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Abstract

We introduce the light localization problem. A scene
is illuminated by a set of unobserved isotropic point
lights. Given the geometry, materials, and illuminated
appearance of the scene, the light localization problem
is to completely recover the number, positions, and in-
tensities of the lights. We first present a scene trans-
form that identifies likely light positions. Based on this
transform, we develop an iterative algorithm to locate
remaining lights and determine all light intensities. We
demonstrate the success of this method in a large set of
2D synthetic scenes, and show that it extends to 3D, in
both synthetic scenes and real-world scenes.

1. Introduction

Estimating the lighting in a scene has a long history
in computer vision and graphics, and is a key subprob-
lem in many areas such as reconstruction from shading
cues (e.g. [8, 13, 33]), where inferred shape depends
heavily on the incident lighting, or augmented reality
(e.g. [4, 30]), where virtual objects must be lit consis-
tently with the real world to appear convincing. The
majority of prior work assumes distant illumination,
where lighting incident on a surface does not vary spa-
tially and only depends on the normal of the illumi-
nated surface. Distant illumination, however, is insuf-
ficient to represent the lighting in many environments,
such as indoor scenes, which are commonly lit by a
small number of local light emitters.

Compared with distant illumination, inferring dis-
crete, local lighting models introduces two new un-
knowns: cardinality (the number of lights) and position
(where the lights are), in addition to intensity. Esti-
mating cardinality and position is especially difficult
when emitters cannot be directly imaged, such as when
a light is located inside an alcove near the ceiling, too
high to be seen from human height. Can we resolve the
questions of cardinality and position, even in the ideal

case? More concretely, given all the information about
the scene except the lighting (i.e. given geometry, ma-
terials, and final lit appearance), we seek to completely
recover the number of lights, their positions, and their
intensities. We call this the light localization problem.

In this paper, we introduce a method for solving
the light localization problem. Our key contributions
are: (1) a formulation of the problem for an unknown
number of local, discrete emitters; (2) a novel scene
transform that proposes multiple candidate light posi-
tions based on the reflected light in the scene; and, (3)
an iterative algorithm that uses the light proposals to
recover the full set of scene illuminants, including posi-
tions and intensities. We show that the method works
on synthetic and real-world scenes; though the solu-
tion can be inherently ambiguous (e.g., two very close
lights may be recovered as a single light), our approach
is generally able to arrive at a low-error solution.

2. Related Work

The distant illumination model introduced by [4] is
the most widely used lighting model in inverse prob-
lems. We focus our discussion on prior light estima-
tion works that go beyond distant illumination, with
methods to estimate light cardinality and position.

Several works attempt to decompose distant illumi-
nation into the combination of a discrete number of
directional light sources. Earlier works identify occlu-
sion boundaries, referred to as critical points, on a dif-
fuse sphere [29, 31]. Wang and Samaras [26] examine
the regions within the boundaries, avoiding the issue of
detecting critical points, and subsequently [27] extend
this framework for arbitrary reference objects. Lopez-
Moreno et al [16] iteratively add directional sources
based on reconstruction error. Our algorithm performs
a similar iterative light discovery process. However, we
do not rely on the presence of critical points and thus
we are more robust to missing data.

Many works relax the distant illumination assump-
tion by extending the parameterization of each di-
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rectional light to include a distance [7, 24]. This
direction-distance formulation, however, remains an
object-centric approach, and lacks spatial variation.

A few works directly optimize the location of a single
point source in a scene, without the direction-distance
formulation, via a least-squares approach [3, 9, 18]
These methods avoid considering occlusions, as hard
shadows result in a discontinuous objective function.

