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Abstract

We propose a novel representation of motion data and control which
gives characters highly agile responses to user input and allows a
natural handling of arbitrary external disturbances. Our represen-
tation organizes samples of motion data into a high-dimensional
generalization of a vector field which we call a motion field. Our
run-time motion synthesis mechanism freely flows through the mo-
tion field in response to user commands. The motions we create
appear natural, are highly responsive to real-time user input, and
are not explicitly specified in the data.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: animation, motion representation, data-driven anima-
tion

1 Introduction

Human motion is a highly-varied and continuous phenomenon: it
quickly adapts to different tasks, responds to external disturbances,
and in general is capable of continuing locomotion from almost any
initial state. As video games increasingly demand that characters
move and behave in realistic ways, it is important to bring these
properties of natural human motion into the virtual world. Unfor-
tunately this is easier said than done. For instance, despite many
advances in character animation techniques, creating highly agile
and realistic interactive locomotion controllers remains a common
but difficult task.

We propose a new motion representation for interactive character
animation, termed a motion field which provides two key abilities:
the ability for a user to control the character in real time and the
ability to operate in the fully-continuous configuration space of the
character. Although there exist techniques which allow one or the
other of these abilities, it is the combination of the two which allows
for highly agile controllers which can respond to user commands in
a short amount of time.

More specifically, a motion field is a mapping which associates each
possible configuration of a character with a set of motions describ-
ing how the character is able to move from their current state. In
order to generate an animation we select a single motion from this
set, follow it for a single frame, and repeat from the character’s re-
sulting state. The motion of the character thus ‘flows’ through the
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state space according to the integration process, similar to a particle
flowing through a force field. However, instead of a single fixed
flow, a motion field allows multiple possible motions at each frame.
By using reinforcement learning to choose between these possibili-
ties at runtime the direction of the flow can be altered, allowing the
character to respond optimally to user commands.

Because motion fields allow a range of actions at every frame, a
character can immediately respond to new user commands rather
than waiting for pre-determined transition points as in a motion
graph. This allows motion field-based controllers to be significantly
more agile than their graph-based counterparts. By further altering
this flow with other external methods, such as inverse kinematics or
physical simulation, we also can directly integrate these techniques
into the motion synthesis and control process. Furthermore, since
our approach requires very little structure in the motion capture data
that it uses, minimal effort is needed to generate a new controller.
The primary contribution of this work lies in the combining of a
continuous state representation with an optimal control framework.
We find that this approach provides many advantages for character
animation.

2 Related Work

In the past ten years, the bag-of-clips data structures such as mo-
tions graphs have emerged as primary sources of realistic character
controllers [Lee et al. 2002; Arikan and Forsyth 2002; Kovar et al.
2002]. These structures are inherently discrete with coarse transi-
tioning abilities that provide great computational advantages. Un-
fortunately, this discretization also obscures continuous properties
of motion. First, it is difficult to create graphs which allow very
quick responses to changes of direction or unexpected disturbances
since a change to the motion can only happen when a new edge is
reached [Treuille et al. 2007; McCann and Pollard 2007]. Second,
because the motions are restricted to the clips which constitute the
graph it is difficult to couple these methods to physical simulators
and other techniques which perturb the state away from states rep-
resentable by the graph. More generally, it is very hard to use a
graph-based controller when the character starts from an arbitrary
state configuration [Zordan et al. 2005].

Although a number of methods have been proposed to alleviate
some of the representational weaknesses of pure graph-based con-
trollers, including parameterized motion graphs [Shin and Oh 2006;
Heck and Gleicher 2007], increasing the numbers of possible tran-
sitions [Arikan et al. 2005; Yin et al. 2005; Zhao and Safonova
2008] and splicing rag doll dynamics in the graph structure [Zor-
dan et al. 2005], the fundamental issue remains: unless the rep-
resentation prescribes motion at every continuous state in a way
that is controllable in real time, the movement of characters will
remain restricted. Hence, even when the method anticipates some
user inputs [McCann and Pollard 2007], the character may react too
slowly, or transition too abruptly because there is no shorter path in
the graph. Similarly, when methods anticipate some types of upper-
body pushes [Yin et al. 2005; Arikan et al. 2005], the character may
not react at all to hand pulls or lower-body pushes.

