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Figure 1: Given a reference text describing a specific site, for example the Wikipedia article above for the Pantheon, we automatically create
a labeled 3D reconstruction, with objects in the model linked to where they are mentioned in the text. The user interface enables coordinated
browsing of the text with the visualization (see video).

Abstract

We introduce an approach for analyzing Wikipedia and other text,
together with online photos, to produce annotated 3D models of
famous tourist sites. The approach is completely automated, and
leverages online text and photo co-occurrences via Google Image
Search. It enables a number of new interactions, which we demon-
strate in a new 3D visualization tool. Text can be selected to move
the camera to the corresponding objects, 3D bounding boxes pro-
vide anchors back to the text describing them, and the overall nar-
rative of the text provides a temporal guide for automatically flying
through the scene to visualize the world as you read about it. We
show compelling results on several major tourist sites.
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1 Introduction

Tourists have long relied on guidebooks and other reference texts
to learn about and navigate sites of interest. While guidebooks
are packed with interesting historical facts and descriptions of site-
specific objects and spaces, it can be difficult to fully visualize the
scenes they present. The primary cues come from images provided
with the text, but coverage is sparse and it can be difficult to un-
derstand the spatial relationships between each image viewpoint.
For example, the Berlitz and Lonely Planet guides [Berlitz In-
ternational 2003; Garwood and Hole 2012] for Rome each con-
tain just a single photo of the Pantheon, and have a similar lack
of photographic coverage of other sites. Even online sites such
as Wikipedia, which do not have space restrictions, have similarly
sparse and disconnected visual coverage.

Instead of relying exclusively on static images embedded in text,
suppose you could create an interactive, photorealistic visualiza-
tion, where, for example, a Wikipedia page is shown next to a de-
tailed 3D model of the described site. When you select an object
(e.g., “Raphaels tomb”) in the text, it flies you to the corresponding
location in the scene via a smooth, photorealistic transition. Simi-
larly, when you click on an object in the visualization, it highlights
the corresponding descriptive text on the Wikipedia page. Our goal
is to create such a visualization completely automatically by ana-
lyzing the Wikipedia page itself, together with many photos of the
site available online (Figure 1).

Automatically creating such a visualization presents a formidable
challenge. The text and photos, in isolation, provide only very in-
direct cues about the structure of the scene. Although we can easily
gather text describing the world, automatically extracting the names
of objects (e.g.,“Raphaels tomb” or “Coronation of the Virgin”) is
not trivial. For example, we know a noun phrase often describes
an entity, which could be an object in the scene. However, it could
also name the artist that created the object, or some other unrelated
concept. Given the correct names, even more challenging is deter-
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Figure 2: The top Google image search results for two objects in-
side the Pantheon and one distractor string. The reliability of the
search results varies. Top row: all returned search results depict the
entire or part of The Annunciation. Middle row: Only the second
returned search result is correct. Bottom row: An incorrect object
description with several images that do depict the Pantheon.

mining the precise 3D location of each described object, since most
textual descriptions within any given reference text are not accom-
panied by pictures or other explicit visual cues.

The key to our approach is to mine text and photo co-occurences
across all of the Internet. For example, a photo anywhere on the
Internet with the caption “Annunciation, Pantheon” signals that it
may depict the named fresco. Indeed, a Google image search for
“Annunciation, Pantheon” yields perfectly cropped images of the
desired object (Figure 2, top). Given a Pantheon reconstruction,
these images can be matched directly to the model to label the cor-
responding regions in 3D. Although this approach allows us to find
3D object locations, our challenge of finding object names in text
remains. Our solution is to do a brute-force extraction of every noun
phrase in the text, execute a Google search for that phrase (with “,
Pantheon” added at the end), and select only the phrases with im-
ages that align with the model. Of course, this simple strategy does
not completely solve the problem; image captions and web page co-
occurences are notoriously noisy. Searching for correctly named
objects can produce multiple matching images (Figure 2, middle)
and phrases that do not describe actual objects can produce spuri-
ous matches (Figure 2, bottom). Hence, we treat the image results
as a noisy signal to be integrated with other constraints in a joint,
learned model for filtering out spurious phrase, image pairs. This
approach can be considered as a form of query expansion [Chum
et al. 2007; Buckley 1995; Salton and Buckley 1999] where we is-
sue several queries on pieces of the text and then verify the results.