Instead of optimizing for the lighting across all ob-
served surfaces, another approach for locating light
emitters is to look at strong, discrete lighting ef-
fects, such as shadow boundaries, specularities, and
symmetries. These methods are often very accurate,
but rely on the presence of appropriate conditions in
the scene and will not work in general cases. The
most common approach is to use specular surfaces
(usually light probes), identifying maxima as light
sources and triangulating corresponding specularities
[1, 10, 12, 14, 15, 20]. Triangulation of specularities can
also be used to recover the shapes of area light sources
[22, 32]. All of these works rely on both the presence
of strongly specular surfaces (manually inserted into
the scene or already present in the scene) and on the
visibility and distinctness of light sources in the specu-
lar surface. Triangulation can also be used when light
sources are directly imaged from multiple views [5, 6].
These methods assume that the light sources will be
directly visible from the camera viewpoints.

Cast shadows are another strong lighting cue, and
have been widely used in distant illumination envi-
ronments [11, 15, 17, 21], but have also been used to
identify near point sources [23] via triangulation. For
triangulation-based methods, there must not only exist
strong shadow edges in the scene, but they must also
be identified and associated with object boundaries.

Other works [19, 25] are able to recover the position
of a single point source with varying intensity distri-
bution by analyzing symmetries of the light cast on
planes. Although these assume that planar surfaces
exist near the light source, this assumption is reason-
able in most indoor scenes. Like these methods, our
candidate light selection process also analyzes the dis-
tribution of direct illumination to directly extract light
positions without optimization; however, illuminated
surfaces in our work can have arbitrary shape.

3. Candidate Light Proposal

3.1. Formalizing the Light Localization Problem

Consider a scene with known geometryG, lit by a set
of unobserved isotropic point lights L = {(pi, Ii)}, with
positions pi and intensities Ii. We assume that, at each
point in the scene, we are given the BRDF f(x, ωi, ωo)

specifying the proportion of the incident light from di-
rection ωi scattered in direction ωo. We make a set of
observations Q = {(x, ω)} of points in the scene; each
of these observations q ∈ Q measures the outgoing ra-
diance in a direction ω from a point in the scene x due
to reflected direct illumination from L. Let these radi-
ance measurements be B(q); B(q) is thus a surface light
field [28]. Note that, while observed radiances will nor-
mally include reflected direct and indirect illumination,
we can extract B(q) containing only directly reflected
light by using the observations themselves to estimate
and remove the indirect illumination.1 The light lo-
calization problem is as follows: Given G, f(x, ωi, ωo),
and B(q), completely recover L.

3.2. Deriving the Intensity-Distance Function

At a point x on the scene surface, the outgoing
radiance in direction ω due to a single, unoccluded,
isotropic point light at point p with intensity I is

B(x, ω) = I
V (x, p)f(x, l̂, ω)(n(x) · l̂)+

||l||2

= I
V (x, p)f(x, p−x

||p−x|| , ω)(n(x) · (p− x))+

||p− x||3
(1)

by expanding l = p − x, l̂ = l
||l|| . Here, the visi-

bility term V (x, y) is 0 if x and y are mutually oc-
cluded and 1 otherwise, n(x) is the normal at x, and
(m)+ = max(m, 0).

We define the shading function S(q, p) as

S(q, p) ≡
V (x, p)f(x, p−x

||p−x|| , ω)(n(x) · (p− x))+

||p− x||3
(2)

such that B(q) = I S(q, p) for the single light case.
We can now define a function that, for any possible

light position p in a single-light scene, tells us what
intensity a point light must have if it were at that po-
sition, given the information about observation q:

I(q, p) ≡ B(q)

S(q, p)
. (3)

1That indirect illlumination can be directly removed may be
surprising. In fact, the observations themselves are rays that
comprise the indirect illumination to the rest of the scene. We
can thus use the observed radiances to estimate the indirect in-
cident illumination on the rest of the scene. Practically, if the
scene is largely diffuse and the origins of the observed rays cover
most of the scene, then we can obtain a good estimate of the in-
direct illumination incident on each point in Q. Then, since we
know the BRDF at each point in the scene, we can compute how
much of the reflected light was due to this indirect illumination
and subtract it from the observation to leave our desired B(q).
This process is inspired by the handling of indirect illumination
by Zhang et al. [30]



Each of our observations q induces such a function
I(q, p). We illustrate an example of I(q, p) for the
diffuse case in Figure 1a, and for a specular case in
Figure 1b. Note that if the true light parameters were
(p1, I1), then by construction, for every observation q,
I(q, p) will be equal to the true light intensity at the
true light location p1: ∀q, I(q, p1) = I1.