Another group of methods use nonparametric models to learn the
dynamics of character motion in a fully continuous space [Wang
et al. 2008; Ye and Liu 2010; Chai and Hodgins 2005]. These
techniques are generally able to synthesize starting from any initial



state, and lend themselves well to applying physical disturbances
[Ye and Liu 2010] and estimating a character’s pose from incom-
plete data [Chai and Hodgins 2005]. These models are used to
estimate a single ‘most likely’ motion for the character to take at
each possible state. This precludes the ability to optimally con-
trol the character. The primary difference between our work and
these is that instead of building a model of the most probable sin-
gle motion, we attempt to model the set of possible motions at each
character state, and only select the single motion to use at runtime
by using principles from optimal control theory. This allows us
to interactively control the character while enjoying the benefits of
a fully continuous state space. Our work combines the concepts of
near-optimal character control present in graph-based methods with
those of nonparametric motion estimation techniques.

Although our controllers are kinematic, dynamic controllers have
been extensively explored as an alternative method of character
animation. In principle, such controllers offer the best possibility
for highly realistic interactive character animation. However, high-
fidelity physically based character animation is harder to attain be-
cause physics alone does not tell us about the muscle forces needed
to propel the characters. Despite a broad repertoire of demonstrated
skills [Hodgins et al. 1995; Hodgins and Pollard 1997; Wooten and
Hodgins 2000; Faloutsos et al. 2001; Yin et al. 2007; Coros et al.
2008b], nonparametric modeling of coarse-scale dynamics [Coros
et al. 2009; Coros et al. 2008a], and use of motion capture [Laszlo
et al. 1996; Sok et al. 2007; da Silva et al. 2008; Muico et al. 2009],
agile, lifelike, fully-dynamic characters remain an open challenge.

3 Motion Fields

Interactive applications such as video games require characters that
can react quickly to user commands and unexpected disturbances,
all while maintaining believability in the generated animation. An
ideal approach would fully model the complete space of natural
human motion, describing every conceivable way that a character
can move from a given state. Rather than confine motion to canned
motion clips and transitions, such model would enable much greater
flexibility and agility of motion through the continuous space of
motion.

Although it is infeasible to completely model the entire space of
natural character motion, we can use motion capture data as a local
approximation. We propose a structure called a motion field that
finds and uses motion capture data similar to the character’s current
motion at any point. By consulting similar motions to determine
which future behaviors are plausible, we ensure that our synthe-
sized animation remains natural: similar, but rarely identical to the
motion capture data. This frees the character from simply replay-
ing the motion data, allowing it to move freely through the general
vicinity of the data. Furthermore, because there are always multi-
ple motion data to consult, the character constantly has a variety of
ways to make quick changes in motion.

3.1 Preliminary Definitions

Motion States We represent the states in which a character might
be configured by the pose and the velocity of all of each of a char-
acter’s joints. A pose x = (xroot, p0, p1, . . . , pn) consists of a
3d root position vector xroot, a root orientation quaternion p0 and
joint orientation quaternions p1, . . . pn. The root point is located
at the pelvis. A velocity v = (vroot, q0, q1, . . . , qn) consists of a
3d root displacement vector vroot, root displacement quaternion q0,
and joint displacement quaternions q1, . . . , qn, all found via finite
differences. Given two poses x and x′, we can compute this finite
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By inverting the above difference, we can add a velocity v to a pose
x to get a new displaced pose x′ = x⊕ v. We can also interpolate
multiple poses or velocities together ( ◦

P k
i=1wixi or ◦

P k
i=1wivi)

using linear interpolation of vectors and unit quaternion interpola-
tion[Park et al. 2002] on the respective components of a pose or
velocity. We use 	 and ⊕ in analogy to vector addition and sub-
traction in Cartesian spaces, but with circles to remind the reader
that we are working mostly with quaternions.

Finally, we define a motion state m = (x, v) as a pose and an as-
sociated velocity, computed from a pair of successive poses x and
x′ with m = (x, v) = (x, x′ 	 x). The set of all possible mo-
tion states forms a high dimensional continuous space, where every
point represents the state of our character at a single instant in time.
A path or trajectory through this space represents a continuous mo-
tion of our character. When discussing dynamic systems, this space
is usually called the phase space. However, because our motion
synthesis is kinematic, we use the phrase motion space instead to
avoid confusion.

