
GradientShop: A Perceptually-Motivated

Optimization-Framework for Image and Video Processing

Pravin Bhat1 C. Lawrence Zitnick2 Michael Cohen1,2 Brian Curless1

1University of Washington 2Microsoft Research

(a) Input image (b) Saliency sharpening filter (c) Pseudo relighting filter (d) Painterly rendering filter

(e) Compressed input image (f) Improved de-blocking filter (g) User input for colorization (h) Improved colorization filter

Figure 1: The figure shows image enhancement filters we have created or improved upon using our optimization framework. Our framework
is designed for expressing image and video processing applications that can account for certain perceptual biases of the human visual system.

Abstract

We present an optimization framework for expressing image pro-
cessing applications that can account for three perceptual biases
of the human visual system (HVS) already well-known in the per-
ception literature. (1) The perception literature is ripe with studies
demonstrating the HVS to be more sensitive to local pixel gradi-
ents than absolute pixel values, which has led to some important
work in gradient-domain image-filtering. Inspired by this work, our
optimization framework allows image and video processing appli-
cations to easily specify both zeroth order constraints (i.e., desired
pixel values) and first order constraints (i.e., desired pixel gradients
in space and time) in the optimization. (2) We introduce a spatially-
varying weighting scheme for these constraints that reduces arti-
facts by approximating the more robust L1-norm even when using
a simple weighted least squares optimization. (3) We also demon-
strate that edge length in addition to local gradient magnitude is a
useful measure of local gradient saliency. Our saliency measure is
inspired by perception studies that show long coherent edges in an
image, even when faint, are perceptually salient to the HVS.

Finally, we demonstrate the utility of our formulation in creating
effective yet simple to implement solutions for common image pro-
cessing tasks. To exercise our formulation we have created a new
saliency-based sharpen filter and a pseudo image relighting appli-
cation. We also revisit and improve upon filters previously defined
by the gradient domain community – filters like painterly render-
ing, image de-blocking, and sparse data interpolation over images
(e.g., colorization using optimization).

1 Introduction

The mark of an effective image processing algorithm is that it ac-
counts for the perceptual biases of the human visual system. In
fact, most image enhancement applications in the graphics commu-

nity can be binned into one of three broad categories based on the
perceptual task they perform:

Content enhancement: Applications in this category enhance image
content in a manner that is either beneficial or pleasing to the HVS.
Examples include: sharpening, selective emphasis/de-emphasis of
content in order to draw attention to the subject matter [Su et al.
2005], aesthetic enhancements such as non-photorealistic styliza-
tion [Orzan et al. 2007], and so on.

Artifact suppression: These image filters are used to supress ar-
tifacts that are distracting to the HVS. Examples include denois-
ing, deblurring, video deflickering, suppression of compression ar-
tifacts, and hiding transition seams in image mosaics [Pérez et al.
2003].

Content preserving transformations: Image filters in this category
involve transforming an image while preserving perceptual char-
acteristics that are important to the HVS. For example, tone map-
ping [Fattal et al. 2002] involves transforming HDR images to LDR
while preserving local contrast. The Color2Gray algorithm intro-
duced by Gooch et al. [2005] transforms color images to grayscale
by removing color from images while preserving color contrast.

In this paper, we present an optimization framework for expressing
image processing applications that can account for certain percep-
tual biases of the human vision system (HVS). Our formulation is
greatly inspired by the recent work on gradient domain image fil-
tering where direct manipulation and use of image gradients has
played a central role. These methods rely on the fact that gradients
are integral to the way in which we perceive images. Research in
human perception indicates that the HVS has lower sensitivity to
absolute pixel values, and instead relies upon local contrast (edges)
and ratios [Attneave 1954; Barten 1999], which more directly cor-
relate with gradients in an image. Our optimization framework al-
lows image and video processing applications to easily specify both
zeroth order constraints (i.e., desired pixel values) and first order

constraints (i.e., desired pixel gradients in space and time) in the
optimization.

