured on a 3.4GHz
Pentium IV processor with 2GB of memory. The results are summarized
in Table 2. For feature point tracking, Facetracker runs at an average of
3.0ms per frame of video at a resolution of 320×240 captured at 30 fps. The
time taken to extract a single action was sampled over 180 function calls. On
average, head-action function calls took 0.02ms per frame depending on the
amount of head motion in the frame; facial-action function calls lasted 0.01ms
per frame. In total, this level of the system executes at 0.09ms per frame.
The time taken to compute the probability of a head/facial display was also
sampled over 180 invocations of the HMM inference algorithm. On average,
a call to the HMM inference lasts 0.016ms. Since there are nine displays
implemented so far, this level of the system executes at 0.14ms every five
frames. Finally, the implementation of fixed lag smoothing of the six previous
inferences using unrolled junction tree inference for a DBN with an average
of seven nodes (one hidden mental state and six observation nodes) takes
6.85ms per slice. Hence, this level executes at 41.10ms for the six complex
mental states.

Table 2. The processing time at each level of the automated mind-reading system
(measured on a 3.4GHz Pentium IV processor with 2GB of memory)

level tracking action-level display-level mental state-level total

time (ms) 3.00 0.09 0.14 41.10 44.33

6.3 Discussion

To be deemed as real-time, the throughput of the system has to be at least
six instances of mental states inferences per second to keep up with the input.
This is because the DBNs are invoked every 5 frames at a capture rate of
30 frames per second. Also, the latency of the system has to be comparable
to the latency of high-level facial expression recognition in humans, which
ranges between 140–160ms [7]. In our current implementation, the DBNs are
the bottleneck of the system. Nonetheless, since 41.1ms is less than 166ms,



198 R.El Kaliouby, P.Robinson

the system runs in real-time. The total processing time for a frame is 44.34ms.
In terms of scalability, feature-point tracking, the extraction of head and facial
actions and displays all run in linear time. At the mental state level, inference
runs in polynomial time in the number of nodes [21].

7 Conclusion

The two principal contributions of this chapter are: 1) an automated system
for inferring complex mental states, 2) a system that classifies the video input
in real-time. The results also yield an insight into the optimal subset of facial
and head displays most relevant in identifying different mental states. We
reported promising results for the recognition accuracy and speed performance
of 6 classes of complex mental states. Further research is needed to test the
generalization power of the system by evaluating the system on a completely
different previously unseen corpus of videos. The system we have presented
serves as an important step towards integrating real-time facial affect inference
in man-machine interfaces.

Acknowledgments

The authors would like to thank Professor Simon Baron-Cohen and Ofer Golan
at the Autism Research Centre, University of Cambridge for making the Mind
Reading DVD available to our research. This research was funded by the Com-
puter Laboratory’s Wiseman Fund, the Overseas Research Student Award,
the Cambridge Overseas Trust, and Newnham College Studentship Research
Award.

References

1. Simon Baron-Cohen. How to Build a Baby That Can Read Minds: Cognitive
Mechanisms in Mindreading. Current Psychology of Cognition, 13(5):513–552,
1994.

2. Simon Baron-Cohen. Mindblindness: An Essay on Autism and Theory of Mind.
MIT Press, 1995.

3. Simon Baron-Cohen. The Essential Difference: The Truth about the Male and
Female Brain. Perseus Publishing, 2003.

4. Simon Baron-Cohen, Ofer Golan, Sally Wheelwright, , and Jacqueline Hill. A
New Taxonomy of Human Emotions. 2004.

5. Simon Baron-Cohen, Ofer Golan, Sally Wheelwright, and Jacqueline J. Hill.
Mind Reading: The Interactive Guide to Emotions. London: Jessica Kingsley
Publishers, 2004.



Real-Time Inference of Complex Mental States 199

6. Simon Baron-Cohen, Angel Riviere, Masato Fukushima, Davina French, Julie
Hadwin, Pippa Cross, Catherine Bryant, and Maria Sotillo. Reading the Mind in
the Face: A Cross-cultural and Developmental Study. Visual Cognition, 3:39–59,
1996.

7. Magali Batty and Margot J. Taylor. Early Processing of the Six Basic Facial
Emotional Expressions. Cognitive Brain Research, 17:613–620, 2003.

8. Antoine Bechara, Hanna Damasio, and Antonio R. Damasio. Emotion, Decision
making and the Orbitofrontal Cortex. Cereb Cortex, 10(3):295–307, 2000.

9. Ray Birdwhistell. Kinesics and Context. University of Pennsylvania press, 1970.
10. Marco La Cascia, Stan Sclaroff, and Vassilis Athitsos. Fast, Reliable Head

Tracking under Varying Illumination: An Approach Based on Registration of
Texture-Mapped 3D Models. IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), 22(4):322–336, 2000.

11. Ira Cohen, Nicu Sebe, Fabio G. Cozman, Marcelo C. Cirelo, and Thomas S.
Huang. Learning Bayesian Network Classifiers for Facial Expression Recognition
with both Labeled and Unlabeled Data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 595–
604, 2003.

12. Jeffrey F. Cohn, Adena J. Zlochower, James J. Lien, and Tokeo Kanade. Auto-
mated Face Analysis by Feature Point Tracking has High Concurrent Validity
with Manual FACS coding. Psychophysiology, 36:35–43, 1999.

13. Antonio R. Damasio. Descartes Error: Emotion, Reason and the Human Brain.
Putnam Sons: NY, 1994.

14. Gianluca Donato, Marian Stewart Bartlett, Joseph C. Hager, Paul Ekman, and
Terrance J. Sejnowski. Classifying Facial Actions. IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI), 21(10):974–989, 1999.

15. Paul Ekman. Human Ethology, chapter About Brows: Emotional and Conver-
sational Signals, pages 169–200. London: Cambridge University Press, 1979.

16. Paul Ekman and Wallace V. Friesen. Facial Action Coding System: A Technique
for the Measurement of Facial Movement. Consulting Psychologists Press, 1978.

17. Murat Erdem and Stan Sclaroff. Automatic Detection of Relevant Head Ges-
tures in American Sign Language Communication. In Proceedings of the Interna-
tional Conference on Pattern Recognition (ICPR), volume 1, pages 10460–10463,
2002.

18. FaceTracker. Facial Feature Tracking SDK. Neven Vision, 2002.
19. Ashutosh Garg, Vladimir Pavlovic, and Thomas S. Huang. Bayesian Networks

as Ensemble of Classifiers. In Proceedings of the International Conference on
Pattern Recognition (ICPR), volume 2, pages 20779–220784, 2002.

20. Haisong Gu and Qiang Ji. Facial Event Classification with Task Oriented Dy-
namic Bayesian Network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 2, pages 870–875, 2004.

21. Haipeng Guo and William H. Hsu. A Survey of Algorithms for Real-Time
Bayesian Network Inference. In AAAI/KDD/UAI Joint Workshop on Real-
Time Decision Support and Diagnosis Systems, 2002.

22. Jesse Hoey and James J. Little. Bayesian Clustering of Optical Flow Fields. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
volume 2, pages 1086–1093, 2003.

23. Alice M. Isen. Handbook of Emotions, chapter Positive Affect and Decision
Making, pages 417–435. Guilford Press, New York, 2000.



200 R.El Kaliouby, P.Robinson

24. Rana el Kaliouby and Peter Robinson. Real-Time Inference of Complex Mental
States from Facial Expressions and Head Gestures. In 2004 IEEE Workshop on
Real-Time Vision for Human-Computer Interaction at the 2004 IEEE CVPR
Conference, 2004.

25. Rana el Kaliouby, Peter Robinson, and Simeon Keates. Temporal Context and
the Recognition of Emotion from Facial Expression. In Proceedings of HCI
International Conference, 2003.

26. Tokeo Kanade, Jeffrey Cohn, and Ying-Li Tian. Comprehensive Database for
Facial Expression Analysis. In Proceedings of International Conference on Au-
tomatic Face and Gesture Recognition, pages 46–53, 2000.

27. Ashish Kapoor and Rosalind W. Picard. A Real-Time Head Nod and Shake
Detector. In Proceedings of the Workshop on Perceptive User Interfaces, 2001.

28. Shinjiro Kawato and Jun. Ohya. Real-time Detection of Nodding and Head-
shaking by Directly Detecting and Tracking the “Between-Eyes”. In Proceedings
of International Conference on Automatic Face and Gesture Recognition, pages
40–45, 2000.

29. James J. Lien, Adena Zlochower, Jeffrey F. Cohn, and Tokeo Kanade. Auto-
mated Facial Expression Recognition. In Proceedings of International Confer-
ence on Automatic Face and Gesture Recognition, 1998.

30. Gwen Littlewort, Marian Stewart Bartlett, Ian Fasel, Joel Chenu, Takayuki
Kanda, Hiroshi Ishiguro, and Javier R. Movellan. Towards Social Robots: Au-
tomatic Evaluation of Human-robot Interaction by Face Detection and Expres-
sion Classification. In S. Thrun and B. Schoelkopf, editors, Advances in Neural
Information Processing Systems, volume 16, 2004.

31. Thomas Marill and David M.Green. On the Effectiveness of Receptors in Recog-
nition Systems. IEEE Transactions, IT-9:11–27, 1963.

32. Philipp Michel and Rana el Kaliouby. Real Time Facial Expression Recognition
in Video using Support Vector Machines. In Proceedings of the IEEE Interna-
tional Conference on Multimodal Interfaces (ICMI), pages 258–264, 2003.

33. Carlos Morimoto, Yaser Yacoob, and Larry Davis. Recognition of Head Gestures
using Hidden Markov Models. In Proceedings of the International Conference
on Pattern Recognition (ICPR), pages 461–465, 1996.

34. C. Padgett and G. Cottrell. Identifying Emotion in Static Images. In Proceedings
of the second Joint Symposium of Neural Computation, volume 5, pages 91–101,
1995.

35. Maja Pantic and Leon J.M. Rothkrantz. Automatic Analysis of Facial Expres-
sions: The State of the Art. IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), 22:1424–1445, 2000.

36. Maja Pantic and Leon J.M. Rothkrantz. Expert System for Automatic Analysis
of Facial Expressions. Image and Vision Computing, 18:881–905, 2000.

37. Sangho Park and J.K. Aggarwal. Semantic-level Understanding of Human Ac-
tions and Interactions using Event Hierarchy. In IEEE Workshop on Articulated
and Non Rigid Motion at the IEEE Conference on Computer Vision and Pattern
Recognition, 2004.

38. Paul Rozin and Adam B. Cohen. High Frequency of Facial Expressions Corre-
sponding to Confusion, Concentration, and Worry in an Analysis of Naturally
Occurring Facial Expressions of Americans. Emotion, 3(1):68–75, 2003.

39. Ying-Li Tian, Takeo Kanade, and Jeffrey Cohn. Recognizing Action Units for
Facial Expression Analysis. IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), 23(2):97–115, February 2001.



Real-Time Inference of Complex Mental States 201

40. Matthew Turk and Mathias Kolsch. Emerging Topics in Computer Vision,
chapter Perceptual Interfaces. Prentice Hall PTR, 2004.

41. Jing Xiao, Toekeo Kanade, and Jeffrey F. Cohn. Robust Full Motion Recovery of
Head by Dynamic Templates and Re-registration Techniques. In Proceedings of
International Conference on Automatic Face and Gesture Recognition, volume 1,
pages 163–169, 2002.

42. Yongmian Zhang and Qiang Ji. Facial Expression Understanding in Image
Sequences Using Dynamic and Active Visual Information Fusion. pages 1297–
1304, 2003.





Epipolar Constrained User Pushbutton
Selection in Projected Interfaces

Amit Kale, Kenneth Kwan, and Christopher Jaynes

Department of Computer Science and
Center for Visualization and Virtual Environments
University of Kentucky, Lexington
amit@cs.uky.edu

khkwan0@cs.uky.edu

jaynes@cs.uky.edu

An almost ubiquitous user interaction in most HCI applications is the task
of selecting one out of a given list of options. For example, in common desk-
top environments, the user moves the mouse pointer to the desired option
and clicks it. The analog of this action in projector-camera HCI environments
involves the user raising her finger to touch one of the different virtual but-
tons projected on a display surface. In this chapter, we discuss some of the
challenges involved in tracking and recognizing this task in a projected immer-
sive environment and present a hierarchical vision based approach to detect
intuitive gesture-based “mouse clicks” in a front-projected virtual interface.

Given the difficulty of tracking user gestures directly in a projected envi-
ronment, our approach first tracks shadows cast on the display by the user and
exploits the multi-view geometry of the camera-projector pair to constrain a
subsequent search for the user’s hand position in the scene. The method only
requires a simple setup step in which the projector’s epipole in the camera’s
frame is estimated. We demonstrate how this approach is capable of detecting
a contact event as a user interacts with a virtual pushbutton display. Results
demonstrate that camera-based monitoring of user gesture is feasible even
under difficult conditions in which the user is illuminated by changing and
saturated colors.

1 Introduction

In the recent past there has been a significant body of research focused on cam-
era projector systems. This is partly due to the observation that camera-based
calibration of projected displays allows very-large, cost-effective immersive dis-
plays with very little setup or maintenance burden placed on the user [7, 14, 2].



204 A.Kale, K.Kwan, C. Jaynes

This research has spawned many smart projector applications such as scal-
able alignment of large multi-projector displays [14, 9], smarter interfaces for
controlling computer based presentations [22, 11], and dynamic shadow elimi-
nation [8, 1]. Perhaps most importantly, camera-projector research has begun
to explore the development of very flexible visually immersive environments,
e.g., “Office of the Future” [15] that offer completely new applications.

Given the scientific and commercial interest in these emerging technologies,
a natural next step is to exploit the the camera-projector system to support
human-computer interaction (HCI) [20, 21]. The system must be able to detect
human gesture, interpret the context of the action, and respond appropriately.
Understanding human actions is an active area of research in computer vision.
However, when this task is transferred from the domain of an ambient (or
controlled) environment to a situation in which the user may be illuminated
by the projected imagery, the problem takes on a new dimension. For instance,
traditional approaches to tracking may fail when the user is illuminated by
varying (and saturated) colors. Surprisingly, this situation is likely to occur
in many of the new display environments that are emerging from the multi-
projector display community.

Although the work presented here assumes the presence of a front-projected
display (and cast shadow of the gesture), the assumption is not overly restric-
tive. In addition, some of the principles used to track and recognize gesture
in a front-projection environment can be used to alleviate some of the same
problems with tracking user gestures against a changing back-projected dis-
play. Front-projected displays are recently used in favor of back-projected and
controlled display walls due to lower cost, space savings, and ease of main-
tenance. Immersive environments that emphasize reconfigurability, and rapid
deployment [8], almost certainly cannot assume the presence of backprojection
screens. Finally, new applications that emphasize display on everyday surfaces,
anywhere [20, 23], by definition cannot support controlled backprojection dis-
play. Given these new applications, it is important that camera-based HCI
methods are developed that do not degrade when users are illuminated by a
projector.

One approach to camera-based HCI in a projected display is to opportunis-
tically capture and process imagery while the projectors are synchronously
turned off. This is the approach taken by the the blue-c project [6] that ac-
quires a volumetric model of the user within a projected display. Given the 3D
reconstruction of the subject in an immersive environment, event detection
can be achieved by directly analyzing the three-dimensional configuration of
the user and determining if it corresponds to a particular event. This and
similar approaches address the problem of projected illumination by shutter-
ing the projected light to remove its effects from the user [6], detecting and
eliminating light projected on the user altogether [1], or simply by disallow-
ing HCI to occur in the frustum of a projector. Although these approaches
have met various levels of success, they require specialized hardware (gen-lock



Epipolar Constrained User Pushbutton Selection in Projected Interfaces 205

and expensive high shutter rate projectors), or make assumptions about the
environment (i.e., that the projected image is known or fixed).

A common user input in many HCI applications is the task of selecting
one out of a given list of options. Users of common desktop environments
achieve this by moving the mouse pointer to the desired option and clicking
it. The analog of this action in an immersive environment involves the user
raising her finger to touch one of several virtual buttons projected on the
display surface. In this chapter, we discuss some of the challenges involved
in performing this task in an immersive projected environment and present
a hierarchical vision based approach to detect this “mouse click” or contact
event. This work is motivated by the following observation: shadows cast by
users interacting within an immersive environment are often simpler to detect
than the occluder. Detected shadows can constrain the location of the occluder
and are often sufficient to recognize simple gestures. Rather than viewing
shadows as an obstacle, we can exploit information given by the shadow to
expedite the detection of a contact event. Segen and Kumar [16] have used
joint shadow and hand information for gesture recognition. However their
approach relies on using hue values of skin for detection of the hand region.
In projected interfaces or immersive environments detection of skin region (as
we shall see in Sect. 2) can be quite difficult.

Initially, the epipole of the projector in the camera’s frame is estimated
using a novel approach that requires very little user input. The shadow of the
hand is detected and tracked using a mean-shift tracker. Using appropriate his-
togram metrics, the onset of the contact event is detected. The tracked shadow
and the projector epipole define a constrained region that could contain the
occluding object (hand). Background subtraction is used to extract the hand
from the restricted epipolar swath region. The Euclidean distance between
the hand centroid and the tracked hand-shadow is computed to detect the
contact event. Because we employ geometric constraints, the computational
burden normally associated with tracking and monitoring can be reduced and
real-time rates can be achieved. Experimental results are presented for the
case where a user interacts with three virtual buttons on the screen. Initial
results demonstrate that contact approach, and the contact event itself can
be measured robustly using our method.

This chapter is organized as follows: in Sect. 2 we discuss challenges in
gesture recognition in immersive environments. In Sect. 3 the details of the
algorithm are covered. Section 4 presents the experimental results and Sect. 5
concludes the chapter with speculation about how constrained tracking of user
gesture via detected shadows may be applied to a wider range of gestures
common to user interfaces.



206 A.Kale, K.Kwan, C. Jaynes

2 Challenges for HCI in Immersive Environments

Most current automated approaches for recognizing hand gestures [12] rely
on detection and tracking of skin regions. In order to detect skin regions the
raw RGB color values are usually transformed to a color-space where hue is
measured against known target values. A comparison of different color-space
transformations for skin detection is discussed in [17]. As an example, consider
the transformation to the HSV space. Independent of ethnicity, skin regions
are restricted to either very low or very high values of hue under ambient
lighting and a simple algorithm for skin detection can be obtained by setting
appropriate thresholds on hue values in the scene. These settings are fairly
robust for a particular (non-changing) lighting scenario.

An immersive environment or even projected interface is fundamentally a
constantly changing, interactive display. The changing radiometric character-
istics may be approximated and taken into account [8], by underlying image
processing algorithms, but these approximations are often insufficient to sup-
port straightforward skin detection or are far too complex to estimate and
then use at real-time rates. As a user is illuminated with projected informa-
tion the hue of the skin is transformed based on the color being projected.

One of the ways to deal with this problem is to perform automatic white
balancing [4] under a given colored lighting. Assuming that a certain region
viewed by the camera is white, we can compensate its color values to remove
the bias introduced by non-white illumination. However, white balancing may
not correctly restore the hue of the skin regions to their ambient values. Fur-
thermore if more than one color is projected white balancing may become
complicated and expensive. This is an issue when real-time performance is
desired. Another approach is to model skin appearance under different illumi-
nations by building histograms of skin pixels under different illuminations [18].
Figure 1 shows the RGB and hue images of the hand for ambient and color
illuminations. As can be seen, under color illumination some backgrounds can
attain hue characteristics of skin. Detection and tracking of skin regions under
varying illumination is thus a hard problem. To circumvent this difficulty, it
would then be necessary to simply shutter off the projected information [6, 1],
or require that the user does not enter the frustum of any projector. Fast
shuttering of projected energy requires additional expensive hardware and
may not be feasible for large scale multi-projector environments. Turning off
projected information has been explored for situations in which users may be
“blinded” by projected energy, but requires an accurate model of what is pro-
jected at each frame. This information is simply unavailable to an interactive
display.

3 Proposed Methodology

The work presented here is motivated by the observation that shadow regions
are relatively easy to detect and track even under widely varying illumination.



Epipolar Constrained User Pushbutton Selection in Projected Interfaces 207

(a) (b) (c)

(d) (e) (f)

Fig. 1. Images of the hand taken under different illuminations. RGB images for
(a) Ambient lighting. (b) Saturated Blue Color. (c) Saturated Magenta Color. Hue
images for (d) Ambient lighting. (e) Saturated Blue Color. (f) Saturated Magenta
Color

Detection and tracking of the hand regions is a rather formidable problem as
we saw in Sect. 2. Ultimately, interface gestures are performed by the user
and his/her hands and not the shadows on the display surface. However, by
tracking the shadow we can infer the appropriate search region for the hand in
the scene. Moreover, the position of both the shadow and the casting object can
yield information to a gesture recognition system. Here we detail how we track
both regions (when appropriate) and how the measured distance between the
hand and its shadow is a robust image-based measure of detecting the contact
event.

Considering the non-rigid nature of the hand, a mean-shift tracker is used
to track the centroid of this hand-shadow region. It is necessary to track the
hand centroid only when the hand is close to the screen containing the virtual
buttons. This proximity of the hand to the screen can be detected by the
occlusion of the shadow of the hand by the hand itself. After detecting the
onset of contact, the estimated epipolar geometry between the camera and
projector can be used to restrict the search region for the hand. Additional
information about the approximate color-mapping between the camera and
projector as well as the contents of the projector frame buffer at any given
instant is then used to detect the presence of the user’s hand within this
small search region. The Euclidean image distance between the centroid of
the tracked hand shadow and the centroid of the hand region is measured and
when this distance drops below a threshold, the color in the neighborhood of
the hand shadow centroid is declared to be the corresponding virtual button
“pressed” by the user.



208 A.Kale, K.Kwan, C. Jaynes

3.1 Projector Epipole Estimation

A data projector is a dual of a camera and the projection process can be
modeled using the standard pinhole camera model. Given a shadow on the
display surface and detected in a camera image, the corresponding occluding
object must lie along an epipolar line in the image that relates the multi-
view geometry of the projector-camera pair. Our approach is to estimate the
position of this projector epipole in the frame of the camera and the constrain
the search for the user hand via the implied epipolar lines that emanate from
the detected shadow.

One way of determining the epipole for a camera-projector pair is to com-
pute a pair of homographies between them by determining matchpoints be-
tween the devices on two different world planes. The epipoles in the two images
can then be computed by solving the generalized eigenvalue problem for the
two homographies [10]. This idea was used by Raskar and Beardsley [13] as
an intermediate step in the camera-projector calibration problem. In order
to obtain the homographies it is necessary to vary the configuration of the
system with respect to the plane which can prove to be cumbersome. For our
problem all we need to restrict the search space for the hand is the location
of the projector epipole. A much simpler approach can be used in order to
do this. Presence of an occluder in the frustum of the projector will cast a
shadow on the screen. In an image of the object and its shadow, the line
joining a point on the object and its shadow will pass through the projector
epipole. Thus, given two pairs of corresponding object-shadow points, the join
of their lines determines the epipole. More formally, let (o1, s1) and (o2, s2) be
the image plane coordinates (expressed in homogeneous coordinates) of two
distinct world points. Then the epipole e can be determined as

e = l1 × l2 (1)

where l1 = o1 × s1 and l2 = o2 × s2 where × represents the cross product. In
practice, it is necessary to consider more points when estimating the epipole.
A simple way to do this is to simply move a suitable object in the field of view
of the camera. Pairs of points on the object and their corresponding shadows
can be used to generate the lines passing through the projector epipole. Using
these lines and (1) estimates of the epipoles can be obtained. During this
bootstrapping process, the projector is instructed to project white to alleviate
the tracking problems that this chapter addresses.

3.2 Mean-Shift Tracking

In order to track the shadow it is necessary to compute the location of the hand
shadow in the first image. Prior shape information about the hand shadow re-
gions and the location of the shadow can constrain the initial tracking system.
One way to compute the location of the hand shadow is to use the chamfer



Epipolar Constrained User Pushbutton Selection in Projected Interfaces 209

system [5]. Alternatively, if the approximate areas where shadows are likely
to emerge on the display are known, simpler search techniques can be used.

The intensity histogram of the image patch around the detected centroid of
the hand-shadow region as it emerges from the edge of the monitoring camera
defines the target histogram. Taking into account the non-rigid nature of
the hand, we use the mean-shift tracking algorithm of Comaniciu et al. [3] to
robustly update the estimated position of the cast shadow. Mean-shift tracking
is based on maximizing the likelihood of the model (hand shadow) intensity
distribution and the candidate intensity distribution using the Bhattacharyya
coefficient.

