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Abstract

We present the design and implementation of new inex-
act Newton type Bundle Adjustment algorithms that exploit
hardware parallelism for efficiently solving large scale 3D
scene reconstruction problems. We explore the use of mul-
ticore CPU as well as multicore GPUs for this purpose.
We show that overcoming the severe memory and band-
width limitations of current generation GPUs not only leads
to more space efficient algorithms, but also to surprising
savings in runtime. Our CPU based system is up to ten
times and our GPU based system is up to thirty times faster
than the current state of the art methods [1], while main-
taining comparable convergence behavior. The code and
additional results are available at http://grail.cs.
washington.edu/projects/mcba.

1. Introduction
The emergence of multi-core computers represents a

fundamental shift, with major implications for the design
of computer vision algorithms. Most computers sold to-
day have a multi-core CPU with 2-16 cores and a GPU
with anywhere from 4 to 128 cores. Exploiting this hard-
ware parallelism will be key to the success and scalability
of computer vision algorithms in the future. One way to
exploit parallelism is to build our systems on low level li-
braries like BLAS and LAPACK which have already been
optimized to use hardware parallelism; indeed, for certain
tasks this is good enough. But to get the best performance
one must build systems that exploit as much of the structure
of the problem at hand as possible.

Recently there has been renewed interest in large scale
Structure from Motion (SfM) systems, especially those
aimed at community photo collections on the internet [6, 2].
A key component of these systems is bundle adjustment, the
joint non-linear refinement of camera and point parameters,
and one which can consume a significant amount of time
for large problems.

In this paper we explore the use of CPU and GPU paral-
lelism to achieve an order of magnitude or higher speedups

over previously published systems. Our CPU based system
is up to 10x and our GPU system is up to 30x faster than
the current state of the art [1]. Ours is also the first GPU
based system that can scale to the largest published bundle
adjustment problems and opens the door to solving even
larger problems. We do this by observing that inexact step
Levenberg Mardquardt can be implemented without storing
any (Hessian, Schur complement or Jacobian) matrices in
memory. For single core systems this would translate into
trading memory for time, but on GPUs, this leads to a sur-
prising win in both space and time. Another surprise is that
single precision arithmetic, when combined with suitable
normalization techniques, gives results comparable to the
ones obtained by a solver using double precision arithmetic.
This results in further space and time savings.

The rest of the paper is organized as follow. We begin in
Section 2 by discussing some of the theoretical background
for bundle adjustment and the mathematical structure of our
inexact step algorithms. In Section 3 we describe the guid-
ing principles and techniques for implementing these algo-
rithms on multicore CPU and GPUs. We deal with the issue
of single precision in Section 4. In Section 5 we report the
performance of our system, and we conclude with a discus-
sion and directions for future work in Section 6.

2. Theoretical Background
Given a set of measured image feature locations and cor-

respondences, the goal of bundle adjustment is to find 3D
point positions and camera parameters that minimize the re-
projection error [13]. This optimization problem is usually
formulated as a non-linear least squares problem, where the
error is the squared L2 norm of the difference between the
observed feature location and the projection of the corre-
sponding 3D point on the image plane of the camera.

Let x be a vector of parameters and f(x) =
[f1(x), . . . , fk(x)] be the vector of residuals/reprojection
errors for a 3D reconstruction. Then the optimization prob-
lem we wish to solve is the non-linear least squares prob-
lem:

x∗ = argmin
x

k∑
i=1

‖fi(x)‖2. (1)
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The Levenberg-Marquardt (LM) algorithm [11] is the
most popular algorithm for solving non-linear least squares
problems, and is the algorithm of choice for bundle adjust-
ment. LM operates by solving a series of regularized linear
approximations to the original nonlinear problem. Let J(x)
be the Jacobian of f(x), then in each iteration LM solves a
linear least squares problem of the form

δ∗ = argmin
δ
‖J(x)δ + f(x)‖2 + λ‖D(x)δ‖2 , (2)

and updates x ← x + δ∗ if ‖f(x + δ∗)‖ < ‖f(x)‖. Here,
D(x) is a non-negative diagonal matrix, typically the square
root of the diagonal of the matrix J(x)>J(x) and λ is a non-
negative parameter that controls the strength of regulariza-
tion. The regularization is needed to ensure a convergent
algorithm. LM updates the value of λ at each step based on
how well the Jacobian J(x) approximates f(x) [11].