In addition, we present a new measure for local gradient saliency
inspired by perception studies that have shown long coherent edges
in an image, even when faint, are perceptually salient to the
HVS [Beaudot and Mullen 2003; Elder and Goldberg 2001]. In pre-
vious methods the saliency of a local gradient is often approximated
by its magnitude as in Lischinski et al. [2006] or by a response to
a local filter as in Levin et al. [Levin et al. 2004]. However, certain
pixel gradients, even when faint, give rise to long coherent edges
which demarcate object boundaries, shadows, surface creases, re-
flectance changes, and other significant visual events. To account
for the perceptual importance of such gradients, our framework pro-
vides applications with the length of the underlying dominant edge
at each pixel and its local orientation. Thus we encourage appli-
cations to use this edge-length information to better estimate the
saliency of local gradients and pixels when processing them. Need-
less to say, an application may choose to ignore this additional in-
formation or augment the saliency measure by using an application
specific saliency detector (e.g., a face detector).

Applications can also choose to exert further control over the result
by specifying the weight of each individual constraint in the opti-
mization, which can be used in many interesting ways. For exam-
ple, we present a general weighting scheme that produces visually
pleasing results for most applications by approximating the more
robust L1-norm within the framework of a simple weighted least
squares optimization.

Finally, we show how several image processing tasks can be ef-
fectively expressed in our formulation. Among the many appli-
cations we explore include saliency sharpening, pseudo-relighting,
de-blocking, sparse data interpolation over images (e.g., coloriza-
tion), and non-photorealistic rendering (NPR). Using our frame-
work, most filters that can be applied to a single image can also
be automatically applied to videos coherently by enforcing simple
first-order constraints along flow lines.

In summary, our contributions include:

• an optimization framework for defining perceptually moti-
vated image and video filters,

• a novel way of measuring local gradient saliency,

• a new constraint weighting scheme that improves results and
provides more robust constraint satisfaction,

• a demonstration of our formulation in creating new, and im-
proving upon existing, image and video processing applica-
tions.

2 Related work

Our work draws heavily from the rich body of work done in gra-
dient domain image processing. We review some of the work in
this literature that is most relevant to our optimization formulation.
However, for an more extensive introduction to the gradient domain
literature, the reader is referred to Agrawal and Raskar’s [2007] ex-
cellent ICCV course on the topic.

One of the first gradient domain image filters was proposed by Fat-
tal et al. [2002]. Their work casts the tonemapping problem as a
pure gradient field integration problem (i.e., no zeroth order terms)
by attenuating large scale gradients in a HDR image and then solv-
ing for a LDR image that best approximates this attenuated gradient
field.

Perez et al. [2003] also used a pure gradient field integration ap-
proach to create seamless image composites. They modify the gra-
dient field of a target image by overwriting it’s gradients using gra-
dients obtained from a source patch in a region selected by the user.
This modified gradient field is then integrated while keeping pixel
colors outside the selected region fixed using Dirichlet boundary
conditions. Levin et al. [2003] used a similar approach for seam-
less image stitching. Levin et al. also showed that their work could
be used for de-blocking compressed images. We present a sim-
ilar method for image de-blocking (Section 5.5) that additionally
includes zeroth order terms in the optimization to significantly im-
prove the de-blocking quality.

Lischinski et al. [2006] generalized Levin’s technique for coloriz-
ing grayscale images [Levin et al. 2004] using a mixture of both
zeroth order and first order terms in the optimization. Lischinkski’s
method allows the user to draw a small number of brush strokes to
specify local edits, such as modifications to colors, tonal values, and
white balance of the image. This user-specified data is then interpo-
lated over the image in a piecewise smooth fashion with respect to
the underlying gradient field of the luminance image. We present a
simple improvement to this method (Section 5.6) that significantly
reduces data bleeding by using our edge-length based measure for
local gradient saliency.

In their Color2Gray paper, Gooch et al. [2005] demonstrate a rather
interesting application of gradient domain techniques. They inves-
tigate the problem of converting a color image to grayscale without
sacrificing the color saliency that is often lost in the standard color
to gray mapping (i.e., isoluminant colors mapping to the same gray
value). This work uses no zeroth order terms in its optimization.
However, unlike most gradient domain techniques, this technique
employs more than two first-order terms for each pixel in the opti-
mization (i.e., each pixel has a constraint defined with respect to a
patch of pixels surrounding it).