ρ(m) =
n∑

u=1

√
qupu(m) (2)

where m is the center of the hand region, n is the number of bins in the
distribution, and qu and pu are the weighted histograms of the model and
candidate respectively. The weights for the histograms are obtained using the
Epanechnikov kernel. The center of the hand region in the next frame is found
using

mnew =
∑nh

i=1 xiwig(‖mold − xi‖)∑nh

i=1 wig(‖mold − xi‖) (3)

where xi are the pixels in the image patch, g is the derivative of the Epanech-
nikov kernel and nh denotes the number of pixels. The weights wis are com-
puted as

wi =
n∑

u=1

δ[b(xi) − u]
√

qu

pu(m)
(4)

where δ(.) is the Kronecker delta function and b(.) is a function that associates
to a pixel the index of the histogram bin corresponding to the intensity value
associated with the pixel. As the hand starts making contact with the virtual
buttons the shadow of the hand starts getting occluded by the hand. This
occlusion of the hand-shadow indicates the onset of contact. In order to detect
this, it is necessary to compare the tracked shadow region in the neighborhood
of its centroid in the present frame to the target histogram. One measure could
simply be the number of shadow pixels. This measure is not scale invariant
however. It is more appropriate to consider scale invariant metrics, e.g., the
Bhattacharyya distance which is also used for the mean-shift tracker

dBhattacharyya(p, q) =

√√√√1 −
n∑

u=1

√
qupu(m) (5)

Another scale-invariant histogram distance metric is the chi-squared distance
defined by (6) which has been used in [19] for scene change detection in digital
video sequences

dχ2 =
n∑

u=1

(qu − pu(m))2

(qu + pu(m))
(6)



210 A.Kale, K.Kwan, C. Jaynes

Fig. 2. A few images taken from our experimental setup. The white lines connect
the corners of the window enclosing the hand shadow region to the epipole

3.3 Detection of the Contact Event

A simple way of detecting contact is to consider the value of this metric as a
function of time. When the metric is sufficiently large, contact can be assumed
to have occurred. However this simple scheme has the disadvantage that the
extent to which the hand occludes the shadow varies based on the location
of the user with respect to the display. Hence it is more appropriate to use
this temporal metric information only to signal the onset of contact. Once the
onset of the contact has been detected it is necessary to detect the true hand
position in the image plane. Knowing the projector epipole, a simple way to
limit the search region is to construct a swath region starting at the corners of
the window enclosing the hand shadow centroid. Furthermore, since the hand
is assumed to be close to the shadow when the shadow begins to be occluded
it is possible to limit the depth of this epipolar swath.

Given this implied search area on the image plane, there are several options
to determining the location of the users hand. One way is to compute an edge-
map within the swath region and compute its centroid. On nearing contact
the centroid of this edge-map would be expected to merge with the centroid of
the hand shadow. Alternatively if the image displayed by the projector does
not change too rapidly and the color transfer function between the camera
and projector is known, a simple background differencing between the swath
region in the current image and the reference image can be used to detect the
presence of the hand.

4 Experimental Results

The approach was tested using a single- ceiling mounted projector p while a
camera, mounted approximately 20 degrees off-axis also on the ceiling moni-
tors the scene. Three different colored buttons were projected and the subject
was instructed to touch each button sequentially. Figure 2 shows a few im-
ages from the dataset. This section discusses the implementation details of
our approach and explores the robustness of the virtual touchbutton detec-
tion system.



Epipolar Constrained User Pushbutton Selection in Projected Interfaces 211

1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400

800

900

1000

1100

1200

1300

1400

1500

X position −−−−> 

Y
 p

o
si

tio
n

 −
−

−
−

>

Estimation of epipole

Fig. 3. Estimates of epipoles obtained by considering pairs of object-shadow points
from several images of a rectangular board

In order to use this method it is necessary to compute the epipole. As
discussed in Sect. 3, this requires several object-shadow point correspondences.
In order to simplify the task of establishing correspondence, a rectangular
board was moved around in the field of view of the camera. About 40 images
were captured and the estimates of epipole locations were obtained using (1).
Figure 3 shows the estimated epipoles. Since the camera and projector axes are
almost parallel to each other there is considerable variance in the estimated
epipoles. The epipole used in our experiments is the mean of this cloud of
points. Clearly, the approach is unable to provide accurate information about
the epipole position for traditional multi-view calibration tasks. However, only
a rough estimate is required to constrain the subsequent search of the user’s
hand position.

Assuming that the person has an outstretched finger for the touchbutton
gesture, the initial shadow region in the image is detected by thresholding the
intensity values and analyzing the shape characteristics of the cast shadow.
Of course the shadow changes shape according to a perspective projection
of the hand to the display surface so these shape constraints must be quite
weak. A rectangular binary mask is translated horizontally and its correlation
with the shadow regions is computed. Since we assume an outstretched finger,
the correlation in the finger (shadow) region will be smaller than that in the
hand (shadow) region. The first instance of a large change in the correlation
value can be used to approximately detect the hand shadow region. Given



212 A.Kale, K.Kwan, C. Jaynes

the estimated hand shadow location in the first frame, the histogram of the
intensity values around the location is computed. This histogram is used as the
target histogram. Note that unlike [3] the target histogram is one-dimensional.
Mean shift iterations as described in [3] are used to track the centroid of the
hand shadow in each frame.

In order to detect the onset of contact, the distance between the his-
togram of the hand-shadow region around the tracked centroid and the target
histogram for each frame is computed. Note that at the end of each mean
shift iteration the Bhattacharyya distance, computed using (5), between the
target histogram and the histogram for the image-patch around the centroid
is available. However we wanted to explore if a different histogram distance,
e.g., chi-squared distance, computed using (6) would be more suitable for
this task. Both the Bhattacharyya distance and the chi-square histogram dis-
tance measures were tested for detection of onset of contact. Figure 4 shows
a comparison of the distance measures for a video sequence of the person
touching the virtual buttons and then withdrawing. The peaks in the plot
correspond to the person making contact with the virtual buttons (caused
by occlusion of the shadow by the hand) while the valleys correspond to the
persons hand being far away from the virtual buttons(no occlusion). The solid
curve shows the chi-squared distance while the dash-dotted curve shows the
Bhattacharyya distance as a function of time. As can be seen from this fig-
ure, for a fixed threshold, the chi-squared distance exceeds the threshold less
frequently than the Bhattacharyya distance. This is because the chi-square
distance, since it uses the square of the difference in the histogram values,
penalizes differences more when they are large, whereas small differences are
penalized less. For the case shown in Fig. 4 and for a threshold chosen to
be 0.2, the chi-squared distance exceeds the threshold for 30% of the frames
while the Bhattacharyya distance does so for 60% of the frames. Furthermore
none of the true contact onsets were missed by the chi-squared distance for
the chosen threshold. Since crossing the threshold implies that the hand cen-
troid must be computed, using the chi-squared distance leads to a reduction
in the amount of computation as compared to the Bhattacharyya distance.
When the chi-squared distance exceeds the specified threshold, it is necessary
to look for the hand. Given the approximate location of the epipole (obtained
as discussed earlier) the search region is restricted appropriately. In particular
we consider a window around the tracked position of the hand shadow. The
epipolar swath region is determined by the lines joining the opposite corners
of the window with the epipole. Figure 2 shows the epipolar swath region
constructed for a few images in our dataset. Furthermore, since the onset of
contact has been detected by the histogram distance, it is not necessary to
consider the entire epipolar swath. It is sufficient to traverse a limited dis-
tance along the epipolar swath direction. Figure 5a shows the intensity image
within the delimited swath region. Since the camera and projector axes are
almost parallel the lines connecting the corners of the window to the epipole
are almost parallel to each other. Given this delimited epipolar swath region



Epipolar Constrained User Pushbutton Selection in Projected Interfaces 213

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Frames  −−−−> 

D
is

ta
n

ce
 −

−
−

−
>

Bhattacharyya Distance
Chi−squared Distance

Fig. 4. Comparison between Bhattacharyya and chi-squared distances for detection
of onset of contact. Observe that for a given threshold the chi-squared distance has
fewer crossovers

it is necessary to compute the hand centroid in this region. One approach to
this problem is to consider the edge-map within this region. This edge map
would consist of edges from the hand as well as the shadow regions. As the
hand starts making contact with the screen the centroid of the combined edge
region would be expected to merge with the centroid of the hand shadow.
However the drawback of this approach is that as the person makes contact
with the middle and top buttons, his/her hand passes through at least one
other button. This results in detection of spurious edges which causes the
centroid computation to be unstable and resulting in false positives. Hence a
more robust approach must be sought. Assuming that the display does not
change very rapidly and that the color calibration between the camera and
projector is known, one simple solution to this problem is to consider a sim-
ple pixel-wise background subtraction within the delimited swath region. As
the number of pixels in this region is significantly smaller than that of the
entire region (less than 4% of the total number of pixels in most cases)the
added computational burden is not as significant as compared to an approach
that uses background subtraction for the entire image. In particular the hand
region is computed as

Ihand(i, j) =


1 if (i, j) ∈ ES and |Ihand(i, j) − Iref(i, j)| > T1 and

and Ihand(i, j) > T2

0 otherwise



214 A.Kale, K.Kwan, C. Jaynes

where ES denotes the epipolar swath, T1 denotes a threshold to determine if
the pixel is a foreground pixel,and T2 is a threshold to determine if the pixel
is a shadow pixel. The estimated hand region corresponding to the intensity
image in Fig. 5a is shown computed from the above equation is shown in
Fig. 5b. The Euclidean distance between the tracked shadow centroid and
the hand region is then computed. When the distance falls below a certain
threshold, contact is declared. The color of region in the neighborhood of the
contact region can be inspected to take the appropriate course of action.

Figure 6 shows the Receiver Operating Characteristics (ROC) plots for
the contact event (hypothesis H1) versus no contact (hypothesis H0). The
ROC plots the probability of detection of the contact event (PD) against the
probability of a false alarm (PF ). The video was analyzed manually to detect
which frames had the contact event happen in them. The threshold for the
histogram distance was set at a value so that no contact event was missed.
The plot was generated by varying the threshold on the Euclidean distance
between the hand and shadow regions and counting the number of times the
contact event gets detected when no contact has occurred (for PF ) and when
contact has occurred (for PD), for a given threshold. The total number of
frames was 243 out of which 31 frames had the contact event happen.

The ROC can be used to choose a threshold to get a good tradeoff between
PD and PF .

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(a) (b)

Fig. 5. Delimited epipolar swath region constructed after the onset of contact has
been detected. (a) Intensity Image. (b) Binary Image showing the hand region after
background subtraction



Epipolar Constrained User Pushbutton Selection in Projected Interfaces 215

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr(False Alarm)  −−−−> 

P
r(

D
e

te
ct

io
n

) 
 −

−
−

−
>

Fig. 6. Receiver Operating Characteristics for the contact event (hypothesis H1)
versus no contact (hypothesis H0)

5 Conclusions and Future Work

In this chapter we presented a method for detecting contact events which
can work under the arbitrary lighting conditions typically encountered in an
interactive, projected display. Instead of using skin tone detection (which can
be unreliable under varying lighting conditions), the approach focuses on the
shadow cast by the hand. The location of the hand shadow is detected and
tracked using a mean shift tracker. Since the hand occludes the shadow before
contact happens, the deformation of the hand-shadow region is then used to
detect the onset of contact. A novel method which required very little user
input was introduced to estimate the projector epipole. After detecting the
onset of contact, the epipole was used to define a restricted search region for
the hand. Background subtraction was then used to extract the hand from
the restricted epipolar swath region. The Euclidean distance between the hand
centroid and the tracked hand-shadow was computed to detect the contact
event. The experimental results showed that the contact approach and the
contact event itself can be measured robustly using our method.

Our approach used a single-camera projector pair. Future work would
focus on achieving greater view invariance. For instance, in the experimental
setup we have considered, there are certain positions in the camera’s field of
view in which the person completely occluded the hand-shadow.One possible
approach to remedy this situation would be to use multiple cameras. It would
also be interesting to use 3D information about the hand by using the shadow



216 A.Kale, K.Kwan, C. Jaynes

and a full calibration between the camera-projector pair similar to Segen and
Kumar [16].

References

1. T. Cham, J. Rehg, R. Sukthankar, and G. Sukthankar. Shadow elimination and
occluder light suppression for multi-projector displays. Proc. of CVPR, 2003.

2. H. Chen, R. Sukthankar, G. Wallace, and K. Li. Scalable alignment of large-
format multi-projector displays using camera homography trees. Proc. of IEEE
Visualization, 2002.

3. D. Comaniciu, V. Ramesh, and P. Meer. Real time tracking of non-rigid objects
using mean shift. Proc. of CVPR, 2000.

4. D. A. Forsyth. A novel algorithm for color constancy. International Journal of
Computer Vision, 5(1):5–36, 1990.

5. D. M. Gavrila. Pedestrian detection from a moving vehicle. Proc. of European
Conference on Computer Vision, 2000.

6. M. Gross. Blue-c: A spatially immersive display and 3d video portal for telep-
resence. Immersive Projection Technology and Virtual Environments, 2003.

7. C. Jaynes, W. B. Seales, K. Calvert, Z. Fei, and J. Griffioen. The metaverse- a
networked collection of inexpensive, self-configuring immersive environments.
7th International Workshop on Immersive Projection Technology, 9th Euro-
graphics Workshop on Virtual Enviroments, 2003.

8. C. Jaynes, S. Webb, M. Steele, M. Brown, and B. Seales. Dynamic shadow
removal from front projection displays. Proc. of the ACM SIGGRAPH 1998,
1998.

9. C. Jaynes, S. Webb, and R. M. Steele. A scalable framework for high-resolution
immersive displays. International Journal of the IETE, 48, 2002.

10. B. Johansson. View synthesis and 3d reconstruction of piecewise planar scenes
using intersection lines between the planes. Proc. of ICCV, pages 54–59, 1999.

11. Claudio Pinhanez. Creating ubiquitous interactive games using everywhere dis-
plays projectors. Proc. of the International Workshop on Entertainment Com-
puting, 2002.

12. C. Rao, A. Yilmaz, and M. Shah. View-invariant representation and recognition
of actions. International Journal of Computer Vision, 50(2), 2002.

13. R. Raskar and P.A. Beardsley. A self-correcting projector. Proc. of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), 2001.

14. Ramesh Raskar, Michael S. Brown, Ruigang Yang, Wei-Chao Chen, Greg Welch,
Herman Towles, Brent Seales, and Henry Fuchs. Multi-projector displays using
camera-based registration. Proceedings of IEEE Visualization, 1999.

15. Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin, and Henry
Fuchs. The office of the future : A unified approach to image-based modeling
and spatially immersive displays. Proc. of the ACM SIGGRAPH 1998, 1998.

16. J. Segen and S. Kumar. Shadow gestures: 3-d hand pose estimation using a
single camera. Proc. of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), 1999.

17. M.C. Shin, K. I Chang, and L.V Tsap. Does colorspace transformation make
any difference on skin detection? Proc. of the Workshop on Applications of
Computer Vision, 2002.



Epipolar Constrained User Pushbutton Selection in Projected Interfaces 217

18. M. Soriano, B. Martinkauppi, S. Huovinen, and M. Laaksonen. Skin detection
in video under changing illumination conditions. Proc. of ICPR, pages 839–842,
2000.

19. R. M. Soriano, C. Robson, D. Temple, and M. Gerlach. Metrics for scene change
detection in digital video sequences. Proceedings of the IEEE International
Conference on Multimedia Computing and Systems, 1997.

20. N. Sukaviriya, M. Podlaseck, R. Kjeldsen, A. Levas, G. Pingali, and C. Pinhanez.
Augmenting a retail environment using steerable interactive displays. Proc. of
CHI, 2003.

21. R. Sukthankar, R. Stockton, and M. Mullin. Self-calibrating camera-assisted
presentation interface. Proceedings of International Conference on Control, Au-
tomation, Robotics and Computer Vision, 2000.

22. R. Sukthankar, R. Stockton, and M. Mullin. Smarter presentations: exploiting
homography in camera-projector systems. Proc. of the ICCV, 2001.

23. Ruigang Yang and Greg Welch. Automatic projector display surface estimation
using every-day imagery. 9th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision 2001, 2001.





Part III

Looking Ahead





Vision-Based HCI Applications

Eric Petajan

face2face animation, inc.
eric@f2f-inc.com

Vision-based HCI promises to simultaneously provide much more efficient
communication from human to computer, and increased security using biomet-
ric identity verification. This chapter describes mature and currently deployed
applications while offering reasons for slow deployment. System architecture
and social issues are also explored resulting in the recommendation of a client-
server architecture with standards like MPEG-4 Face and Body Animation
(FBA) for optimal resource utilization; especially given the rapid adoption of
powerful mobile devices as the primary HCI device.

1 Introduction

A growing number of people are spending more and more time interacting
with electronic machines that are increasingly mobile, wireless, and compact.
The world is in love with mobile devices as evidenced by the one billion phones
in use today. While personal computer users will continue to spend time with
larger fixed displays or medium sized portable displays, many times more
people will own mobile phones with small displays. Eventually, the choice of
display size will be independent of the choice of content. This independence is
well on its way to realization as we watch video on our phones and drive our
flat screen HDTV displays with computers. The cost of mobile web access is
dropping rapidly while handsets are offered with a range of display sizes from
tiny to a handful. The drop in cost of HD displays has caused a proliferation
of flat panel displays in public spaces, the workplace, vehicles, and, of course,
the home. In general, the flow of information from machine to human has
progressed steadily with improvements in display technology, graphics chips,
bandwidth, and battery life. However, the flow of information from human to
machine is still mostly limited by the keyboard and mouse for the input of
symbolic and spatial information. This one-way bottleneck in communication
is especially constricted with mobile devices where keyboards are not very
practical and require much more effort to use. If one’s hands or eyes are busy



222 E.Petajan

while driving, walking, or handling something, the use of all but the simplest
tactile interfaces is impractical or even hazardous for most people. Fortunately,
the audio-visual computer input modalities can be used when the hands, eyes
and ears are busy. Furthermore, the physical size of cameras, microphones,
and processors will eventually be smaller than the smallest mobile display.

Each HCI modality has distinct advantages and limitations. An optimal
HCI system should provide the user with the right combination of tactile, au-
dio and visual modes given the amount of mobility and information exchange
required at the time. The visual input modality is the least developed due to
hardware cost and system complexity. The audio/speech input modality is still
not reliable enough for widespread use, but integration with visual speech and
gesture [1] recognition should significantly increase tolerance for audio mode
recognition errors. Speech and gesture recognition are both the most widely
used and natural human communication modes, and the least supported in
current HCI systems. Most people can speak much faster than they can type
and if Automatic Speech Recognition (ASR) was faster and more reliable it
would be widely used for HCI. The incorporation of visual speech recognition
into ASR promises [2, 3, 4] to provide sufficient robustness for general use.
Simultaneously, face and voice recognition could also be deployed to identify
the user. Finally, as vision-based HCI becomes a personal appliance that is
always on and networked, audio and visual privacy will need to be secured and
reliably controlled by the user. As the other electronic components continue
miniaturization, the size and power consumption of the display will eventu-
ally be the first consideration when the user chooses an information appliance.
Power consumption can be minimized at any time by placing as many appli-
cations on servers as possible while treating the personal appliance as a thin
client.

While this book deals with vision-based interfaces, the audio modality is a
necessary component of the ultimate HCI. Since the human face is the center
of human communication, a primary requirement of vision-based HCI systems
must be the capture and understanding of speech and emotional state using
both audio and visual modalities. These two modes are uniquely suited for the
acquisition of human behavior in that no physical contact is required, free-
ing the hands to perform other tasks. However, the lack of physical contact
between human and device increases the possibility that audio or visual in-
formation about or associated with the user will be inadvertently transmitted
to unintended recipients. Given the fallible nature of human beings and the
lack of security inherent in legacy networks and computers, a secure privacy
solution will necessarily be implemented as part of the local audio/visual ac-
quisition system. It should also provide the user with continuous feedback and
training for optimal positioning, voice level, and use of gestures, while main-
taining awareness of the user’s presence and identity. Limitations, some tem-
porary and some fundamental, have impeded the realization of this utopian
HCI system. This chapter explores how the receding of limitations should



Vision-Based HCI Applications 223

result in significant progress toward vision-based HCI for the masses, while
certain applications are enabled in the short term.

2 System Architecture Considerations

The simultaneous demand for mobility, access to resources and information,
and visual privacy points to the use of a client-server architecture where the
HCI is part of a thin client with reliable data communication to the server.
Given that state-of-the-art video codecs can’t compress video enough for low
latency transmission over consumer networks, the vision processing must be
performed locally. The human features that result from vision processing can
be easily compressed for further processing, either locally, or on a server de-
pending on the remaining local resources. The avoidance of video transmission
across the network is also required to protect visual privacy.

2.1 The Mobile Energy Crisis

The consumer electronics industry has succeeded in packing large amounts of
processing power into small devices. If necessary, custom VLSI can be used to
realize virtually any computer vision system on a single chip. Unfortunately,
power requirements limit the clock speed and performance of VLSI in mobile
applications. Fuel cells may eventually become practical but for now small,
wireless devices are fundamentally limited in processing power by battery
life and size, and storage capacity and retrieval speed are also limited by
energy supply. The impact of energy storage limitations on mobile device
performance is reduced by the availability of wireless communication networks
that can provide distributed processing and data storage. However, wireless
communication (and especially transmission from the wireless device) also
consumes power in proportion to bandwidth. Fortunately, a variety of audio,
video, graphics, and data compression standards are available to optimize the
tradeoff between bandwidth and codec processing requirements.

Wireless vision-based HCI devices must process video from one or more
cameras in real-time and deliver the resulting human behavior data stream
to an application which performs a desired function. While video compres-
sion algorithms have progressed steadily over the years, the delivery of high
quality video over wireless networks requires either too much power or too
much bandwidth to be practical today. These limitations and the negative
effects on vision algorithm performance from video coding artifacts will force
the placement of vision processing onto the wireless device. Fortunately, the
human behavior data stream is highly compressible and can be transmitted
over any wireless network using standards such as MPEG-4 [5, 6].



224 E.Petajan

2.2 User Imaging and Cooperation

An inherent challenge facing vision-based HCI is imaging of the user. The
video camera solutions for a particular application environment must address
both resolution requirements and camera position and orientation. The con-
tinued improvements and reduced cost of CCD and CMOS image sensors has
recently made HD video capture available at SD video prices. In particular,
the availability of 60 frame per second, HD progressive scan, color video cam-
eras provides new levels of detail and increased field of view. The use of camera
pan/tilt controllers further expands the user’s freedom of movement.

If performance is more important than cost, size or power consumption,
then multiple cameras should be used to provide depth from stereo, reduce oc-
clusions, and reduce feature extraction errors by averaging or outlier removal.
Stereo imaging certainly provides better face detection and tracking perfor-
mance than single camera imaging and face tracking must be reliable enough
to perform subsequent individual feature tracking (e.g., eyes and mouth).
However, detailed stereo imaging of the face is fundamentally difficult due to
a combination of smooth patches (cheeks), holes (nostrils, mouth), and hair;
all of which can cause these algorithms to fail. Alternatively, features extracted
from each camera can be combined by either averaging or removing outliers.
Also note that stereo imaging performance is strongly affected by camera sep-
aration which should be optimized for the expected range of the subject. If
stereo correspondence is not used, cameras can be placed to accommodate any
range of subject motion, or placed in a cluster to increase resolution and/or
field of view. Ultimately, a combination of stereo and feature integration can
be deployed subject to camera placement constraints.

When automatic user imaging fails, the user can be engaged to either
move the HCI device or move her self into view. At this point in the HCI
session, the system must present an audio and/or visual display to the user
assuming that she intends to interact with the system. In many application
scenarios, the content of this display must be understandable to new users
with neither experience nor prior intention to use the system. Since people
are especially attentive to the human face and voice, the display of a talking
human, humanoid, or character is the best way to engage the user in a dialog
and optimize her position relative to the camera(s) and microphone(s). The
implementation of a talking virtual agent is partitioned into the animation
system and the language system. The language system sends animation in-
structions to the animation system with associated synchronized voice. The
stream of animation instructions is inherently low in bit-rate after compression
and the animation system is only moderately complex. However, the language
system can be very complex and require access to large speech databases and
sufficient processing power for real-time response. The best solution for this
combination of conditions is, again, a client-server architecture.



Vision-Based HCI Applications 225

2.3 Lighting

The type and position of light sources in the environment obviously directly
determine the image signal to noise ratio and variations in appearance of ob-
jects in the scene. The degree to which lighting can be controlled or predicted
depends on a variety of conditions including user comfort, level of mobility of
the HCI device, exposure to sunlight, and the physical/economic practicality
of light fixture placement. Non-visible light sources (near infrared) can pro-
vide some relief from user comfort issues but must be used cautiously to avoid
injury to the retina. Infrared imaging can also be used for some applications.

One’s face, body, clothing and accessories are rich with stable color infor-
mation; at least for some period of time in the case of skin. The ideal camera
would be sensitive from infrared to ultraviolet with each pixel expressed as a
spectral array of intensities. Image sensors today have non-uniform sensitivity
and rely on optical filters to quantize the spectrum. Therefore additional tech-
nology with significant additional cost is needed to produce broad-spectrum
cameras. The camera is still the cost driver in many applications so the added
cost of non-visible imaging may be difficult to justify in consumer applications.