Motion Database Our approach takes as input a set of motion
capture data and constructs a set of motion states {mi}ni=1 termed
a motion database. Each state mi in this database is constructed
from a pair of successive frames xi and xi+1 by the aforementioned
method of mi = (xi, vi) = (xi, xi+1 	 xi). We also compute and
store the velocity of the next pair of frames, computed by yi =
xi+2 	 xi+1. Generally, motions states, poses and velocities from
the database will be subscripted (e.g. mi, xi, vi, and yi), while
arbitrary states, poses and velocities appear without subscripts.

Similarity and neighborhoods Central to our definition of a
motion field is the notion of the similarity between motion states.
Given a motion state m, we compute a neighborhood N (m) =
{mi}ki=1 of the k most similar motion states via a k-nearest neigh-
bor query over the database [Mount and Arya 1997]. In our tests
we use k = 15. We calculate the (dis-)similarity by:

d(m,m′) =

vuuuuut
βroot||vroot − v′root||2 +

β0||q0(û)− q′0(û)||2 +Pn
i=1 βi||pi(û)− p′i(û)||2 +Pn

i=1 βi||(qipi)(û)− (q′ip
′
i)(û)||2 +

(1)

where û is some arbitrary unit length vector; p(û) means the ro-
tation of û by p; and the weights βroot, β0, β1, . . . , βn are tunable
scalar parameters. In our experiments, we set βi as bone lengths of
the body at the joint i in meters, βroot and β0 are set to 0.5. Intu-
itively, setting βi to the length of its associated bone de-emphasizes
the impact of small bones such as the fingers. Note that we fac-
tor out root world position and root yaw orientation (but not their
respective velocities).

Similarity Weights Since we allow the character to deviate from
motion states in the database, we frequently have to interpolate data
from our neighborhood N (m). We call the weights [w0, . . . , wk]
used for such interpolation similarity weights since they measure
similarity to the current state m:

wi =
1

η

1

d(m,mi)2
(2)

where mi is the ith neighbor of m and η =
P

i
1

d(m,mi)2
is a

normalization factor to ensure the weights sum to 1.



3.2 Motion Synthesis

Actions The value of a motion field A at a motion state m is a
set of control actions A(m) determining which states the charac-
ter can transition to in a single frame’s time. Each of these ac-
tions a ∈ A(m) specifies a convex combination of neighbors a =
[a1, . . . , ak] (with

P
ai = 1 and ai > 0). Given one particular ac-

tion a ∈ A(m), we then determine the next state m′ using a transi-
tion or integration function m′ = (x′, v′) = I(x, v, a) = I(m,a)
Letting i range over the neighborhoodN (m), we use the function

I(m,a) =
“
x⊕ ©

X
aivi,©

X
aiyi

”
(3)

Unfortunately, this function frequently causes to our character’s
state to drift off into regions where we have little data about how
the character should move, leading to unrealistic motions. To cor-
rect for this problem, we use a small drift correction term that con-
stantly tugs our character towards the closest known motion state
m̄ = (x̄, v̄) in the database. The strength of this tug is controlled
by a parameter δ = 0.1

I(m,a) =
`
x⊕ v′, y′

´
(4)

v′ = (1− δ)
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⊕ δ((x̄⊕ v̄)	 x) (5)

y′ = (1− δ)
“
©
X

k
i=1aiyi

”
⊕ δȳ (6)

Passive Action Selection Given a choice of action we now
know how to generate motion, but which action should we pick?
This question is primarily the subject of section 4. However, we can
quickly implement a simple solution using the similarity weights
(eq. 2) as our choice of action. This choice results in the character
meandering through the data, generating streams of realistic (albeit
undirected) human motion.

Foot-Skate Cleanup The result of motion synthesis might con-
tain foot-skating artifacts. We remove these artifacts by applying
inverse kinematics on the contact foot. To do this, we first annotate
foot contacts in the motion data. For every motion state mi in the
database, we store whether the left foot is in contact lcontact(mi) = 1
or not lcontact(mi) = 0, and likewise for the right foot rcontact(mi).
Then at runtime, we determine whether or not a foot is in contact
at an arbitrary motion state m by taking a weighted vote across the
neighborhoodN (m).

lcontact(m) =
X

mi∈N (m)

wilcontact(mi) (7)

(wi are the similarity weights of the neighbors: Equation (2)) If
lcontact(m) ≥ 0.5 we say the left foot is in contact. When the foot
leaves contact, we blend out of the inverse kinematics solution that
holds the foot in place during contact, within 0.2 seconds.

weight: weight:

BA

Figure 1: Control using action weights. By reweighting the
neighbors (black dots) of our current state (white dot), we can con-
trol motion synthesis to direct our character towards different next
states (dashed dots).