In the case of a multi-light scene,

B(q) =

|L|∑
i=1

IiS(q, pi) (4)

Expanding and rearranging for I1,

B(q) = I1S(q, p1) +

|L|∑
i=2

IiS(q, pi)

I1 =
B(q)

S(q, p1)
−
|L|∑
i=2

Ii
S(q, pi)

S(q, p1)

= I(q, p1)−
|L|∑
i=2

Ii
S(q, pi)

S(q, p1)

(5)

Both S(q, p) and Ii are nonnegative, so I1 ≤ I(q, p1).
Thus, the I(q, p) derived from the single-light case is
an upper bound on the brightness of a light at point p,
based on the observation q.

Every observation q induces such a bound, so taking
the most restrictive bound gives I1 ≤ minq I(q, p1). We
now define D(p) to be

D(p) ≡ min
q
I(q, p) (6)

implying a light at point p can be no brighter than
D(p) given all the observations of the scene.

Since I(q, p) is informally a distance function be-
tween points on the scene surface and points inside
the scene, taking the minimum distance to the scene
boundary results in a distance field, which we refer
to as the Intensity-Distance Field (IDF), given by
D(p). An example of the Intensity-Distance Field for a
single-light case in a diffuse scene is shown in Figure 1c.

Traditional specularity triangulation methods inter-
pret a single bright specular highlight as a strong indi-
cator of a light source in the mirror direction, while our
formulation effectively uses the contrapositive of this
reasoning: a lack of specular highlight means that it is
unlikely for a light to fall along the mirror direction. In
this work we primarily work with diffuse scenes with no
occlusions, since these are effectively the hardest case
for light localization. More detail on specularity and
occlusion is given in the supplementary material.

(a) (b)

(c) (d)

Figure 1: Derivation of the Intensity-Distance Field in a one-light
scene. A diffuse box-shaped room in 2D is lit by a single light at
the green circle. The lit appearance (i.e. B(q)) on each wall is
shown as a 1D intensity plot. As input, we are given the intensity
plots but not the location of the light. 1a shows I((x0, ω), p) for
p varying across the interior of the scene, where x0 is the surface
in the red circle (note that I((x0, ω), p) is independent of ω for
diffuse surfaces). For comparison, 1b shows I((x0, ω), p) for a
microfacet BRDF if x0 were a shiny surface, with ω pointing
along the red arrow. 1c shows D(p). 1d shows L(p), where the
color at each point in the scene maps to the single point on
the scene boundary bounding D(p) (mapping shown adjacent to
intensity plots).

3.3. Limiter Field

A related function for analyzing the IDF is the Lim-
iter Field, which tells us which surface point(s) in-
duced the value of D(p):

L(p) ≡ πx(argminq I(q, p)). (7)

Here, πx(q) extracts the position of the observed point
from q. Thus, L(p) tells us which surface most strictly
limits the brightness of a potential point light at p. To
visualize L(p) in 2D, we assign each surface point a
different color according to a linear gradient, and then
map each p in the scene to the color corresponding to
L(p) (Figure 1d). Examining D(p) and L(p) for differ-
ent scene geometries and light configurations (please
refer to the supplementary video for examples) sug-
gests that the medial axis of the distance field is often
correlated with light positions. The medial axis is de-
fined as the set of points for which L(p) has multiple
values (visually, discontinuities in L(p)).



