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Abstract

We describe our work on inferring the degrees of
freedom between mated parts in mechanical assemblies
using deep learning on CAD representations. We
train our model using a large dataset of real-world
mechanical assemblies consisting of CAD parts and
mates joining them together. We present methods for
re-defining these mates to make them better reflect the
motion of the assembly, as well as narrowing down the
possible axes of motion. We also conduct a user study
to create a motion-annotated test set with more reliable
labels.

1. Introduction

Understanding how mechanical assemblies move
is important for applications ranging from simulating
mechanical behaviour to robotic manipulation. While
abundant models of mechanical assemblies exist in
the wild, they largely consist of static geometry
devoid of motion information. However, since
mechanical assemblies typically start their lives in
Computer-Aided Design (CAD) software, most of these
models were once annotated with critical information
for understanding how articulated assemblies function.
This is because, in addition to the geometry, CAD
systems allow designers to specify degrees of freedom
between assembled parts. The goal of this project is to
recover this information.

Typically, CAD systems represent motion in an
assembly using mates, which specify the degrees of
freedom between pairs of parts. However, in most
large repositories of 3D models, this motion information
is absent. The primary reason is that each CAD
system has its own internal and proprietary method
for keeping track of mate information. CAD models

are generally exported and exchanged in a purely
geometric representation, called a B-Rep (boundary
representation). B-Reps are the common format in large
repositories of man-made shapes [2, 6, 12, 5], and while
B-Reps describe the geometry of parts in an assembly,
they do not include information about their mechanical
degrees of freedom. This work therefore proposes to use
B-Reps as the input format to our inference problem.

While prior work has addressed the problem of
inferring motion from static assemblies [3, 11, 15], they
do not work directly with CAD assemblies (B-Reps),
using instead geometric datasets (point clouds or
meshes) that have been hand-annotated. The drawback
of these approaches is that they are restricted to specific
classes of common objects which are known to exhibit
motion, rather than working on arbitrary mechanisms
in the wild. Recently, large repositories of CAD
assemblies have been made public that include detailed
information about how parts are mated together and
move [5, 13]. These collections include a large variety
of mechanical parts using rich CAD representations
that have the potential to enable inference beyond
specific object classes. This work aims to address the
fundamental question: Can we learn to infer motion in
general from collections of CAD assemblies?

While CAD assembly repositories are a valuable
source of real-world assemblies, they also present
several challenges to learning. The user’s intent when
creating an assembly affects which type of motion
to use, or whether to annotate motion at all, leading
to ambiguous or missing motion labels. Even a
deterministic set of motions for an assembly has several
equivalent ways to represent it using mates, leading to
conflicting signal for learning-based methods seeking to
understand just the motion through the mates (Figure 1.)

In this work we take the first step at addressing these



Figure 1. Sources of ambiguity. Left: A bicycle seat

could be classified as sliding/rotating/fixed depending on

which aspects of the bicycle’s operation the user intends
to model. Right: A single mate on either side of the

telescope is sufficient to represent the motion creating

motion to mate ambiguity.

challenges to learn how mechanical assemblies work
from collections of CAD mates. Our key contributions
are:

1. A Dataset of moving assemblies for learning, with
filters and a modified representation to mitigate
the errors and ambiguity found in raw assemblies

2. A user-annotated validation set
3. Baselines for the mate prediction task.

2. Background

Learning-Based Motion Inference from Static
Geometry Recent work has taken a data-driven
approach to motion inference. Hu et al. [3] use
metric learning to query similar articulated pairs from
a database. Wang et al. [11] train separate motion
proposal and optimization networks on point clouds to
segment parts and infer motion as a motion type and
axis for each part. This motion representation captures
the rigid motions exhibited in mechanical objects, and
is what we use in this work. Yan et al. [15] instead
infer per-point displacements, allowing more general
part motions to be represented. Xianghao et al. [14]
avoid needing joint annotations by learning similarity
transformations within a semantic object category. All
of these works rely on semantic object categories to
make learning tractable. We seek to leverage the richer
information of B-Rep geometry to remove reliance on
semantic knowledge.

Learning on CAD Data Large repositories of CAD
formatted geometry and assemblies have long been
available [2], and there has been an explosion of large
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Figure 2. The four mate types and their DoFs.

curated [6] and annotated [10, 12, 5] datasets. B-Reps
have a natural graph representation, which has inspired
several graph neural networks for B-Rep modeling and
classification tasks [1, 4, 8, 7]. Two works address
B-Rep assemblies; Jones et al. [5] predict part alignment
and joint type given rough locations on pairs of parts and
provides the dateset used in this work, while Willis et al.
[13] predict alignment axes and offsets for part pairs,
but not joint type. In contrast, this work operates at the
assembly level, predicting part connectivity, connection
axes, and joint type. Our inputs are already positioned
relative to one another, so offset prediction is not
required.