Our reconstruction and visualization approach is inspired by Photo
Tourism [Snavely et al. 2006], and we employ similar techniques
to generate 3D models from Flickr photos and to render transi-
tions to photos within those models [Wu et al. 2011; Wu a; Wu
b]. Our innovation is not in the rendering per se, but in our abil-
ity to automatically transform descriptive texts such as Wikipedia
pages into interactive 3D visual experiences, where the text links to
corresponding points in a reconstructed 3D model. We show com-
pelling results for several major tourist sites. While no automated
method is perfect, we are able to reliably extract many of the ob-
jects in each scene, with relatively few errors (we provide a detailed
analysis of precision and recall).

2 Related work

Our labeling problem lies at the interface between natural language
processing and 3D computer vision; a very fertile area with little
prior research. An exception is Simon et al.’s work [Simon and
Seitz 2008] on segmenting and labeling 3D point clouds by analyz-
ing SIFT feature co-occurence in tagged Flickr photos. Their ap-
proach works by associating commonly occurring image text tags
with the model points contained in the associated images. However,
Flickr tags are notoriously noisy and far less informative compared
to Wikipedia and other authoritative guides. Their approach cannot
be applied to Wikipedia, as it requires tagged photos as input.

In the 2D domain, there is a significant literature on correlating re-
gions in images/video to captioned text or keywords, e.g. [Barnard
et al. 2003; Laptev et al. 2008; Cour et al. 2011], and on generating
sentences or captions for specific images [Farhadi et al. 2010; Berg
et al. 2012; Mitchell et al. 2012]. These approaches reason about
a relatively small set of object classes (e.g. car, boat) via trained
object detectors, whereas we reason about object instances (e.g. the
Annunciation). Furthermore, note that [Berg et al. 2012] require
captioned photographs during the training of their model. Our use
of 3D reconstructions allows us to avoid many of the object detec-
tion challenges these approaches face.

Our work builds on recent breakthroughs on reconstructing 3D
models of tourist sites from Internet photo collections. These meth-
ods are based on structure-from-motion [Snavely et al. 2008; Agar-
wal et al. 2011; Raguram et al. 2011] and multi-view stereo [Fu-
rukawa and Ponce 2010; Furukawa et al. 2010; Goesele et al. 2007].
The advent of commodity depth sensors like Kinect has also in-
spired work in object category recognition in RGB-D and range-
scan data [Ren et al. 2012; Silberman et al. 2012; Ladický et al.
2012]. This work is complementary to our effort; we focus on la-
beling instances.

There is a long history in computer vision on the problem of recog-
nizing images of specific objects or places (instances). Especially
relevant is recent work on large-scale image retrieval [Sivic and Zis-
serman 2003; Chum et al. 2007; Philbin et al. 2008] that operates
by matching local features computed at interest points between an
input image and a database of labeled images [Lowe 2004]. Also
relevant is work that reasons about GPS-tagged images [Crandall
et al. 2009; Hays and Efros 2008]. All of these techniques require
a database of labeled objects as reference. In contrast, our focus is
to create such a database from joint analysis of text and images.

3 System Overview

In this paper we present a fully automatic system that generates
interactive visualizations that link authoritative text sources with
photorealistic 3D models. The system requires two types of inputs:
one or more reference text sources, such as Wikipedia, and a unique
name for the site to reconstruct, such as the Pantheon in Rome.

Figure 3 presents an overview of the complete approach. There are
two parallel streams of processing. The system downloads a set of
images from Flickr by querying for the site name and then auto-
matically reconstructs a 3D model using the freely available Visu-
alSFM package [Wu b], followed by PMVS [Furukawa and Ponce
2010] to generate a dense 3D point cloud. It also does a query ex-
pansion analysis of the text, involving image search and registration
for each possible noun phrase as described in Section 4, to find text
that names objects and link it to the reconstructed 3D geometry.
Using these object correspondences, our system creates interactive
visualizations, as described in Section 5, that emphasize the discov-
ered correspondences, providing innovative navigation experiences
for the text and the 3D model.



Figure 3: System overview.

4 Automatic labeling of 3D models from text

In this section, we describe our algorithm for obtaining correspon-
dences between regions on a 3D model to an object tag description
in a reference text. Our algorithm consists of three steps: we gen-
erate an overcomplete list of candidate object hypothesis from the
text; then we obtain their likely location on the 3D model via query
expansion; finally we filter the large number of false positive detec-
tions by training a classifier over features gleaned from the text and
the output of query expansion.