(a) (b) (c) (d) (e)

Figure 2: A set of four isotropic point lights (red) lights a diffuse 2D scene. Given only the lighting on the surfaces of the scene shown
along the edges of the square, we compute D(p) (a) and L(p) (b). A closeup of L(p) near a light source (c, top) shows about 25 unique
colors in a neighborhood, i.e. unique values of L(p), while away from light sources (c, bottom) only 5 different values exist in the
neighborhood. V(p) plots these counts (d), the peaks of which form our initial estimates for the number of lights and their positions
(three green circles). Iterating our refinement algorithm recomputes the V(p) (e) and reveals the fourth light. The updated estimates
then initialize a nonlinear optimization, which successfully recovers the original lighting parameters.

3.4. Voting Function

Finally, to identify candidate light positions, we
treat L(p) as a discrete-valued function (since we mea-
sure a finite number of surface radiances at a finite
number of points) and construct a voting measure for
the light positions. The intuition here is that some
surfaces will primarily be lit by a single light, and will
thus vote consistently on the position of that particular
light. Due to quadratic distance falloff, it is likely that
there exists some such set of surfaces for at least one
light in the scene (unless the scene lighting is inherently
ambiguous, as described in the introduction).

In Figure 2b, we show a refined visualization high-
lighting the discreteness of L(p), essentially a Voronoi
diagram based on D(p). To determine the number
of surfaces voting for a particular location, we simply
count the number of unique values that L(p) takes in
a small neighborhood (Figure 2c). The surfaces corre-
sponding to these values all have similar I(q, p) inten-
sities in the neighborhood, and so are effectively voting
for the same intensity of a light at p. The count of lo-
cally unique L(p) values gives us the Voting Function
(shown in Figure 2d): for some neighborhood size δ,

V(p) ≡ |{L(p′), ||p− p′|| < δ}| (8)

4. Implementation of Scene Transforms

4.1. Computing the IDF

We construct the Intensity-Distance Transform
(both D(p) and L(p)) directly from Equations 6 and 7,
computing I(q, p) for each possible light position p, dis-
cretized over a regular grid, and each observation q.
This brute force algorithm is trivially parallelizable.

For a 2D scene, we can compute distance fields at
interactive frame rates (45ms) at 256 × 256 resolu-

tion with 400 surface intensity measurements, run on
a GTX760M graphics card. Incorporating occlusion
computations takes an additional 8ms per primitive.

4.2. Medial Axis

We use the discontinuities in L(p) to identify the
medial axis in a discrete fashion. L(p) is continuous
off of the medial axis; that is, a small change in p will
result in a small change in L(p). More specifically, if
d(x, y) is the distance along the scene surface between
points x, y, then d(L(p),L(p+ ε)) < T for a small per-
turbation ε with an appropriate threshold T . Discon-
tinuities resulting in large d(L(p),L(p+ ε)) only occur
on the medial axis. Thus, in 2D, we examine the neigh-
bors of a pixel in clockwise order; a pixel is a medial
axis pixel if the distance between limiters of any con-
secutive neighboring pixels is greater than T . In our
experiments we set T to 5% of the scene’s radius.

Although we do not directly use the medial axis for
light localization, our formulation leads to a method of
discretely computing the voting function.

4.3. Voting Function

Our basic definition of V(p) at a point is the num-
ber of different values L(p) takes in a small neighbor-
hood around that point. With our discrete sampling of
L(p), simply counting unique values in a pixel’s neigh-
bors gives insufficient granularity; for example, exam-
ining the immediate neighbors of a pixel can give at
most 9 unique L(p) values. Instead, we note that when
d(L(p),L(p+ ε)) < T (where T is the medial axis dis-
continuity threshold, as described above), the continu-
ity of L(p) implies that, for any x in between L(p) and
L(p+ ε), there exists some point p′ between p and p+ ε
such that L(p′) = x. Thus, if d(L(p),L(p+ ε)) is large



(but less than T ) then V(p) at p is large. However,
if d(L(p),L(p + ε)) > T , then there is a discontinuity
somewhere between p and p + ε; not every x between
L(p) and L(p+ ε) will necessarily contribute a vote.