Solving (2) is equivalent to solving the normal equations

(JTJ + λDTD)δ = −JT f. (3)

where we have dropped the dependence on x for notational
convenience. The matrix Hλ = JTJ + λDTD is known
as the augmented Hessian matrix.

In bundle adjustment, the parameter vector is typically
organized as x = [xc;xp], where xc is the camera parame-
ter vector and xp the point parameter vector. Similarly for
D, δ, and J , we use subscripts c and p to denote the cam-
era part and the point part respectively . Let U = JTc Jc,
V = JTp Jp, Uλ = U + λDc

TDc, Vλ = V + λDp
TDp,

and W = JTc Jp, then (3) can be re-written as the block
structured linear system[

Uλ W
WT Vλ

] [
δc
δp

]
= −

[
JTc f
JTp f

]
. (4)

It is worth noting that for most bundle adjustment problems,
Uλ and Vλ are block diagonal matrices. This observation
lies at the heart of the Schur complement trick used to solve
this linear system efficiently, where, by applying Gaussian
elimination to the point parameters, we obtain a linear sys-
tem consisting of just the camera parameters:

(Uλ −WV −1λ WT )δc = −JTc f +WV −1λ JTp f. (5)

The matrix S = Uλ−WV −1λ WT is the Schur complement
or the reduced camera matrix. Given the solution to (5),
δp, the point parameters vector can be obtained by back-
substitution:

δp = −V −1λ (JTp f +WT δc). (6)

Since S is symmetric positive-definite, Cholesky factor-
ization is the method of choice for solving (5). Factorization
methods, even ones like CHOLMOD [5] which exploit the

sparsity structure of S are space and time intensive and can
be prohibitively expensive for large problems.

Recently, the use of the Preconditioned Conjugate Gra-
dients algorithm for solving these equations has drawn the
attention of the computer vision community [1, 4, 9]. In par-
ticular [1] has shown that state of the art performance can
be achieved by combining an Inexact Step LM algorithm
and Preconditioned Conjugate Gradients with some simple
and computationally cheap preconditioners. The algorithms
presented in this paper further extend this line of work to the
case of multicore processors.

2.1. Preconditioned Conjugate Gradients

Conjugate Gradients (CG) is an iterative approach for
solving symmetric positive-definite linear systems [12].
One of the key advantages of CG when solving a linear sys-
tem Ax = b is that the only way it accesses the matrix A
is through the matrix-vector product Ap for some vector p.
Thus it is possible to solve Ax = b without ever explicitly
forming A in memory.

We will consider two approaches for solving (3). The
first is the so called Conjugate Gradients for Least Squares
(CGLS) algorithm applied to the augmented hessian matrix.
Assuming that the Jacobian matrix J is available, the prod-
uct Hλp is easily implemented in terms of the Jacobian as

Hλq = JT (Jq) + λ(DTD)q. (7)

Note that the brackets are used to break up the product Hλp
into a series of simpler matrix-vector products involving the
Jacobian J and diagonal matrix DTD.

To improve the rate of convergence of CG, we precondi-
tion using the block Jacobi preconditioner

Mλ =

[
Uλ 0
0 Vλ

]
. (8)

As we noted earlier, Uλ and Vλ are block diagonal. They
are easily computed from J and inverted in linear time and
space. We will refer to this preconditioned CG approach
using simple matrix-vector products as the implicit-hessian
algorithm.

The second approach we will consider is the implicit-
schur algorithm where we run CG on the Schur complement
S [1, 9]. It can be shown that S is better conditioned than
Hλ and therefore we expect CG to converge more quickly
too. In [1], the authors show how to evaluate Spc without
forming S explicitly. This is done by exploiting the struc-
ture of the Schur complement as

Spc = Uλpc −W (V −1λ (WT pc)). (9)

The authors recommend the use of Mλ = Uλ as a precon-
ditioner for these iterations. But we can go one step further;
in the same way that running CG on the augmented hessian
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does not require forming the matrix Hλ, we can run CG
on the Schur complement S without forming the expensive
sub-matrices W and WT of Hλ explicitly:

Sqc = JTc (Jcqc − Jp (V −1λ (JTp (Jcqc)))) + λDT
c Dcqc.