3. Dataset

We build upon the dataset of Jones et al. [5],
containing 125,133 CAD assemblies created on the
Onshape platform. There are several key issues with
learning directly from this dataset:

1. Noise: Many assemblies are incomplete, or
learning/practice material.

2. Motion-to-mate ambiguity: the same motion can
be represented by many different choices of
mates.

3. User intent ambiguity: The correct mate/motion
may depend on what the user considered
important.

Making use of the vast amount of CAD assemblies
at our disposal necessitates correcting some of the
ambiguity inherent in the dataset. We address this
problem in three ways. First, we propose a set of
automatic methods for filtering the assemblies to remove
noise. While these heuristic-driven methods cannot
ensure that all non-plausible mates are resolved, these
methods are able to remove a large number of models
that are not physically plausible. Second, we propose a
novel method to automatically remove motion-to-mate



ambiguity by redefining mates, addressing problem (2).
Finally, we create a validation set that is free of noise
(1) and user intent ambiguity (2) by running a user study
over a hand-selected portion of the dataset.

Heuristic Filters To mitigate problem (1), we apply
several heuristic filters based on our understanding of
the domain. We first filter for assemblies that have at
least one moving part to fit our task. To account for
designs that are incomplete, we filter out all assemblies
with disconnected pieces, i.e. separately connected
sub-assemblies rather than a single connected assembly.
We further remove what we call compound mates, in
which multiple, possibly conflicting, mates are defined
between the same pair of parts, rendering the motion
invalid. Finally, we remove spherical and pin-slot mates,
which are seldom used, and parallel and planar mates,
which are seldom used correctly. Our assemblies consist
of four common mechanical joints: Fastens, Revolutes,
Sliders, and Cylindricals (see Figure 2). These filters
leave us with 13,957 assemblies, which we call the
cleaned set.

Removing Motion-to-Mate Ambiguity To address
(2), we augment our dataset so that the mates
underlying part motions are defined in a consistent way.
Specifically, our goal is to ensure maximal connectivity
between the parts in an assembly, which is a unique
description of its motion. Returning to the telescope
example in Figure 1, this means adding an additional
mate on the other side of the telescope, since the
hinge makes contact on both sides. We can create
such maximal connectivity if we ensure that all pairs
of parts that can be mated are mated. If we have
consistent criteria for which parts can be mated, we
can create the additional mates by using the degrees of
freedom inferred from the existing mates. Specifically,
we examine the chain of existing mates connecting the
two parts (which must exist after the previous filter), and
define a new mate using the degrees of freedom allowed
by the existing mates’ combined constraints.

Our key insight is that we can use geometric cues to
identify which pairs of parts can be mated. Namely, we
note that 1) in physically realizable assembles, mated
parts are in contact and 2) mates are predominantly
created from a discrete set of axes derived from the
geometry of each part (cylinder axes, face center
normals, etc.); we use the set of unique mate coordinate
frame z-axes from Jones et al. [5], keeping only the
ray direction and offset rather than the full relative
coordinate transform, since this is only useful if one
needs to derive the part transforms, which we already
have.

We use these two geometric assumptions that
determine which pairs of parts can be mated to filter out
assemblies in our dataset. First, we discard assemblies
with parts that are mated together but do not satisfy
the geometric assumption. This discards 36% of the
cleaned assemblies. By visual inspection, we noticed
that these models tend to be physically implausible, i.e.
they have floating parts. We further discard assemblies
for which we could not add all the missing mates—pairs
of parts that should be mated under our maximal mate
assumption, but whose derived relative motion is not a
simple motion type. This discards 14% of the remaining
assemblies. At the end of this process, we are left with
a total of 7,328 assemblies in our final set.

Validation Set Finally, we recruited 4 CAD experts
to construct a consistent set of type labels for a
sub-collection of assemblies, hand selected by us for
visual clarity. We presented the participants with
mate-less CAD assemblies with pre-positioned parts,
and asked them to add mates using a commercial CAD
software. A total of 100 assemblies were annotated
3 times each to generate validated labels by majority
consensus.

4. Motion Prediction

Our system takes as input an assembly represented
as a B-rep describing the various parts. We infer the
connectivity structure using the criteria discussed in the
previous section, so the remaining task is to find the
correct motion type and the correct motion axis, when
applicable (see below).