Thus, to compute the vote total at a pixel p, we
examine the pixels on the perimeter of a circle with ra-
dius r centered on p. The total vote V(p) is the mean
distance between the limiters of consecutive pixels on
this circle, as long as the distance is less than the me-
dial axis discontinuity threshold. Larger values of r
are required for noisy data, while r = 1 pixel usually
suffices for the noiseless case.

To extract light proposal candidates, we search for
local maxima in the voting function with a value
greater than some minimum H. In practice we start
with a very high value of H = |Q|/10 and reduce until
at least one peak is found. We also combine multiple
peaks if the distance between them is less than some
user-defined threshold (e.g. 10% of the scene radius).

4.4. Moving to Three Dimensions

In 3D scenes, the computation of D(p) and L(p)
is identical to the computation in 2D. However, this
process is no longer real-time. We have to take sev-
eral orders of magnitude more surface measurements
to reduce discretization artifacts in the distance field.
Computing the distance field at 5123 resolution with
|Q| = 60 000 took about 1 hour on a Titan X GPU.

Computing V(p) is slightly more complex in 3D. In
2D, d(x, y) was computed by taking the distance along
the perimeter of the scene. In 3D, the analogous ap-
proach to compute V(p) is to triangulate the points
on the surface of a sphere centered at p, and then for
each triangle with vertices A,B,C let d(A,B,C) be the
geodesic area (i.e. area along the surface of the scene)
spanned by the triangle L(A),L(B),L(C). In our fairly
simple test cases, we approximated the geodesic area
with the solid angle spanned by the triangle relative to
the center of the scene. While this resulted in some
artifacts (e.g. underestimating votes near the corners
of boxy scenes) it still gave good localizations.

5. Refinement Algorithm

The candidate light positions proposed by the voting
function are often incomplete or inaccurate, for exam-
ple in Figure 2d. A light might be “hidden” by other
lights, such that no surface in the scene is primarily
lit only by that light, and thus no peak is produced
in V(p) (e.g. the second light from the right). Even
identified lights have inaccurate positions because of
the influence of other light sources (e.g. the lower-right
light). Therefore we must refine the proposed lights.

We store a set of hypothesis lights, keeping track
of how much of the scene’s original appearance re-
mains unexplained by these hypothesis lights. We it-
eratively increase the intensity of some of the hypoth-
esized lights, refine the positions of all hypothesized
lights, and then update the remaining unexplained il-
lumination. We then recompute the voting function,
which may reveal new lights not yet in the hypothesis
set. Any time a new light is found, we perform a full
nonlinear optimization to check for convergence.

5.1. Light Discovery

Light discovery begins by computing the voting
function of the current unexplained illumination B′(q),

B′ = B −Render(G, hypotheses),

where Render computes the illumination due to direct
lighting for all surfaces in the scene.

We then extract a set of candidate light positions
from the voting function and associate them with the
set of hypothesized lights. Note that not all hypothe-
sized lights will appear in the set of current candidates;
for example, if a correctly placed hypothesis light’s
intensity reaches the true intensity, then it will com-
pletely cancel out the effects of the true light. On the
other hand, if there is a candidate light that is not yet
in the hypothesis list, then we add it to the hypothesis
list with 0 intensity and trigger an optimization step.

Only the lights that are in the current set of can-
didates will have their intensities incremented in this
iteration. Our algorithm terminates in failure if incre-
menting intensities results in B′(q) < 0 for any x.