People are quite sensitive to lighting; especially if they are trying to read
a screen in a well-lit environment. Diffuse lighting is more comfortable than
point sources, and minimizing lighting contrast is also important. Another
advantage of diffuse lighting is that shadows are minimized and surface ap-
pearance is more stable. A disadvantage of diffuse lighting is that “shape from
shading” algorithms are less useful.

2.4 Dialog Systems

The need for a dialog system [7] depends on the predictability of the user’s
behavior and objectives and also on the degree of user cooperation. For exam-
ple, at one extreme, no dialog system is needed for vision-based surveillance
because the user is not cooperative at all. An example at the other extreme
would be an immersive virtual environment with interactive virtual humans
or characters. The modes of a given dialog system are chosen based on each
modes attributes and weaknesses. The dispersion of the human voice is both
useful for broadcast communication and problematic when privacy is desired
or noise pollution is a concern. The tactile input mode (keyboard, mouse,
touch screen) is tedious for most people but privacy is easier to maintain. The
visual capture of human behavior (emotional state, speech, body position)
can be accomplished without disturbing others, at a distance, or covertly.
However, the reliable capture of arbitrary human behavior in a surveillance
environment is still a research frontier. In general, the presentation of audio
and visual information to users can be accomplished with the desired degree
of privacy; while the user’s voice is the most difficult machine input mode to
keep private. In addition, the acquisition and recognition of the user’s voice
is strongly affected by both voice volume and distance to the microphone,



226 E.Petajan

compelling users of current systems to speak loudly even if the microphone is
close to the mouth. The acoustic input mode suffers from pollution, reliability,
and privacy issues. The visual input mode also suffers from reliability issues
but should enhance the performance of the acoustic input mode and reduce
and possibly eliminate the need for higher voice volume.

The reliable capture of audio/visual user behavior is more easily accom-
plished when the user is guided and trained and the system can predict when
additional guidance and training dialog are needed. While machine under-
standing of free speech has yet to be fully realized, user speech and emotional
state recognition can be used to improve machine understanding of user intent,
especially when the user is trained to limit the dialog domain. The achieve-
ment of unrestricted dialog between human and machine would be the most
convincing demonstration of artificial intelligence. Only a client-server archi-
tecture can provide the heavy resources needed to achieve the most advanced
dialog systems.

2.5 Privacy and Security

The need for security and user identity verification in all computing and net-
work systems could be satisfied using audio/visual HCI. The rigorous engi-
neering and careful deployment required for any secure system is especially
needed with a vision-based system because security is needed for both the vi-
sual privacy control and access control subsystems. Fortunately, the real-time
acquisition of human behavior data on a local device could provide protection
of visual privacy while allowing accurate identity verification over a wireless
network by avoiding the transmission of video over the network. The user
must be able to reliably control the flow of camera-generated video that is
output from the local device. Automatic camera control and video commu-
nication systems must be carefully designed to ensure that user cooperation
and understanding are maintained. While consumer software companies are
not accustomed to lawsuits for malfunction and the typical End User License
Agreement (EULA) is notoriously one sided, violations of privacy and security
that result from poor design could cause consumer revolt or impede adoption.

2.6 Multi-Model Biometrics

The post 9/11 focus on biometrics-based security has resulted in accelerated
deployment of available systems and a government drive to collect biometrics
information from as many citizens as possible. The need for identity verifica-
tion is clear but commercial systems available today suffer from low accuracy,
vulnerability to spoofing, or civil rights and privacy issues. For example, a
static biometric such as fingerprints can be copied in order to spoof the sys-
tem. Fingerprints can also be left behind and used to track the past location
of people enrolled in the system without their knowledge. Face recognition is



Vision-Based HCI Applications 227

not very reliable and is also spoofable. It has the advantage of not requiring
physical contact with the user and being socially acceptable. Voice recogni-
tion accuracy degrades badly in noisy environments but is difficult to spoof (in
quiet conditions) if a challenge response protocol is used (prompting the user
for particular utterances). The combination of face and voice recognition and
visual speech recognition promises to provide identity verification with much
greater accuracy than either mode alone without vulnerability to spoofing.
Iris scan is also an option that can be incorporated into access control system
applications where lighting and close-view cameras can be used. When the mo-
tivation to spoof the system is high and only static biometrics (hand, finger,
face, and iris) are collected for unattended access there is a danger of dismem-
berment by violent criminals. The use of audio/visual biometrics promises to
provide accurate identity verification at a distance without endangering the
user or violating his privacy. A client-server architecture provides the best
protection of user images and voice by secure containment in the HCI device
while enabling access control over low bit-rate networks by transmission of
compressed audio/visual biometric features (e.g., MPEG-4).

3 Common Application Environments

People need access to information and other people on a moment by mo-
ment basis using constantly varying modes that are optimized dynamically.
The mobile phone/PDA is currently a handheld voice (and limited video)
communicator with less than 50kilobits per second of reliable bandwidth and
adequate audio/visual display. Vision-based user input to mobile phones is
currently processor limited but could be implemented in VLSI in the relative
near term. Vision-based HCI in vehicles, home, office and public terminals
is not constrained by stringent power and size requirements and will be de-
ployed much sooner using commodity components. This section examines how
each major application environment presents challenges and opportunities to
developers of HCI.

3.1 Mobile

While mobile HCI devices are necessarily handled by the user, fixed HCI de-
vices should interact with the user without requiring physical contact. Busy
multitasking people need information and communication systems that work
with whatever input modes are practical at the moment. We would all benefit
from the option to interact with machines using human-to-human interaction
modes (vision and voice) in addition to the traditional modes (tactile). All
environments suffer from acoustic noise. This has required the use of close-
talking microphones for reliable communication and machine recognition. The



228 E.Petajan

integration of visual speech processing into the HCI will bring speech recog-
nition performance up to practical levels for a much greater number of ap-
plications without requiring close-talking microphones or elevated voice level.
Visual communication with alternate appearance and face/voice recognition
for identity verification can also be added as server applications.

3.2 Vehicles

The need for vision-based HCI is greatest for drivers of vehicles given that
they are visually occupied while struggling to use tactile interfaces for phone,
navigation, and entertainment control. This situation is hazardous enough to
compel state lawmakers in a growing number of states to outlaw holding and
talking on a cellphone while driving. While voice recognition in vehicles per-
forms poorly due to acoustic noise, audio/visual speech recognition promises
to perform reliably enough to be practical. In addition, the recognition of
the user’s mental state, e.g., fatigue level, using machine vision of head pose
and eyelid opening will save lives. Multimodal biometrics applications could
also be deployed using face and voice recognition to verify the identity of the
driver. Trucks and other large vehicles should be equipped with reliable and
convenient driver identification systems.

3.3 Public Terminals

Automatic teller machines (ATMs), vending machines, and grocery store
checkout machines are located in public places and currently use simple tactile
HCI and a magnetic strip. Public terminals must have robust and minimal
tactile interfaces in order to survive dirt, weather, and hostile users. As the
use of cash declines and is replaced with electronic payment systems that
verify identity the incidence of theft and fraud has increased dramatically.
Current credit card security measures do little to foil the determined criminal
and electronic identity theft is increasing from already significant levels. Fin-
gerprint readers are highly accurate but could endanger the user or violate
his privacy. A major advantage of vision-based HCI for public terminal ap-
plications is the ability to complete transactions and verify identity while the
user’s hands are busy or gloved (no contact required). An advantage of public
terminals for vision-based HCI (as opposed to mobile or desk-based locations)
is the ability to control the camera placement and possibly the lighting, and
model the variations in lighting and view of the users. The use of an animated
talking face to engage the user in a dialog should help to reduce the variation
in possible user responses. The user can be quickly trained to position herself
within view of the camera(s) even if the user was not originally intending to
interact with the system. For better or worse, vending machines with talking
face dialog systems that beckon to passersby will eventually be deployed.



Vision-Based HCI Applications 229

3.4 Vision-Based HCI for PCs and Game Consoles

The keyboard and mouse continue as the HCI of choice for personal com-
puters in spite of the availability of speech recognition systems that require
close-talking microphones for sufficient accuracy. Low typing speed and repet-
itive strain injuries are still preferred over state-of-the-art speech recognition
systems. While CPU speeds have increased on schedule, the processing needs
of vision algorithms still consume most or all of the latest PCs power. Just as
graphics acceleration hardware became standard equipment on PCs to free the
CPU for other applications, vision acceleration hardware will eventually be-
come a standard for user identity verification, visual speech recognition, user
state and gesture recognition. No head-mounted microphone will be required
to interact with the PC using speech recognition. Gaze tracking will be used
for spatial selection and mental state recognition, and gesture recognition will
eventually become practical.

The deployment of vision-based HCI in the home requires that visual pri-
vacy be controlled in close cooperation with the user. Once the images from
a camera are stored in a computer memory or disk, they are vulnerable to
malicious or inadvertent transmission over the Internet by viruses or novice
users. The vision-based HCI peripheral should be able to extract human be-
havior data from the video and transmit it to the PC without transmitting
the video itself. This visually private operating state should be clear to the
user and not changeable remotely. Consumers will need to learn to trust such
systems before they are widely adopted.

4 Current and Emerging System Examples

So far, this chapter has analyzed the architectural requirements and environ-
mental constraints that should inform the design and deployment of practical
vision-based HCI systems. Given the small number of these systems in the
field today, this analysis has been largely theoretical and somewhat specu-
lative. This section describes commercial systems that are either available
to consumers or employees now, or could be available now if the market were
ready. Systems that involve direct contact with a sensor (e.g., fingerprint read-
ers) or very close viewing and restricted user movement (e.g., iris scan) are
not covered here.

4.1 EyeToy

Recently, a vision-based game controller called EyeToy [8] was successfully
introduced to the consumer market by Sony for the PlayStation2 with games
specifically designed to incorporate real-time imaging of the user. PS2 inputs
video from the EyeToy camera via USB and performs all vision functions



230 E.Petajan

using the standard PS2 computing resources. A typical EyeToy game tracks
gross body and arm movements in real-time and provides the user with vi-
sual feedback using overlay graphics on video of the user. As the first mass
deployment of vision-based HCI to consumers, the evolution of EyeToy will
be interesting to watch. Figure 1 shows the EyeToy in action from the gamers
point of view as he attempts to bounce the virtual soccer ball off of his head.
Special colored props can also be tracked by the system.

Fig. 1. Sony PlayStation EyeToy screen shot (courtesy R.Marks, Sony Computer
Entertainment US)

4.2 Driver Eye Tracking

Vehicle driver face and eye tracking has not yet been commercially deployed
but the technology has reached a level of maturity that makes it practical
for prevention of falling asleep while driving. Cost and user resistance are the
main barriers to deployment in the future. An example of a single camera
system has been developed by the Delphi Corporation [9], and stereo vision
system has been developed by Seeing Machines [10].

4.3 Access Control Systems

The average consumer has to deal with several key or code based access control
systems for use of vehicles, ATMs, credit cards, cellphones, computers, web
sites, and buildings. These systems are not very secure as evidenced by the
high rates of auto theft, credit card fraud, cellphone fraud, computer viruses,
lock picking, key theft and duplication, etc. Biometrics access control tech-
nology [11] is available for much better security but cost and social issues are



Vision-Based HCI Applications 231

still holding back widespread deployment except for their mandated use at in-
ternational border crossings since 9/11. Cost will continue to decline but the
social and political issues could intensify as the need for security increases and
personal privacy is challenged. Consumer adoption of biometric security for
public terminals (ATMs, gambling and vending machines) will be limited by
resistance to the enrollment process where the user provides proof of claimed
identity and submits to the collection of biometrics. While everyone is affected
by the cost of theft and fraud, the financial institutions, casinos, and vend-
ing machine companies have the greatest incentive to improve security using
biometrics. Consumers will probably need additional incentives to cooperate;
especially if fingerprints or other problematic biometrics are collected.

Biometric access control systems are currently being deployed in the work-
place and in airports for both international passengers and workers. The US
Visit program requires face and fingerprint biometrics to be used to verify
the identity of Visa holders wishing to enter the US with the program ex-
panding to all passport holders but the system is attended by customs and
immigration agents. Schiphol Airport in Amsterdam has deployed iris recogni-
tion systems for automatic access control for volunteer passengers and airport
employees [12]. Face recognition by itself has not been significantly deployed
for access control [13] in the workplace or transportation systems.

The use of face recognition to access PCs, game consoles, and secure Inter-
net locations can be deployed as a local application by the user as a replace-
ment for passwords. A variety of systems are commercially available [14] but
not widely used. Perhaps vision-based access control would be adopted more
widely on PCs if other vision-based HCI applications were also deployed.

4.4 Immersive Simulation

The military is the leading developer of reality simulation systems with the
“human in the loop.” Head and eye tracking systems are currently deployed in
many of these systems [15] as part of the HCI and for measurement of human
performance. As real-time facial capture from video and audio/visual speech
recognition systems mature, the emotional state, speech, and gestures of the
user will also be available for simulation applications. The successful use of a
complete vision-based HCI system in simulation should be rapidly followed by
cost reduction, miniaturization, and ruggedization for deployment in vehicles,
command and control centers, and finally mobile devices.

5 Conclusions

The adoption of technology by consumers is the ultimate validation of its ma-
turity and utility. Vision-based HCI related applications have barely started
to penetrate the consumer market and industrial deployment is mostly limited
to access control systems where the period of use is inherently very brief. The



232 E.Petajan

potential for wide deployment of vision-based HCI is great; especially in appli-
cations where speech recognition is also needed. In particular, the rapid con-
sumer adoption of advanced mobile phones [16] with video cameras promises
to provide a platform for vision-based HCI using a client-server architecture
and standards like MPEG-4 FBA. Rapid adoption is also possible on PCs,
game consoles, and vehicles when enough vision-based HCI applications are
available to justify the cost.

Acknowledgments

Thanks to the editors of this book for giving me the opportunity to express
my views on the present state of vision-based HCI applications and the future
paths to widespread adoption.

References

1. Jakub Segen and Senthil Kumar. Gesture VR: vision-based 3D hand interface
for spatial interaction. MULTIMEDIA ’98: Proceedings of the sixth ACM inter-
national conference on Multimedia. 1998, pp 455–464, Bristol, United Kingdom
ACM Press.

2. Petajan, E. D., “Automatic Lipreading to Enhance Speech Recognition”, Pro-
ceeding of the IEEE Conference on Computer Vision and Pattern Recognition,
pp 40-47, IEEE, 1985.

3. Goldschen, A., Garcia, 0., and Petajan, E, “Continuous optical automatic
speech recognition”, Proceedings of the 28th Asilomar Conference on Signals,
Systems, and Computers, pp. 572-577, IEEE, 1994.

4. G. Potamianos, C. Neti, G. Iyengar, and E. Helmuth, “Large-vocabulary audio-
visual speech recognition by machines and humans”, Proc. Eurospeech, Aal-
borg, 2001.

5. ISO/IEC 14496-1 IS (MPEG-4), “Information Technology - Coding of audio-
visual objects, Part 1: Systems”,

6. ISO/IEC 14496-2 IS (MPEG-4), “Information Technology - Coding
of audio-visual objects, Part 2: Visual”, http://www.iso.org/iso/en/

CombinedQueryResult.CombinedQueryResult?queryString=14496

7. Ronald Cole, Sarel Van Vuuran, Bryan Pellom, Kadri Hacioglu, Jiyong Ma,
Javier Movellan, Scott Schwartz, David Wade-Stein, Wayne Ward, and Jie
Yan, “Perceptive Animated Interfaces: First Steps Toward a New Paradigm
for Human-Computer Interaction”, pp 1391-1405, Proceedings of the IEEE,
Vol. 91, No. 9, September 2003

8. Richard Marks. Natural Interfaces via Real-Time Video. SIGGraph 2000
Sketch. http://research.scea.com/research/pdfs/siggraph2000RICKnat_

interfaces.pdf

9. B.Kisačanin et al., Driver Drowsiness Monitor from DELPHI. Demonstration
at IEEE CVPR 2004, Washington, DC.

10. http://www.seeingmachines.com



Vision-Based HCI Applications 233

11. http://www.biometrics.org/html/examples/examples.html

12. http://www.biometritech.com/features/deploywp1.htm

13. http://www.cisco.com/en/US/about/ac123/ac147/archived_issues/ipj_

7-1/lures_of_biometrics.html

14. http://www.biomet.org/faceproducts.html

15. http://www.hf.faa.gov/docs/508/docs/VF%20-%20SNI%20PVFR%20Darken.

pdf

16. http://www.mobilepipeline.com/59200081;jsessionid=

IH02SFHSCMJYCQSNDBCSKHSCJUMEKJVN





The Office of the Past

Jiwon Kim1, Steven M. Seitz1, and Maneesh Agrawala2

1 University of Washington
jwkim@cs.washington.edu

seitz@cs.washington.edu
2 Microsoft Research
maneesh@microsoft.com

We propose a vision for the future office environment where the physical space
is seamlessly integrated into the digital space by tracking and recognizing all
physical artifacts in the office over time using overhead video cameras. In par-
ticular, we focus on the physical desktop and paper documents. The desktop
system we envision is inspired by the search and organization capabilities of
electronic desktops and provides similar affordances. In particular, we pro-
pose to automatically index the physical documents on the desk by tracking
their locations in the stacks and linking them with their electronic versions.
As a step towards this goal, we have implemented a prototype system that we
demonstrate in the context of two sample scenarios, paper tracking and photo
sorting. In both scenarios, the system tracks changes in the stacks of printed
documents on the desk and builds a complete representation of the spatial
structure of the desktop. Then the system is used for locating a paper docu-
ment of interest in the stacks, and organizing digital photographs by sorting
their printed versions into physical stacks on the desk.

1 Introduction

Most of our daily tasks in the office environment are carried out electronically
on computers. However, our offices are still filled with physical artifacts such
as books, papers, mail, pens, and telephones. Although we are accustomed to
a separation of the office into the physical and digital space, new emerging
technologies promise to close the gap between the two worlds by automatically
recognizing individual physical artifacts and tracking their physical locations
around the office.

The integration of the electronic and physical worlds will allow users to
work in the office environment more efficiently, as well as enable novel and
interesting interactions. For example, users will be able to quickly find lost
objects (e.g., where is my key?), or locate objects of interest (e.g., all CVPR



236 J.Kim, S.M. Seitz, M. Agrawala

proceedings I have). Users may also organize the office more easily by grouping
objects in various ways (e.g., all bills from the same credit card company, or all
papers that I have not used for the past 30 days). Reminders may be attached
to objects to alert the user about events related to the object (e.g., the due
date of a book borrowed from the library).

Although research efforts are under way to develop technologies that link
the physical and electronic worlds by attaching special tags to physical ob-
jects, such as RFID, these approaches require replacing or augmenting the
current physical infrastructure, presenting a fundamental bottleneck for the
adoption of the technology. Instead, we propose a computer vision based sys-
tem that can be seamlessly integrated into the current office environment. In
this approach, video cameras are installed on the ceiling to record the office
over time, and the video is analyzed to track and recognize the physical ob-
jects. We call our approach The Office of the Past, in contrast to The Office of
the Future [20] which also proposed a vision for future offices that leveraged
display technologies to project onto walls or surfaces in the room. The name
Office of the Past emphasizes the fact that the physical environment is allowed
to remain the way it has been in the past, and that we store the entire history
of the office into an indexable video archive.

(a) Setup (b) Camera view (c) Onscreen view of PDFs

Fig. 1. Using a video camera mounted above a desktop (a), (b), our system tracks
and recognizes all documents and links them to the electronic versions on the com-
puter (c)

In this chapter, we focus on one particular surface in the office, the desktop,
where most user interactions with physical artifacts take place, and among the
physical artifacts, we concentrate on paper documents. An overhead video
camera records the movements of physical documents stacked on the desk to
link them with their electronic versions on disk and to track their physical
locations in the stacks (Fig. 1). The ultimate goal of our desktop system is
to extend the computer desktop metaphor back to the physical desktop. For
example, we want the system to electronically index the paper documents on
the physical desktop, as file systems do on the computer. The system should



The Office of the Past 237

also allow users to search for papers both locally and remotely, analogous to
tools for electronic desktops such as Google Desktop [1], Remote Desktop on
Microsoft Windows [2] and VNC [4].

(a) Paper tracking sequence

(b) Photo sorting sequence

Fig. 2. (a) Sample input frames from the paper tracking sequence. Paper documents
and books enter, exit the scene and change location in the stacks as the user shifts
them around. (b) Sample input frames from the photo sorting sequence. The user
sorts photographs in two source stacks (one on the desk in the lower right corner,
the other outside the scene) into three target stacks

As a step towards this goal, we implemented a prototype system that
tracks and recognizes stacks of physical documents on the desk using a feature-
based technique, with certain constraints on the user interactions with docu-
ments [13]. The system also provides a user interface that allows users to issue
queries about the documents in a few different ways: by appearance, keyword,
access time and using a remote desktop interface. We demonstrate our system
in two scenarios: paper tracking and photo sorting. In the first scenario, the
system records a video of the desk as the user moves around printed docu-
ments and books, as shown in Fig. 2a. The captured video is subsequently
analyzed to recognize each document by automatically matching it with the
corresponding electronic document (e.g., PDF), and track its location in the
stacks. The user can then query the system in a variety of ways to find par-
ticular documents of interest. The second scenario demonstrates the potential
use of our system as a way to provide a tangible interface for organizing digital
photographs. The system observes the user as he sorts printed photographs
into stacks (Fig. 2b), and analyzes the video to recognize the photographs and
infer the stack structure. The user then assigns each stack to a folder on disk
to automatically organize the corresponding image files into the designated
folder.

The remainder of the chapter is organized as follows. We first discuss
related work in the following section. Section 3 describes our system in detail,
explaining the tracking and recognition algorithm, and illustrating the user



238 J.Kim, S.M. Seitz, M. Agrawala

interface in the context of two sample scenarios. After presenting results in
Sect. 4, we conclude the chapter with a discussion of future work and summary.

2 Related Work

There exists a significant body of previous work on camera and projector
based augmented desktop systems [28, 25, 14, 5, 16]. However, their primary
focus lies in supporting interaction with individual desktop objects or pro-
jected images using hand tracking, rather than building a representation of
the structure on the desk. Although these systems are capable of simple ob-
ject tracking, they do not support tracking stacks of papers, and they require
either manual registration of objects or the use of specially designed visual
tags and backdrops.

Tracking and ID technologies such as barcodes, IR/RFID tags and visual
tags are already commonplace and becoming more prevalent in the context of
finding lost objects [21, 27, 9, 19]. Although these techniques can be applied
to paper documents, they all necessitate the use of physical tags and a special-
ized reader. Furthermore, they are not suitable for accurate tracking of object
locations. Some vision-based tracking systems [17, 18] avoid the need for spe-
cial tags and readers, but do not support tracking papers in stacks. More
recently, Fujii et al. [8] demonstrated an experimental system for tracking
stacked objects using stereo vision. However, as they used the physical height
of the stacked objects to detect changes, their technique is not applicable to
stacks of relatively thin paper documents.

In the computer vision and AI communities, a large body of work exists
for object tracking and recognition. In particular, layer extraction ([26] and
subsequent papers) is an area relevant to our work, as the document stack
is by nature a layered structure. As we focus on documents, we are able to
use specialized feature-based tracking techniques. Also, in our problem, the
layered structure not only represents multiple objects with different motions,
but also the complex spatial hierarchy of the documents on the desk.

Sanders et al. [23] proposed Object Discovery, a method to discover objects
over time as they enter and leave the scene, by analyzing the temporal history
of each pixel of the image sequence. They attempt to explain the temporal
evolution of a scene with relatively infrequent object motions, and provided
an initial inspiration for our work. However, our work differs from theirs in
a few important aspects. First, in Object Discovery, the scene must satisfy
the clean world assumption, i.e., each object must both enter and leave the
scene. We remove this constraint in our work. We also combine temporal and
spatial information instead of doing a pure temporal analysis, and are able
to recognize a group of pixels as an object, as well as track its location over
time. And while they focus on theory with limited experimental results, our
objective is to build a practical system that can reconstruct the state of the
desk, and we present two applications built on top of this system.



The Office of the Past 239

Perhaps most closely related to our work is the Self-Organizing Desk [22]
which is also a camera-based system for tracking paper documents in stacks.
However, it constrains the input in a few important ways, e.g., the papers
must be of known size and are only allowed to translate. We overcome these
limitations, and present a new framework that incorporates recognition at
its core, a key capability that is not supported by either of the systems in
[23, 22]. The incorporation of recognition techniques allows us to reliably
track visually similar paper documents (i.e., text on white paper) and to link
physical documents with their electronic versions on the computer.

3 Document Tracking and Recognition

In this section, we present a detailed description of how our system tracks and
recognizes documents in the input video. We first provide a problem definition
along with a list of the assumptions that we make, then explain the algorithm
used to solve the problem.