(10)

The implicit-hessian and implicit-schur algorithms re-
quire essentially the same amount of memory, consists of
the same set of Jacobian-matrix-vector multiplications, and
have similar computation cost per iteration. Equations (7)
and (10) not only allow CG to run without explicitly form-
ing the augmented Hessian and the Schur complement, they
have the additional benefit of breaking down the task of
multiplying a vector with a complex block sparse matrix
into a series of simpler, more easily parallelizable matrix-
vector products. Further, they open up the possibility of a
completely matrix free algorithm where we don’t even store
the matrix J in memory and instead compute its entries on
the fly as needed. We will explore this direction in the fol-
lowing sections.

3. Parallel Implementation
Before we discuss the design and implementation of the

two iterative solvers, let us consider the major sources of
computational expense in an LM algorithm that uses an it-
erative linear solver.

1. Reprojection error computation: f ;
2. Jacobian matrix computation: J = [Jc, Jp];
3. Construction of the preconditioner: M−1λ ;
4. Matrix-vector Multiplication Jx = Jcxc + Jpxp;
5. Matrix-vector Multiplication JT y = [JTc y, J

T
p y];

6. Matrix-vector Multiplication M−1λ v.

Note that diag(JTJ) for damping is a byproduct of M−1λ .
To guide the development of our algorithms, we evalu-

ated the amount of time spent in each of the major functions
for the implicit-hessian based LM. (We will refer to proce-
dures such as computing f or Jx as “functions.”) Table 1
shows the results. The computation of JTx and Jy con-
sume the most amount of time as they are called in every
iteration of the CG algorithm. The computation of the Ja-
cobian J and the preconditioner M−1λ though expensive is
not a significant expense as they are done only once per LM
iteration. Thus, most of our effort is focused on optimizing
the two sparse matrix-vector multiplication: Jx and JT y.

Observe that the aforementioned functions can be par-
allelized by dividing the computation task into camera-
wise, point-wise, and measurement-wise threads. Specifi-
cally, computing f , J and Jx consists of performing per-
measurement tasks, and JT y, M−1λ and M−1λ v consist of
per-camera and per-point tasks. Compared to forming Hλ

f J M−1λ Jx JT y M−1λ v

Dubrovnik 1.3% 6.1% 3.1% 28% 54% 2.8%
Venice 0.7% 2.8% 1.6% 30% 57% 2.7%

Table 1. Percentage of time spent on the major functions in
a single-threaded CPU implementation during 50 LM iterations
(single-precision, SSE-enabled, implicit-Hessian). We use the
largest two final models from [1]. The total time for the two mod-
els are 778 and 4711 seconds respectively. The fraction of time
not accounted for by the functions listed above was spent in pure
vector operations.

or S, these functions are much easier to parallelize. We ad-
ditionally parallelized all the pure vector functions, which
is easily done and will not be discussed.

3.1. Related Work

In recent years, GPU-based parallelization has drawn
a lot research attention. This includes general purpose
libraries like nVidia’s Sparse Matrix-Vector Multiplica-
tion [3] and Li and Saad’s work on various GPU-based PCG
algorithms and preconditioning techniques [10]. While it is
possible to build a bundle adjustment system using these
general purpose libraries, better performance is obtained by
building a system that exploits the structure of the problem
as much as possible.

In the field of computer vision, many algorithms have
been ported to the GPU with significant gains in speed. This
includes feature detection, feature matching, and stereo re-
construction, etc. An impressive demonstration is the multi-
GPU-based fast SfM system described in [6]. It is worth
noting though that the bundle adjustment step in this sys-
tem was still performed using single-threaded CPUs.