5.2. Optimization

Our optimization procedure consists of two steps.
We first hold the positions of the hypothesized lights
constant and then solve for their intensities only. This
step is linear and can be directly computed. This step
is necessary because the hypothesized intensities for
recently discovered lights are likely to be far below
their correct intensities. We use these computed in-
tensities and the hypothesized positions as initializa-
tions to a Levenberg-Marquardt nonlinear optimiza-
tion using Ceres Solver [2]. If the resulting error is
low enough, then we declare success. This optimiza-
tion can be accelerated by terminating early if the light
positions stray too far from their initial estimates. A
failed optimization usually implies that we have not yet
found all the lights in the scene.

5.3. Position Refinement

Suppose that all but one of the hypothesis lights
were in the correct locations with the correct inten-



sities; if we then take the measured illumination and
subtract the hypothesized illumination due to the cor-
rect lights, we should be left with the scene illumina-
tion as if it were lit only by our incorrect light. But for
a single-light scene, our scene transforms will directly
give us the true light position.

Based on this intuition, we develop the following po-
sition refinement step. For each hypothesis light, we re-
compute V(p) based on the scene illumination with the
contributions of the other hypothesis lights removed;
in other words, we compute the votes using

Bi = B −Render(G, hypotheses \ lighti)

We then extract the peaks of V(p) and set the position
of the current hypothesis light to that of its correspond-
ing candidate.

6. Results and Discussion

6.1. 2D Synthetic Data

To validate our method, we generated a synthetic
2D dataset with 400 diffuse square room scenes with
varying lighting conditions. We generated 100 random
configurations each for two-light, three-light, four-light
and five-light scenes, each light having random inten-
sities between 1 and 5. While generating these config-
urations, we ensured that no light was closer than 5%
of the scene’s side length to another light or to a wall.

The scene geometry for our quantitative evaluation
is a simple diffuse box scene. This functions as a
worst-case setup for light localization, as none of the
stronger cues such as specular highlights or occlusions
are present. Although scenes comprised of large pla-
nar surfaces admit other approaches, our method does
not rely on the presence of planar surfaces. Note that
we include some examples of our method in non-planar
scenes in the supplementary video.

In addition to the noise-free case, we also examine
how small amounts of noise affect the performance of
our system. We approximate the effects of shot noise
in CCD sensors by replacing the true direct intensity
value B(q) with a random variable with a Gaussian
distribution with mean B(q) and standard deviation
k
√
B(q); here we report results for k = 0.05.

For the noiseless case, we compute V(p) with a ra-
dius of 1, and set the threshold for convergence at a
MSE of 0.0025. For the noisy case, we compute V(p)
with a radius of 15, and set the threshold for conver-
gence at 105% of the MSE of the ground truth lighting.
For both cases, the per-iteration hypothesis light inten-
sity increment was 0.025.

We ran our method on the entire dataset both with
and without noise. We show the runtimes and the suc-

Success Rates Runtimes (s)
|L| Random V(p) Solved Full Median Max

Noiseless
2 0.77 0.96 1.00 1.00 2 64
3 0.52 0.73 1.00 1.00 3 105
4 0.29 0.35 1.00 1.00 29 250
5 0.26 0.15 0.94 0.97 85 442

Noisy
2 0.80 0.83 0.78 0.99 2 52
3 0.53 0.66 0.73 0.98 13 492
4 0.32 0.41 0.64 0.95 34 301
5 0.23 0.21 0.38 0.84 80 378

Table 1: Synthetic 2D Dataset results and runtimes. The Ran-
dom column shows the proportion of randomly initialized nonlin-
ear optimizations which achieved a low-error solution. The V(p)
column gives optimization success rates after a single round of
voting, while the Full column corresponds to running our full
algorithm. The Solved column gives the proportion of scenes re-
sulting in successful recovery of the ground truth lighting, while
the V(p) and Full columns include low-error solutions that did
not recover the ground truth lighting.

cess rates of our algorithm in Table 1. A single com-
putation of V(p) frequently provides an initialization
giving a successful optimization without further itera-
tions of our algorithm. Runtimes were measured on an
Intel i7-7700HQ CPU with a GTX1060 GPU.