4.1 Obtaining object hypotheses from text

For each site, we seek to automatically obtain a list of candidate de-
scriptive phrases. Our texts come from two sources that are freely
available online: articles from Wikipedia, and text from other, site
specific, third-party web pages. These text sources offer rich de-
scriptions of the site’s contents and their spatial layout, along with
their history, architectural features, and cultural references.

We use the syntactic structure of the language to define the set of
possible descriptive phrases, primarily leveraging the fact that noun
phrases can name physical objects in English. To extract noun
phrases, we use the Stanford parser [Klein and Manning 2003],
which achieves near state-of-the-art performance and is available as
public-domain software. We ran the parser with the default param-
eter settings. To boost recall, we also extract prepositional phrases
that are immediately followed by a noun phrase (e.g. a fresco of the
Annunciation) and merge adjacent noun phrases (e.g. a canvas by
Clement Maioli of St. Lawrence and St. Agnes). These additional
phrases allow us to overcome parsing errors, e.g., when nouns are
incorrectly labeled as prepositions. Extracting them boosts recall
and provides a large set of candidates that we will later filter with
a joint model that incorporates visual cues. Finally, to reduce false
positives, we remove phrases containing only a single stop word, as
defined by a commonly used stop word list [Sto ], or only numerals.

4.2 From labels to regions via query expansion

Given the automatically obtained list of candidate named objects,
we wish to generate proposal regions for their 3D location within
the site. We leverage the fact that many objects are photographed
in isolation, i.e. with the object shown in whole and filling nearly
the full field of view. This photographer’s bias has been previously
used to discover and segment objects within 3D models [Simon and
Seitz 2008].

For each candidate named object, we search for and download im-
ages using Google image search. We construct the query terms by
concatenating the extracted noun phrase with the place name (e.g.
central figure Trevi Fountain). To find candidate regions within the

Figure 4: Left: image returned from Google image search. Right:
section of the 3D model, with a bounding box around the matched
3D and the camera frustrum.

3D model for the site, we build upon the success of feature match-
ing and geometric verification used to construct 3D models from
consumer photographs [Snavely et al. 2008]. We match SIFT key
points [Lowe 2004] extracted from the downloaded images to the
inlier SIFT key points corresponding to 3D points within the 3D
model. Using the putative 2D-3D point correspondences, we re-
cover the camera parameters for the image and inlier 3D points
within the 3D model via camera resectioning [Hartley and Zisser-
man 2004] as shown in Figure 4. We find that matching to the 3D
model is beneficial for three reasons: (i) our overall goal is to label
the 3D model, (ii) we find that geometric verification and associat-
ing multiple SIFT features to each 3D point offers robustness in the
matching step, and (iii) matching to local SIFT keypoints and rea-
soning about the 3D scene offers robustness to occlusion (c.f. the
artwork behind the columns in the Pantheon, which are visible in
the 3D model but not in the panorama of Figure 6).

As the object of interest is usually depicted within the top set of
search results, we perform camera resectioning for the top 6 images
returned for each search query. We keep the alignment if camera
resectioning finds at least 9 inlier correspondences. We found that
verification with at least 9 inlier features almost always yields a
correct alignment to the 3D model; using fewer yields incorrect
alignments. This requirement discards many images that do not
depict the site at all and maintains a high recall for valid images
that do depict the site.

4.3 Model for filtering hypotheses

The query expansion procedure returns for each candidate object
tag a set of 3D points within the 3D model corresponding to can-
didate locations of the object. While Internet image search returns
many valid images for the candidate object tags, there remains a
high number of false positives. The false positives often result from
generic images of the site that occur often across the different query
terms and get successfully aligned to the 3D model. Moreover, we
have the additional difficulty of an over-generated list of candidate
objects resulting from the output of the natural language processing
parser. In this section, we outline a procedure to separate the good
object proposals from the bad ones.

Our goal is to extract good object detections from the hypothesis
set of object-region pairs. We start by merging highly-overlapping
camera frustra corresponding to the aligned images for a given ob-
ject tag returned from Google image search during the query expan-
sion step. To merge camera frustra, we first project each frustrum
onto a reference image (i.e. panorama or perspective photograph)
depicting the site that has been registered to the 3D model. We form
a bounding box by taking the maximum x, y extent of the projected
frustrum. We then merge two frustra if their relative overlap (i.e.



ratio of intersection area to their union) exceeds 0.5, with the mean
of their bounding boxes returned. This results in a set of object tag
and detection frustrum pairs for the site, dubbed the candidate pool.