Given the constraints of the GPU programming model,
it is not trivial to get bundle adjustment algorithms to run
on the GPUs. Recently, Gupta et al [8] took a hybrid ap-
proach to run overlaping computations on GPU and CPU,
where the Hessian matrices and Schur complements are
constructed on GPU. This is not practical for large prob-
lems (thousands of images or more), especially for commu-
nity photo collections that have dense Schur complements.
Even state of the art workstation GPUs have a small amount
of RAM, so storing the Schur complements (even the Hes-
sian matrices or the Jacobians), may not be feasible. Even
with enough memory, the construction of Schur comple-
ments would still be too expensive for large problems.

3.2. Parallelization Principles

Even though the underlying hardware architecture of
multicore CPUs and GPUs are quite different, there are
some common themes for developing high performance
systems on multicore systems. Primary amongst them is
the mismatch between processor speed and rate at which

3059



data can be fetched from memory. This is already a consid-
eration for single core systems; in a multicore system the
problem gets even worse. A further complication is that in
a multithreaded system multiple threads may want to write
to the same memory location. Thus optimal performance
requires that we

1. Maximize the processor occupancy,
2. Optimize memory access to reduce contention.

There are a number of ways in which we can solve these
problems, and at this point there are no clear theoretical
guidelines for choosing one over the other. Part of the rea-
son is that even though different processors expose simi-
lar programming interfaces, the underlying hardware im-
plementation can be quite different with widely varying per-
formance for the same piece of code. Therefore, we imple-
mented a number of different variations of each technique
and profiled each one of them. The methods reported in this
paper are the combinations that performed best in our exper-
iments. As hardware evolves, the specific recommendations
made in this paper may not give the best performance, but
we hope that the reader will benefit from the general princi-
ples for organizing their computations described here.

3.2.1 Matrix Storage

A key design decision affecting performance is how various
matrices are stored in RAM. For CPU and GPU, we use the
Block Compressed Sparse Row (BCSR) format to store Jc,
Jp and JTc when needed. We sort the observations by their
3D point id, which means that Jp is a block diagonal matrix,
and Jp and JTp have the same BCSR representation and thus
there is no need to store JTp separately.

3.3. CPU Parallelization

Multi-core CPUs typically can run 10s of threads simul-
taneously, with multi-level cached access to a large amount
of RAM.

3.3.1 Maximizing Processor Occupancy

The SSE functionality on modern CPUs increases proces-
sor throughput by operating on 4 floats or 2 doubles with
a single instruction, which makes it easy to accelerate sim-
ple vector operations, like addition, multiplication, norm,
and dot product. To apply SSE to our relatively compli-
cated functions, we align the number of camera parameters
by 4, such that 8-vec storage is used even when the camera
model has only 7 parameters. Consequently, the multipli-
cation and addition of camera derivatives can be carried out
by SSE instructions. In addition, we allocate aligned data
to employ the fast aligned memory load and store. Table 2
demonstrates the significant speedup we achieve with SSE.

Operation float float SSE double double SSE

f 0.64 N/A 0.75 N/A
J 4.00 3.46 5.44 5.10
M−1λ 4.85 1.51 5.20 2.46
Jx 0.82 0.67 1.07 0.88
JT y 3.02 1.32 3.62 2.11
M−1λ v 0.06 0.06 0.07 0.07

Table 2. Time consumed (in seconds) for the Venice final model
as floating point precision and SSE usage are varied. SSE instruc-
tions lead to significant speedups for both single and double preci-
sion, particularly the M−1

λ and JT y operations. As expected sin-
gle precision operations with their lighter memory requirements
are faster than double precision counterparts.

We divide large computation tasks into a number of
threads that are suitable for the number of CPU cores, so
that all the computation power is utilized. For instance, with
16-core processors, we would normally run at least 16 or
32 threads for the intensive tasks. Table 3 demonstrates the
speedup we achieve by multi-threading on a computer that
has dual quad-core Xenon E5520 CPUs.

3.3.2 Optimizing Memory Access Patterns

To reduce the contention between multiple threads needing
access to the same indexing information, we store the nec-
essary indexing structures to allow each thread to run in-
dependently. For example, JT y runs camera-wise threads
to access all the projections of each camera, in contrast
to running measurement-wise threads where different mea-
surements for the same camera need exclusive access to its
camera block in the output vector.