For the noiseless case, our algorithm can successfully
recover the original lighting conditions in all of the two,
three, and four light cases. However, it fails in three
of the five-light test cases. All of these failures, as well
as three other cases in which the ground truth lighting
was not recovered, involve clusters of several nearby
lights that resulted in some ambiguity. Some of these
failure cases are shown in Figures 3-4.

In the noisy case, our algorithm is slightly less suc-
cessful, although it still matches the original lighting
conditions the majority of the time. The winner-take-
all nature of the distance field means that noise can
cause large constant regions in L(p) (where the same
surface point is the limiting point for a large region),
especially closer to the center of the scene. These con-
stant regions hide any useful information from V(p).
This effect, illustrated in Figure 4a-4b, is the cause of
all the two- and three- light failure cases, and most of
the four- and five-light failure cases. Several of the four-
and five-light failure cases are due to spurious peaks,
caused by noise, being confused with actual light peaks,
while the remaining failures come from scenes similar
to Figure 3b. Determining a more robust way of col-
lecting votes, or in general designing a more robust
candidate proposal method, is an important area for
further investigation. In practice, real-world captures
often involve multiple samples of the brightness of each
surface; combining these samples can significantly re-
duce the amount of noise.



(a) (b)

Figure 3: Failure case due to light clustering: In 3a, we show
V(p) where we converged on a low error solution (green) different
from the ground truth (red), replacing the lower-left cluster of
lights with a single light. In 3b, the cluster of two lights near the
bottom of the scene is closer to the wall and a single light cannot
fit a low-error solution. V(p) never manages to distinguish two
separate peaks, and we terminate without finding a solution.

(a) (b)

Figure 4: Failure case under noise: We compare a noiseless L(p),
in 4a, with L(p) of the same scene with noise, in 4b. The region
near the leftmost light (near the center of the scene) is com-
pletely taken over by just two Voronoi cells. We have no way of
computing a meaningful vote in these areas.

As a baseline, we run a Levenberg-Marquardt non-
linear optimizer (using Ceres Solver) with random ini-
tialization 100 times on each of the scenes, and compute
the proportion of the runs which successfully converge.
In this baseline, we assume that the number of lights
is known a priori. Despite this extra knowledge, the
baseline frequently fails to find a solution reproducing
the original illumination conditions.

6.2. 3D Synthetic Data

Beyond 2D experiments, we also ran our algorithm
on several synthetic 3D scenes (Figure 5). We infor-
mally observe that in 3D, it is more likely for our initial
voting function proposals to provide the full solution.
This is due to the fact that, in a higher-dimensional
space, more points in the interior of a region are close
to that region’s boundaries (a well-known implication
of the curse of dimensionality). Thus, each light is

more likely to be very close to a scene boundary, and
therefore is more likely to be the dominant source of
incident illumination for that boundary.

Because of our brute-force IDF approach, each com-
putation of a 3D V(p) takes about one hour, while
each iteration of our algorithm requires numerous V(p)
computations. We expect that investigating alternate
methods of computing D(p), or approaches that avoid
computing the full IDF (e.g. focusing on the medial
axis), would lead to better performance in 3D scenes.

6.3. Real-World Data

We also demonstrate that our method applies to
real-world scenes. We set up two bare light bulbs (ap-
proximating isotropic point sources) in a small room.
We scanned the scene using the Lenovo Phab2 Pro
Tango phone, reconstructing the scene geometry us-
ing the Tango software. After using an HDR exposure
correction pipeline similar to [30], we project the RGB
images onto the geometry, shown in Figure 6a-6b.