4 Control

As described in section 3, at each possible state of the character a
motion field there is a set of actions which the character can choose
from in order to determine their motion over the next frame. In
general, which particular action from this set it is best to choose
depends on the user’s current commands. Deciding on which action
to choose in each state in response to a user’s commands is thus key
in enabling real time interactive locomotion controllers.

4.1 Markov Decision Processes Control

A Markov decision process is a mathematical structure formalizing
the concept of making decisions in light of both their immediate
and long-term results. An MDP consists of four parts: (1) a state
space, (2) actions to perform at each state, (3) a means of deter-
mining the state transition produced by an action, and (4) rewards
for occupying desired states and performing desired actions. By
expressing character animation tasks in this framework, we make
our characters aware of long term consequences of their actions.
This is useful even in graph-based controllers, but vital for motion
field controllers because we are acting every frame rather than every
clip. For further background on MDP-based control see [Sutton and
Barto 1998], or [Treuille et al. 2007] and [Lo and Zwicker 2008] for
their use in graph-based locomotion controllers.

States Simply representing the state of a character as a motion
state m is insufficient for interactive control, because we must also
represent how well the character is achieving its user-specified task.
We therefore add a vector of task parameters θT to keep track of
how well the task is being performed, forming joint task states s =
(m, θT ). For instance in our direction following task θT records a
single number: the angular deviation from the desired heading. By
altering this value, the user controls the character’s direction.

Actions At each task state s = (m, θT ) a character in a motion
field has a set of actionsA(m) to choose from in order to determine
how they will move over the next frame (section 3). There are in-
finitely many different actions inA(m), but many of the techniques
used to solve MDPs require a finite set of actions at each state. In
order to satisfy this requirement for our MDP controller, we sample
a finite set of actions A(s) from A(m). Given a motion state m,
we generate k actions by modifying the similarity weights (Equa-
tion (2)). Each action is designed to prefer one neighbor over the
others.

{ ai

‖ai‖
|ai = (w0, · · · , wi−1, 1, wi+1, · · · , wk−1)} (8)

In words, to derive action ai simply set wi to 1 and renormal-
ize. This scheme samples actions which are not too different from
the passive action at m so as to as to avoid jerkiness in the mo-
tion, while giving the character enough flexibility to move towards
nearby motion states.

Transitions Additionally, we must extend the definition of the
integration function I (Equation (3)) to address task parameters:
Is(s, a) = Is(m, θT , a) = (I(m,a), θ′T ). How to update task
parameters is normally obvious. For instance in the direction fol-
lowing task, where θT is the characters deviation from the desired
direction, we simply adjust θT by the angle the character turned.

Rewards In order to make our character perform the desired task
we offer rewards. Formally, a reward function specifies a real num-
ber R(s, a) quantifying the reward received for performing the ac-
tion a at state s. For instance, in our direction following task we



give high a high reward R(s, a) for maintaining a small deviation
from the desired heading and a lower reward for large deviations.
See section Section 6 for the specific task parameters and reward
functions we use in our demos.

4.2 Reinforcement Learning

The goal of reinforcement learning is to find “the best” rule or pol-
icy for choosing which action to perform at any given state. A naı̈ve
approach to this problem would be to pick the action which yields
the largest immediate reward: the greedy policy.

πG(s) = argmax
a∈A(s)

R(s, a) (9)

Although simple, this policy is myopic, ignoring the future ramifi-
cations of each action choice. We already know that greedy graph-
based controllers perform poorly [Treuille et al. 2007]. Motion
fields are even worse. Even for the simple task of changing di-
rection, we need a much longer horizon than 1

30
th of a second to

anticipate and execute a turn.

Somehow, we need to consider the affect of the current action
choice on the character’s ability to accrue future rewards. A looka-
head policy πL does just this by considering the cumulative reward
over future task states:

πL(s) = argmax
a∈A(m)

"
R(s, a) + max

{at}

∞X
t=1

γtR(st, at)

#
(10)

with s1 = Is(s, a) and st = Is(st−1, at−1). γ is called the dis-
count factor and controls how much the character focuses on short
term (γ → 0) versus long term (γ → 1) reward.

As written, computing the lookahead policy involves solving for not
only the optimal next action, but also an infinite sequence of optimal
future actions. Despite this apparent impracticality, a standard trick
allows us to efficiently solve for the correct next action. The trick
begins by defining a value funciton V (s), a scalar-valued function
representing the expected cumulative future reward received for act-
ing optimally starting from task state s.