As needed, we also store shuffled copies of data (if pos-
sible) to make frequently-called functions have continuous
memory access patterns. For example, JT y needs to access
the Jacobian block of all the measurements seen by a cam-
era. It is better to store the extra copy JTc in its row block
order if possible rather than the indexed access of blocks in
Jc. Table 5 shows that JT y using JTc is 40% faster than
using indexed access of Jc.

3.4. GPU Parallelization

In contrast with CPUs, current GPUs can have hundreds
of processing cores, but they have much less onboard RAM,
and we must be more careful about contention between dif-
ferent cores for memory bandwidth.

3.4.1 Maximizing Processor Occupancy

A GPU is by definition SIMD. nVidia’s CUDA organizes
threads into thread blocks, which is further divided into 32-
thread units called warps, which are essentially SIMD.
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Single-thread Multi-thread GPU

D
ub
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vn

ik
Fi

na
l

f 0.18 0.03 0.012
J 1.22 0.14 0.038
M−1λ 0.53 0.08 0.037
Jx 0.19 0.04 0.016
JT y 0.38 0.08 0.035
M−1λ v 0.02 0.01 0.002

CG-hessian 5.90 1.51 0.57
LM-hessian 7.92 1.85 (4.3x) 0.70 (11x)

CG-schur 7.59 1.74 0.68
LM-schur 7.77 2.06 (3.8x) 0.81 (9.6x)

V
en

ic
e

Fi
na

l

f 0.64 0.09 0.045
J 3.46 0.47 0.048
M−1λ 1.51 0.24 0.190
Jx 0.67 0.14 0.056
JT y 1.32 0.24 0.180
M−1λ v 0.06 0.016 0.007

CG-hessian 21.9 5.29 2.07
LM-hessian 29.8 6.31 (4.7x) 2.36 (13x)

CG-schur 22.9 5.86 2.69
LM-schur 35.6 5.85 (6.1x) 2.98 (12x)

Table 3. Time(in seconds) comparison of CPU single-thread,
CPU multi-thread and GPU. Both CPU implementations are SSE-
optimized. CG-timing is obtained with 10 CG iterations. The
LM-timing gives the time for a full LM iteration including linear
system solver, parameter update and step validation. For Venice
Final, Jc, JTc are not stored on GPU due to insufficient memory
and were computed on the fly. The x next the LM timing gives
the speed up compared with single-threaded CPU implementation
regardless of the precision difference.

As is the case with SSE, achieving peak memory band-
width on the GPU requires coalesced memory access. Thus,
like our CPU code, we align the camera parameters and
point parameters by 4, so that the processing of camera
parameters and point parameters are aligned with the warp
size. In cases where we are unable to have coalesced mem-
ory fetching, we apply the common technique of using the
GPU texture memory as a cache.

Another organizing principle is that simple programs
lead to higher occupancy on GPUs. Instead of having one
thread per camera or per point, we try to map the problem
such that there is one thread per parameter or one half-warp
(16 threads) per camera, etc. The mapping additionally en-
ables different threads of the same camera/point to share
data on the fast shared memory. For example, we invert the
8× 8 camera diagonal blocks matrices using 8 threads.

Speed CSR COO HYB Our GPU Our CPU

Jx 0.130 0.060 0.019 0.016 0.044
JT y 0.111 0.096 0.092 0.035 0.076

Table 4. GPU based Sparse Matrix Vector Multiply(SpMV). We
compare our custom SpMV operations with the ones developed
by Bell & Garland [3] on the Dubrovnik Final model. Time is
reported in seconds. Please refer to their paper for the details of
CSR, COO and HYB. Our methods give significant speedup on
JT y, which has varying number of non-zero elements per row.
Our Jx is only slightly faster because we store Jc and Jp sep-
arately. Note that their method cannot handle the Venice Final
problem due to insufficient memory.