Next, we extract features from the candidate pool and the original
text. The visual features include: the number of merged frustra for
the candidate; the rank number for the top-ranked image search re-
sult that aligned to the 3D model; and the total number of frustra
across all object tags that highly overlap the candidate frustrum (a
high number indicates a generic viewpoint of the site). The text
features include: whether a non-spatial preposition (ago, as, be-
cause of, before, despite, during, for, like, of, since, until) resides
in the same sentence as the extracted noun phrase, which often cor-
responds to historical descriptions; whether the tag corresponds to
an author; and whether an author appears in the same sentence as
the tag. We encode the presence of an author as a feature since
the authorship of an object is often described together in the same
sentence as the object. We detect the presence of an author in the
text by analyzing prepositional by dependencies returned from the
Stanford parser [Klein and Manning 2003] and return the second
string argument in the dependency as the author.

We train a linear classifier y = wTx over the features x and their
labels y ∈ {0, 1} using logistic regression across a set of training
sites and test on the remaining sites. We use Matlab’s glmfit
function with logit link function. To construct the training set, we
project each frustra in the candidate pool for the site onto the refer-
ence image and intersect the projected frustra with objects that have
been manually labeled via LabelMe [Russell et al. 2008]. For each
labeled object, we keep the object tag/detection frustrum pair that
has highest word F-score when comparing the object and labeled
tags and having the center of their bounding boxes residing in the
other’s bouding box. We form the set of positive examples (y = 1)
from the tag/frustrum pairs that match to a ground truth label. We
form the set of negative examples from tag/frustrum pairs that do
not have tag or frustrum overlap with any of the positive training
examples. During testing, we perform non-maximum suppression
over the detections. We suppress detections if a higher confidence
frustrum overlaps a lower confidence one (i.e. their relative overlap
exceeds 0.3 and their centers reside in the other’s bounding box) or
if any of the tag words overlap in the same sentence.

5 Visualization tool for browsing objects in
online text

We aim to create immersive visualizations that connect information
from authoritative text sources to 3D models constructed from In-
ternet photo collections. The extracted correspondences between
object tags in the text and regions of the 3D model provide bidi-
rectional links between the two types of media. In this work we
present novel ways to explore and navigate these links, providing
spatial and contextual information to the text and meaningful de-
scriptions to the 3D model.

Our visualization has two panes: on the left it displays the website
containing the reference text, such as Wikipedia, and on the right a
3D visualization of the landmark, that uses automatically generated
3D bounding boxes to highlight discovered objects. We augment
the functionality of the website to enable text-to-3D navigation, 3D-
to-text navigation, and automatic tours of the landmarks. Figure 5
shows screen captures of our visualizations, but we refer the reader
to the accompanying video to best experience the system. In the
following subsections, we describe the different navigation modes,
as well as the implementation details of the visualization.

5.1 Text-to-3D navigation

In the web pane (left) of our visualization, we create special hyper-
links in the text at all occurrences of discovered object tags. When
you mouse over one of the hyperlinks, it first highlights the object
tag in the text pane and then the 3D visualization highlights a 3D
bounding box around the corresponding object, showing you its lo-
cation and relative size within the scene. Additionally, to emphasize
the connection between the highlighted text and 3D bounding box,
the visualization draws a line between them across the two panes.

When the named object is not visible in the current viewpoint, the
visualization smoothly moves the camera until the object is dis-
played in the center of the image. To see an image of the highlighted
object you can click on the object tag and the visualization first tran-
sitions to the viewpoint of a close-up image of the object and then
fades in the image. For each object, the visualization chooses the
image that maximizes the area of the object’s projected 3D bound-
ing box. Once you move the mouse out of the object tag, the line
and the bounding box fade out.

The webpages often contain images that depict some of the ob-
jects being described. Our visualization further enhances these im-
ages by converting them to hyperlinks into the 3D model. When
you click on the image, the camera transitions to the corresponding
viewpoint in the 3D pane and fades in a high resolution version of it.
This functionality is helpful when navigating webpages with many
photos (e.g. U.S. Capitol Rotunda Wikipedia page), by providing
the spatial context that relates them.

5.2 3D-to-text navigation

You can also navigate in the 3D visualization; dragging the mouse
or using the mouse wheel changes the camera viewpoint. When the
mouse pointer moves over the projection of the 3D bounding box of
a discovered object, the visualization fades in the object’s bounding
box, hinting that you have found an object. After a short delay, the
visualization automatically scrolls the website to show the corre-
sponding object tag in the text pane, highlights it, and draws a con-
necting line between the tag and the object’s bounding box across
the two panes. In this way, you can learn about the objects in the
scene by simply clicking on the areas of the 3D model and reading
the text surrounding the highlighted object tag.