Agrawal et al. [2005] have proposed a gradient projection tech-
nique to fuse gradients obtained from ambient and flash images in
a manner that produces well-lit images without strong highlights.
Agrawal et al. [2006] have further generalized this work to a class
of edge-suppressing operations on images.

Orzan et al. [2007] used a gradient-based approach to convert pho-
tographs into painterly renditions that capture their salient features.
They analyzed the multiscale output of the Canny edge detector
to determine both edge importance (measured by its lifetime along
the scale axis) and the characteristic edge scale. We also propose a
painterly rendering filter in this paper that in comparison to Orzan’s
method uses zeroth order terms, a different edge saliency measure
and is temporally consistent when applied to videos. A more de-
tailed comparison is provided in Section 5.4.

The temporal constraints (i.e., first order constraints in time) used in
our formulation are inspired by the work of Levin et al. [2004] and
Bhat et al. [2007]. Bhat et al. showed that fusing temporal gradients
defined along correspondence vectors from one video with the spa-
tial gradients from another video can be used to combine the tem-
poral characteristics of the former with the spatial characteristics of
the later. We use similar motion-compensated temporal-constraints
to encourage the temporal characteristics of the input video (e.g.,
temporal coherence, illumination changes) to be enforced in the fil-
tered result. Thus, our formulation decouples the task of defining
a new image filter from the task of applying that filter to a video
coherently.

3 Optimization formulation for image pro-

cessing

In this section we introduce our optimization formulation for im-
age processing. In section 4 we extend this formulation to accom-
modate video processing. Our formulation draws heavily from the
related works described in Section 2.

The task of an image processing application is to take an input im-
age u and transform it into the final image f . Our formulation sim-
plifies the task of writing image processing applications that can
be expressed as an energy function involving zeroth and first or-
der terms of the image f (i.e., Equation 2). For each pixel in f
the application is allowed to specify a single zeroth order constraint
(i.e., desired pixel value) and two first order constraints (i.e., de-
sired pixel gradients). The application is also allowed to specify a
weight for each constraint in the optimization.

An application that wishes to use our formulation has to define a
function of the following form:

F (u, · · ·) → [d, g, w] (1)

Inputs: The function F takes as input the unfiltered image u and
any metadata (e.g., parameter values, selection masks, edge statis-
tics) which F may choose to use in its computation. These appli-
cation specific inputs to F will be described in further detail in the
applications section (Section 5). The input image u may contain
multiple channels (e.g., RGB, YUV, etc). However for simplicity
of exposition we will treat u as a single channel image in this sec-
tion since each corresponding channel in the result f is solved for
independently in practice.

Outputs: The function F returns three images – [d, g, w]. The im-
age d is a single channel image that provides the data constraint for
each pixel in f . The image g is a two channel image where chan-
nels gx and gy specify the desired x-derivative and y-derivative of
f respectively. The image w is a three channel image where chan-
nels wd, wx, and wy provide the weights for constraints in d, gx,
and gy respectively.

The final result f is generated by minimizing the following energy
function:

E(f) =
X

p∈f

λdEd(p) + Eg(p) (2)

where p is a pixel in f , Ed is our data cost function, and Eg is
our gradient cost function. The constant λd balances the tradeoff
between fidelity to data versus gradient constraints. The energy
terms Ed and Eg are quadratic functions defined as follows:

Ed(p) = w
d(p) [f(p) − d(p)]2 (3)

and

Eg(p) = w
x(p) [fx(p) − g

x(p)]2 + w
y(p) [fy(p) − g

y(p)]2 (4)

Thus, the energy terms Ed and Eg are the squared errors between
the desired values specified by the function F and the actual val-
ues of the final image f . Each constraint also has a corresponding
weight, wd for the data constraints and wx and wy for the gradi-
ent constraints. These weights control the amount of influence a
constraint should have on the final image. As shown later, several
effects can be achieved by varying these weights, including sparse
data interpolation and the suppression of haloing artifacts. Individ-
ual weights can also be set to zero to completely disable the effect
of the corresponding constraint on the result.