3.4.2 Optimizing Memory Access Pattern

Similar to the CPU case, we store all of the matrices JTc , Jc
and Jp in BCSR format when needed, allowing functions
Jx, JT y, and M−1λ to fetch Jacobian blocks continuously.
By exploiting the block structures with texture fetching and
shared memory, our Sparse Matrix-Vector multiplication
(SpMV) outperforms the work of nVidia’s Bell and Gar-
land [3] particularly for JT y (Table 4), thus re-enforcing
the point that for maximum performance we must exploit
problem structure as much as possible. Also, like the CPU
we avoid the dependency between different thread blocks
by computing and explicitly storing the indices required for
gathering operations across various threads.

As we mentioned earlier, GPUs typically have access to a
much smaller amount of RAM as compared to CPUs. Thus
it is important to minimize the memory usage of GPU al-
gorithms. While the use of the implicit-hessian and the
implicit-schur gets rid of the storage for the augmented
Hessian and Schur complement matrices, the storage of the
Jacobian J is still a substantial expense. To get around this
we experimented with matrix-free versions of Jx, JT y and
M−1λ , where the required entries of J and Mλ were com-
puted on the fly as needed. This leads to a substantial reduc-
tion in memory usage. The Dubrovnik Final and Venice Fi-
nal models, which are the largest publicly available models,
consume only 543MB and 1797MB respectively. A GPU
like the nVidia Tesla C1060 comes with 4096MB of on-
board RAM, and thus can easily handle problems twice the
size of the Venice Final model.

Surprisingly, even though the original decision to imple-
ment the matrix-free versions of Jx, JT y and M−1λ was to
save space, it turns out that they can outperform the matrix
based version in terms of time also. Table 5 compares the
various versions of these functions as the underlying storage
configuration is varied.

The reason for this unexpected behavior is that the enor-
mous amounts of thread parallelism on the GPU leads to
contention, and many of the threads idle while waiting for
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Function Store & Read Compute GPU CPU
On-the-Fly

Jx
Jc, Jp 0.023 0.044

Jc, Jp 0.016 0.078

JT y

JTc , Jp 0.035 0.076
Jc, Jp 0.055 0.11
Jp Jc 0.032 0.16

Jc, Jp 0.047 0.52 (*)

M−1λ

JTc , Jp 0.037 0.077
Jc, Jp 0.052 NA
Jp Jc 0.025 0.15

Jc, Jp 0.041 1.34 (*)

Table 5. Time consumed (in seconds) for the Dubrovnik final
model as a function of different storage configurations. The CPU
functions are multi-threaded except for the two marked with (*).
Note that it is possible to achieve higher speed by computing some
derivatives on the fly, such as the GPU matrix-free version of Jx.

data from the memory. Therefore, it is better to read a small
mount of memory that can be well cached, and recompute
the results. After many experiments, we settled on the fol-
lowing priority: Jp > JTc > Jc, to guide the memory al-
location. In the CPU world, matrix-free algorithms trans-
late into trading time for memory savings, but in the GPU
world, the trade-off vanishes in some cases, and both time
and memory can be saved.

Another nice property of our implementation is that once
the calculation of the LM step has been offloaded to the
GPU, the memory transfers between GPU and CPU are re-
duced to a few vectors and scalars, essentially eliminating
the CPU to GPU memory transfer bottleneck.

To get the best performance out of the GPU code, we em-
pirically determined the best parallelization strategies like
the thread block size of each function. Given different prob-
lem sizes or different GPUs, the storage configuration that
give the highest speed can vary. For example, unlike the or-
der in Table 5, we observe that for small and medium sized
problems, memory contention is not an issue, and it is actu-
ally faster to compute JT y by precomputing and storing Jp
and Jc in GPU memory.

Table 6 demonstrates the performance for the two algo-
rithms on several high-end commodity GPUs .