3.1 Problem Definition

Given an input video of a desktop, our objective is to reconstruct the config-
uration of documents on the desk at each instant in time. We use the term
event to refer to a change in the state of the document stacks. The state of
the desk is represented by a directed acyclic graph called a scene graph, where
each node corresponds to a document and edges exist between pairs of docu-
ments where one document is directly on top of the other (Fig. 3). The system
produces as output a sequence of scene graphs representing the history of the
desktop.

3.2 Assumptions

We make several simplifying assumptions to make the tracking problem more
tractable.

• There are three types of events: entry, exit and move (Fig. 4).
• Only one document can move at a time.
• Only the document on the top of the stack can move, i.e., users cannot

place documents in, or remove them from, the middle of a stack.
• Each document is unique, i.e., there is no duplicate copy of the same

document on the desk.
• Each document on the desk has a corresponding electronic version on the

computer that is used by the system to match and recognize the document.
In the case of papers, an image of each page is extracted from the PDF
file; for books, the image of the book cover is used; for digital photographs,
the image file itself is used.



240 J.Kim, S.M. Seitz, M. Agrawala

Fig. 3. A sequence of scene graphs represent the evolution of the desktop over time.
The nodes correspond to documents and edges encode the occlusion relationship
between them. The document pointed by a white arrow (top) moves from the top of
one stack to another. The scene graph (bottom) is updated accordingly by moving
the corresponding node (pointed by a black arrow)

(a) An entry event (b) An exit event (c) A move event

Fig. 4. We model three event types: (a) entry, (b) exit, and (c) move. The document
that moved is pointed by an arrow. The top and bottom images correspond to Ie−
and Ie+, images immediately before and after the event e



The Office of the Past 241

These assumptions somewhat restrict the range of possible user interac-
tions, and generalizing the tracking and recognition algorithm to relax these
assumptions is an important topic for future work. Nevertheless, these as-
sumptions still allow many useful and natural interactions, which enable the
paper tracking and photo sorting scenarios presented in this chapter.

Finally, it is important to note that we do not require the desk to be
initially empty: each document is discovered the first time it moves.

3.3 Algorithm

The recognition and tracking algorithm works in 4 steps: event detection,
event interpretation, document recognition and updating scene graphs. An
overview of the algorithm is provided in Fig. 5.

Fig. 5. An overview of the document recognition and tracking algorithm.. For each
event, we extract a pair of images Ie− and Ie+, before and after the event. Then,
these images are analyzed to determine the type and motion of the event. Next, the
document that moved is recognized by matching it with the electronic file on disk.
Finally, the scene graph is updated accordingly



242 J.Kim, S.M. Seitz, M. Agrawala

Event Detection

An event starts with the motion of a document and lasts until the motion ends.
To detect events, we first compute frame differences between consecutive input
frames. If the difference is large, we assume that an event is occurring. Then
we extract two frames immediately before and after the duration of the event.
Let e denote an event, and Ie− and Ie+ denote the frames before and after
the event, respectively.

Event Interpretation

To interpret an event e, we analyze Ie−, Ie+ and frames during the event
to determine the type and motion of the event. We use the Scale Invariant
Feature Transform (SIFT) [15] to accomplish this goal.

SIFT computes descriptive local features of an image based on histograms
of edge orientation in a window around each point in the image. The follow-
ing characteristics make it suitable for reliable matching and recognition of
documents.

• Distinctiveness: its high-dimensional (128D) descriptor enables accurate
differentiation between a large number of features.

• Invariance to 2D scale, rotation and translation: features are reli-
ably matched between images of the document in vastly different poses.

• Robust matching: detection and matching is robust with respect to
partial occlusion and differences in contrast and illumination.

The event is first classified as a move event or otherwise, by looking for
a valid motion of a document from Ie− to Ie+. This is done by matching
features between Ie− and Ie+ and clustering the pairs of matching features
that have similar motion. If the largest cluster with a non-zero motion contains
sufficiently many matches, it is considered a valid motion and the event is
classified as a move. If the event is not a move, it is either an entry or an exit.

The SIFT features in Ie− and Ie+ are split into two groups foreground and
background, for use in the rest of the procedure. For a move event, features
in the largest non-zero motion cluster are considered foreground, and the
remaining features background. For remaining events, a feature is background
if a matching feature is found under identity transform across the event, and
foreground otherwise.

Distinguishing between an entry and an exit requires running three tests
in sequence, described below. We run each test only if the previous test fails.

• Test 1: Foreground features of Ie− and Ie+ are matched against the im-
age database of electronic documents. For an entry event, if the entering
document overlaps with multiple underlying documents or there is no un-
derlying document (Fig. 6a), the foreground features of Ie+ will yield a
good match with one document, whereas those of Ie− will match either



The Office of the Past 243

(a) Test 1 (b) Test 2

(c) Test 3

Fig. 6. Three tests are performed in sequence to distinguish between an entry
and an exit. The document that moved is pointed by an arrow. (a) Test 1: The
entering (or exiting) document overlaps with multiple underlying documents (left)
or there is no underlying document (right). (b) Test 2: The exiting (or entering)
document aligns fairly well with the underlying document, and the system has seen
the document beneath that underlying document. (c) Test 3: The system has not
seen the document beneath the underlying document, and looks for the peak in the
function that measures the amount of motion during the event

parts of multiple documents or no document (and vice versa for an exit
event).

• Test 2: If the entering or exiting document aligns fairly well with the un-
derlying document (Fig. 6b), Test 1 will fail to classify the event. However,
if the system has previously seen what lies under the foreground region of
Ie−, it can compare the new foreground region of Ie+ with that underlying
document. If they match, it is an exit event; otherwise, it is an entry.



244 J.Kim, S.M. Seitz, M. Agrawala

• Test 3: Finally, if the system does not have sufficient knowledge about
the current stack structure to perform Test 2, the input frames during the
event are analyzed to determine the event type. There is an asymmetry in
the amount of change in the image between an entry and an exit. During an
entry event, both the user’s hand and the new document enters the scene
in the beginning and only the hand exits in the end, causing more change
in the beginning than the end, whereas the reverse is true in an exit event.
Therefore, the system classifies the event based on the peak location in
the function of the amount of motion over time, measured by differencing
each frame with Ie− outside the region occupied by the entering/exiting
document, as shown in Fig. 6c.

Document Recognition

Once the event is interpreted, the foreground SIFT features of Ie− (Ie+ for
an entry event) are matched against the features of each image of electronic
documents on the computer and clustered according to the relative transfor-
mation. The matching score is defined as the ratio of the sum of matching
scores for the features in the largest cluster to that of all matching features.
The document with the best matching score is considered the matching docu-
ment. We assume that all documents have enough features to perform reliable
matching between the physical and electronic copy.

Updating Scene Graphs

The interpreted event is used to update the current scene graph representing
the structure of document stacks on the desk. Initially, the scene graph is
empty, and new nodes are added as new documents are discovered. If the
current event is the first event for the document, a new node representing
that document is introduced into all scene graphs up to that point, and new
edges are added to connect the new node to all scene graphs.

For an exit, all edges are disconnected from the node representing the
exiting document. For an entry event, new edges are introduced between the
entering document and all documents directly under it. For a move event,
these two steps, i.e., exit and entry, are performed in sequence.

3.4 Desktop Browser Interface

We have developed an interface to support the tasks in each scenario that we
call the desktop browser interface. Some screenshots are shown in Figs. 7 and 8
along with descriptions of each element of the interface. The interface provides
four different ways to browse the document stacks: visual query, keyword
search, sort and remote desktop. It also allows users to organize electronic
documents by assigning a folder to the corresponding physical stack on the
desk.



The Office of the Past 245

(a) Screenshot of the desktop browser interface

(b) The interface in remote desktop mode

Fig. 7. (a) Screenshot of the desktop browser interface. The user selects a document
(pointed by arrow, left) by either clicking on its thumbnail on the left or performing
a keyword search. The view of the desktop on the right expands the stack (items
pointed by white arrows, right) and highlights the selected document (at the bottom
of the stack). (b) Screenshot of the interface in remote desktop mode. Figures show
the current state of the desk (left) and a new state after the user moves around the
document images to search for a document (right). The documents that were moved
by the user are highlighted with thick borders



246 J.Kim, S.M. Seitz, M. Agrawala

Visual Query

To query the location of a particular document on the desk, the user can
browse the thumbnail images of the documents discovered by the system,
shown on the left panel of Fig. 7a. When the user finds the document of
interest and selects it by clicking on its thumbnail image, the visualization of
the desk on the right of Fig. 7a changes to show its location in the stack by
expanding the stack containing that document and highlighting the document.

When a document is selected, various information related to the document
is displayed, including its title and author, the pathname of the electronic file
on disk, and usage statistics, such as the first and last access time, and the
total number of accesses.

Keyword Search

If the user knows the title or the author of the document, he can perform
a keyword search to find it, instead of browsing the thumbnails. The title
and author for each paper were manually entered for the results shown in this
chapter, but these could instead be automatically obtained, e.g., by extracting
text from PDF, or parsing XML metadata.

Sort

The thumbnails can be sorted based on various criteria, such as author, title
and usage statistics to facilitate the search. For example, the user can sort
them in order of their last access time to find recently used, or old documents
on the desk.

Remote Desktop

The user can directly search through the stacks by clicking and dragging on
the image of the desk, as shown in Fig. 7b. We call this mode of interaction the
“remote desktop” mode, as it provides a way to search for a document on a
desk in a remote location. It is analogous to the Remote Desktop application
on a Microsoft Windows system [2] or the VNC application [4] that allow
the user to interact with the electronic desktop of a remote machine. This
interface mode can be useful when the user wants to quickly find out what
is on the desk from a remote location. The user can also open the electronic
version of a document by shift-clicking on its image.

Assigning a Stack to a Folder

In the photo sorting scenario, the user can select each stack in the visualization
panel by clicking on it and assign a folder, as shown in Fig. 8. The system
then copies all digital images in the stack into the folder and pops up the
folder in thumbnail view.



The Office of the Past 247

Fig. 8. Screenshot of the interface showing the user select a stack of photographs and
assign it to a folder (left, pointed by an arrow). The system copies the corresponding
digital photographs into the folder on disk and pops up the folder in thumbnail view
(right)

4 Results and Discussion

In this section, we discuss our results and present a performance analysis on
document recognition. A video demonstrating the results can be viewed on
our web site [3].

4.1 Experimental Setup and Input Sequences

We used the Dragonfly video camera from PointGrey Research, Inc. that
records 1024×768 images at 15 frames per second. We streamed the video
frames to memory using the firewire port on a PC. The paper tracking se-
quence was recorded over approximately 40 minutes. It contained 49 events
in total (27 moves, 9 entries and 13 exits). There were 20 printed paper docu-
ments and 2 books in the sequence. The photo sorting sequence was recorded
over approximately 10 minutes, with 30 events in total (11 moves, 19 entries
and no exits). There were 30 photographs in the sequence, all of which were
printed on paper sheets of almost identical size (approximately 6×4 inches).
Most of them contained a mixture of people and landscape. The user dis-
tributed photographs from two source stacks, one held in her hand and the
other on the desk, into three target stacks. These input sequences were pro-
cessed offline after the recording session was over. It took about 1 hour to
process the paper tracking sequence and about 40 minutes to process the
photo sorting sequence using Matlab on a 2.8GHz Pentium IV PC, averaging
1-2 minutes per event.

4.2 Event Classification

The event classification method described in Sect. 3.3 had a 100% success
rate on the two input sequences. The move vs. entry/exit classification test



248 J.Kim, S.M. Seitz, M. Agrawala

worked in all cases. For entry and exit events, tests 1, 2 and 3 were conducted
in sequence, and all of these events were classified correctly. Because each of
the three tests handles different situations, all three are required for a perfect
classification. Tests 1 and 2 succeeded on 14 out of 22 entry and exits in the
paper tracking sequence and on all 19 entry and exits in the photo sorting
sequence. The 8 remaining entry and exits in the paper tracking sequence
could not be classified only by analyzing the pair of frames before and after
the event, and required the use of test 3. To evaluate test 3, we performed this
test on all entry and exit events in the two sequences. It failed on 1 out of 22
cases in the paper tracking sequence and 1 out of 19 cases in the photo sorting
sequence, showing that by itself it is a fairly reliable method for distinguishing
entry and exit events.

4.3 Document Recognition

All 22 documents in the paper tracking sequence were recognized correctly
against a database of 50 documents. The database included not only the cover
page of a document, which usually has a more distinct text layout than the
rest of the document, but also internal pages, some of which contained only
text. The images of electronic documents in the database were approximately
400×500 pixels (width×height), and the captured images of the documents
were approximately 300×400 pixels.

The photo sorting sequence contained 30 photographs. In the input video,
the photographs were approximately 300×400 pixels. There were 50 image
files in the database, with resolutions varying between 640×480 and 901×676.
Many of them had people posing in front of a background landscape, and some
of them contained only scenery. All 30 photographs were recognized correctly
against the database.

We conducted a simple test to further analyze the performance of docu-
ment recognition based on SIFT feature matching. We took pictures of approx-
imately 20 documents and 20 photographs with varying number of detected
features, and tried to match them against a database of 162 paper documents
and 82 photographs, respectively. We also varied the resolution of the cap-
tured image, to examine the effect of the image resolution on the recognition
performance.



The Office of the Past 249

(a) Paper documents (b) Photographs

Fig. 9. Plots of document recognition rate for (a) paper documents and (b) pho-
tographs under varying image resolution. The y−axis represents the percentage of
correctly recognized documents, and the x−axis represents the width of the docu-
ment (defined as the length of the longer side in pixels) in the captured image

The recognition rate increased in proportion to the image resolution, as
shown in Fig. 9. It can be seen that papers must be at least 230×300 (all
papers were letter size) and photographs 150×200 pixels (all photographs had
4:3 aspect ratio) in the captured image to achieve a recognition rate of 90%.
The recognition rate does not reach 100% even at fairly high resolutions,
because a couple of documents had too few features to be reliably recognized
(Fig. 10a).

The images in the database also had a varying number of SIFT features,
ranging from 248 to 8409 for papers and from 35 to 9526 for photographs.
We found that the recognition performance is not significantly affected by
the number of features, except for a few cases with an insufficient number of
features. This is an expected result because the matching score is normalized
with respect to the total number of features on the document, as described in
Sect. 3.3. It shows that our document recognition method can be successfully
applied to a wide range of document resolution and numbers of features.

5 Future Work

There are a number of directions to extend the current work in the future. In
the near term, we would like to build a robust desktop system that responds
to user queries in real-time and supports a wider variety of user interactions
with documents. In the long term, we hope to extend the system beyond the
desktop to the entire office, realizing our vision for The Office of the Past.



250 J.Kim, S.M. Seitz, M. Agrawala

(a)

(b)

Fig. 10. (a) Documents that generate too few SIFT features cannot be handled
reliably by our recognition technique: a simple drawing (left, 660×773 pixels, 248
features) and a picture of sunset (right, 800×600 pixels, 508 features). SIFT features
are overlaid as cross marks. (b) Documents with average numbers of SIFT features
for comparison: a research paper (left, 460×589 pixels, 1404 features) and a picture
of a waterfall (right, 614×819 pixels, 2919 features)



The Office of the Past 251

5.1 Relaxing Assumptions

Although the current system enables interesting and useful user interactions
on the desk, our observation of real users working on their desks indicates
that many of the assumptions we made are violated in practice.

Most assumptions were made to enable the system to make unique deci-
sions about the interpretation of each event. Therefore, relaxing such assump-
tions inevitably introduces uncertainty to the algorithm. For example, if the
user moves a stack of documents together, the documents under the top of the
stack move without being observed by the camera, making it difficult to know
which documents moved. Allowing duplicate copies of the same document or
documents that look very similar to each other provides another source of
uncertainty. We think that such uncertainty can be handled by maintaining
multiple hypotheses and pruning incorrect ones over time. For example, par-
ticle filtering technique has been successfully applied to multi-target tracking
problems in computer vision and robotics [24, 12], and may be a good method
of choice for our system as well.

We assumed that there are three types of events, namely, move, entry and
exit. However, users also commonly interact with paper documents in other
ways, such as flipping a paper document from front to back, turning the pages
of a multi-page document, opening an envelope and extracting material from
inside, etc. To handle such events, we may have to examine video frames
during the event in addition to before and after the event, to track the user
interactions more closely.

While the proportion of documents with electronic versions is increasing,
many documents such as mail, the majority of books, and hand-written docu-
ments still have no corresponding electronic version available. To handle such
documents, the current document tracking algorithm can be modified to use
the camera-captured image of each document for tracking and recognition af-
ter the initial observation. Also, the first two of the three event classification
tests described in Sect. 3.3 are based on the assumption that every document
has an electronic version before it is observed the first time. Relaxing this
assumption will cause the algorithm to rely more on the third test. While
our initial results show that this test is fairly reliable, it will be necessary to
further improve its robustness.

5.2 Real-Time Performance

The current implementation of the system processes the input video offline,
i.e., after the recording is over. However, the system should be able to respond
to user queries in real-time.

The system can utilize idle time for the processing. Since the system per-
forms no computation while nothing is happening on the desk (e.g., at night),
it can use such time to process the recorded video.



252 J.Kim, S.M. Seitz, M. Agrawala

Furthermore, as we have not optimized the performance of tracking and
recognition algorithm, there is much room for speeding up the computation.
Currently the most time is spent on matching features between two images
for document recognition, where we search for the exact nearest neighbor by
comparing all possible pairs of features. As pointed out in [15], the matching
can be performed faster by employing approximate nearest neighbor algo-
rithms [6, 10] that have been shown to result in nearly an order of magnitude
acceleration over the naive method. Also, PCA-SIFT [11] is an improvement
over SIFT that uses a more compact descriptor by modeling image gradient
patches with PCA. Its small descriptor size makes it faster to compute than
original SIFT. This method may be particularly suitable for our work because
the images of documents correspond to a small fraction of all possible images
and thus can be readily modeled by a low-dimensional representation.

5.3 Supporting Additional Queries

We can imagine other useful queries that may be supported by our system.
For example, the system can allow users to attach reminders to documents,
so it can alert the user when a bill is due, or a book must be returned to the
library. The system may also assist the user to organize the desk. For instance,
the user can ask the system to identify all documents that were not used for
the past 30 days, so that they can be cleaned off the desk, or find all credit
card bills that look alike, so that bills from the same card company can be
filed together. Also, if the system can detect changes on the document surface
as users make written annotations on documents, the written annotation may
be automatically “lifted” by the system, recognized, and incorporated into
the electronic version of the document. A more thorough user study on how
people actually interact with documents on the desk can help us determine
the types of user tasks that can benefit from our system.

5.4 Extension Beyond the Desktop

Our ultimate goal is to extend the tracking and recognition framework to
the entire office. To achieve this goal, we need to handle objects other than
standard paper documents, such as mail, books in bookshelves, CDs, and
3D objects like keys, pens, staplers, etc. A more general object recognition
technique must be devised that recognizes a large number of objects that may
appear in different shapes and viewpoints. We also need to cover the entire
office space with cameras. Crabtree and Rodden [7] found that a small number
of fixed predictable locations are commonly used to place and interact with
physical artifacts in the home environment. It is likely that a similar principle
applies to the office environment. To extend our system to the entire office,
we can place a few cameras to observe such locations and track objects across
the cameras.



The Office of the Past 253

6 Conclusion

We proposed a vision for future offices where the physical and electronic worlds
are merged by tracking and recognizing physical artifacts with video cameras.
As a step towards this goal, we demonstrated a system that tracks the loca-
tions of paper documents in the stack, links them to their electronic versions,
and provides a user interface that allows the user to browse the document
stacks and query documents of interest. We demonstrated our system in the
context of two scenarios, paper tracking and photo sorting. Our system pro-
vides a seamless unification of the physical and electronic desktops, without
the need to convert to a new physical infrastructure. Further work remains
to be done to make the system faster and more realistic, and extend it to the
entire office.

Acknowledgments

This work was supported in part by National Science Foundation grant IIS-
0049095 and Intel Corporation.

References

1. http://desktop.google.com.
2. http://www.microsoft.com/windowsxp/remotedesktop.
3. http://grail.cs.washington.edu/projects/office.
4. RealVNC, Ltd. http://www.realvnc.com.
5. T. Arai, K. Machii, S. Kuzunuki, and H. Shojima. Interactivedesk: A computer

augmented desk which responds to operations on real objects. In Proc. of CHI,
pages 141–142, 1995.

6. S. Arya and D. Mount. Approximate nearest neighbor queries in fixed dimen-
sions. In Proc. of SODA, pages 271–280, 1993.

7. A. Crabtree and T. Rodden. Domestic routines and design for the home. Com-
put. Supported Coop. Work, 13(2):191–220, 2004.

8. K. Fujii, J. Shimamura, K. Arakawa, and T. Arikawa. Tangible search for stacked
objects. In Proc. of CHI, pages 848–849, 2003.

9. H. Hile, J. Kim, and G. Borriello. Microbiology tray and pipette tracking as a
proactive tangible user interface. In Proc. of the 2nd Int. Conf. on Pervasive
Computing, pages 323–339, 2004.

10. P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proc. of STOC, pages 604–613, 1998.

11. Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation for local
image descriptors. In Proc. of CVPR, pages 506–513, 2004.

12. Z. Khan, T. Balch, and F. Dellaert. An mcmc-based particle filter for tracking
multiple interacting targets. In Proc. of ECCV, pages 279–290, 2004.

13. J. Kim, S. M. Seitz, and M. Agrawala. Video-based document tracking: Unifying
your physical and electronic desktops. In Proc. of UIST, pages 99–107, 2004.



254 J.Kim, S.M. Seitz, M. Agrawala

14. H. Koike, Y. Sato, and Y. Kobayashi. Integrating paper and digital information
on enhanceddesk: a method for realtime finger tracking on an augmented desk
system. In ACM Trans. on Computer-Human Interaction, pages 307–322, 2001.

15. D.G. Lowe. Distinctive image features from scale-invariant keypoints. Int. Jour.
of Computer Vision, 60(2):91–110, 2004.

16. W.E. Mackay and D. Pagani. Video mosaic: Laying out time in a physical space.
In ACM Multimedia, pages 165–172, 1994.

17. D. Moore, I. Essa, and M. Hayes. Object spaces: Context management for
human activity recognition. In Proc. of the 2nd Annual Conf. on Audio-Visual
Biometric Person Authentification, 1999.

18. R. Nelson and I. Green. Tracking objects using recognition. In Int. Conf. on
Pattern Recogntion, pages 1025–1030, 2002.

19. R.E. Peters, R. Pak, G.D. Abowd, A.D. Fisk, and W.A. Rogers. Finding lost
objects: Informing the design of ubiquitous computing services for the home.
Technical Report GIT-GVU-04-01, Georgia Institute of Technology, College of
Computing, GVU Center, Jan 2004.

20. R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The office of
the future: A unified approach to image-based modeling and spatially immersive
displays. In Proc. of Siggraph, pages 179–188, 1998.

21. J. Rekimoto and Y. Ayatsuka. Cybercode: Designing augmented reality environ-
ments with visual tags. In Proc. of Designing Augmented Reality Environments
(DARE), pages 1–10, 2000.

22. D. Rus and P. deSantis. The self-organizing desk. In Proc. of Int. Joint Conf.
on Artificial Intelligence, pages 758–763, 1997.

23. B.C.S. Sanders, R.C. Nelson, and R. Sukthankar. Discovering objects using tem-
poral information. Technical Report 772, University of Rochester Department
of Computer Science, Apr 2002.

24. D. Schulz, D. Fox, and J. Hightower. People tracking with anonymous and id-
sensors using rao-blackwellised particle filters. In Proc. of Int. Joint Conf. on
Artificial Intelligence, pages 921–928, 2003.

25. N. Takao, J. Shi, and S. Baker. Tele-graffiti: A camera-projector based remote
sketching system with hand-based user interface and automatic session summa-
rization. Int. Jour. of Computer Vision, 53(2):115–133, 2003.

26. J. Y. A. Wang and E. H. Adelson. Representing Moving Images with Layers.
IEEE Trans. on Image Processing Special Issue: Image Sequence Compression,
pages 625–638, September 1994.

27. R. Want, K.P. Fishkin, A. Gujar, and B.L. Harrison. Bridging physical and
virtual worlds with electronic tags. In Proc. of CHI, pages 370–377, 1999.

28. P. Wellner. Interacting with paper on the DigitalDesk. Comm. of the ACM,
36(7):86–97, 1993.



MPEG-4 Face and Body Animation Coding
Applied to HCI

Eric Petajan

face2face animation, inc.
eric@f2f-inc.com

The MPEG-4 Face and Body Animation (FBA) standard provides a com-
prehensive description of humanoid geometry and animation with a very low
bit-rate codec for Face and Body Animation Parameters (FAPs and BAPs)
enabling transmission of MPEG-4 FBA streams over any digital network.
Human behavior captured on video can be converted to an FBA stream for
subsequent use in HCI systems that operate locally or over a network in
a client-server architecture. Visual communication, animated entertainment,
audio-visual speech and speaker recognition, and gesture recognition can be
performed directly using the FBA stream anywhere in the network when local
resources are limited.