Since our energy function E is quadratic, its minima can be found
using standard weighted least squares techniques like the conjugate
gradient method [Shewchuk 1994]. To increase the runtime perfor-
mance of the solver, various preconditioners may be used to better
condition the optimization [Szeliski 2006]. Bhat et al. [2008] have
proposed a fast fourier domain solver that can used to solve filters
that do not use spatially vary weights for the constraints (i.e., wd,
wx, and wy are not used). Recently McCann and Pollard [2008]
showed that a GPU accelerated conjugate gradient solver can min-
imize energy functions like ours in real-time for megapixel-sized
images.

3.1 A simple sharpen Filter

To build the reader’s intuition for image processing using zeroth
and first order constraints and to provide further familiarity with
our notation, in this subsection we will define a simple sharpen fil-
ter Fsharpen using our formulation. This sharpen filter was first de-
fined by Zeng et al. [2005] and has been shown by Bhat et al. [2008]
to subsume the simple Laplacian sharpen filter (i.e, f = u−λ▽

2u)
commonly used in image processing. The outputs of Fsharpen are
defined as follows:

d = u; g
x = cs · ux; g

y = cs · uy;

w
d(p) = λd; w

x(p) = 1; w
y(p) = 1

Here, the parameter cs is a scalar constant set to a value greater
than one. The sharpening behavariour of Fsharpen has an intuitive
interpretation. That is, to increase the input image’s local contrast
Fsharpen sets the desired gradients (i.e., gx and gy) to the gradi-
ents of the input image (i.e., ux and uy) multiplied by a factor, cs,
greater than one. The data constraints are set to the original image
with uniform weighting, λd, to ensure the final result does not drift
too far from the input. An example result of this sharpen filter can
be seen in Figure 3.

3.2 A robust weighting scheme

Given the L2-norm’s sensitivity to large errors (i.e., outliers), the
energy function Eg can produce visually unappealing results be-
cause it prefers to avoid large errors caused by outliers by instead
distributing the error over a large region around the outlier. This
sensitivity to outliers can result in haloing or pinching artifacts in
regions where the desired gradient field g is hard to satisfy (see the
example in Figure 2).

One solution to this problem is to use a more robust metric such
as the L1-norm, which would require the use of slower, more com-
plicated optimization techniques like linear programming, or itera-
tively re-weighted least squares (IRLS).

Instead, we introduce an alternative technique that involves solving
a single weighted least squares problem. By applying the appro-
priate weights wx and wy to our gradient constraints, the visual
artifacts mentioned above can be considerably mitigated. While an
application may choose to define its own weights, we provide a de-
fault weighting function for the gradient constraints that works well
for most applications.

Our default weighting function is based on the simple prior that the
gradient field of f is likely to deviate from g (thus leading to large
errors in the L2-norm) in regions where g deviates heavily from the

(a) (b)

(c) (d)

Figure 2: This figure shows the effect our robust weighting func-
tion has on the quality of the saliency sharpen filter defined in sec-
tion 5.2. (a) Input image. (b) Image saliency sharpened using robust
weighting. (c) Result with uniform weighting (notice the severe
haloing artifacts). (d) IRLS result after solving ten weighted least-
squares problems. See Figure 8 for a similar comparison with the
painterly rendering filter and pseudo re-lighting filter.

gradient field of u. By reducing the weights of these constraints we
can lower their influence on the resulting image as follows:

w
x =

1

(a · |ux − gx| + 1)b
(5)

w
y =

1

(a · |uy − gy| + 1)b
(6)

Here the parameter a is set such that it normalizes the scale of image
gradients (i.e., normalized gradient range = [-1, 1]), and parameter
b controls the sensitivity of Equation 4 to outliers and is typically
set between 3 and 5; both parameters, a and b, do not vary spatially.
Figure 2 demonstrates the effect this robust weighting scheme has
on the visual quality of our saliency sharpening filter (described in
Section 5.2).