5.3 Tour navigation

In most authoritative text sources objects are not described in a ran-
dom fashion, but follow a sensible pattern around the site. For ex-
ample, the Wikipedia article of the Pergamon Altar describes the
different sculptures in the Gygantomachy frieze from left to right.
The Pantheon Wikipedia article first describes the apse, then the
chapels and niches on the right side of the apse, followed by the
ones on the left side. We can exploit this text structure to cre-
ate more seamless navigation experiences, where an automated se-
quence of transitions between relevant images is played as the user
reads through the text.

When the user activates the tour mode, a thin highlighting box ap-
pears over the text that covers the width of the pane. As the user
scrolls through the text, object tags that enter the highlighting box
cause the visualization to highlight the tags and automatically move
the camera to show a close-up picture of the highlighted object. In
this way, the camera automatically follows the exposition.



(a) Pantheon, Rome

(b) Sistine Chapel, Vatican City

(c) Trevi Fountain, Rome

(d) Pergamon Altar, Berlin

(e) US Capitol Rotunda, Washington D.C.

Figure 5: Screenshots of our visualizations for five different sites. Website and photographs in (c) courtesy of www.aviewoncities.com.



Site Pantheon, Rome Trevi Fountain Sistine Chapel US Capitol Rotunda Pergamon Altar
# 3D points 146K 208K 121K 84K 55K
# ground truth 31 16 31 38 49
# noun phrases 1796 821 3288 2179 2949
# image matches 510 348 2282 884 1600

Table 1: Site statistics: # 3D points – number of points in 3D model, # ground truth – number of labeled ground truth objects, # noun phrases
– number of automatically extracted noun phrases using the Stanford parser [Klein and Manning 2003], # image matches – number of noun
phrases with an image returned from Google image search that aligned to the 3D model. When compared to the number of labeled ground
truth objects, there are a large number of (spurious) automatically generated candidate detections (# image matches) that we must cope with.

Site Pantheon, Rome Trevi Fountain Sistine Chapel US Capitol Rotunda Pergamon Altar
Recall 0.39 0.31 0.71 0.21 0.18
Raw Precision 0.80 0.31 0.46 0.35 0.56
Full Precision 0.87 0.78 0.79 0.65 0.94

Table 2: Detection accuracy. We measure the proportion of detected objects that are correctly localized in the scene (precision – 1.0
is optimal) and proportion of ground truth objects in the scene that are detected (recall – 1.0 is optimal). Chance is negligible, being
proportional to the number of words or phrases on the input text. We report two precision numbers: the raw precision, which is the proportion
of correctly localized objects using the manually labeled ground truth as a guide; and full precision, which uses manually verified detections
corresponding to smaller unlabeled parts of the scene, such as the trumpets in Michelango’s Last Judgement (see text).

5.4 Implementation details

We used publicly available bundle adjustment and multi-view
stereo software to automatically create the 3D models from Internet
photo collections using VisualSFM [Wu et al. 2011; Wu a; Wu b]
for generating a sparse point cloud, followed by PMVS [Furukawa
and Ponce 2010] for generating a dense point cloud. As a post-
processing step to filter noisy 3D points from the PMVS output,
we apply Poisson Surface Reconstruction [Kazhdan et al. 2006] to
generate a mesh. We then delete small connected components of the
mesh and vertices that lie far away from the PMVS points. We then
color the mesh vertices according to the closest PMVS points and
keep the vertices of the mesh as our final point cloud. Although we
generate colored meshes, we only use the vertices from the mesh
for visualizations as we found the point cloud is visually more for-
giving of artifacts; it avoids the uncanny valley effect and looks
better than the mesh.

To highlight the objects in the 3D model, we generate 3D bounding
boxes for each object that are rendered semi-transparently in our vi-
sualizations. First, we automatically estimate the principal axes of
the 3D reconstructions using the recovered 3D scene information.
We seek to estimate 3D bounding boxes that maximally align to the
dominant orientation of the object, while remaining aligned to the
principal axes. We first compute the mode m over the distribution
of the normals of the points that lie in the frustra of the images.
We then choose a coordinate unit-vector x in the world-coordinate
frame of the reconstruction that is approximately orthogonal to the
mode, preferring the z-axis over the x or y-axes. Finally, we calcu-
late the other axis vector y = ȳ

‖ȳ‖ with ȳ = m − (m · x)x and
z = x×y. This approach produces compelling bounding boxes as
seen in Figure 5.