V (s) = max
a∈A(m)

∞X
t=0

γR(st, at) (11)

We will describe shortly how we represent and precompute the
value function, but for the moment notice that we can now rewrite
equation 8 by replacing the infinite future search with a value func-
tion lookup:

πL(s) = argmax
a∈A(m)

[R(s, a) + V (Is(s, a))] (12)

Now the lookahead policy is only marginally more expensive to
compute than the greedy policy.

4.2.1 Value Function Representation and Learning

Since there are infinitely many possible task states, we cannot rep-
resent the value function exactly. Instead we approximate it by stor-
ing values at a finite number of task states si and interpolating to
estimate the value at other points (Figure 2). We choose these task
state samples by taking the Cartesian product of the database mo-
tion states mi and a uniform grid sampling across the problem’s
task parameters. See Section 6 for details of the sampling. This
sampling gives us high resolution near the motion database states,

CB

value: value:next state?
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Figure 2: Action search using a value function. (A) At every
state, we have several possible actions (dashed lines) and their next
states (dashed circles). (B) We interpolate the value function stored
at database states (black points) to determine the value of each next
state. (C) We select the highest value action to perform.

which is where the character generally stays. In order to calcu-
late the value V (s) of a task state not in the database, we interpo-
late over neighboring motion states using the similarity weights and
over the task parameters multilinearly.

Given an MDP derived from a motion field and a task specification,
we solve for an approximate value function in this form using fitted
value iteration [Ernst et al. 2005]. Fitted value iteration operates
by first noting that equation 10 can be used to write the definition
of the value function in a recursive form. We express the value at a
task state sample si recursively in terms of the value at other task
state samples:

V (si) = R(si, πL(si)) + V (Is(si, πL(si))) (13)

where πL(si) is as defined in equation 10 and V (Is(si, a)) is com-
puted via interpolation. We can solve for V (si) at each sample state
by iteratively applying equations 10 and 11. We begin with an all-
zero value function V0(si) = 0 for each sample si. Then at each si

equation 10 is used to compute πL(s) after which we use equation
11 to determine an updated value at si. After all the si samples have
been processed in this manner, we have an updated approximation
of the value function. We repeat this process until convergence and
use the last iteration as the final value function.

4.2.2 Temporal Value Function Compression

Unlike graph-based approaches, motion fields let characters be in
constant transition between many sources of data. Consequently,
we need access to the value function at all motion states, rather
than only at transitions between clips. This fact leads to a large
memory footprint relative to graphs. We offset this weakness with
compression.

For the purpose of compression, we want to think of our value
function as a collection of value functions of task parameters.
Without compression, we store one of these value sub-functions
Vmi(θT ) = V (mi, θT ) at every database motion state mi (see
Figure 3). Here, we observe that our motion states were originally
obtained from continuous streams of motion data. At 30Hz tempo-
rally adjacent motion states and their value functions are frequently
similar; we expect that Vmt changes smoothly over “consecutive”
motion states mt relative to the original clip time. Exploiting this
idea, we only store value functions at every N -th motion state, and
interpolate the value functions for other database motion states (See
Figure 4). We call these database states storing value functions ‘an-
chor’ motion states. We compute the value function at the ith mo-
tion state between two anchors m0 and mN as

Vmi(θT ) =
N − i
N

Vm0(θT ) +
i

N
VmN (θT ) (14)



Figure 3: Uncompressed value function. The value functions Vmi

are stored at every motion state mi.

Figure 4: Value function with temporal compression. The value
functions at intermediate motion states are interpolated by the
neighboring ‘anchor’ motion states that have explicitly stored value
functions.

We can learn a temporally compressed value function with a triv-
ially modified form of the algorithm given in section 4.2.1. Instead
of iterating over all task states, we only iterate over those states
associated with anchor motion states.

This technique allows the tradeoff between the agility of a motion
field-based controller and its memory requirements. Performing
little or no temporal interpolation yields very agile controllers at
the cost of additional memory, while controllers with significant
temporal compression tend to be less agile. In our experiments we
found that motion field controllers with temporal compression are
approximately as agile as graph-based controllers when restricted to
use an equivalent amount of memory, and significantly more agile
when using moderately more memory (see Section 6).