1 Introduction

The flow of human audio/visual information to local and remote machines and
people passes through a number of bottlenecks and is processed with coding
and recognition algorithms that introduce artifacts and distortion. Digital
video from one or more cameras must be either compressed or analyzed in
real-time in order to avoid the expense of storing a gigabit per second on
a disk array. Real-time video processing is also required by HCI and should
be implemented close to the camera to avoid transmission costs and network
problems, and to more easily protect the user’s visual privacy. The recognition
of the human face and body in a video stream results in a set of descriptors
that occur at the video frame rate. The human behavior descriptors should
contain all information needed for the HCI system to understand the user’s
presence, commands, and state. This data is highly compressible and can be
used in a communication system when standardized. The MPEG-4 Face and
Body Animation (FBA) standard [1, 2] provides a complete set of Face and
Body Animation Parameters (FAPs and BAPs) and a codec for super low bit-
rate communication. This chapter describes the key features of the MPEG-4
FBA specification.



256 E.Petajan

The control of a computer by a human using the visual mode is best im-
plemented by the successive processing of video into features and descriptors
that are more compact and more efficient to manipulate as the abstraction is
refined. The descriptors that are transmitted or archived should only be as
abstract as required by network and storage capacity limitations. The MPEG-
4 FBA standard provides a level of description of human face movements
and skeleton joint angles that is both highly detailed and compressible to a
2 kilobits per second for the face and 5–10kilobits per second for the body.
The MPEG-4 FBA stream can be transmitted over any network and can be
used for visual speech recognition, identity verification, emotion recognition,
gesture recognition, and visual communication using an alternate appearance.
The conversion of video into an MPEG-4 FBA stream is a computationally
intensive process which may require dedicated hardware and HD video to fully
accomplish. The performance of recognition tasks on the FBA stream can be
performed anywhere on the network without risking the violation of the users
visual privacy when video is transmitted. When coupled with voice recogni-
tion, FBA recognition should provide the robustness needed for effective HCI.
As shown in Fig. 1, the very low bit-rate FBA stream enables the separation
of the HCI from higher level recognition systems, applications and databases
that tend to consume more processing and storage than is available in a per-
sonal device. This client-server architecture supports all application domains
including human-human communication, human-machine interaction, and lo-
cal HCI (non-networked). While the Humanoid Player Client exists today on
high-end mobile phones, a mobile Face and Gesture Capture Client is still a
few years away.

 

 

FBA/Audio 
Stream 

FBA/Audio 
Stream 

FBA/Audio 
Stream 

FBA/Audio 
Stream 

HCI Client 

Humanoid 
Player 
Client 

Face and 
Gesture 
Capture 
Client 

HCI Client 

Humanoid 
Player 
Client 

Face and 
Gesture 
Capture 
Client 

FBA/Audio Stream 
Server 

Applications 

Network and 
Server 

Infrastructure 

Fig. 1. FBA enabled client-server architecture

Increasing consumer demand for visual content has motivated the develop-
ment of new delivery systems which provide higher quality over practical (low
bit-rate) networks. Traditional video coding systems have reached a perfor-
mance plateau while network bandwidths have not increased enough to satisfy
the demand at reasonable cost. Simultaneously, advances in electronics have



MPEG-4 Face and Body Animation Coding Applied to HCI 257

enabled cost-effective graphics rendering for the consumer, and encouraged
the widespread use of graphics in visual content production.

2 Face Animation

MPEG-4 contains a comprehensive set of tools for representing and compress-
ing content objects and the animation of those objects. Virtual humans (faces
and bodies) are treated as a special type of object in MPEG-4 with anatom-
ically specific locations and associated animation parameters. While virtual
humans can be treated as generic graphical objects, there are particular ad-
vantages to representing them with the Face and Body Animation (FBA)
Coding specification.

As shown in Fig. 2, Face Definition Parameter (FDP) feature points have
been defined and located on the face. Some of these points only serve to help
define the shape of the face. Those remaining are displaced by FAPs, which
are listed in Table 1. FAPs 1 and 2 are sets of descriptors for visemes and
expressions respectively, as described below. The remaining FAPs (except for
the rotation FAPs) are normalized to be proportional to one of neutral face
mouth width, mouth-nose distance, eye separation, iris diameter, or eye-nose
distance.

FAPs are displacements of the feature points from the neutral face position.
Neutral position is defined as mouth closed, eyelids tangent to the iris, gaze
and head orientation straight ahead, teeth touching, and tongue touching
teeth. The head orientation FAPs are applied after all other FAPs have been
applied within the face. In other words, All but the head orientation FAPs
refer to the local face coordinate system. If the head is animated with a body,
the head orientation FAPs express rotations relative to the top-most vertebrae
(the connection point between the face/FAPs and body/BAPs).

FAPs which are not transmitted for a given frame may be interpolated
by the decoder. For example, if the inner lip but not the outer lip FAPs are
transmitted, the decoder is free to synthesize the motion of the outer lips.
Typically, the outer lip motion would closely follow the motion of the inner
lips. While the behavior of face models can vary in response to FAPs, lip and
eyelid closure are guaranteed. Lip closure is mandated in the neutral face and
is defined during animation when the corresponding upper and lower lip FAPs
sum to zero. Eyelids are open and tangent to the iris in the neutral face. Since
the eyelid FAPS are expressed in units of iris diameter, the eyelids will be
closed during animation when the upper and lower eyelid FAPS sum to the
iris diameter. Thus, lip and eyelid closure are known regardless of the vertical
contact position.



258 E.Petajan
 

x
y

z

11.5

11.4

11.2

10.2

10.4

10.10

10.8
10.6

2.14

7.1

11.6 4.6

4.4

4.2

5.2

5.4

2.10

2.12
2.1

11.1

Tongue

6.26.4 6.3

6.1
Mouth

8.1
8.9 8.10 8.5

8.3

8.7

8.2

8.8

8.4
8.6

2.2

2.3

2.6

2.82.9

2.72.5 2.4

2.1
2.12 2.11

2.14
2.10

2.13

10.6
10.8

10.4

10.2

10.10
5.4

5.2

5.3

5.1

10.1

10.9
10.3

10.5
10.7

4.1 4.3
4.54.6

4.4 4.2

11.111.2 11.3

11.4

11.5

x

y

z

Nose

9.6 9.7

9.14 9.13

9.12

9.2

9.4 9.15 9.5

9.3

9.1

Teeth

9.10
9.11

9.8

9.9

Feature points affected by FAPs

Other feature points

Right eye Left eye

3.13

3.7

3.9

3.5

3.1

3.3

3.11

3.14

3.10

3.12 3.6

3.4

3.2
3.8

 

Fig. 2. Feature Points. Note that filled points are subject to displacement and/or
rotation by FAPs



MPEG-4 Face and Body Animation Coding Applied to HCI 259

Table 1 is presented as a series of sub-tables each containing a related set
of FAPs. FAPS 1–2 in Table 1a are the Viseme and Expression FAPs.

Table 1. (a) FAPs 1–2: Visemes and expressions

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

1 viseme Set of values determining the 
mixture of two visemes for 
this frame (e.g. pbm, fv, th) 

na na na 1 na 

2 expression A set of values determining 
the mixture of two facial 

expression 

na na na 1 na 

FAPs 3–17 in Table 1b specify the basic oral cavity from the front view.
The jaw opening is independent of the lips. Lip protrusion is specified at the
horizontal midpoints only.

Table 1. (b) FAPs 3–17: Inner lips and jaw
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

3 open_jaw Vertical jaw displacement 
(does not affect mouth 

opening) 

MNS U down 2 1 

4 lower_t_midlip Vertical top middle inner lip 
displacement 

MNS B down 2 2 

5 raise_b_midlip Vertical  bottom middle inner 
lip displacement 

MNS B up 2 3 

6 stretch_l_cornerlip Horizontal displacement of 
left inner lip corner 

MW B left 2 4 

7 stretch_r_cornerlip Horizontal displacement of 
right inner lip corner 

MW B right 2 5 

8 lower_t_lip_lm Vertical  displacement of 
midpoint between left corner 
and middle of top inner lip 

MNS B down 2 6 

9 lower_t_lip_rm Vertical  displacement of 
midpoint between right corner 

and middle of top inner lip 

MNS B down 2 7 

10 raise_b_lip_lm Vertical  displacement of 
midpoint between left corner 

and middle of bottom inner lip 

MNS B up 2 8 

11 raise_b_lip_rm Vertical  displacement of 
midpoint between right corner 
and middle of bottom inner lip 

MNS B up 2 9 

12 raise_l_cornerlip Vertical  displacement of left 
inner lip corner 

MNS B up 2 4 

13 raise_r_cornerlip Vertical  displacement of right 
inner lip corner 

MNS B up 2 5 

14 thrust_jaw Depth displacement of jaw MNS U forward 2 1 

15 shift_jaw Side to side displacement of 
jaw 

MW B right 2 1 

16 push_b_lip Depth displacement of 
bottom middle lip 

MNS B forward 2 3 

17 push_t_lip Depth displacement of top 
middle lip 

MNS B forward 2 2 



260 E.Petajan

FAP 18 in Table 1c depresses the chin.

Table 1. (c) FAP 18: Chin boss
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

18 depress_chin Upward and compressing 
movement of the chin 

(like in sadness) 

MNS B up 2 10 

FAPs 19–22 in Table 1d specify the vertical positions of the eyelid mid-
points. Eyelids are defined to be tangent to the iris when in neutral position.
Upper and lower eyelid FAPs sum to the iris diameter when closed.

Table 1. (d) FAPs 19–22: Eyelids
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

19 close_t_l_eyelid Vertical displacement of top 
left eyelid 

IRISD B down 3 1 

20 close_t_r_eyelid Vertical displacement of top 
right eyelid 

IRISD B down 3 2 

21 close_b_l_eyelid Vertical displacement of 
bottom left eyelid 

IRISD B up 3 3 

22 close_b_r_eyelid Vertical displacement of 
bottom right eyelid 

IRISD B up 3 4 

FAPs 23–26 in Table 1e specify eyeball orientation in units of 10−5 radian
(FAP/BAP angular unit).

Table 1. (e) FAPs 23–26: Eyeball orientation
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

23 yaw_l_eyeball Horizontal orientation of left 
eyeball 

AU B left 3 na 

24 yaw_r_eyeball Horizontal orientation of right 
eyeball 

AU B left 3 na 

25 pitch_l_eyeball Vertical orientation of left 
eyeball 

AU B down 3 na 

26 pitch_r_eyeball Vertical orientation of right 
eyeball 

AU B down 3 na 



MPEG-4 Face and Body Animation Coding Applied to HCI 261

FAPs 27–28 in Table 1f control eyeball thrust for comical animated char-
acters.

Table 1. (f) FAPs 27–28: Eyeball thrust
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

27 thrust_l_eyeball Depth displacement of left 
eyeball 

ES B forward 3 na 

28 thrust_r_eyeball Depth displacement of right 
eyeball 

ES B forward 3 na 

FAPs 29–30 in Table 1g dilate the pupils. Neutral pupil dilation is one
third of the iris diameter.

Table 1. (g) FAPs 29–30: Pupils
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

29 dilate_l_pupil Dilation of left pupil IRISD B growing 3 5 

30 dilate_r_pupil Dilation of right pupil IRISD B growing 3 6 

FAPs 31–38 in Table 1h specify the eyebrows. Squeeze is specified for the
innermost points only while the middle and outer point squeeze is interpolated.

Table 1. (h) FAPs 31–38: Eyebrows
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

31 raise_l_i_eyebrow Vertical displacement of left 
inner eyebrow 

ENS B up 4 1 

32 raise_r_i_eyebrow Vertical displacement of right 
inner eyebrow 

ENS B up 4 2 

33 raise_l_m_eyebrow Vertical displacement of left 
middle eyebrow 

ENS B up 4 3 

34 raise_r_m_eyebrow Vertical displacement of right 
middle eyebrow 

ENS B up 4 4 

35 raise_l_o_eyebrow Vertical displacement of left 
outer eyebrow 

ENS B up 4 5 

36 raise_r_o_eyebrow Vertical displacement of right 
outer eyebrow 

ENS B up 4 6 

37 squeeze_l_eyebrow Horizontal displacement of 
left eyebrow 

ES B right 4 1 

38 squeeze_r_eyebrow Horizontal displacement of 
right eyebrow 

ES B left 4 2 



262 E.Petajan

FAPs 39–42 in Table 1i specify the horizontal and vertical cheek displace-
ments of two different points respectively on a given cheek.

Table 1. (i) FAPs 39–42: Cheeks
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

39 puff_l_cheek Horizontal displacement of  
left cheeck 

ES B left 5 1 

40 puff_r_cheek Horizontal displacement of 
right cheeck 

ES B right 5 2 

41 lift_l_cheek Vertical displacement of left 
cheek 

ENS U up 5 3 

42 lift_r_cheek Vertical displacement of right 
cheek 

ENS U up 5 4 

FAPS 43–47 in Table 1j control the tongue.

Table 1. (j) FAPs 43–47: Tongue
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

43 shift_tongue_tip Horizontal displacement of 
tongue tip 

MW B right 6 1 

44 raise_tongue_tip Vertical displacement of 
tongue tip 

MNS B up 6 1 

45 thrust_tongue_tip Depth displacement of 
tongue tip 

MW B forward 6 1 

46 raise_tongue Vertical displacement of 
tongue 

MNS B up 6 2 

47 tongue_roll Rolling of the tongue into U 
shape 

AU U concave 
upward 

6 3, 4 

FAPs 48–50 in Table 1k specify head orientation relative to the highest
vertebrae which, in turn, is oriented according to spinal BAP values.

Table 1. (k) FAPs 48–50: Head orientation
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

48 head_pitch Head pitch angle from top of 
spine 

AU B down 7 na 

49 head_yaw Head yaw angle from top of 
spine 

AU B left 7 na 

50 head_roll Head roll angle from top of 
spine 

AU B right 7 na 



MPEG-4 Face and Body Animation Coding Applied to HCI 263

FAPs 51–60 in Table 1l specify the outer lips. If inner lips are specified
without outer lips, then the inner values are copied to the outer lips by default.

Table 1. (l) FAPs 51–60: Outer lips
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

51 lower_t_midlip _o Vertical top middle outer lip 
displacement 

MNS B down 8 1 

52 raise_b_midlip_o Vertical  bottom middle outer 
lip displacement 

MNS B up 8 2 

53 stretch_l_cornerlip_o Horizontal displacement of 
left outer lip corner 

MW B left 8 3 

54 stretch_r_cornerlip_o Horizontal displacement of 
right outer lip corner 

MW B right 8 4 

55 lower_t_lip_lm _o Vertical  displacement of 
midpoint between left corner 
and middle of top outer lip 

MNS B down 8 5 

56 lower_t_lip_rm _o Vertical  displacement of 
midpoint between right corner 

and middle of top outer lip 

MNS B down 8 6 

57 raise_b_lip_lm_o Vertical  displacement of 
midpoint between left corner 

and middle of bottom outer lip 

MNS B up 8 7 

58 raise_b_lip_rm_o Vertical  displacement of 
midpoint between right corner 
and middle of bottom outer lip 

MNS B up 8 8 

59 raise_l_cornerlip_o Vertical  displacement of left 
outer lip corner 

MNS B up 8 3 

60 raise_r_cornerlip _o Vertical  displacement of right 
outer lip corner 

MNS B up 8 4 

FAPs 61–64 in Table 1m control the nose for sneering and nostril flaring.

Table 1. (m) FAPs 61–64: Nose
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

61 stretch_l_nose Horizontal displacement of 
left side of nose 

ENS B left 9 1 

62 stretch_r_nose Horizontal displacement of 
right side of nose 

ENS B right 9 2 

63 raise_nose Vertical displacement of nose 
tip 

ENS B up 9 3 

64 bend_nose Horizontal displacement of 
nose tip 

ENS B right 9 3 



264 E.Petajan

FAPs 65–68 in Table 1n control the ears for animals or characters with
animated ears.

Table 1. (n) FAPs 65–68: Ears
 

# FAP name FAP description Units Uni- 
or 

Bidir 

Pos 

 motion 

Grp FDP  
sub 
grp  

65 raise_l_ear Vertical displacement of left 
ear 

ENS B up 10 1 

66 raise_r_ear Vertical displacement of right 
ear 

ENS B up 10 2 

67 pull_l_ear Horizontal displacement of 
left ear 

ENS B left 10 3 

68 pull_r_ear Horizontal displacement of 
right ear 

ENS B right 10 4 

 

MPEG has defined a limited set of visemes (visual phonemes) and facial
expressions (defined in Tables 2 and 3) which can be used as either hints or to
specify sets of low-level FAPs (2–68) for a given frame. For a given frame, two
visemes and two expressions can be specified with a blend factor between the
visemes and an intensity value for each expression. The viseme and expres-
sions parameters provide an efficient labeling scheme which accommodates
coarticulation and separates speech unit labeling from facial expressions.

Table 2. Values for viseme select

Visemeselect Phonemes Example 

0 none na 

1 p, b, m put, bed, mill 

2 f, v far, voice 

3 T,D think, that 

4 t, d tip, doll 

5 k, g call, gas 

6 tS, dZ, S chair, join, she 

7 s, z sir, zeal 

8 n, l lot, not 

9 r red 

10 A: car 

11 e bed 

12 I tip 

13 Q top 

14 U book 

 



MPEG-4 Face and Body Animation Coding Applied to HCI 265

The viseme def and expression def flags, when true, signal the decoder to
store low-level FAPs in a lookup table while using the combined viseme/ex-
pression values as an index into the LookUp Table (LUT). In this mode, for
subsequent frames which have only the viseme/expression FAPs specified, the
decoder must lookup the low level FAP values from the LUT, thus providing
additional compression efficiency. If the viseme def and expression def flags
are not true then the viseme/expression FAPs are simply hints that the de-
coder may use to better interpolate unspecified FAP values. In either case
the viseme/expression FAPs serve as visual speech and emotional expression
labels for use by a variety of content manipulation, content query and human-
computer interaction applications.

Table 3. Values for expression select

Expression_select Expression name Textual description 

0 na na 

1 joy 
The eyebrows are relaxed. The mouth is open and 

the mouth corners pulled back toward the ears. 
Corners pulled back toward the ears. 

2 sadness 
The inner eyebrows are bent upward. The eyes 

are slightly closed. The mouth is relaxed. 

3 anger 

The inner eyebrows are pulled downward and 
together. The eyes are wide open. The lips are 

pressed against each other or opened to expose 
the teeth. 

4 fear 
The eyebrows are raised and pulled together. The 

inner eyebrows are bent upward. The eyes are 
tense and alert. 

5 disgust 
The eyebrows and eyelids are relaxed. The upper 

lip is raised and curled, often asymmetrically. 

6 surprise 
The eyebrows are raised. The upper eyelids are 
wide open, the lower relaxed. The jaw is opened. 

 



266 E.Petajan

FAPs are normalized to be proportional to one of the key facial dimensions
listed in Table 4. The third column of Table 1 indicates the Facial Animation
Parameter Units (FAPU) used for each FAP. The normalization of the FAPs
gives the face model designer freedom to create characters with any facial
proportions regardless of the source of the FAPs. The mouth and eyelids
will close when they are supposed to, mouth opening will be proportional
to the face, etc. FAP normalization also allows face models to be designed
without the need to transmit the face model. MPEG-4 compliant face models
can be embedded into decoders, stored on portable media (e.g., CDROM),
downloaded as an executable from a web site, or built into a web browser.
From the user’s perspective, MPEG-4 face models can be freely exchanged
at any time, and FAP streams which are broadcast can be decoded as soon
as the next I-frame is received. More advanced face models will allow the
user to deform the model during the animation while maintaining proper
facial movements. FAP normalization should also provide better visual speech
recognition accuracy for speaker independent applications.

Table 4. Facial Animation Parameter Units

 

IRISD0 

Iris diameter (equal to the 
distance between upper 

and lower eyelid) 

 

IRISD = IRISD0 / 1024 

ES0 Eye separation ES = ES0 / 1024 

ENS0 Eye - nose separation ENS = ENS0 / 1024 

MNS0 Mouth - nose separation MNS = MNS0 / 1024 

MW0 Mouth width MW0 / 1024 

AU Angle Unit 1e-5 rad 

 

3 Body Animation

MPEG-4 body animation coding represents the joint angles of a humanoid
skeleton. Joint and joint angle names are harmonized with the H-Anim spec-
ification [3]. Almost all bones in the human body are included (some foot
bones are missing) and the spine can be represented with a lower number
of segments for simpler characters. Each Body Animation Parameter (BAP)
represents one Euler angle in Angular Units shown in Table 4. Ten of the
186 BAPs are shown in Table 5. FAPs and BAPs are compressed using either
predictive coding or temporal DCT coding depending on the application. The
coding of FAPs and BAPs is specified in the visual part of MPEG-4 and does
not require the use of MPEG-4 systems. A stream of compressed FAPs and
BAPs can be transmitted with embedded timing information and synchro-
nized to any audio stream. The timing information is contained in a temporal
header that can optionally be included in an intra coded frame (I-frame).



MPEG-4 Face and Body Animation Coding Applied to HCI 267

Timing is typically expressed as a frame rate (up to 256Hz) but can also be
expressed as a time code. The downloading of MPEG-4 face and body models
requires the use of MPEG-4 systems. The Face Node and Body Node contain
FAP and BAP nodes respectively which contain the decoded animation data.
The graphical models for the downloaded humainoids are also contained in the
Face and Body Nodes. In addition, the Face Animation Table (FAT) and Body
Animation Table (BAT) specify the exact mapping between FAPs/BAPs and
vertex displacement of the downloaded humanoid model. When the BAT is
used, 110 additional BAPs can be specified to animate any vertices in the
downloaded body model. These “free” BAPs can be used to animate body
fat, clothing, hair, etc.

Table 5. The first 10 (of 186) Body Animation Parameters

BAP ID BAP NAME DESCRIPTION 

1 sacroiliac_tilt Forward-backward motion of the pelvis in the sagittal plane 

2 sacroiliac_torsion 
Rotation of the pelvis along the body  vertical axis (defined by 

skeleton root) 

3 sacroiliac_roll Side to side swinging of the pelvis in the coronal plane 

4 l_hip_flexion Forward-backward rotation in the sagittal plane 

5 r_hip_flexion Forward-backward rotation in the sagittal plane 

6 l_hip_abduct Sideward opening in the coronal plane 

7 r_hip_abduct Sideward opening in the coronal plane 

8 l_hip_twisting Rotation along the thigh axis 

9 r_hip_twisting Rotation along the thigh axis 

10 l_knee_flexion Flexion-extension of the leg in the sagittal plane 

 

4 FBA Client-Server Architecture

A client-server system architecture is needed for the delivery of high quality
animated virtual humans or characters to thin clients over any digital network.
While wired and wireless network speeds continue to rise, the availability of
ubiquitous broadband Internet connectivity is still many years away. Further-
more, the need for low latency communication for interactive applications
(e.g., VoIP and dialog systems) places additional demands on networks that
further reduce available bandwidth. The addition of visual communication to
a dialog system places heavy demands on the network if video streaming is



268 E.Petajan

used. A more practical alternative is to present talking animated faces that are
driven by low bit-rate animation streams. In many applications animation is
more appealing than live video and acceptable levels of animated face model
quality are available today. The MPEG-4 Face and Body Animation stan-
dard provides a comprehensive representation of humanoids and characters
and very low bit-rate compression of Face and Body Animation Parameters
(FAPs and BAPs). The MPEG-4 FBA standard also provides independence
between a given face model and the source of the FAP data that drives it by
normalizing the facial movements. This allows default models to start animat-
ing immediately while new models are transmitted over the network.

4.1 Virtual Human Player Client

A practical dialog system must be able to comfortably interface to the user by
presenting pleasing talking faces that respond quickly to user input. Figure 3
shows the virtual human player client. The network or file interface accesses
MPEG-4 FBA and compressed audio bitstreams that are associated with each
other (as indicated by the dashed line). This association could be implemented
by file name convention or streaming multimedia format such as QuickTime
which uses the MPEG-4 systems streaming file format. As each frame of FAP
data is decoded from the FBA stream, timing information contained in the
header of the FBA stream is used to synchronize each frame of rendered
animated face with the decoded audio. Since the animated face is usually
an object in a 3D scene graph, the FBA player client passes a set of vertex
geometry for a given frame to the general 3D player for inclusion in the scene
graph before final rendering.