6 Evaluation

As the different navigation modes for the visualization tool depend
on the quality of the automatically generated text-object correspon-
dences, we manually evaluate the accuracy of the correspondences.
To measure performance, we collected reference texts and com-
puted 3D models for 5 sites, which are listed in Table 1. For Trevi

Fountain, we used three webpages. 1 For the remaining sites, we
extracted text from their corresponding Wikipedia pages.2 We eval-
uate performance relative to a set of canonical views, which are a set
of registered panoramas or perspective photographs depicting most
or all of a site. To define the gold standard, we manually labeled the
name and a bounding box for all notable and well-described objects
in the reference text using LabelMe [Russell et al. 2008].

We use a modified Pascal VOC criteria [Everingham et al. 2010] to
score detections. First, we relax the relative overlap score to a lower
value and require that the center of the detection window lies inside
the ground truth. This is to account for the bias in how photogra-
phers frame the object in an image (typically not exactly cropped
to the object). Moreover, we find that in our visualization task the
relaxed bounding boxes still provide useful information about the
objects in the scene. Second, we require that at least one of the
returned words match the ground truth object tag after stop word
removal. This is to handle the noisy nature of object tags where
there can be many equally good descriptions, such as “a statue of
the Madonna of the Rock by Lorenzetto”, “Madonna of the Rock”,
“Modonna of the Rock by Lorenzetto”.

We report site cross validation numbers, where the linear classifier
is tested on a single site after being trained on all of the others. We
return the top 37% scoring detections after non-maximum suppres-
sion. We found that this threshold provides a good balance between
recall (many good detections) and precision (good accuracy).

We show example system outputs for the top most confident de-
tections on the canonical views in Figures 6-8. Correct detections
are shown in green and false positives in red. We also display the
returned object tags near the corresponding detection window.

In scoring the detections, we found that synonyms in the object tags
posed a problem. For example, the central statue in Trevi Fountain
can be referred to as “Neptune” or “Ocean”. We included such de-
tected synonyms in the ground truth object tags. For scoring detec-
tions, we ignore any additional detections due to a synonym, after
the most confident detection. In this way, a synonym detection does
not help or hurt detection performance.

1http://www.aviewoncities.com/rome/trevi.htm,
http://www.trevifountain.net, http://www.rome.info/sights/trevi-fountain

2We used the following Wikipedia articles: Pantheon, Rome; United
States Capitol rotunda; Pergamon Altar; Sistine Chapel ceiling.
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detection, with the returned object label overlaid. Red – false positives. Photograph by Patrick Landy.
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Figure 7: Output detections for Sistine Chapel. Photograph by Roy Zipstein, 360Cities.net.

Table 2 reports detection precision and recall over the returned de-
tections for all sites. Most recall numbers range from 0.18 for Perg-
amon Altar to 0.39 for the Pantheon. The Sistine Chapel is a notable
exception, which has 0.71 recall. This is mostly due to the fact that
the site is well catalogued and features many close-up images avail-
able on the Internet. While these recall numbers may seem low, they
are quite reasonable in the context of our visualization application.
Note, for example, the current Pantheon Wikipedia page includes
captioned close-up photos of only two out of 31 objects–a recall of
only 6%. Our automatic procedure boosts this to 39% and provides
a better integrated 3D experience, i.e., in the context of our appli-
cation, it is not critical to detect every object in the scene to provide
a compelling and useful visualization experience. More important
is that we capture the most important objects in the scene, and im-
portant objects tend to be well cataloged with labeled photos on the
Internet (which lead to better recall in our system).

For detection precision, we report two numbers: the raw precision,
which is the proportion of correctly localized objects using the man-
ually labeled ground truth as a guide; and the full precision, which
uses manually verified detections. The latter is motivated by the
fact that often the returned detections correspond to smaller parts of
the scene, such as the trumpets in Michelangelo’s Last Judgement,
link to relevant descriptive text for other objects, such as Garden
of Eden for The Temptation and Expulsion, or refer to a generic
object category, such as wall frescoes in the Sistine Chapel. Includ-
ing these additional detections, we achieve a full precision ranging
from 0.65 for US Capitol Rotunda to 0.94 for Pergamon Altar. We
believe that this accuracy is reasonable for our 3D visualization, as

it allows the user to browse the text and scene with a minimum of
incorrect correspondences.