4. Precision
Most bundle adjustment algorithms used double preci-

sion arithmetic due to its large numerical range and high
accuracy. However we have found that with some care we
can use single precision arithmetic without a significant loss
in numerical performance and a substantial gain in runtime
performance. The use of single precision not only reduces

Systems Trafalgar Dubrovnik

Schur Hessian Schur Hessian

Tesla C1060, Linux 0.165 0.146 0.81 0.70
8800 Ultra, Linux 0.188 0.168 1.51 1.06
8800 Ultra, Win7 0.204 0.180 1.53 1.07
8800 GTX, Winxp 0.220 0.194 1.81 1.28
GTX 295, Winxp 0.167 0.150 1.08 0.86

Table 6. Speed (seconds) of one full LM iteration on a few systems
for the Trafalgar Final and the Dubrovnik Final problem (without
tuning of GPU settings). The LM iteration is evaluated with a 10-
iteration CG solver. The Dubrovnik problem runs without storing
any Jacobians on the 4 non-Tesla systems.

the memory usage of our system by half, but a can be seen
in Table 2, it also increases the speed of memory transfers
between the memory and the floating point units leading to
higher throughput for both CPUs and GPUs. To deal with
the reduced precision and numerical range of single preci-
sion floats we do two things.

First, we apply a pre-processing data normalization step
to improve the distribution of the Jacobian values. It is
easy to see that the Jacobian of a reprojection error term
scales as F/z2, where F is the focal length of the camera
and z is the depth of the 3D point in that camera. To better
utilize the range of single-precision, we scale the system
to bring the distribution of F and 1/z to the middle of the
valid value range, so as to better condition the Jacobian.
Given a normalization parameter Cn (we use 0.5), the data
normalization steps are

1. Find Fm = median{F} and zm = median{z},
2. Scale all focal lengths and measurements by Cn

Fm
,

3. Scale all camera translations and 3D points by 1
zmCn

.

Second, we follow [1] and scale the columns of the
Jacobians by the square root the diagonal of the initial
augmented Hessian H0.

5. Experiments
In this section, we evaluate the optimization perfor-

mance of the implicit-hessian and the implicit-schur algo-
rithms. For both algorithms, we evaluate the performance
of GPU parallelization and CPU multi-threading. Only
single-precision floating point are included in the paper. As
expected, the double precision implementation is slightly
slower than the single-precision implementation. Results
using the double precision implementation can be found on
the project website.

We compare the speed and convergence of our system
with the state of the art system of Agarwal et al. [1]. Agar-
wal et al. describe six different algorithms, we compare
our system to all of them except for the dense-factorization
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(b) Venice Final
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(c) Dubrovnik Skeletal

10
−1

10
0

10
1

10
2

10
3

10
4

2

2.5

3

3.5

4

4.5

5

5.5

Time (seconds)

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
pi

xe
ls

)

 

 
GPU−implicit−hessian
GPU−implicit−schur
CPU−implicit−hessian
CPU−implicit−schur
BAL 3 fast PCG solvers
BAL explicit−jacobi
BAL explicit−sparse

(d) Trafalgar Final
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(e) Venice Skeletal

10
−1

10
0

10
1

10
2

10
3

5

10

15

20

25

30

35

40

45

Time (seconds)

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
pi

xe
ls

)

 

 
GPU−implicit−hessian
GPU−implicit−schur
CPU−implicit−hessian
CPU−implicit−schur
BAL 3 fast PCG solvers
BAL explicit−jacobi
BAL explicit−sparse

(f) Ladybug

Figure 1. Runtimes for large scale problems. Our GPU solvers exhibit competitive convergence and a speedup of about 10x-30x against
all the BAL solvers. Our method perform equally well for sparse reconstruction problems (e.g. Ladybug is a video sequence). Our
multi-threaded CPU solvers achieves about 1

3
the speed of our GPU implementation.
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(a) m = 52, n = 64063, k = 347143
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(b) m = 88, n = 64298, k = 383937

10
−2

10
−1

10
0

10
1

10
2

1.5

1.6

1.7

1.8

1.9

2

Time (seconds)

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
pi

xe
ls

)

 

 
GPU−implicit−hessian
GPU−implicit−schur
CPU−implicit−hessian
CPU−implicit−schur
BAL 3 fast PCG solvers
BAL explicit−jacobi
BAL explicit−sparse
BAL explicit−direct

(c) m = 138, n = 19878, k = 85217

Figure 2. Runtime for small problems where m, n and k the number of cameras, points and measurements. Our bundle adjustments achieve
consistent speedup except but sometimes fail to reach the same solution as the BAL’s double precision solvers, e.g. Figure (b).

algorithm that does not fit large-scale problem. The re-
maining five algorithms are explicit-sparse which com-
putes a sparse factorization of the Schur complement S,
explicit-jacobi which explicitly computes S and runs PCG
on it using a block-Jaocbi precondoitioner, normal-jacobi
which runs PCG on the Hλ with Mλ as the preconditioner,
implicit-jacobi and implicit-ssor, which compute the prod-
uct Spc by using (9). We refer to these algorithm as BAL
(Bundle Adjustment in the Large). BAL algorithms use
double precision arithmetic everywhere and do not offer a
choice to use single precision arithmetic.