To avoid having to recover materials for the en-
tire scene, we take advantage of two properties of our
method. First, since we do not rely on having a com-
plete or closed scene, we can compute our scene trans-
forms and optimize over only a subset of scene points.
Furthermore, if we choose this subset to consist of dif-
fuse surfaces with identical albedo (e.g. wall points),
then f(x, ωi, ωo) = ρ/π for constant ρ, and π/ρ is a
global scaling of all I(q, p). This means that the lim-
iter field L(p) is independent of the actual albedo ρ.

We manually segment out wall vertices to form Q
(although this can easily be replaced by an automatic
material segmentation pipeline). Because of our diffuse
assumption, we can directly take the projected RGB
colors of our wall vertices as our B(q).

Using camera images directly for B introduces the
issues of noise, indirect illumination, and unmodelled
material properties (including specularity). With our
diffuse Q, we can ignore ω and combine all the ob-
servations of a single wall point by taking the robust
minimum (average of the values between the first quar-
tile and the median) of the projected colors This also
removes the erroneous projections of the light stands,
bulbs, and glare onto the walls.

For simplicity, in this work we ignore the effects
of indirect illumination on our candidate proposal
scheme, and assume that incident indirect illumination
is negligible relative to direct lighting at the surfaces
given by L(p′) for p′ near the maxima in V(p). We
model indirect illumination in our optimization as a
constant ambient term. Had we instead measured the
materials, we would have just removed indirect illumi-
nation, as described in Section 3.



(a) (b) (c) (d) (e)

Figure 5: Results on synthetic 3D scenes. In 5a-5b, the maxima of V(p) directly give the light locations in a two-light scene. We
visualize D(p) on a planar slice in 5a. The medial axis is shown in 5b, colored with V(p). In a three-light case (5c), the initial V(p)
maxima give the locations of two of the lights (5d, circled in green); after a few iterations the third is revealed (5e, circled in blue).

(a) (b)

(c) (d)

Figure 6: Results of running our method on a scanned 3D
dataset. In 6a-6b, we show the scanned scene colored with the
averaged observations B(q). The recovered light locations are
rendered as red spheres. In the bottom two images, we only
show the B(q) used in our computation. In 6c, the initial me-
dial axis and V(p) are shown, with a clear maximum (circled in
green) at the location of one of the light sources. After a few
iterations (6d), the second light position is also revealed.

Examining V(p) shows a clear maximum at one of
the true light positions (Figure 6c), and after a few iter-
ations of our refinement algorithm, the other light also
appears (Figure 6d), at which point our optimization
succeeds. The error in the estimated positions, rel-
ative to hand-measured ground truth positions, were
0.05m and 0.08m (in a 2m × 2.6m × 1.6m room). As
the captured images did not give absolute intensities,
we compared relative intensities by fixing one of the

light intensities to 1. The estimated intensity for the
second light was 1.43, while the measured relative in-
tensity (based on raw images captured with a DSLR)
was 1.39.

6.4. Limitations and Future Work

Known Materials The main practical issue with
using our method in real-world scenes is the assumption
of known materials. It is difficult to separately use a
BRDF estimation pipeline and then apply our method
because BRDF estimation in scenes is highly depen-
dent on lighting models. While it is straightforward to
incorporate material estimation into the optimization
part of our pipeline, we would like to investigate ways
to adapt our candidate position proposal method to
handle unknown materials.

Directly Imaged Lights Our method is designed
for cases in which light emitters are not directly im-
aged, for example due to physical constraints during
the scanning process. However, if emitting surfaces are
imaged, they must be removed before computing the
IDF. Ideally, we would incorporate information about
known light emitters, rather than discarding it.

Beyond Isotropic Point Lights Several works
[19, 25, 30] note that real-world emitters are much
more complex than isotropic point sources; instead,
they frequently have radially-varying intensity distri-
butions and different geometries (e.g. lines or areas).
While our refinement algorithm can apply to any light-
ing model, examining how directional and geometric
variations affect our candidate light proposal method
is an important area for further investigation.
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