To put these numbers in context, as a baseline, we also computed
object recall using the tags associated with the Flickr images that
were used to build the 3D models. This Flickr baseline is an upper
bound on prior work that segments and labels 3D point clouds by
analyzing SIFT feature co-occurence in tagged Flickr photos [Si-
mon and Seitz 2008]. We computed the proportion of ground truth
objects that find a Flickr image whose tag overlaps at least par-
tially with the ground truth tag and depict the ground truth object.
We report the object recall for the sites in which we retained the
Flickr tags: Pantheon – 0.06; Trevi Fountain – 0; US Capitol Ro-
tunda – 0.21. Notice that the Flickr baseline performs significantly
worse for the Pantheon and Trevi Fountain. On the other hand,
the US Capitol Rotunda appears to be well-documented on Flickr
and achieves the same recall as our full system, with many of these
images appearing in the query expansion step. However, it is not
straightforward to filter the many false positive tags that appear in
the Flickr image set.

6.1 Error Analysis

We have observed different sources of errors of our system, which
result in inaccurate labels returned by our system and missed ob-
jects. We describe these errors and illustrate them in Figure 9.

One common case is when text spans are paired with bounding
boxes that contain the named object, but are too large. This happens
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Figure 8: Output detections for Trevi Fountain. Photograph by
garygraphy.

when Google image search returns images that correctly depict the
object of interest, but are not tightly cropped to the object. For
example, in Figure 9(a) the bounding box for the painting The In-
credulity of St. Thomas is large and encloses the object itself, along
with the first niche and the first chapel.

We have also observed incorrect object correspondences, such as
the one shown in Figure 9(b). The recovered bounding box for
the object Eugenio Maccagnani encloses the niche around the tomb
of Raphael, which is described in the following paragraph in the
text. These errors typically come from noisy co-occurrences be-
tween images and text in the online sources.

A challenging case is when an object is not a specific instance, but
belongs to a set, as shown in Figure 9(c). Here, the ignudi de-
scribes the set of depicted nudes in the Sistine chapel. Our current
system cannot identify all of them since the system assumes a one-
to-one correpondence between a named object and its depiction in
the 3D scene. While we could relax this constraint, it would result
in lower overall precision due to the noisy results of the Google
image search.

In addition, we have observed failures that result in object misses.
These are primarily due to: (1) incorrect images that are returned
from Google image search for a candidate object, and (2) when
the object is poorly reconstructed during the structure-from-motion
step, causing the Google images not to match. This can be par-
tially remedied by better online documentation of the objects and
improved 3D models.

We find that there is evidence in the text to cope with some of these
errors. For example, the Incredulity of St. Thomas is described to
be “on the right wall” of the Chapel of the Annunciation; there is a
clear description of the ignudi being multiple figures: “the Ignudi
are the 20 athletic, nude males.” Also, there is often information
in the text about the class of the objects, e.g. a named object can
be described as being a painting or statue. The category of the ob-
ject could be extracted from the text and used with object detectors
trained for the category. Moreover, bottom-up segmentation could
be used to improve object localization. Developing a model that

(a) Bounding box is too large

(b) Incorrect object tag

(c) Multiple object class instances

Figure 9: Failure cases: obtained bounding box is shown in red
and correct objects are shown in yellow.

could incorporate such cues is an important area for future work.

7 Conclusion

This paper introduced the first system capable of using online text
and photo collections to automatically build immersive 3D visual-
izations of popular sites. These included a number of new interac-
tions: text can be selected to move the camera to the corresponding
objects, 3D bounding boxes provide anchors back to the text de-
scribing them, and the overall narrative of the text provides a tem-
poral guide for automatically flying through the scene to visualize
the world as you read about it.

While our system is built using off-the-shelf ingredients, we argue
that the ideas and the system are new. In particular, we introduce
(1) the concept for a 3D Wikipedia based on crowd-sourced data
on the Internet, (2) the insight of using text parsing + Google im-
age search to connect web text to 3D shape data, and (3) a viable
approach that accomplishes this goal, incorporating a series of so-
phisticated steps (3D reconstruction, text parsing, and a classifier
to improve precision). Experiments on multiple sites demonstrate
that this approach has consistently high precision, which is crucial
for enabling high quality interactions, even if all objects are not yet
recognized. Our current system works on the most popular sites,
as it requires lots of images and good text. Going forward, with
growth in photo and text corpi, the system will work “as is” for
more scenes as the underlying data improves. Improvements to 3D
reconstruction algorithms and text parsers will also further improve
applicability.