5 Response to Perturbation

Because each motion state consists of a pose and a velocity, the
space of motion states the character can occupy is identical to the
phase space of the character treated as a dynamic system. This
identification allows us to easily apply arbitrary physical or non-
physical perturbations and adjustments. For example, we can in-
corporate a dynamics engine or inverse kinematics. Furthermore,
we do not have to rely on target poses or trajectory tracking in or-
der to define a recovery motion. Recovery occurs automatically and
simultaneously with the perturbation as a by-product of our motion
synthesis and control algorithm.

To illustrate the integration of perturbations into our synthesis al-
gorithm, we describe a simple technique which provides pseudo-
physical interaction with the ability to apply forces to any part of
the body. This approach blends the results obtained by a physical
simulator with the results of our motion synthesis technique. This
blend occurs over a window of k update steps, beginning when a set
of forces is first applied. (We set k = 20 i.e. 2/3 of a second in our
implementation.) During this blending phase, we use a modified

integration formula (Equation (3)):

ID(x, v, a) =
i

k
I(x, v, a) +

k − i
k

D(x, 0, i) (15)

where D(x, 0, i) is the state after i steps of dynamic simulation
starting at pose x with initial velocity 0. ID can be used in con-
junction with both passive and controlled motion fields.

In our implementation we use Open Dynamics Engine (ODE,
[Smith 2010]) to calculate D(x, 0, i). At each of the next k frames
after a force is applied we set the state of the character in ODE to
x with zero initial velocity. We then apply any perturbation forces
and simulate the resulting dynamics for i frames with gravity dis-
abled. This setup (with zero initial velocity and no gravity) has the
useful property that in the absence of any perturbation forces the
character’s pose x goes unaltered. In order to better mimic the way
in which an actual person would “tip” about their feet when pushed
we also pin any contacting feet to the ground with ball joints during
this simulation. When a new force is applied during an ongoing
blend, we simply terminate the old blending process early and be-
gin again with the new force. As a result, velocities do not transfer
correctly between multiple quick pushes. However, in many cases
this is not visually apparent, even when multiple large forces are
applied in quick succession. In addition, because I(x, v, a) does
not handle velocity in the same manner as a dynamical system, our
perturbation method is not physically accurate, but rather a heuris-
tic which gives plausible-looking results. Nevertheless, it is useful
as an illustration of how perturbations can be easily integrated into
the synthesis process.

A

Figure 5: Responding to external perturbation. When external
force (dashed vector) is applied at state A causing a discontinuous
change of behavior, the system can immediately find a new path
around the motion fields to naturally recover from the impact.

6 Experiments

This section presents analysis on two important properties of mo-
tion fields – agility in responding to user directive changes and abil-
ity to respond to dynamic perturbation.

6.1 Agile Responses to User Control

6.1.1 Experiment Setup

We created value functions for two example tasks: following an
arbitrary user-specified direction and staying on a straight line while
following the user direction. (See Figure 6). The reward Rdirection
for the direction task and the rewardRline for the line following task
are respectively defined as

Rdirection(m, θc, a) = −|θc| (16)
Rline(m, θc, dL, a) = −|θc| − 0.05|dL|. (17)
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Figure 6: Task Parameters. For the direction following task (a),
the difference in angle θc of the desired direction from the character
facing direction is used. For the line following task (b), distance to
the desired line dL is also considered with θc.
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Figure 7: Response Time. Direction adjustment over time with
three consecutive direction changes within 4.23 seconds. The mo-
tion field control adjusts in a significantly shorter time period than
the graph-based control.

Motion Data Setup We used 142 seconds of motion data con-
taining leisurely-paced locomotion and quick responses to direction
and line changes. We selected the source motion data with min-
imum care except to roughly cover the space of possible motion.
The only manual pre-processing was foot contact annotation.

Value Function Computation We use value iteration to calcu-
late the value function. For the direction task, we store values for
18 uniformly sampled directions θc. For the line following task,
we take a Cartesian cross product sampling between 18 uniform θc

samples and 13 uniform dL samples spanning -2.0m to 2.0m. We
set the discount factor to γ = 0.99. For each task, we also created
‘temporally compressed’ versions of the value functions, where we
set N = 1, 10, 20, 30 in equation 12. Using value iteration to solve
for the value function takes within 2 minutes if there is sufficient
memory to cache the actions and transitions, and 3 hours other-
wise. Distributing the value iteration updates over compute clusters
can easily address these time and memory burdens.