Motion Type We used the SBGCN architecture [5]
to encode and pool the topological features from each
part to form axis and part-level features. For each pair
of mated parts, we combine the resulting features as
input to an MLP, which outputs four class probabilities,
corresponding to mate types. We experimented with
many variations and additions, but found that none made
a noticeable improvement. We discuss these further in
Section 5.

Motion Axis For predicting the correct axis of motion,
we select among the possible shared axes between all
(touching) pairs of parts in the assembly (see Section
3). For certain mate types, multiple axes may be equally
valid: For sliders, any axis with the same direction is
equally valid; for fastens, any axis is valid as there is
no motion. Taking this into account, in 88.2% of mates,
there are no incorrect choices for the axis location. For
the remaining cases, we train a predictor to infer a



probability score for each axis to be used in a mate,
and then take the maximum probability axis among each
group of axes belonging to the same pair of parts as the
location of the mate axis. Similar to the type predictor,
we use SBGCN to obtain pooled features for each part,
to which we concatenate the features of topological
entities used in each axis, which are input to the final
MLP layer.

5. Experimental Results

We split the assemblies into train, validation, and test
sets with a split of 80% - 10% - 10%. We created two
additional test sets based on the original test set:

• A hand-selected subset of the test set consisting
of assemblies that look like a human could infer
what they are

• A subset of the above assemblies, with the mate
labels recreated by consensus of human experts
(see the description of the user study in Section 3.

Type Prediction The accuracy of our mate type
predictor is 65% on the full dataset, 62.8% on the
handpicked data, and 49.4% on a manually created
test set (see below). We tried various modifications
to our network architecture and features used during
learning. As a baseline, we attempted to train a
predictor using PointNet [9] rather than SBGCN, and
found that the accuracy on the full dataset dropped
from 65% to 58.5%. Sampling surface points and
incorporating the UV-Net encoder of Jayaraman et al.
[4], then concatenating the resulting features to those
of SBGCN makes no difference to the accuracy. We
also attempted to incorporate assembly-wide context in
various ways, such as adding graph message passing
layers between mated parts, and passing a surface point
cloud of the entire assembly. These methods fail to
make a difference. We also attempted to incorporate
axis information in the form of per-topology SBGCN
features of the mate connectors along which parts are
mated, or point clouds depicting snapshots of rotating
and sliding motions between the parts, but it did not
help. Finally, we created a heuristic set of labels for
each mate, indicating whether it should be able to rotate
or slide based on geometric analysis of the part overlaps
in motion, and used these to filter our dataset. The
accuracy was unaffected by training on this subset, but
we note that the test accuracy when restricted to this
subset was 72%, up from 65%. Using these heuristic
labels as additional input did not help, however.

Location Prediction For the mate axis location
problem, we get 71% accuracy among the mates where

there is more than one choice of axis (only 12.8% of the
data), resulting in 96.3% accuracy overall.

Comparison to Automate Direct comparison with
Automate [5] is not possible since Automate predicts
among 8 classes, and has a far more skewed mate
type distribution. Instead we compare the accuracy
improvement over a model that predicts the most
common mate type in each dataset: fastened for
Automate, and revolute for ours. Automate achieves
roughly a 10% lift by this metric, whereas our work
produces a 25% improvement.

5.1. User Study

Not all mates in the dataset had a corresponding mate
chosen by our experts (even after densifying the mates
as discussed in Section 3). Ultimately, we obtained a set
of 341 mates for which at least two expert-defined mates
could be compared, out of the full 349. Out of these 341
mates, 301 had an agreed upon type according to those
two or more experts, so 88% of mates which could be
compared between multiple experts were agreed to be
of one particular type. The type chosen by consensus
among these mates agreed with the original mate type
66.8% of the time. On average, in 68.8% of the mates,
the original type in the dataset agreed with the mate
types the experts chose chose.

6. Conclusions

Our performance on the hand-picked data is
slightly worse than on the full data, indicating that
the subjective criteria by which we deemed those
assemblies reasonable do not make them easier to
predict for our machine learning model. Furthermore,
the performance is much worse on the user study-based
test set, which might suggest that the task of inserting
missing mates into an assembly results in different
biases in assigning mate types than assembling from
scratch, or that some CAD assemblies are not annotated
with functional motion in mind. The agreement rate
of the expert labels, both with each other and with
the original mates, suggests that human performance is
bounded at about 70%. We believe that the performance
achieved in this work can be improved upon, and
that our expert-generated test dataset will assist with
evaluating future works on motion prediction.
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