A

N] ok Sy %
3

PR " SR

[Multicore Bundle Adjustment -
| | Changchang Wu?, Sameer Agarwal?, Brian Curless?, Steven M. Seitz% 2 |
1 University of Washington at Seattle, 2 Google Inc.

14K cameras, 4.5M points and 30M measurements in 2 minutes!

N Code avallable at http://grail.cs.washington.edu/projects/mcba/ S
Our Multicore Solution ,) > R i i -
r 2 SRR o eplace large matrices with on-the-fly computation
» Problem restructuring to make bundle adjustment easily parallelizable. Problem i Fine-grained Parallelization) _ _
» 10x-30x Speedup on nVidia Tesla C1060 GPU. : Restructuring) ! On-the-fly Jacobian “ * Substantial memory savings.
» 5x-10x Speedup on Dual Intel Xenon E5520 (16 cores). . J * Increased GPU throughput due to reduced memory contention.
» Up to 80 % reduction iIn memory usage.
CPU GPU
» Exploit associativity of multiplication to eliminate matrix products JX 0.56X 1.44X
Bundle Adjustment - N - N - Jly 0.48X 1.09X
Bundle adjustment is the joint non-linear refinement of camera and point 177 ||| = 9T _ 9T _ 9T LM 0.46X 1 27X
parameters. Levenberg-Marquardt (LM) is the most popular method for T J T J T
solving_bund_le adjustment. Let J be the Jacobian, each step of LM solves a L) L)] Dubrovnik Final: 4.6K cameras, 1.3M points, and 8M measurements
regularized linear least squares p“’b'e”;“ 5 Memory usage can be reduced from 1.9G to 0.55G
6" = arg mé_in |J(x)d + f(x)||” + A[|D(x)d| Using the augmented Hessian matrix without forming it
which is equivalent to solving the normal equations: Hyq = JT(Jq) 4 /\(DTD)q
T T _ T .
(J2 T+ AD D)o = —J" f. Using the Schur complement without forming it or forming the Hessian EXperiments (comparing with Agarwal et al. Bundle Adjustment in the Large, ECCV2010)
where H, = J'.J + A D' D is called the augmented Hessian Matrix. 1, T T o
S = Je (Jete = Jp (Vi (J (Jee)))) +ADc Deg
The parameters consist of the camera part and the point part (§ = [0.; d,], Cssbeb b i L = e e
J =1J., Jp], etc.) and most methods first solve the reduced camera system ST T
_ . . .
Uy =WV W) = =J f+WV LIS » Map problem structure to use both multi-threading and SIMD
s | L
where § = U, - WV, 'WT is called the Schur complement, « Map computation loops to threads on compute cores TUUEROL L
Uy=J'J. +\D!'D. V) = Jg Jp +)\Dg D,and W = J1J,. - A few threads on CPU; many threads on GPU
 Align parameter size to 4 and employ SIMD arithmetic R . . |
Venice Final (13775 cameras, 4.5M points, 50 LM steps in 2 minutes)
- CPU SSE operates on 4 floats; CUDA Warp operates on 32 floats R I |
s T T T T T TTTTTTS “T I=cremmctiem]
Problem {1 (N) :) A et N =
=% Implicit H: + PCG | | Naive CPU Rl o |
l :) ’ [Non-SSE, Single-threaded B rep ol W
r T D _ Yy, g
Form J : > ImpIICIt S+ PCG I ;;1-35-
\, J I
I I ST e
l l Our methods] / \ / y \ / \ | .
Form H, N o o o e o o o o e CPU SSE CPU SSE GPU o | ;
Single-threaded Multi-threaded (NO’[storing JC) Dubrovnik Skeletal (356 cameras, 226730pts, 50 LM steps in 5 seconds)
» T T T =
Cholesky Form S PCG Implicit S + PCG JY 2.3X Jy 12X JY 23X
LM 2.0X LM 10X \ LM 25X /
Agarwal et al. Bundle K / K / E
Adjustment in the Venice Final : 14K Cameras, 4.5M points, and 30M Measurements.
Cholesky PCG Large, ECCV2010 (LM is profiled with a fixed number of 10 CG iterations). |
» Use single-precision arithmetic with proper normalization
4 N () » Normalize parameters to precondition the distribution of Jacobians. Ladybug (1723 cameras, 156502pts, 50 LM steps in 2 seconds)
Dense factorization Sparse factorization

_ « Maintain accuracy while achieving higher throughput.
Lourakis’s SBA Zach's SSBA

\. /\ S

« Comparable convergence behaviors.

http://grail.cs.washington.edu/projects/mcba/
http://grail.cs.washington.edu/projects/mcba/