6.1.2 Response Timing Analysis

Graph-Based Control vs Motion Field Control In order to
compare how quickly the character can adjust to abruptly chang-
ing directives, we created a graph-based task controller [Lee et al.
2009] using the same motion data, tasks and reward functions. In
order to maximize agility, we allowed a wide range of up to±45 de-
grees of directional warping on clips, and gave minimal importance
to the physicality cost. (See Lee et al. [2009] for details.) Figure 7
shows typical responses to changing user directions. For both tasks,
the motion fields demonstrated much quicker convergence to new
goals, as shown in the accompanying video and the Table 1.

Representation Minimum Average Maximum
Graph-based 0.31 0.94 2.36
Motion Field 0.21 0.40 1.01
Motion Field ×10 0.21 0.49 1.23
Motion Field ×20 0.25 0.66 1.19
Motion Field ×30 0.38 0.78 1.93

Table 1: Response times in seconds for the direction task until con-
verging within 5 degrees of desired direction. Motion Field×10 de-
notes ten-fold temporally compressed value function on the motion
field (N = 10). Motion Field×20 and×30 are defined similarly. A
motion field with thirty-fold temporal compression has agility sim-
ilar to graph-based control, while even a twenty-fold compression
is significantly more responsive than the graph-based alternative.

Representation Minimum Average Maximum
Graph-based 0.47 1.30 2.19
Motion Field 0.30 0.57 1.26
Motion Field ×10 0.30 0.68 1.42
Motion Field ×20 0.42 0.91 2.51
Motion Field ×30 0.55 1.45 3.56

Table 2: Response times in seconds for the line following task un-
til converging within 5 degrees of desired direction and 0.1 meters
from the desired tracking line. In this two-dimensional control ex-
ample, the twenty-fold compression is still more responsive than the
graph-based control.

Effect of Value Function Compression We recorded response
times using the compressed value functions on uniformly sampled
user direction changes. With increasing degree of compression the
system still reliably achieved user goals, but gradually lost agility
in the initial response (See Table 1). We ran a similar experiment
for the line following task. We uniformly sampled user direction
changes as well as line displacement changes. Then we measured
the time until the character converged to within 5 degrees from the
desired direction and 0.1 meters from the desired tracking line. We
observed similar losses of agility (See Table 2).

6.1.3 Storage Requirement and Computational Load

The uncompressed value function for the direction-following task is
stored in 320KB. The compressed value functions required 35KB,
19KB, and 13KB for 10x, 20x, and 30x cases respectively. This
compares to the storage required for the graph-based method of
14KB. We believe this is reasonable and allows flexible trade off
between storage and agility. For more complex tasks, the size in-
crease of the value functions are in line with the size increased for
graph-based value functions.

The approximate nearest neighborhood (ANN) [Mount and Arya
1997] queries represent most of the computational cost. The run-
time performance depends on the sample action size k (Equa-
tion (??)), as we make (k+1) ANN calls to find the optimal action:
one ANN call to find the neighbors of the current state, and then k
more ANN calls to find the neighbors of the next states to evaluate
value by interpolation. We believe localized neighborhood search
as in PatchMatch [Barnes et al. 2009] can reduce the cost of the n
subsequent calls, because the next states tend to be quite close to
each other at 30Hz.

The same ANN overhead applies at learning time. A naive learning
implementation takes hours to learn a value function for a large
database or a high dimensional task. By caching the result of the
ANN calls on the fixed motion samples, we can dramatically speed
up learning time to just a couple minutes.



6.2 Perturbation

Using the algorithm described in section 5 we integrated pseudo-
physical interaction with motion field driven synthesis, using both
passive and controlled motion fields. We tested the perturbations
on the following four datasets:

1. 18 walks, including sideways, backwards, and a crouch.
2. dataset 1 plus 7 walking pushes and 7 standing pushes.
3. 5 walks, 6 arm pulls on standing, 6 arm pulls on walking, 7

torso pushes on standing, and 7 torso pushes on walking.
4. 14 walks and turns.

The character responds realistically to small or moderate distur-
bances, even in datasets 1 and 4 which only contain non-pushed
motion capture. In datasets 2 and 3 with pushed data, we observe
a wider variety of realistic responses, and better handling of larger
disturbances. Forces applied to different parts of the character’s
body generally result in appropriate reactions from the character,
even in the presence of user control.