FAPs 

Voice/Audio 
Compressed Audio 

Stream 

MPEG-4 FBA 
Stream FBA 

Decoder 

Audio 
Decoder 

Face 
Player 

Audio-FAP 
Synchronization 

Interface 
to Any 

Network 
or  

Storage 
Device 

 

Virtual Human Player Client 

Face Model 
Geometry 3D Player  

Fig. 3. FBA and audio player client



MPEG-4 Face and Body Animation Coding Applied to HCI 269

MPEG-4 FAPs are normalized displacements of standard face feature
points from their neutral position (mouth closed, eyes open). Unlike animation
based on morph targets, FAP values are specified at a given frame rate that is
usually locked to a camera or display frame rate (e.g., 30Hz). This approach
enables FAPs to be generated from either facial motion capture systems or
existing animated faces. Thus, the virtual human player client can be used
to present any animated face regardless of its origin. The Face Player can be
animated from text (TTS), voice (phoneme-to-viseme), or facial motion cap-
ture. The use of the MPEG-4 FBA standard allows all face animation output
to be mapped to FAPs and delivered to any FBA compliant player.

4.2 Audio/Visual Facial Capture Client

User input to a dialog system could ultimately be a combination of tactile in-
put (keyboard and mouse), voice, face and body gestures, and visual speech.
Figure 4 shows an audio/visual input client that captures the voice and fa-
cial movements of the user and compresses the resulting audio and FAP data
for transmission over low bit-rate networks or for local storage. When a real-
time implementation of the facial capture client is available, a full duplex A/V
dialog system could be realized across any network by performing compute in-
tensive recognition tasks on server side computers. The MPEG-4 FBA stream
is designed for visual speech and emotional state recognition. In a few years,
mobile phones will have enough processing power to handle both the player
and capture clients simultaneously. 

 
 
 
 

FAPs 
FBA 

Encoder 

Audio Encoder 

Camera 

Audio/Visual Facial Capture Client 

Video to FAPs 
(except tongue) 

Digital 
Video 

Compressed Audio 
Stream 

MPEG-4 
FBA 

Stream 

Interface 
to Any 

Network 
or  

Storage 
Device 

Voice 

Fig. 4. Audio/visual capture client

4.3 Server-Side Architecture and Applications Interface

The Human-Computer Interface (HCI) is ultimately primarily a personal ac-
cessory and will continue to shrink in size over time. The separation between



270 E.Petajan

the A/V HCI and the rest of ones electronic information environment is en-
abled by the MPEG-4 FBA standard and is needed for privacy/security and
physical practicality (battery life). The FAP and BAP data is compact and
normalized which simplifies analysis and manipulation. Both the synthesis
and recognition of human visual behavior are computationally intense and
are best located on the server side of the network.

The FBA/compressed audio stream server and applications are shown in
Fig. 5 and shows the placement of FBA and audio encoders and decoders to
interface with a variety of recognizers and synthesizers. A dialog system would
interface to the clients through this server architecture and provide some
combination of text, FBA/audio from a database, and any other information
to be presented to the user. When a real-time full duplex visual HCI becomes
available it will be a source of FBA streams on which to perform recognition
tasks for a dialog system. If natural voice is available then ASR, speaker
verification, and phoneme recognition for viseme and FAP generation can be
performed. Text-to-speech (voice and FAPs) provides tongue FAPs and is
an additional source of lip and jaw FAPs. Also, natural language processing
(NLP) can provide some facial expression FAPs. All of the different sources
of FAP data can then be compared and blended for optimal accuracy or
naturalness in a FAP Unification and Interpolation function.

Text to FAPs 

Voice to FAPs 

(lips, jaw, and tongue) 

FAP 
Unification 

and 
Interpolation 

 Text to Voice 

Audio 
Decoder 

Interface 
to Any 

Network 
or  

Storage 
Device 

 

Interface 
to Any 

Network 
or  

Storage 
Device 

 

Compressed 
Audio 
Stream 

Voice 
Recognition 

Speaker 
Verification 

MPEG-4 
FBA 

Stream FBA 
Decoder 

FAPs FAPs FBA 
Encoder 

MPEG-4 
FBA 

Stream 

FAPs 

TTS 

FAPs 

Audio Encoder 
Voice 

Compressed Audio 
Stream 

FBA/Compressed Audio Stream Server 

Voice 

Fig. 5. FBA and audio stream server and applications interface



MPEG-4 Face and Body Animation Coding Applied to HCI 271

5 Applications

The compressed FAP stream typically occupies less than 2 kbps of bitrate and
can therefore be transmitted over any network that can support coded acous-
tic speech. As MPEG-4 FBA players proliferate in web browsers and wireless
terminals, FAP streams will first be produced for server-based streaming to
drive animated characters on web sites. E-commerce and call center applica-
tions should benefit from the increased novelty and humanization associated
with high quality animated characters. In these streaming content applica-
tions, recognition algorithms operating on FBA and audio streams could be
used to search content databases for not only speech content, but facial ges-
tures and expressions of emotion as well.

MPEG-4 fills the need for high quality visual communication at low bit-
rates when coupled with low-cost graphics rendering systems in the terminal.
However, MPEG-4 does not specify the analysis techniques needed to cre-
ate animated objects (e.g., faces) from video. Facial motion capture systems
are available today for the generation of MPEG-4 Face Animation Parameter
(FAP) data from video [4, 5, 6]. Other systems for representing face and body
movements can be easily translated into MPEG-4 FBA as long as these sys-
tems provide enough detail to animated face and body models. Specifically,
FAPs have often been compared to the Facial Action Coding System (FACS)
[7, 8, 9]. FACS was designed to be used by human observers to annotate facial
expressions on other humans but was not designed for face animation. FACS
does not contain explicit timing information and does not describe visual
speech. However, if an animated face were somehow driven by FACS param-
eters, FAPs could be measured directly off of the face at a given frame rate
and a mapping between FAPs and FACS could be developed. Furthermore,
the optional viseme and expression FAPs could be used to carry high level
descriptors.

The perception of human speech incorporates both acoustic and visual
communication modalities. Automatic speech recognition (ASR) systems have
traditionally processed only the acoustic signal. While video cameras and
video acquisition systems have become economical, the use of automatic
lipreading to enhance speech recognition performance is an ongoing and fruit-
ful research topic [10]–[21]. During the last 20 years a variety of research sys-
tems have been developed which demonstrate that visual speech information
enhances overall recognition accuracy, especially in the presence of acoustic
noise. The client-server architecture proposed above should enable earlier de-
ployment of audio-visual speech recognition on mobile devices by performing
the recognition processing on the FBA stream on the server side of the net-
work.

MPEG-4 FBA is designed for both traditional videoconferencing applica-
tions and character animation. For videoconferencing the face models must
be highly realistic to avoid distracting distortions on the face. Humans are ex-
tremely sensitive to facial distortions if they expect to see a real face. On the



272 E.Petajan

other hand, facial distortion on animated characters is much less noticeable.
Figure 6 shows a simple real-time animated face that is pleasing to watch but
avoids the pitfalls of realism. The image of the real woman on the right is a
frame from a video sequence that was processed into FAP data. The normal-
ization of FAPs allows any FBA compliant face model to be animated by any
FAP stream. This enables the face model to be chosen by the viewer if the
permitted by the application.

Fig. 6. FBA compliant animated face driven by FAPs extracted from video

FAPs only specify the displacement of standard fixed feature points. In
general, the location of these points is independent of the geometric struc-
ture of the face model so the designer must take care to collocate the surface
with the feature points while deforming the neighboring facial surfaces ap-
propriately. For example, the surface around the lips must be displaced in
proportion to the displacement of the lip feature points. Since there isn’t a
unique solution that satisfies the constraints, the designer must make an es-
thetic judgment or resort to physical modeling of the skin, muscle and bone.
A bones rigged face is shown in Fig. 7. A variety of alternative face model
and animation authoring systems have been developed that take advantage
of the efficient representation and comprehensive nature of the MPEG-4 FBA
standard [22]–[26].

6 Conclusions

As desktop computers and game machines start to accommodate real-time
facial motion capture, 3D chat rooms will be populated by virtual humans
driven by consumers enjoying visual privacy. At that time, enhanced real-
time speech recognition and biometrics will also be enabled. Tactile interfaces
(keyboard, mouse, game controller) will also start to be replaced by speech
and gesture recognition. Vision-based HCI should then migrate to portable
computers (laptops, tablets) and then finally to mobile devices when bat-
tery technology and vision processing circuit integration become sufficiently



MPEG-4 Face and Body Animation Coding Applied to HCI 273

Fig. 7. FBA compliant bones rigged face model

evolved. The MPEG-4 FBA standard provides the tools to support HCI im-
plementation on a thin client while recognition and manipulation processing is
performed on the server side of the network. The ability to capture the entire
visual behavior of the human face in a standard 2 kilobit per second bitstream
should enable a wide variety of network-based applications in entertainment,
communication, security, and personal productivity.

Acknowledgments

The author wishes to thank the members of the MPEG-4 Face and Body
Animation group for their contributions to the standard, cooperative attitude,
and the hard work in exotic locations leading up to its completion.

References

1. ISO/IEC 14496-1 IS (MPEG-4). Information Technology – Coding of audio-
visual objects, Part 1: Systems.
http://www.iso.org/iso/en/CombinedQueryResult.CombinedQueryResult?

queryString=14496

2. ISO/IEC 14496-2 IS (MPEG-4). Information Technology – Coding of audio-
visual objects, Part 2: Visual.
http://www.iso.org/iso/en/CombinedQueryResult.CombinedQueryResult?

queryString=14496

3. http://www.h-anim.org

4. Graf, H. P., E. Cosatto, D. Gibbon, M. Kocheisen, E. Petajan. Multi-Modal
System for Locating Heads and Faces. Proc 2nd Int Conf on Automatic Face
and Gesture Recognition. IEEE Computer Soc Press, 1996, pp. 88–93.

5. http://www.f2f-inc.com



274 E.Petajan

6. G. Hovden and N. Ling. Optimizing Facial Animation Parameters for MPEG-4.
IEEE Trans on Consumer Electronics. November 2003.

7. Ekman, P., Campos, J., Davidson R.J., De Waals, F. (2003)EMOTIONS IN-
SIDE OUT Volume 1000. New York: Annals of the New York Academy of
Sciences 2003.

8. Ekman, Paul and Erika L. Rosenberg (eds.) (1997). What the Face Reveals:
Basic and Applied Studies of Spontaneous Expression Using the Facial Action
Coding System (FACS). New York: Oxford University Press

9. Bartlett, M. S., (2001). Face Image Analysis by Unsupervised Learning. Fore-
word by Terrence J. Sejnowski. Kluwer International Series on Engineering and
Computer Science, V. 612. Boston: Kluwer Academic Publishers.

10. E. D. Petajan, Automatic Lipreading to Enhance Speech Recognition, PhD
Thesis, University of Illinois at Urbana-Champagne, (1984).

11. E. D. Petajan,Automatic lipreading to enhance speech recognition, Proceedings
Globecom Telecommunications Conference, pp. 265–272, IEEE, Atlanta(1984).

12. C. Bregler, S. Omohundro, and Y. Konig, A hybrid approach to bimodal speech
recognition, 28th Annual Asilomar Conference on Signals, Systems, and Com-
puters, pp 556–560, Pacific Grove (1994).

13. P. L. Silsbee and A. C. Bovik, Medium vocabulary audiovisual speech recogni-
tion, New Advances and Trends in Speech Recognition and Coding, pp 13–16,
NATO ASI (1993).

14. A. Adjoudani and C. Benoit, Audio-visual speech recognition compared across
two architectures, Proc. Eurospeech ’95, Madrid, (Sept. 1995).

15. J. Luettin, J.A. Thacker, S. W. Beet, Active shape models for visual speech
feature extraction, NATO ASI 940584 Speechreading by Man and Machine:
Models, Systems and Applications (1995).

16. Goldschen, O. Garcia and E. Petajan, Continuous optical automatic speech
recognition, Proceedings of the 28th Asilomar Conference on Signals, Systems,
and Computers, pp. 572–577, IEEE, 1994.

17. J.F. Baldwin, T.P. Martin, M. Saeed, “Automatic Computer Lip-reading using
Fuzzy Set Theory,” Proceedings of AVSP ’99.

18. J.R. Movellan, P. Mineiro, “A Diffusion Network Approach to Visual Speech
Recognition,” Proceedings of AVSP ’99.

19. P. Niyogi, E. Petajan, and J. Zhong, “Feature based representation for audio-
visual Speech Recognition,” Proceedings of AVSP ’99.

20. B. Talle, and A. Wichert, “Audio-visual Sensorfusion with Neural Architec-
tures,” Proceedings of AVSP ’99.

21. Senior, C. V. Neti, B. Maison, “On the use of Visual Information for Improving
Audio-based Speaker Recognition,” Proceedings of AVSP ’99.

22. G. Fries, A. Paradiso, F. Nack, K. Shuhmacher, “A Tool for Designing MPEG-4
Compliant Expressions and Animations on VRML Cartoon Faces,” Proceedings
of AVSP ’99.

23. M. Escher, T. Goto, S., Kshirsagar, C. Zanardi, N. Magnenat Thalmann, “User
Interactive MPEG-4 Compatible Facial Animation System,” Proceedings of
IWSNHC3DI’99,pp 29–32.

24. Grammalidis, N.[Nikos], Sarris, N.[Nikos], Deligianni, F.[Fani], Strintzis,
M.G.[Michael G.], Three-Dimensional Facial Adaptation for MPEG-4 Talking
Heads, JASP(2002), No. 10, October 2002, pp. 1005–1020.



MPEG-4 Face and Body Animation Coding Applied to HCI 275

25. Raouzaiou, A.[Amaryllis], Tsapatsoulis, N.[Nicolas], Karpouzis, K.[Kostas],
Kollias, S.D.[Stefanos D.], Parameterized Facial Expression Synthesis Based
on MPEG-4, JASP(2002), No. 10, October 2002, pp. 1021–1038.

26. Capin Tolga, Eric Petajan, Joern Ostermann, Efficient Modeling of Virtual
Humans in MPEG-4, Proc. ICME’2000, New York, NY, July 2000.





Multimodal Human-Computer Interaction

Matthew Turk

University of California, Santa Barbara
mturk@cs.ucsb.edu

Multimodal human-computer interaction seeks to combine multiple sensing
modalities in a coordinated manner to provide interfaces that are powerful,
flexible, adaptable, and natural. Most research in the area to date has in-
volved various combinations of speech, language, vision, gesture, and haptics
technologies, often in concert with graphical interfaces. This chapter gives an
overview of multimodal interfaces, discussing their potential advantages and
challenges.

1 Introduction

The graphical user interface (GUI), with the associated WIMP (windows,
icons, menus, pointing device) implementation of the desktop metaphor, has
been a smashing success over the years. Originated at SRI, further developed
and commercialized by Xerox PARC, popularized by the Apple Macintosh
computer, and spread to the ends of the earth by Microsoft Windows, the
graphical user interface was a vast improvement for most users1 over the
command-line interface. Rather than requiring users to remember complex
strings of textual input, and limiting the computer’s output response to text
as well, the GUI with its standard mouse-keyboard-monitor trio (along with
some requisite underlying hardware, such as a graphics card) made using a
computer easier, and it was instrumental in bringing computing to the masses.
The graphical user interface has been dominant for over two decades for good
reason, and it has benefited both computer users and the computing industry.

However, the graphical user interface has limitations. As the way we use
computers changes and computing becomes more pervasive and ubiquitous,
current GUIs will not easily support the range of interactions necessary to
1 Many expert users prefer command-line interfaces, since quickly typing short

(often-used) combinations of keystrokes is faster than finding commands in a
menu. In addition, most visually impaired users prefer or require the simple layout
of the command-line interface.



278 M.Turk

meet the needs of users. Advances in hardware, bandwidth, and mobility have
begun to enable significant changes in how and where computers are used. New
computing scenarios, such as in automobiles and other mobile environments,
rule out many traditional approaches to human-computer interaction. Com-
puting is becoming something that permeates daily life, rather than something
people do only at distinct times and places (as with office productivity ap-
plications). In order to accommodate a wider range of scenarios, tasks, users,
and preferences, interfaces must become more natural, intuitive, adaptive, and
unobtrusive. This is a primary motivation for developing multimodal user in-
terfaces.

We will certainly need new and different interaction techniques in a world
of small, powerful, connected, ubiquitous computing. Since small, powerful,
connected sensing and display technologies should be available, there has been
increased interest in building interfaces that use these technologies to leverage
the natural human capabilities to communicate via speech, gesture, expres-
sion, touch, etc. While these are unlikely to completely replace traditional
desktop and GUI-based interfaces, they will complement existing interaction
styles and enable new functionality not otherwise possible or convenient.

The goal of research in multimodal interfaces is to create novel interfaces
that combine modalities in a coordinated manner to provide interfaces that
are powerful, flexible, adaptable, and natural. While multimodal interfaces
may generally refer to both input and output modalities, our focus is on the
input side (to the computer). A well known early example of a multimodal
interface is the “Put That There” demonstration system developed by Bolt
and his colleagues at MIT in the early 1980s [3] (see Fig. 1). In this system,
the user communicated in a “media room” via speech and pointing gestures
directed at a large screen display, and information from the two modalities was

Fig. 1. Bolt’s “Put That There” system. Photo by Christian Lischewski. Copyright
1980, Association for Computing Machinery, Inc. Used with permission



Multimodal Human-Computer Interaction 279

integrated to direct interactions with the system. In the canonical “Put That
There” example, two deictic (pointing) gestures, referring to an object and
a location, are combined with spoken text to fully understand which object
is to be moved to what location. The integration task is to disambiguate the
command by matching referents.

Multimodal interfaces may include typical keyboard and mouse input,
but may also add visual information (computer vision), spoken conversation
(speech and language understanding), touch sensing and force feedback (hap-
tics), and other sensing technologies, as well as “under the hood” components
such as user modeling, context/task modeling, reasoning, affect modeling, etc.
A key aspect of multimodal interfaces is the possibility for moving beyond
the command/control oriented interface, where the user initiates all action,
to one that is more modeled after communication, where the context of the
interaction has a significant impact on what, when, and how information is
communicated.

This chapter explores the concept of multimodal interfaces and discusses
their motivations and background, important and open issues, state of the
art, and opportunities for the future.

2 Human-Computer Interaction

The interface between people and computers has progressed over the years
from the early days of switches and LEDs to punched cards, interactive
command-line interfaces, and the direct manipulation model of graphical user
interfaces. The “desktop metaphor” of graphical user interfaces, typically char-
acterized as WIMP interfaces, has been the standard computer user interface
for many years. During this time computers have changed enormously, increas-
ing their speed and capacity, and decreasing component size, at an astounding
(and exponential) rate. There are now a wide range of computer devices of
various size and functionality. In addition, there now are many non-GUI (or
“post-WIMP” [37]) technologies, such as virtual reality, conversational inter-
faces, ubiquitous computing, tangible interfaces, and affective computing, that
promise to change the status quo in computer-human interaction. But, in gen-
eral, hardware has changed much more dramatically than software, especially
software for HCI. In fact, one can argue that the disparity in hardware and
software improvements has caused the level of dissatisfaction and frustration
with computers to increase dramatically, as people’s experiences often do not
meet their expectations.

Human-computer interaction is more than just a way to get input to, and
output from, a computer program. It is more than just a “pretty face,” the
user interface tacked on to the application before it ships. Rather, HCI is a
deep and broad field of study that focuses on the human side of computing, but
also includes much about the computer side as well. HCI seeks to understand
people, computers, and the ways in which they influence one another, and



280 M.Turk

it involves a wide range of professional disciplines. As such, HCI researchers
attempt to think deeply and clearly about:

• People: What are people good (and bad) at? What are their perceptual and
cognitive capabilities and limitations? What are their physical capabilities
and limitations? What social and environmental aspects of interaction are
relevant?

• Computers: What are computers good (and bad) at? What are their tech-
nical and mechanical capabilities and limitations (e.g., memory, I/O band-
width, processing speed, physical design)?

• Context: For what environments and tasks is the system intended? What
are the physical and cognitive constraints? Will users be operating when
fatigued, rushed, distracted, or otherwise disadvantaged?

• Usability: What does it mean for a user interface to be good, or powerful,
or helpful? What must be tested, and what are the independent and de-
pendent variables? Are an adequate range of users being considered and
tested?

The general focus of HCI is on the complete user experience – and not
just for the “average” user, but for the wide range of users of various ages,
sizes, and abilities interacting with computers on a wide range of tasks in a
potentially wide range of environments. This requires a user-centered approach
(rather than a technology-driven approach) to design, engineering, and testing
interfaces. Human-computer interaction comprises four major aspects:

• Design: Intuition, design guidelines, and experience (empirical evidence)
• Human factors: Testing, constructing models of human performance (per-

ceptual, memory, cognitive, etc.)
• Devices: Physical devices (mouse, joystick, keyboard, monitor, HMD, etc.)
• Software: Infrastructure and tools, device drivers

Each of these is an important part of the broad field of HCI. One can
view human-computer interaction as a hierarchy of goals, tasks, semantics,
and syntax. The goal level describes what a person wants to do, independent
of the technology – talk with a friend, for example, or edit a manuscript. Tasks
are the particular actions that are required to attain the goal – e.g., locate
a telephone, dial a number, talk into the headset. The semantics level maps
the tasks onto achievable interactions with the technology, while the syntax
level specifies the particular actions (such as double clicking an icon) that
accomplish a subtask.

HCI makes use of conceptual models, whether implicitly or explicitly. A
conceptual model is a mental model formed through experience, training, or
instruction that gives the user a useful mechanism to map the basic elements
of interaction to a familiar scenario. A good conceptual model – for example,
the desktop metaphor, or a calculator – enables accurate prediction by the
user, providing an obvious and natural mapping between system states/events
and model states/events.



Multimodal Human-Computer Interaction 281

User interfaces may be viewed as a necessary evil, because they imply a
separation between what one wants the computer to do and the act of doing
it, i.e., a separation between the goal level and the task, semantics and syntax
levels. This separation imposes a cognitive load upon the user that is in direct
proportion to the difficulty and awkwardness that the user experiences. Poor
design, to be sure, exacerbates the problem, giving rise to the all-too-common
experience of frustration when using computers.

This frustrating user experience can clearly be improved upon in many
ways, and there are many ideas, initiatives, and techniques intended to help,
such as user-centered design, 3D user interfaces, conversational interfaces,
intelligent agents, virtual environments, and so on.

One point of view is that direct manipulation interfaces – such as the
GUI/WIMP model, where users manipulate visual representations of objects
and actions – and “information appliances,” devices built to do one particular
task well [17], will alleviate many of the problems and limitations of current
computer interfaces. Although this is very likely true – and such devices may
well be commercial successes – it is not clear that this interface style will
scale with the changing landscape of form factors and uses of computers in
the future.

To complicate things, it is no longer obvious just what “the computer”
is; the largely stand-alone desktop PC is no longer the singly dominant de-
vice. Rapid changes in form factor, connectivity, and mobility, as well as the
continuing effects of Moore’s Law, are significantly altering the computing
landscape. More and more, computers are embedded in objects and systems
that people already know how to interact with (e.g., a telephone or a child’s
toy) apart from their experience with stand-alone computers.

There are several alternatives for how interacting with computers (whether
embedded or not) can proceed in the future, including the following:

• Simplify: Make the interface obvious and straightforward, giving users di-
rect control and relevant feedback pertaining to the task at hand. Move
toward single-task devices and central control to ensure consistency and
reliability.

• Disappear: Make the interface disappear into the device, as with embedded
computing (e.g., computer control systems in automobiles), so that users
may not even know or care that they are interacting with a computer-
based device. A more elaborate version of this is the concept of ubiquitous
computing, where networks of computers, sensors, and displays become
intimately integrated into everyday life.

• Accommodate: Make the interface anticipate, adapt, and react to the user
in an intelligent fashion, allowing users to interact in natural ways while
the system disambiguates and clarifies users’ intentions.

Each of these alternatives has its merits, and each should be (and is being)
pursued for future technologies. The first option is the domain of information
appliances and direct manipulation interfaces [31]. Clearly, the second option



282 M.Turk

is desirable when it is appropriate to the task at hand, as in an automobile
braking system – let the embedding computers do their work while the user
steps on the brake as he always has done. This seems most useful in traditional
uses of computing devices, such as text editing and information query, and
in other situations where the computer appears to the user as a tool for a
specific set of purposes, such as calculating numbers, controlling a process, or
drawing.

The third option – interfaces that accommodate to the user in seemingly
intelligent or perceptive ways – has developed a significant following in the
user interface community in recent years [15, 34]. It remains controversial [14],
however, and the premise is not yet widely accepted and has not been proven
in practice by common commercial systems. For example, anthropomorphism
(portraying inanimate computers as having a human-like personality or iden-
tity) can be awkward and even confusing to the user [32], although it may
also have certain advantages [41]. Speech recognition, the individual technol-
ogy most associated with this style of interface, has not yet turned the cor-
ner to become broadly useful, rather than mildly useful in limited domains.
Other component technologies, such as computer vision, reasoning, learning,
discourse modeling, and intelligent agents, are still primarily in research labs
and have not significantly impacted real systems as of the end of the year
2004. The vision of technology portrayed in the movie and book 2001: A
Space Odyssey [5] is clearly not yet at our disposal.