For each BAL algorithm, we run for a maximum 50 LM
iterations. We run our own system for a 100 iterations in
order to compensate for its lower precision. As we will see,
even with this extra computational burden, our system sig-
nificantly outperforms the BAL algorithms. The rest of the

parameters of the LM and CG algorithms were identical to
the ones used by BAL.

We use the datasets provided by [1] for our evaluation.
The datasets include the skeletal and final models recon-
structed from community photo collections on the Internet,
which typically have relatively dense blocks in Schur com-
plement. 3D models reconstructed from Ladybug street-
side image are also presented for evaluating the perfor-
mance on the sparser problems.

All experiments were conducted on a workstation that
has: dual Quad-core 2.27Ghz CPUS with 2x hyper-
threading; Tesla C1060 Graphic card with 4GB graphic
memory; 64-bit Linux OS. Our CPU multi-threading is
done through low-level threading functions, and our GPU
code is implemented with CUDA. The thread settings were
profiled for large problems and then kept constant.
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5.1. Results

Overall, we observe (Figures 1 and 2), a speedup be-
tween 10x-30x with the GPU implementation of our al-
gorithms, and a speedup of about 5X-10X with the multi-
threaded CPU implementation. The speedup is also consis-
tent across various sizes of problems, and varying sparsity
of problems.

Despite the fact that we focused our system design and
optimization efforts on large scale problems, we found that
our system performed equally well on small and medium
sized problems. Figure 2 shows the comparison with all
the BAL solvers on three small problems. Note that the
speed ratios between the GPU version and the CPU version
are highest for medium size problems. It appears that as
size of the problem grows larger, the cost of accessing GPU
memory increases. This is due to the limited size of the
global texture cache on the GPUs.

As shown in Table 3, the cost for an LM step is
more expensive for implicit-schur than implicit-hessian, but
implicit-schur makes up for this with better convergence be-
havior per LM iteration because of its better precondition-
ing behavior. Finally, even though we report results on a
high end Tesla GPU, as can be seen from Table 6, similar
performance can be expected on consumer grade GPUs.

6. Conclusions

In this paper we presented multicore solutions to the
problem of bundle adjustment that run on currently avail-
able CPUs and GPUs. These systems deliver a 10x to 30x
boost in speed over existing systems while reducing the
amount of memory used. This is done by carefully re-
structuring the matrix vector product used in the PCG it-
erations into easily parallelizable operations. This restruc-
turing also opens the door to a matrix free implementation
which leads to substantial reductions in the memory con-
sumption as well as execution time. We also showed that
single precision arithmetic when combined with appropri-
ate normalization gives numerical performance comparable
to double precision based solvers while further reducing the
memory and time cost. The resulting system enabled run-
ning the largest bundle adjustment problems to date (from
the Rome-in-a-day effort [2]) on a single GPU.

While the problem addressed in this paper is bundle ad-
justment, we believe that the strategies presented here can
be applied to other large scale optimization problems in
computer vision and elsewhere.

In the future, we would like to further improve the nu-
meric stability of our single-precision solvers and experi-
ment with double-precision arithmetic on GPU. We would
also like to port this work to non nVidia based platforms.

Finally, we put a large amount of work into the exten-
sive benchmarking needed to tune the various GPU com-

pute kernels. The lack of documentation about the internal
memory access hardware of GPUs makes this kind of em-
pirical approach necessary. An interesting direction for fu-
ture work is a framework along the lines of FFTW [7] or
ATLAS [14] for automatically tuning the parameters of the
system either at compile time or at runtime.
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