While the results are encouraging, there is room for improvement.



While improvements in search technology will reduce false nega-
tives (missed objects), we have barely tapped into the structure and
constraints expressed in the text, which have significant potential to
reduce false positives (mislabeled objects). For example, one es-
pecially promising topic for future work will be to leverage spatial
terms (e.g., “in the first niche to the left of the door...”, “the paint-
ing above the altar...”) to constrain the placement of objects in the
scene. Developing semi-automated methods that leverage people to
assist in the labeling task is another interesting topic of future work.
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Nyman3, Claus Ableiter4.

References

AGARWAL, S., FURUKAWA, Y., SNAVELY, N., SIMON, I., CUR-
LESS, B., SEITZ, S. M., AND SZELISKI, R. 2011. Building
rome in a day. Communications of the ACM 54, 10 (Oct.), 105–
112.

BARNARD, K., DUYGULU, P., DE FREITAS, N., FORSYTH, D.,
BLEI, D., AND JORDAN, M. I. 2003. Matching words and
pictures. Journal of Machine Learning Research 3, 1107–1135.

BERG, A. C., BERG, T. L., III, H. D., DODGE, J., GOYAL, A.,
HAN, X., MENSCH, A., MITCHELL, M., SOOD, A., STRATOS,
K., AND YAMAGUCHI, K. 2012. Understanding and predicting
importance in images. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 3562–3569.

BERLITZ INTERNATIONAL, I. 2003. Berlitz Rome Pocket Guide.
Berlitz Pocket Guides Series. Berlitz International, Incorporated.

BUCKLEY, C. 1995. Automatic query expansion using SMART :
TREC 3. In Proceedings of the third Text REtrieval Conference
(TREC-3), 69–80.

CHUM, O., PHILBIN, J., SIVIC, J., ISARD, M., AND ZISSER-
MAN, A. 2007. Total recall: Automatic query expansion with
a generative feature model for object retrieval. In IEEE 11th
International Conference on Computer Vision (ICCV), 1–8.

COUR, T., SAPP, B., AND TASKAR, B. 2011. Learning from
partial labels. Journal of Machine Learning Research 12 (May),
1501–1536.

CRANDALL, D., BACKSTROM, L., HUTTENLOCHER, D., AND
KLEINBERG, J. 2009. Mapping the world’s photos. In Proceed-
ings of the 18th International Conference on World Wide Web
(WWW), 761–770.

EVERINGHAM, M., VAN GOOL, L., WILLIAMS, C. K. I., WINN,
J., AND ZISSERMAN, A. 2010. The Pascal visual object classes
(VOC) challenge. International Journal of Computer Vision 88,
2, 303–338.

3http://creativecommons.org/licenses/by/2.0
4http://creativecommons.org/licenses/by-sa/3.0/deed.en

FARHADI, A., HEJRATI, M., SADEGHI, M. A., YOUNG, P.,
RASHTCHIAN, C., HOCKENMAIER, J., AND FORSYTH, D.
2010. Every picture tells a story: Generating sentences from
images. In European Conference on Computer Vision (ECCV),
15–29.

FURUKAWA, Y., AND PONCE, J. 2010. Accurate, dense, and ro-
bust multi-view stereopsis. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 32, 8, 1362–1376.

FURUKAWA, Y., CURLESS, B., SEITZ, S. M., AND SZELISKI, R.
2010. Towards internet-scale multi-view stereo. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
1434–1441.

GARWOOD, D., AND HOLE, A. 2012. Lonely Planet Rome. Travel
Guide. Lonely Planet Publications.

GOESELE, M., SNAVELY, N., CURLESS, B., HOPPE, H., AND
SEITZ, S. M. 2007. Multi-view stereo for community photo
collections. In IEEE 11th International Conference on Computer
Vision (ICCV), 1–8.

HARTLEY, R. I., AND ZISSERMAN, A. 2004. Multiple View Ge-
ometry in Computer Vision, second ed. Cambridge University
Press, ISBN: 0521540518.

HAYS, J., AND EFROS, A. A. 2008. IM2GPS: estimating geo-
graphic information from a single image. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 1–8.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proceedings of the 4th Eurographics
Symposium on Geometry Processing (SGP), 61–70.

KLEIN, D., AND MANNING, C. D. 2003. Accurate unlexicalized
parsing. In Proceedings of the 41st Meeting of the Association
for Computational Linguistics, 423–430.
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