Nevertheless, one should expect these technologies to mature, especially
with the common goal of integrating them to improve and advance the inter-
face between humans and machines. There is progress every year and hopeful
signs that before long they will begin to profoundly affect HCI. In addition
to the desire for these technologies to improve the user experience, there is
additional motivation for the computer industry: continuing progress in hard-
ware demands more and more software to drive it and consume all those extra
cycles.

These three possible directions for HCI development are by no means
mutually exclusive; in fact, the second and third have much in common. As
people use computers less and less for text-only processing, and more and
more for communication and various media-based applications, the future of
human-computer interaction becomes completely intertwined with the future
of multimedia systems. The two go hand in hand.

3 Multimodal Interfaces

Since Bolt’s early “Put That There” prototype, there has been considerable
progress in developing a variety of different multimodal interface systems. Ovi-
att [18, 22] gives a good overview of the field, defining multimodal interfaces
as systems that “process two or more combined user input modes – such as
speech, pen, touch, manual gestures, gaze, and head and body movements –



Multimodal Human-Computer Interaction 283

in a coordinated manner with multimedia system output.” This implies two
main aspects of multimodal interfaces: developing modes of interaction and
developing techniques to combine or integrate the modes that enables more
flexible, expressive, powerful, and natural interfaces.

Humans interact with the world primarily through the five major senses
of sight, hearing, touch, taste, and smell. In perception, a modality (or mode)
refers to a particular sense. A communication channel is a pathway through
which information is transmitted. In typical HCI usage, a channel describes an
interaction technique that utilizes a particular combination of user/computer
communication, based on a particular device (such as the keyboard channel or
the mouse channel), or on a particular action (such as spoken language, writ-
ten language, or dynamic gestures). In this view, the following are all channels:
text (which may use multiple modalities when typing in text or reading text
on a monitor), sound, speech recognition, images/video, and mouse pointing
and clicking. In this view, multimodal interaction may refer to systems that
use either multiple modalities or multiple channels.

Multimodal systems and architectures vary along several key dimensions or
characteristics, including the number and type of input modalities; the number
and type of communication channels; the ability to use modes in parallel,
serially, or both; the size and type of recognition vocabularies; the methods of
sensor and channel integration; and the kinds of applications supported [35].

There are many potential advantages of multimodal interfaces, including
the following [20]:

• They permit the flexible use of input modes, including alternation and
integrated use.

• They support improved efficiency, especially when manipulating graphical
information.

• They can support shorter and simpler speech utterances than a speech-
only interface, which results in fewer disfluencies and more robust speech
recognition.

• They can support greater precision of spatial information than a speech-
only interface, since pen input can be quite precise.

• They give users alternatives in their interaction techniques.
• They lead to enhanced error avoidance and ease of error resolution.
• They accommodate a wider range of users, tasks, and environmental situ-

ations.
• They are adaptable during continuously changing environmental condi-

tions.
• They accommodate individual differences, such as permanent or tempo-

rary handicaps.
• They can help prevent overuse of any individual mode during extended

computer usage.

In addition, recent research [38] indicates that humans may process infor-
mation faster and better when it is presented in multiple modalities.



284 M.Turk

Oviatt and Cohen and their colleagues at the Oregon Health and Science
University (formerly Oregon Graduate Institute) have been at the forefront
of multimodal interface research, building and analyzing multimodal systems
over a number of years for a variety of applications. Oviatt’s “Ten Myths
of Multimodal Interaction” [19] are enlightening for anyone trying to under-
stand the area. We list Oviatt’s myths in italics, with our accompanying com-
ments [35]:

• Myth #1. If you build a multimodal system, users will interact multi-
modally. In fact, users tend to intermix unimodal and multimodal inter-
actions; multimodal interactions are often predictable based on the type
of action being performed.

• Myth #2. Speech and pointing is the dominant multimodal integration
pattern. This is only one of many interaction combinations, comprising
perhaps all spontaneous multimodal utterances.

• Myth #3. Multimodal input involves simultaneous signals. Multimodal
signals often do not co-occur temporally.

• Myth #4. Speech is the primary input mode in any multimodal system
that includes it. Speech is not the exclusive carrier of important content
in multimodal systems, nor does it necessarily have temporal precedence
over other input modes.

• Myth #5. Multimodal language does not differ linguistically from uni-
modal language. Multimodal language is different, and often much simpli-
fied, compared with unimodal language.

• Myth #6. Multimodal integration involves redundancy of content between
modes. Complementarity of content is probably more significant in multi-
modal systems than is redundancy.

• Myth #7. Individual error-prone recognition technologies combine mul-
timodally to produce even greater unreliability. In a flexible multimodal
interface, people figure out how to use the available input modes effec-
tively; in addition, there can be mutual disambiguation of signals that
also contributes to a higher level of robustness.

• Myth #8. All users’ multimodal commands are integrated in a uniform
way. Different users may have different dominant integration patterns.

• Myth #9. Different input modes are capable of transmitting comparable
content. Different modes vary in the type and content of their information,
their functionality, the ways they are integrated, and in their suitability
for multimodal integration.

• Myth#10. Enhanced efficiency is the main advantage of multimodal sys-
tems. While multimodal systems may increase efficiency, this may not al-
ways be the case. The advantages may reside elsewhere, such as decreased
errors, increased flexibility, or increased user satisfaction.

A technical key to multimodal interfaces is the specific integration lev-
els and technique(s) used. Integration of multiple sources of information is
generally characterized as “early,” “late,” or somewhere in between. In early



Multimodal Human-Computer Interaction 285

integration (or “feature fusion”), the raw data from multiple sources (or data
that has been processed somewhat, perhaps into component features) are
combined and recognition or classification proceeds in the multidimensional
space. In late integration (or “semantic fusion”), individual sensor channels
are processed through some level of classification before the results are inte-
grated. In practice, integration schemes may combine elements of early and
late integration, or even do both in parallel.

There are advantages to using late, semantic integration of multiple modal-
ities in multimodal systems. For example, the input types can be recognized
independently, and therefore do not have to occur simultaneously. The training
requirements are smaller, O(2N) for two separately trained modes as opposed
to O(N2) for two modes trained together. The software development process
is also simpler in the late integration case, as exemplified by the QuickSet
multimodal architecture [7]. QuickSet uses temporal and semantic filtering,
unification as the fundamental integration technique, and a statistical ranking
to decide among multiple consistent interpretations.

There are several modes/technologies that have been used in multimodal
interface systems, though some more than others. The most common are
speech recognition, language understanding, pen-based gesture, magnetic (or
inertial or optical) sensors for body and hand tracking, non-speech sound pro-
cessing, haptic (touch- or force-based) input devices, and computer vision.
(There have been a few projects that use smell, taste, or balance.) Automat-
ically sensing, detecting, and recognizing various aspects of human behavior
– identity, pose, spoken language, visual or pen-based gestures, facial expres-
sions, overall activity – will enable interfaces more closely matching styles of
natural human-to-human interaction.

These sensor-based technologies are joined by research in important rele-
vant areas such as user modeling, task/context modeling, and learning. Con-
text obviously plays an important role in human-human communication, and
it is a key issue that must be addressed in a significant way in order to achieve
truly natural, flexible, and effective multimodal interfaces. The context of an
interaction includes all the relevant information: the identity of the user, that
user’s preferences and experience with the system or task, the subject matter
of the task, the location, time of day, urgency of the task, and much more. All
but the most limiting and rigid systems will require learning and adapting to
the specific context, which is generally far too complex to specify manually.

In addition to publications in the top conferences and journals of each
of these individual fields, a number of workshops and conferences have been
held in the past decade with the specific intention of bringing together re-
searchers in the various subfields of multimodal interfaces. The workshops on
Perceptual/Perceptive User Interfaces were held in 1997, 1998, and 2001, and
the International Conference on Multimodal Interfaces has been held several
times beginning in 1996. In 2003, the two merged into an annual conference,
keeping the ICMI name. Other regular conferences, such as Intelligent User
Interfaces (IUI) and ACM SIGCHI (CHI), also feature quality research in, or



286 M.Turk

closely related to, multimodal interfaces. There is also significant interest in
multimodal biometric systems in recent years, largely for security applications
[11, 28]; while the fields have much in common, the integration schemes and
interactivity goals are quite different.

4 The State of the Art

During the past decade, there has been a good deal of research activity in mul-
timodal interfaces, including several different combinations of input modal-
ities. The performances of individual component technologies (e.g., speech
recognition and computer vision tracking) have improved, with lower error
rates and more robustness to non-ideal conditions. Multimodal architectures
that provide software infrastructure and integration techniques have been de-
veloped. The number of target applications has grown steadily. The number
and, subjectively, the quality of publications in the area have increased signif-
icantly. In sum, the state of the art offers an optimistic view that multimodal
interface research will soon contribute in meaningful ways to a number of real-
world application scenarios, and may possibly fulfill the vision of the “next
major paradigm” of human-computer interaction.

Although the “Put That There” system provided a vision in the early
1980s, it was not until several years later that fully operational, real-time
recognition capabilities made multimodal research a realistic option. Early
examples of such systems combining natural language with direct manipula-
tion (deictic gestures) include XTRA [12] and SHOPTALK [6]. Wahlster [40]
created early user and discourse models for multimodal communication. The

Fig. 2. QuickSet used in the ExInit application, in which a user communicates
via multimodal speech and gesture to create initial mission assignments for very
large-scale simulated battlefield scenarios. From [8], used with permission



Multimodal Human-Computer Interaction 287

QuickSet system [7], an architecture for multimodal integration used for inte-
grating speech and (pen) gestures, allowed users to create and control military
simulations from a tablet or handheld computer. Figure 2 shows the use of a
system that incorporates QuickSet in a military application. This system was
a milestone in multimodal interface research, both as a practical working pro-
totype system and as an anchor point for a good deal of productive research
on various aspects of multimodal interfaces (e.g., [9, 7, 42]). Vo and Wood
[38] also presented a framework for multimodal integration of speech and pen
input, experimenting with a multimodal calendar application.

Another system for integrating speech and (visual) gesture is described by
Poddar et al. [23], applied to the problem of parsing video of a weather report.
There have been a number of successful “Put That There” equivalents using
computer vision-based gesture recognition along with speech recognition.

Tight integration between modalities has been a critical element in the
“speechreading” community [33, 2, 25, 26]. These systems attempt to use
both visual and auditory information to understand human speech – adding
not just lip reading, but “face reading” to audio speech recognition. Humans
appear to do this, as we tend to hear better in noisy environments when we
visually focus on the speaker’s face.

The area of embodied conversation interfaces, environments where ani-
mated characters interact with people (for example, at public kiosks [28], at
large wall-mounted displays, or on the desktop), has been moving from charac-
ters that are blind and able to understand a limited range of spoken commands
to multimodal environments in which the characters interact through speech,
vision, gesture, and other modalities [1, 4, 16, 13] (see Fig. 3). Multimodal
conversational systems (without visual characters) are being developed for

Fig. 3. A multimodal kiosk that uses stereo vision to track head position and
recognize head gestures [16]. Used with permission



288 M.Turk

automobiles, in order to provide intuitive and flexible methods for drivers to
control vehicle systems using speech and/or touch [24].

Design guidelines for multimodal user interface design have begun to
emerge after the research and prototyping experience of the past decade.
Reeves et al. [27] offer a preliminary set of principles for multimodal interface
design in six main categories:

• Requirements specification
– Design for the broadest range of users and contexts of use
– Address privacy and security issues

• Designing multimodal input and output
– Maximize human cognitive and physical abilities
– Integrate modalities in a manner compatible with user preferences,

context, and system functionality
• Adaptivity

– Design interfaces to adapt to the needs and abilities of different users,
as well as different contexts of use

– Provide dynamic adaptivity, with graceful degradation
• Consistency

– Use common, consistent features as much as possible
• Feedback

– Keep users aware of their connectivity, available modalities, and inter-
action options

– Provide confirmation of after-fusion interpretation
• Error prevention/handling

– Provide clear exit and undo capabilities
– Provide task-relevant and easily accessible assistance

Perusing the state of the art in multimodal human-computer interaction
reveals a broad array of research areas and goals. Individual recognition and
modeling technologies are continuing to improve every year – a summary of
the state of each component area would be quite lengthy. Progress continues
in multimodal integration methods and architectures, and in tools for creat-
ing and testing multimodal systems. Several working prototype multimodal
systems have been built and evaluated, and government and industry appear
interested in using the developing systems and technologies.

5 Challenges in Multimodal HCI

Despite the significant progress in recent years, still much work remains to
be done before multimodal interfaces become an everyday, indispensable part
of computing. The research agenda must include both the development of
individual components and the integration of these components. Challenges



Multimodal Human-Computer Interaction 289

remain in each individual component area; each modal technology (speech
and sound recognition, language understanding, dialogue management, hap-
tics, pen-based gesture, vision-based tracking and recognition technologies,
user modeling, context modeling, etc.) is an active research area in itself.
Fundamental improvements in learning and reasoning are necessary. Multi-
modal integration methods and architectures are far from mature; in fact,
most current systems integrate only two modalities, such as speech and pen
or visual gesture. Larger, more ambitious research projects and prototype sys-
tems must be developed in order to tackle some of the deep problems that do
not surface with simpler systems.

For computer vision researchers interested in applying real-time vision
technologies to multimodal HCI, the main areas of interest are well docu-
mented, including face detection and recognition, facial expression analysis,
hand tracking and modeling, head and body tracking and pose extraction,
gesture recognition, and activity analysis. Building systems to perform these
tasks in real-world scenarios – with occlusion by objects and other people,
changes in illumination and camera pose, changes in the appearance of users,
and multiple users – is a huge challenge for the field. A high level of robustness
is key for all the recognition technologies, and in the end robustness can only
be determined by very thorough and stringent testing under a wide range
of conditions. To accomplish given tasks at certain levels of overall system
performance, researchers must determine what the accuracy and robustness
requirements are for each component. Testing a face recognition system is
fairly straightforward, but what are the implications for testing when there
are several recognition technologies and underlying user and context models
all in one system? The whole is clearly not just the conjoining of the parts.

In addition, there are potentially significant privacy issues with multimodal
systems that must be considered early on in order to provide potential users
with the assurance that such systems will not violate expectations of security
and privacy. Waiting until the technologies are on the way to market is clearly
not the way to handle these serious issues.

It is widely believed that truly superior technology does not always win
out, and it may be the case that very effective multimodal interfaces could
fail to make a significant impact because they are too different from well-
entrenched technologies. In order to most effectively bring about a transition
to multimodal interfaces, it may be wise to go slowly and to build on, rather
than try to replace, current interaction technologies, i.e., the WIMP-based
graphical user interface.

There is much work to be done before multimodal interfaces revolutionize
the human-computer interface. The grand challenge of creating powerful, ef-
ficient, natural, and compelling multimodal interfaces is an exciting pursuit,
one that will keep us busy for some time.



290 M.Turk

References

1. G. Ball, D. Ling, D. Kurlander, J. Miller, D. Pugh, T. Skelly, A. Stankosky,
D. Thiel, M. Van Dantzich, and T. Wax, “Lifelike computer characters: the
Persona project at Microsoft Research,” in J. M. Bradshaw (ed.), Software
Agents, AAAI Press/The MIT Press, pp. 191-222. 1997.

2. C. Benoit and R. Campbell (eds.), Proceedings of the Workshop on Audio-
Visual Speech Processing, Rhodes, Greece, September 1997.

3. R. A. Bolt. “Put-That-There: voice and gesture in the graphics interface,”
Computer Graphics, ACM SIGGRAPH, 14(3), pp. 262-270, 1980.

4. J. Cassell, T. Bickmore, M. Billinghurst, L. Campbell, K. Chang, H.
Vilhjálmsson, and H. Yan, “Embodiment in Conversational Interfaces: Rea,”
ACM CHI Conference Proceedings, Pittsburgh, PA, 1999.

5. A. Clark, 2001: A Space Odyssey, New American Library, 1999 (reissue).
6. P. Cohen, M. Dalrymple, D. Moran, F. Pereira, J. Sullivan, R. Gargan, J.

Schlossberg, and S. Tyler, “Synergistic use of direct manipulation and natural
language,” Proceedings of the Conference on Human Factors in Computing
Systems (CHI’89), pp. 227-234, 1989.

7. P. R. Cohen, J. Johnston, D. McGee, I. Smith, S. Oviatt, J. Pittman, L. Chen,
and J. Clow, “QuickSet: multimodal interaction for simulation set-up and con-
trol,” Proceedings of the Fifth Applied Natural Language Processing meeting,
Association for Computational Linguistics, Washington, D.C., 1997.

8. P. R. Cohen, D. R. McGee, and J. Clow, “The efficiency of multimodal inter-
action for a map-based task,” Proceedings of the Applied Natural Language
Processing Conference (ANLP’00), Seattle, WA, Morgan Kaufmann, pp. 331-
338 , April 29-May 4, 2000.

9. A. Corradini, R. M. Wesson, and P. R. Cohen, “A Map-based system using
speech and 3D gestures for pervasive computing,” IEEE International Confer-
ence on Multimodal Interfaces, Pittsburgh, PA, October 2002.

10. A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-Computer Interaction,
Second Edition, Prentice Hall Europe, 1998.

11. J.-L. Dugelay, J.-C. Junqua, K. Rose, and M. Turk (eds.), Proceedings of the
Workshop on Multimodal User Authentication (MMUA 2003), Santa Barbara,
CA, 2003. Available at http://mmua.cs.ucsb.edu.

12. A. Kobsa, J. Allgayer, C. Reddig, N. Reithinger, D. Schmauks, K. Harbusch,
and W. Wahlster, “Combining deictic gestures and natural language for referent
identification,” International Conference on Computational Linguistics, Bonn,
Germany, pp. 356-361, 1986.

13. S. Kopp, P. A. Tepper, J. Cassell, “Towards integrated microplanning of lan-
guage and iconic gesture for multimodal output,” Proceedings of the Interna-
tional Conference on Multimodal Interfaces, State College, PA, 2004.

14. P. Maes, B. Shneiderman, and J. Miller, “Intelligent software agents vs. user-
controlled direct manipulation: a debate,” CHI-97 Extended Abstracts: Panels,
ACM, Atlanta, GA, 1997.

15. M. Maybury and W. Wahlster, Readings in Intelligent User Interfaces, Morgan
Kaufmann, 1998.

16. L.-P. Morency and T. Darrell, “From conversational tooltips to grounded dis-
course: head pose tracking in interactive dialog systems,” Proceedings of the
International Conference on Multi-modal Interfaces, State College, PA, 2004.



Multimodal Human-Computer Interaction 291

17. D. A. Norman, The Invisible Computer, MIT Press, Cambridge, MA, 1998.
18. S. Oviatt, “Multimodal interfaces,” in J. Jacko and A. Sears (Eds.), Handbook

of Human-Computer Interaction, Lawrence Erlbaum, New Jersey, 2002.
19. S. L. Oviatt, “Ten myths of multimodal interaction,” Communications of the

ACM, 42(11):74-81, November 1999.
20. S. L. Oviatt, P. R. Cohen, L. Wu, J. Vergo, L. Duncan, B. Suhm, J. Bers, T.

Holzman, T. Winograd, J. Landay, J. Larson, and D. Ferro, “Designing the
user interface for multimodal speech and gesture applications: state-of-the-art
systems and research directions,” Human-Computer Interaction, 15(4):263-322,
2000.

21. S. Oviatt, T. Darrell, and M. Flickner, “Multimodal interfaces that flex, adapt,
and persist,” Communications of the ACM, Vol. 47, No. 1, pp. 30-33, January
2004.

22. S. Oviatt and W. Wahlster (eds.), Human-Computer Interaction (Special Issue
on Multimodal Interfaces), Lawrence Erlbaum Associates, Volume 12, Numbers
1 & 2, 1997.

23. I. Poddar, Y. Sethi, E. Ozyildiz, and R. Sharma, “Toward natural
speech/gesture HCI: a case study of weather narration,” Proc. PUI’98 Work-
shop, November 1998.

24. R. Pieraccini, K. Dayanidhi, J. Bloom, J. G. Dahan, M. Phillips, B. R. Bood-
man, and K. V. Prasad, “A multimodal conversational interface for a concept
vehicle,” Proc. Eurospeech, Geneva, Switzerland, September 2003.

25. G. Potamianos, C. Neti, and S. Deligne, “Joint audio-visual speech processing
for recognition and enhancement,” Proceedings of the Auditory-Visual Speech
Processing Tutorial and Research Workshop, St. Jorioz, France, pp. 95-104,
September 2003.

26. G. Potamianos, C. Neti, G. Gravier, A. Garg, and A. Senior, “Recent advances
in the automatic recognition of audio-visual speech,” Proceedings of the IEEE,
Vol. 91, No. 9, September 2003.

27. L. Reeves, J. Lai, J. Larson, S. Oviatt, T. Balaji, S. Buisine, P. Collings, P.
Cohen, B. Kraal, J.-C. Martin, M. McTear, T. Raman, K. Stanney, H. Su, and
Q. Wang, “Guidelines for multimodal user interface design,” Communications
of the ACM, Vol. 47, No. 1, January 2004.

28. J. Regh, M. Loughlin, and K. Waters, “Vision for a smart kiosk,” IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 690-696, Puerto Rico,
June 17-19, 1997.

29. A. Ross and A. K. Jain, “Multimodal biometrics: an overview”, Proc. of
12th European Signal Processing Conference (EUSIPCO), Vienna, Austria, pp.
1221-1224, September 2004.

30. B. Shneiderman, Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Addison Wesley, 3rd edition, March 1998.

31. B. Shneiderman, “The future of interactive systems and the emergence of direct
manipulation,” Behaviour and Information Technology, 1, pp. 237-256, 1982.

32. B. Shneiderman, “A nonanthropomorphic style guide: overcoming the humpty
dumpty syndrome,” The Computing Teacher, 16(7), (1989) 5.

33. D. Stork and M. Hennecke (eds.), Speechreading by Humans and Machines:
Models, Systems, and Applications, Springer-Verlag, Berlin, 1996.

34. M. Turk (ed.), Proc. Workshop on Perceptual User Interfaces, http://cs.ucsb.
edu/conferences/PUI/PUIWorkshop98/PUI98.htm, San Francisco, CA, Novem-
ber 1998.



292 M.Turk

35. M. Turk and M. Kölsch, “Perceptual Interfaces,” G. Medioni and S.B. Kang
(eds.), Emerging Topics in Computer Vision, Prentice Hall, 2004.

36. M. Turk and G. Robertson, “Perceptual User Interfaces,” Communications of
the ACM, Vol. 43, No. 3, pp. 33-34, March 2000.

37. A. van Dam, “Post-wimp user interfaces,” Communications of the ACM,
40(2):63-67, 1997.

38. V. van Wassenhove, K. W. Grant, and D. Poeppel, “Visual speech speeds up the
neural processing of auditory speech,” Proceedings of the National Academy of
Sciences, Vol. 102, pp. 1181-1186, January 2005.

39. M. T. Vo and C. Wood, “Building an application framework for speech and pen
integration in multimodal learning interfaces,” IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Atlanta, GA, May 1996.

40. W. Wahlster, “User and discourse models for multimodal communication,” in
J. Sullivan and S. Tyler (Eds.), Intelligent User Interfaces, New York, ACM
Press, pp. 45-67, 1991.

41. A. Wexelblat, “Don’t make that face: a report on anthropomorphizing an in-
terface,” in Coen (ed.), Intelligent Environments, AAAI Technical Report SS-
98-02, AAAI Press, 1998.

42. L. Wu, S. L. Oviatt, and P. R. Cohen, “Multimodal integration – a statistical
view,” IEEE Transactions on Multimedia, Vol. 1, No. 4, pp. 334-341, December
1999.



Smart Camera Systems Technology Roadmap

Bruce Flinchbaugh

Texas Instruments
b-flinchbaugh@ti.com

This chapter outlines requirements for real-time vision, video and image pro-
cessing in camera systems for consumer electronics, video surveillance, and
automotive vision applications. Related technology trends as they affect the
design and development of camera processors and systems are explained. Ex-
amples of smart camera prototypes and products are described, including the
roles of the embedded digital signal processors (DSPs). Finally, the require-
ments and trends are extrapolated to speculatively project the future of smart
cameras, as well as related implications and challenges for vision research and
applications.

1 Camera System Requirements for Real-Time Vision

Let us begin by defining a “smart” camera as a software-programmable camera
in which video data digitized from the image sensor is fully exposed to software
for processing. We also refer to such cameras as “intelligent” cameras. This
concept began to be seriously considered in the 1990s. In the early 2000s it
led to the development of programmable processors that satisfy the many
demanding requirements for consumer electronics and suggest the future of
real-time vision in cameras.

While there are many diverse functions for programmable processors in
cameras, in this chapter we focus on enabling vision functions: operations
that process incoming video/images to estimate useful information about the
environment. Our starting point will be consumer digital camera products
available today that use fully-programmable processors and other embedded
systems that can be programmed to incorporate vision functions. From there
we will consider requirements for other examples of smart camera systems,
emphasizing video surveillance, automotive vision, and future toys and games
with embedded cameras.



294 B. Flinchbaugh

Consumer digital cameras are an important starting point to understand,
because any vision system for widespread consumer adoption will need to
satisfy the same general requirements.