We have, however, observed some cases where forces produced un-
realistic motion. This occurs when the character is pushed into a
state far from data with a reasonable response. This can be ad-
dressed by including more data for pushed motion.

7 Limitations

Just as with any other data-driven method, our method is limited
by the data it is given. So long as the character remains close to
the data the synthesized motion appears very realistic. When the
character is far from the data, realism and physical plausibility of
the motion declines. Although always limited by the presence of
data, we expect that the range of plausible motion can be extended
by an incorporation of concepts from physical dynamics (inertia,
gravity, etc.) into the integration process.

We have successfully generated controllers for two-dimensional
near-optimal control problems using a moderate-sized motion
database. In order for this technique to scale to much larger sets of
motion data and all possible tasks, the current time and space per-
formance of the algorithm needs to be improved. Although we have
presented a technique which allows the storage requirements of our
method to be reduced (section ??) at high levels of compression
the controller’s agility degrades to that of graph-based controllers.
As we find the value functions for locomotion tasks are generally
smooth both in space and time, we expect that more advanced com-
pression techniques can effectively enable motion flows on more
complicated control tasks on massive data sets. One particularly
interesting possibility would be to apply a motion field-based ana-
logue of [Lee et al. 2009] which would adaptively select a compact
representation while preserving the controller’s behavior.

We have chosen k-NN rather than a radius search to define N (m)
because it leads to more predictable runtime performance. Even
in cases with significant redundant data, so long as just one of the
k neighbors goes in a desired direction, the optimal control-based
action selection will choose it. None the less, although we have not
observed it, it is possible that in highly redundant data sets N (m)
won’t provide a sufficient variety of actions. Intelligently selecting
which motion states to include in the motion database is will likely
be necessary to use our technique with large unprocessed motion-
capture corpuses.

Because we make heavy use of k-nearest neighbors lookups and
interpolation, our method is more expensive at runtime than graph-
based approaches. None the less, we have found that even our unop-
timized implementation runs at approximately 200 frames per sec-

ond. Further efficiency improvements—such as incremental near-
est neighbor searches—are an interesting avenue of research. This
would allow for large crowds of characters to be animated as well
as enable motion fields which have very large sets of actions at each
state.

One final current limitation of motion fields lies in the lack of well-
understood tools to analyze and edit them. This is in contrast to
motion graphs, which can rely on an extremely well-understood
set of algorithms for manipulating graphs developed over many
decades. For instance, motion graphs are usually pruned to ensure
that they are strongly connected; starting from any state, a char-
acter can reach any other state. Although we have not found this
pruning to be necessary in our controllers, this is the sort of task for
which we do not yet have good tools in the context of motion fields.
We think that the development of such tools would be useful in au-
thoring new controllers, and would potentially have applications in
areas outside of character animation.

8 Conclusion

This paper introduces a new representation for character motion
and control that allows realtime-controlled motion to flow through
the continuous configuration space of character poses. This flow
can altered in response to realtime user-supplied tasks. Due to its
continuous nature, it addresses some of the key issues inherent to
the discrete nature of graph-like representations, including agility
and responsiveness, the ability to start from an arbitrary pose, and
response to perturbations. Furthermore, the representation requires
no preprocessing of data or determining where to connect clips of
captured data. This makes our approach both flexible, easy to im-
plement, and easy to use. We believe that structureless techniques
such as the one we propose will provide a valuable tool in enabling
the highly responsive and interactive characters required to create
believable virtual characters.

Although the motion field representation can be used by itself, we
think it can easily integrate with graph-based approaches. Since
motion fields make very few requirements of their underlying data,
they can directly augment graph-based representations. In this way,
one could reap the benefits of graphs (computational efficiency,
ease of analysis, etc.) when the motion can safely be restricted to
lie on the graph, but retain the ability to handle cases where the mo-
tion leaves the graph (for instance due to a perturbation), or when
extreme responsiveness is requried. Finally, we are interested in
techniques to more deeply incorporate ideas from dynamics into
the distance metric and integration process, creating characters who
behave in physically plausible ways, in a wide range of situations,
using relatively little underlying data.

More generally, we feel that motion fields provide a valuable start-
ing point for motion representations which wish to move beyond a
rigidly structured notion of state. We believe that structureless mo-
tion techniques—such as ours—have the potential to significantly
improve the realism and responsiveness of virtual characters, and
that their applicability to animation problems will continue to im-
prove as better distance metrics, integration techniques, and more
efficient search and representation methods are developed.
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