• Very low cost. First and foremost, the solution must be available at a
low price. For the consumer to buy at a low price, the bill of materials
for the electronics inside must be available at a much lower price. As a
rule of thumb, expect the total budget for electronic components in a
smart camera to be about 30% of the end-equipment retail price. Thus
if a smart camera system concept requires $1,000 worth of devices per
unit to produce, it will probably need to sell for about $3,000 to enable
a successful business. While digital cameras that cost $3,000+ have been
available for many years now, consumers generally do not buy them of
course. To reach most consumers, smart camera systems will likely need
to be available for less than $300, by analogy with what has happened in
the digital camera market.

• Very low power. This is a critical requirement for battery-operated smart
cameras. For reference, the peak image and video processing power budget
of a typical consumer digital still camera is typically below 700mW. Even
for fix-mounted smart cameras with wall power, a processor that runs
hotter than a light bulb can easily be unacceptable for many reasons.
Thus, while a 150+W, 4 GHz personal computer processor is useful in the
lab for vision experiments, a 0.6W, 0.6GHz DSP is much more likely to be
required for a smart camera system. Video processing in cellular camera
phones faces even lower power requirements for long battery life.

• Small size. Clearly cellular phone cameras and other consumer digital
cameras must be small enough to be hand carried and ideally to fit in
a pocket. The other high-volume electronic camera market, traditional
CCTV video surveillance cameras, also demands small size. Practically all
future smart cameras will face the same requirements. In contrast to the
low-power and small-size requirements for cameras, note that the heat sink
alone needed to cool a 4GHz PC processor is larger and heavier than a
cellular camera phone with a high-performance DSP inside.

• High-speed image and video processing. The embedded processor(s)
must apply the required functions to images and video fast enough to
be useful and acceptable. For digital still cameras, the bar is generally
regarded as being fixed at a one second shot-to-shot delay – regardless of
how many megapixels are in the image. For digital video, 30 frames per
second is the typical requirement, again, independent of the image size.
While some vision applications may require more or less than this, those
that need more will generally need to wait for affordable systems.

• High-speed general-purpose processing. Practically all digital cam-
eras run an embedded operating system of some sort to manage system
resources, user interaction and data communications. This generates a re-



Smart Camera Systems Technology Roadmap 295

quirement for a processor, often a reduced-instruction set processor, to
re-use existing operating system and applications software.

• Limited high-speed memory. The computationally intense image and
video processing of digital cameras requires enough high-speed memory to
hold several frames of video, and several multi-megapixel uncompressed
images for burst-mode capture. This is good for vision algorithms that
generally share the same requirements. However, vision algorithms that
require the relatively huge high-speed memory capacities of personal com-
puters will need to wait longer for widespread smart camera applications.

• Modular design. Smart cameras will likely need to be loosely coupled
with other systems, and in most cases will operate autonomously without
relying on communications with other/remote systems. High-bandwidth
communications for transmitting compressed digital video data will be a
standard feature for many smart cameras. But the video communications
will be infrequently used in applications where the primary purpose of
the vision system is to “watch” the video, in contrast to the traditional
purpose of cameras to provide images and video for people to watch.

• Vision functions. While an itemization of all algorithms required by
various vision approaches could be perhaps as long as the list of all vision
research publications, here are a few examples of applications and generic
methods to illustrate the diversity of vision function requirements for smart
cameras:
– Video surveillance: motion analysis, object tracking, face detection,

face classification, event recognition, . . .
– Automotive vision: range estimation using stereo video, lane detection,

face/eye tracking and analysis, obstacle detection, . . .
– Toys and games: object detection and recognition, body tracking, ges-

ture recognition, . . .

Of course, for human-computer interaction in general, we regard the many
methods described in other chapters of this book as candidate requirements
for smart cameras.

2 Technology Trends Behind Smart Cameras

The digital camera and cellular phone industries are well along the way to
making programmable DSPs commonplace in camera products. Here is an
explanation of that trend and other underlying and contributing trends, pro-
viding insight to what has happened behind the scenes to influence current
digital camera and cellular phone camera designs. To the extent that these
trends are sustained, they also provide a basis for projecting the future of
smart camera systems in Sect. 4.



296 B. Flinchbaugh

2.1 DSP Crossover Trend from Fixed-Function Circuits to
Programmable Devices

Since the first programmable DSPs were designed and produced in the early
1980s, the architectures and silicon technologies have progressed to provide
very high processing performance with very low electrical power requirements.
For example, the TMS320C64xTM family of DSPs includes processors that
operate at various speeds, e.g., 720MHz at about 1W [7], with eight par-
allel functional units for multiple operations in a single instruction cycle,
thus enabling over five billion operations per second. Whereas real-time video
compression functions were generally beyond the reach of DSPs in the mid-
1990s, they have crossed over from circuit-based designs to cost-effective DSP
applications now because DSPs are fast enough. Television-quality MPEG-2
video encoding can be implemented entirely in software on a single DSP. And
DSP video decoder software for the newest and more-complex video stan-
dard, H.264, is poised to receive digital television broadcasts (e.g., DVB-H)
to handheld devices such as cellular phones. The accompanying advantages
for smart cameras are compelling. These include the flexibility to add new vi-
sion applications to existing hardware systems via software without requiring
development of new or custom electronics, the capability to upgrade embed-
ded systems in the field via software downloads, and advantages of software
re-use in development of next-generation camera systems [5]. Further, what
we see is that once a video, image or vision function runs fast enough in DSP
software to be useful, it remains in software. That function does not cross
back over the line to become a fixed-function circuit implementation, because
that would be more expensive all things considered.

2.2 Silicon Technology Trends

The semiconductor industry is undergoing two key changes that are affecting
how and when new processors emerge. First, the term of Moore’s Law has
ended. The technology scaling rate is already slowing. While the industry will
continue to develop higher density technology for several more generations,
transistor performance is nearing physical limits, and on-chip interconnect is
also running into performance limitations. Thus new approaches to architec-
ture and design will be needed to continue to realize performance improve-
ments and cost reductions that have been historically achieved. Clock speeds
may not increase much beyond the levels already being produced, but alter-
nate parallel implementations may still provide improvements in performance,
power reductions, and cost reductions. At the same time, the industry is facing
a form of economic limit: the cost of generating pattern masks to manufacture
a new chip design with the most advanced semiconductor production processes
already exceeds $1M and is increasing. This nominally means that in order to
justify manufacturing a chip to exploit a new circuit or processor architecture,
the up-front fixed cost is so high that it significantly increases the risk for a



Smart Camera Systems Technology Roadmap 297

business to invest in the device. Only the very highest-volume markets can
justify the expense of developing custom processors using the most advanced
semiconductor technology. Unanticipated disruptive technology developments
would be needed to avoid these trends.

2.3 From Closed-Circuit Video to Network Communications

Analog CCTV systems for video surveillance have begun to give way to digital
network cameras. The transformation appears that it will take many years to
complete, but it has begun. Campus-wide networks of video cables connecting
dozens or hundreds of analog cameras to a centralized video monitoring room
are starting to be displaced by digital systems. In the design and construction
of new buildings, the additional expense of video cables is increasingly avoided
altogether in favor of using one high-speed digital network for both data com-
munications and video security functions. In Sect. 4, we will discuss some of
the interesting opportunities and challenges this trend poses for future video
surveillance systems.

2.4 From Wired to Wireless Communications

Perhaps the single trend with the most far-reaching implications yet to be
comprehended is the embedding of smart cameras in wireless phones. This
trend began almost instantaneously in 2003 when the number of cellular
camera phones exceeded the number of digital still cameras sold. With pro-
grammable DSPs already in hundreds of millions of cellular phones at that
time, many phones had the capacity for substantial digital image and video
processing software functions before the image sensor modules were integrated
in next-generation designs. The increasing adoption of wireless local area net-
working technology (e.g., 802.11) to replace wired digital communications net-
works is also changing the way people think about camera applications.

2.5 Toward Huge Non-Volatile Memory Capacities

The digital camera market drove the high-volume production of low-cost, non-
volatile memory cards, which started with about 8 MB capacities around 2000
and exceeded 1GB in 2004. At the same time, micro hard disk drives were
developed in similarly small form factors and now provide tens of gigabytes
of storage capacity for music players, digital cameras, and camera phones.
While these memory technologies are too slow to meet the high-speed memory
requirements for real-time vision, video and image processing, they serve well
as storage for digital video recordings and information databases in smart
cameras.



298 B. Flinchbaugh

2.6 On the Integration of Image Sensors and Processors

The trend at the device level so far is one of status quo. A combination
of economics and modular system constraints is keeping these devices from
being integrated on a single chip. While CMOS imager technology enables
digital processors to be integrated on-chip, and several such devices have been
developed, practically all of the world’s digital cameras and camera phones
continue to keep these functions separate. At the system level, the trend is
just the opposite. Whereas digital video processors, as in many machine vision
applications for example, have traditionally been remote to the image sensors,
the availability of high-performance DSPs has tipped the economic balance
to favor co-locating the sensors and processors in the same end equipment in
some cases, and sometimes on the same board.

3 Examples of DSP-Based Smart Cameras

This section provides some specific examples of how the technology trends
are enabling smart cameras. The systems include research prototypes and
consumer products developed by various companies, using DSPs to execute
real-time vision, video and/or image processing functions implemented in soft-
ware.

3.1 Network Camera Prototype

An early example of a DSP-based network camera was prototyped at Texas
Instruments in 1998–99. This camera was motivated by vision research for
autonomous video surveillance capabilities including object tracking, dynamic
position mapping, and event recognition [2, 4]. The system was a network
camera with an embedded hard disk drive, using a TMS320C6211TM DSP as
the processor for all functions.

Image and video processing software demonstrated using this platform in-
cluded tracking and position mapping of people and vehicles in 320×240-pixel
frames at about 15 frames/second. JPEG software compressed video sampled
at up to 15 fields/second. While tracking people and objects, event recognition
software on the camera distinguished events such as when a person entered a
room, placed an object on a table, or loitered in a specified area of the room.
With a 6GB hard disk drive designed into the camera, the camera could
autonomously record video or selected snapshots of events as they were rec-
ognized. The system had an Ethernet interface to serve web pages and to be
remotely configured. Remote web browsers could receive live or previously-
recorded motion JPEG video, dynamic maps of where people and vehicles
were moving in the field of view, and other information as it was produced by
the vision algorithms in real-time, or stored in the database. Portions of the
design of this prototype and its digital video recording software were used in



Smart Camera Systems Technology Roadmap 299

the Panasonic WJ-HD100 hard disk video recorder product for video security
applications.

DSP software in systems such as this is typically written almost entirely
in C, relying on compiler-optimizations to achieve high performance, and an
embedded operating system to manage system resources. When higher per-
formance is needed, usually only a few of the most computationally intensive
image processing functions need to be optimized using a high-level assembly
language. For example in this prototype, key “kernels” of the JPEG encoder
(e.g., the DCT) were manually optimized, as well as image differencing and
connected components labeling algorithms that provided inputs for tracking
and event recognition. Other functions, e.g., face recognition, can also be im-
plemented in C to achieve high-speed performance using the same kind of
processor [1].

The DSP embedded in this early network camera prototype was much
slower than the fastest available today. It operated at 166MHz. In 2004, newer
compatible DSP processors were available that operate at up to 1GHz. Thus
as smart cameras and software for autonomous video surveillance and mon-
itoring are designed and developed as products, similar functions will run
about six times faster than was possible with early prototypes, or process six
times the amount of video data.

3.2 Consumer and Professional Digital Cameras

Keeping in mind that our definition of “smart” cameras means “programma-
ble” cameras, here are some early examples of consumer digital cameras in
which the image processing pipeline was implemented entirely in software:
the 2 megapixel HP Photosmart 315 digital camera in 2000 and the Kodak
DX3500 in 2001. In these systems the particular DSP was a multi-processor
camera system-on-a-chip, the TMS320DSC21TM .

Since then several other system-on-a-chip camera processors have been
developed to enable many cameras with more megapixels, improvements in
algorithms, and video-rate processing. Among the latest and most advanced
digital cameras based on DSPs are the 14 megapixel Kodak Professional DCS
Pro SLR/n and SLR/c cameras announced in 2004. These cameras face a
computational per-picture burden that is nominally seven times greater than
the early 2 megapixel cameras.

Processing multi-megapixel images, starting with the raw Bayer pattern of
sub-sampled colors from the image sensor and proceeding through JPEG com-
pression, requires billions of operations per second to keep the photographer
from waiting to take the next picture. The specific algorithms and parameters
used are proprietary to camera companies. Generically, the operations include
functions such as color filter array interpolation, color space conversion, white
balance, faulty pixel correction, Gamma correction, false color suppression,
edge enhancement, and lens distortion correction, as well as image compres-



300 B. Flinchbaugh

sion at the end of the pipeline [8]. See also reference [5] for other insights to
software camera systems and software designs.

3.3 Cellular Phone Cameras

Cellular phones with digital still camera, digital video recording, and interac-
tive videoconferencing features are rapidly evolving. The early camera phones
introduced VGA-sized picture snapshot capabilities. Now the image sizes are
moving up to 3–5MP in current and next-gen phones. Whereas the early
video recording and streaming capabilities of various phones were limited to
SQCIF, QCIF, or QVGA-sized video, they are moving up to VGA and are an-
ticipated to reach television quality for digital camcorder-like video recording
capabilities.

As in other smart cameras, the high-complexity video encode and decode
computations of cellular phones can be implemented in DSP software. Video
standards such as H.263 and MPEG-4 are used [3], as well as some proprietary
formats. Various camera phone products are using programmable multimedia
applications processors such as OMAP1510TM and OMAP-DM270TM for the
image and video functions. These multi-processor systems-on-a-chip also en-
able many other software functions of camera phones.

3.4 Stereo Video Range Camera Prototype

David Hall, of Team Digital Auto Drive (Team DAD) that participated in
the DARPA Grand Challenge of March 2004, designed and developed a real-
time stereo video range camera prototype [6] to serve as the vision system
for their autonomous vehicle entry in the desert race. A vehicle servo-control
subsystem takes steering and acceleration commands from the vision system.

The vision system is a rather extraordinary example of a smart camera,
comprising six CCD image sensors arranged in two 3-CCD prism modules
with a 12” stereo baseline. Two TMS320C64xTM DSPs operate at 1.1GHz
to process the stereo video data. Software on the first DSP reads the digital
video data directly from the sensor modules, calculates a range image of the
scene, and produces a 3D terrain map in real-time. The second DSP receives
the 3D terrain profile, estimates significant objects, and plans a path over the
terrain to intersect a way point provided by a GPS and inertial navigation
subsystem. Finally the vision system sends commands to the servo-controller
to steer the vehicle.

4 Extrapolating the Trends for Future Smart Cameras

In this section, we take a stab at projecting the future design constraints and
challenges for smart cameras and related vision algorithm applications. While



Smart Camera Systems Technology Roadmap 301

the speculations here are perhaps stated too boldly and could turn out to be
wrong in various ways, this is an attempt to logically extrapolate the trends.
To the extent that the trends outlined in Sect. 2 continue and no disruptive
processing technology alternative emerges, perhaps much of this will turn out
to be true.

4.1 Future Smart Camera Processors, Systems, and Software
Products

Considering the trends and examples of DSP-based smart cameras and the
already huge economic requirements to justify custom circuit designs for vision
algorithms, it appears that smart camera processors will need to be designed
and developed once, and then programmed many times in order to afford
wide-ranging real-time vision system applications. Re-using system-on-a-chip
programmable processors from high-volume consumer cameras will essentially
become a requirement for implementing new kinds of low-cost end equipment
and vision applications.

Multi-processor systems on a chip are becoming increasingly common-
place to achieve higher performance. The importance of power-efficient pro-
grammable architecture designs is increasing, and the amount of computation
that is available at the lowest cost will eventually become relatively fixed. En-
gineers who design new smart cameras will increasingly select commercially
available off-the-shelf system-on-a-chip processors that include many features
that are overkill for the requirements – except the need for low cost.

A new trend seems likely to emerge: widespread availability of camera
products that are designed to be programmed by the purchaser instead of
the vendor. Then new smart camera systems will not need to be designed
at all, for the most part, because cameras will be available in a variety of
form factors and costs, ready to be programmed for custom vision, video and
image processing applications. These cameras will enable the independent
software vendor business model for vision applications software, to populate
smart cameras and create new kinds of products that were previously cost-
prohibitive.

Thus, for vision technology to be embedded in high-volume consumer prod-
ucts, the solutions will be provided in smart cameras. A strategy to develop
such products is to look for where smart cameras are deployed now, or where
they could be cost-effectively deployed to provide useful added value in the
future, to see which vision applications can emerge next.

4.2 Generic Implications of Smart Cameras for Vision Research

Future smart cameras will provide powerful new tools for vision research. Ana-
log cameras, frame grabbers and laboratory workstations will be displaced by
smart cameras. Vision researchers will work from their office, from home, or



302 B. Flinchbaugh

anywhere in the world for that matter, while conducting real-time data col-
lection and algorithm development experiments with remote cameras directly
via network. The smart cameras can be in a jungle on the other side of the
world, in the depths of a mine or at the bottom of the sea, in controlled lab-
oratory lighting conditions, in a car, or in a child’s toy at home. Program the
cameras for real-time data collection and in situ vision processing, and have
the results emailed or streamed when they are ready. Or the remote camera
can call a cellular phone to report results.

Vision research that aims to be useful to society someday, in the form
of wearable, handheld or household appliances, must increasingly be com-
putationally constrained. Whereas in the first forty years of vision systems
research many computationally complex approaches could be justified by us-
ing the argument that processor technology may one day make applications
affordable, that argument is going away. The premium will be on vision re-
search that produces algorithms that can run on available smart cameras.
We will not be able to afford vision research approaches that require custom
algorithm-specific circuits for adequate performance unless the advantage is so
compellingly valuable that it will be adopted by a mass market or command
a very high price in a low-volume equipment market.

Traditionally, the viable locations of cameras have been extremely limited
– and not many cameras in the world. As cellular phone cameras go into
the hands of hundreds of millions of consumers, programmable cameras will
be everywhere people are. The same technology will also enable cameras to
be deployed in fixed positions that were cost-prohibitive to consider before.
What new vision functions can these cameras be programmed to take on?
While vision research has developed algorithms and prototypes that suggest
many potential applications, there is a world of needs out there that vision
research has only begun to address. New motivations will focus future vision
research.

4.3 Future Human-Computer Interaction

As the field of human-computer interaction evolves to exploit smart cameras,
new problems of human-system and human-environment interaction will arise.
Some methods may find new applications as software add-ons for digital cam-
eras, cellular phones, and personal data assistants. For example, multimodal
human interaction methods could be adapted for smart camera systems. With
a microphone and speaker already in camera phones, techniques that recognize
speech and emotions using both audible and visual cues can be implemented
using the same embedded processors. Thus interactive dialogue systems may
emerge where smart cameras are deployed.

New ideas will lead to new kinds of handheld and wearable vision system
tools. Among the possibilities: Gesture-based recognition algorithms can be
implemented in personal smart cameras for rooms and vehicles to provide
interactive remote controls. Mount a camera phone on the back of a bicycle



Smart Camera Systems Technology Roadmap 303

helmet to serve as a proactive “rear view mirror” monitoring system. And
small smart cameras will enable new concepts for interactive toys and games.

Challenges for algorithms in this regard are to achieve sufficient robustness
in wide-ranging imaging conditions. To be most useful, algorithms will need to
operate reliably amid diverse ambient lighting conditions and backgrounds,
indoors and out. Perhaps the biggest challenge facing the use of handheld
vision systems for human interaction, or to devise new kinds of handheld vision
tools, is that the cameras are moving during operation. In the classic human-
computer interaction environment, the computer and connected camera(s)
are in fixed positions, and the user is in a chair, providing key geometric
constraints to help reduce the complexity of image and video analysis. Much
more vision research is needed to develop reliable algorithms and applications
for human interaction using smart cameras in motion.

4.4 Future Video Surveillance Systems

In the trend from closed-circuit video to network communications so far, most
digital video security system products are essentially using the network as a
replacement for analog video coax cable. For example, network video server
equipment digitally compresses and transmits data from analog CCTV cam-
eras to a remote network video storage system, or streams the data to a remote
display for live observation.

While that approach provides several advantages and may be required
for many security needs, smart cameras enable more. The traditional video
surveillance security functions of centralized monitoring rooms will migrate
to smart cameras, greatly reducing the overall cost of ownership and enabling
new video security applications in homes, vehicles, schools, hospitals, etc.
Using low-cost, high-capacity mass storage and system-on-a-chip processors
embedded in smart network cameras to record video data and real-time obser-
vations from vision algorithms, centralized digital video storage systems will
be avoided. Security personnel can obtain live or recorded video feeds direct
from cameras via ordinary network communications when needed, without
requiring separate network video server equipment. Traditional out-of-reach
mounting positions of security cameras provide sufficient physical camera se-
curity for most applications, while real-time encryption algorithms and pass-
words protect smart camera data if the camera is stolen. In large campus
installations, camera data can be backed up periodically on ordinary remote
storage systems if needed, like computers are backed up, without requiring
continuous streaming of video data to custom storage equipment.

But the big autonomous video surveillance and monitoring opportunities
and challenges for vision research go far beyond the first-order cost-saving
advantages of smart camera systems, and remain largely unrealized today.
Security needs will continue to drive vision research for years to come, to
help make the world a safer place. Smart camera systems will enable afford-



304 B. Flinchbaugh

able deployment as research provides the useful, reliable, and computationally
constrained algorithms.

4.5 Future Automotive Vision Systems

Automotive vision systems are starting to emerge. A prominent current ex-
ample is the recent deployment of lane-departure warning camera systems in
some car models in the industry. The economies of modular automotive de-
signs, coupled with the expense of cabling, makes it preferable to co-locate
the camera and the processor in such systems. As other automotive vision
algorithms deploy, smart camera processors are likely to be adopted because
automotive systems share the requirements outlined in Sect. 1.

A distinguishing challenge for automotive vision research is to assure a very
high degree of reliability. Whereas limitations and mistakes of visual analysis
may be acceptable or even exploited in smart camera applications such as
interactive toys and games, the consequences of errors are clearly more serious
for automotive safety. Vision research faces substantial challenges to collect
sufficient image and video databases to measure reliability, in conjunction
with human-system interaction research, to determine how reliable is reliable
enough.

The large body of ongoing research and development for automotive vi-
sion systems is taking on this challenge to develop numerous new roles for
smart cameras in cars. The longstanding quest for safe robotic driving contin-
ues, while research for other important automotive vision functions appears
closer to improving safety for consumers. Stereo/multi-camera video analysis
techniques may prove to be sufficient and cost-effective to meet increasing
standards for air bag deployment safety. Prototype methods for visual analy-
sis of drivers, to detect and alert if they start to fall asleep at the wheel, fit
the smart camera approach as well. Examples of other smart camera appli-
cations in the works that seem likely to emerge for automotive safety include
automatic monitoring of blind spots, obstacle detection, and adaptive cruise
control.

What else will smart cameras do?

Acknowledgments

The observations in this chapter derive largely from lessons learned over the
past twenty years in R&D projects for businesses of Texas Instruments, and
involving the contributions of numerous others, but the speculative views
expressed and any errors of fact that may appear are solely the author’s.



Smart Camera Systems Technology Roadmap 305

References

1. A.U. Batur, M.H. Hayes III, and B.E. Flinchbaugh. A DSP-based approach
for the implementation of face recognition algorithms. In IEEE Conference on
Acoustics, Speech and Signal Processing, Vol. 2, p. 253–256, 2003.

2. F.Z. Brill, T.J. Olson and C. Tserng. Event recognition and reliability improve-
ments for the Autonomous Video Surveillance System. In Proceedings 1998 Im-
age Understanding Workshop, Morgan-Kaufman Publishers, Vol. I, p. 267–283,
1998.

3. M. Budagavi. Wireless MPEG-4 video communications. In The Wiley Encyclo-
pedia of Telecommunications, J. G. Proakis, ed., Wiley, 2002.

4. T.J. Olson and F.Z. Brill. Moving object detection and event recognition algo-
rithms for smart cameras. In Proceedings 1997 Image Understanding Workshop,
Morgan-Kaufman Publishers, Vol. I, p. 159–175, 1997.

5. B.E. Flinchbaugh. Advantages of software camera designs. In Electronic Prod-
ucts, Hearst Electronics Group, February 2002.

6. D.S. Hall Team Digital Auto Drive (DAD) White Paper. Personal communica-
tion, 2004.

7. T. Hiers and M. Webster. TMS320C6414T/15T/16TTM Power Consumption
Summary. Application Report SPRAA45, Texas Instruments, August 2004.

8. K. Illgner, H-G. Gruber, P. Gelabert, J. Liang, Y. Yoo, W. Rabadi, and R.
Talluri. Programmable DSC platform for digital still camera. In Proceedings of
ICASSP 99, Phoenix, Arizona, March 1999.