Figures 2 and 8 show the effect our robust weighting function has
on the quality of various filters presented in this paper. In Fig-
ure 2, we also compare the visual quality of our single weighted
least squares method to that produced by the iteratively re-weighted
least squares (IRLS) method after it has solved ten weighted least-
squares problems. The IRLS algorithm is a general method for min-
imizing a robust L2 - L1 norm (e.g., L1-norm) by solving successive
weighted least squares problems. The method begins by weight-
ing each constraint uniformly and in each successive weighted least
squares problem the solution from the previous problem is used to
downweight the outliers. One interpretation of our weighting func-
tion is that it uses the structure of our problem to approximate the
weights that an IRLS solver will arrive at upon convergence.

4 Generalization of the formulation to videos

To process an input video u using a filter function F defined us-
ing the image formulation in Section 3, one could apply F to each
video frame independently. Unfortunately, the result video f gen-
erated using this approach often suffers from flickering artifacts and
therefore looks temporally incoherent.

To alleviate this temporal incoherence problem we are going to use
a technique proposed by Bhat et al. [2007], which is also similar
to the technique used by Levin et al. [2004]. Bhat et al. showed
that fusing temporal gradients defined along motion correspon-
dence vectors from one video with the spatial gradients from an-
other video can be used to combine the temporal characteristics of
the former with the spatial characteristics of the later. We use simi-
lar motion-compensated temporal-constraints to cause the temporal
characteristics of the input video (e.g., temporal coherence, illumi-
nation changes) to be be enforced in the filtered result. Thus, our
formulation decouples the task of defining a new image filter from
the task of applying that filter to a video coherently.

In addition to the input video, our framework requires as input a set
of motion vectors between each consecutive pair of video-frames.
These vectors are used to define the temporal constraints in the
optimization. Although optical flow remains a difficult research
problem, we have empirically found that if good motion vectors are
available for 50-60% of the pixels and confidence values are avail-
able for the motion vectors, then our method produces temporally
coherent results. For the streaming video results (Section 4.1) we
rely on the blockwise motion vectors encoded in the video, which
are obtained directly from the video decoder [Tomar 2006]. For all
other results shown in the supplementary video, we use the optical
flow algorithm proposed by Sand et al. [Sand and Teller 2006] to
generate motion vectors.

As in the image processing case, the application’s filter function
F is used to obtain the desired spatial constraints (e.g., d, gx, gy)
for each video frame. However, in the video processing case, for

every pixel in the video an additional first order constraint gt̄ is
used to define the desired temporal gradient between the pixel and
its motion compensated neighbour in the previous frame. The value

of these temporal constraints gt̄ is set equal to a function Ft of the

corresponding temporal gradient of the original video, i.e. gt̄(p) =
Ft(ut̄(p)) (Equation 10).

The motion compensated gradients are defined as follows:

ut̄ = u(x, y, t) − u(x + vx, y + vy, t − 1) (7)

Here (x + vx, y + vy, t − 1) is the pixel that corresponds to p
in the previous video frame. (x, y, t) is the coordinate of p in u
and (vx, rrrvy) is a motion vector that maps p to its corresponding
pixel in the previous video frame.

Adding these constraints to our energy function E(f), we get:

E(f) =
X

p∈f

λdEd(p) + Eg(p) + λtEt(p). (8)

Similar to the data and gradient energy functions, Et(p) is defined
as:

Et(p) = w
t(p)

h

ft̄(p) − g
t̄(p)

i

2

. (9)

g
t̄(p) = Ft(ut̄(p)) (10)

wt(p) controls the weight given to the temporal constraint at p; a
typical choice is to set wt(p) to the confidence in the accuracy of
p’s motion vector thus effectively disabling the temporal constraints
in regions with bad motion vectors. In all our experiments Ft was
set to the identity function thus causing the result video f to mimic
the temporal behaviour of the input video u. However, applications
may choose to modify the behaviour of Ft to better suit their needs.

4.1 Generalization to streaming videos

Though the energy function defined in Equation 8 can be optimized
across an entire video, as videos increase in length this global op-
timization can become computation and memory intensive. It may
also be the case that the input video is streaming and thus the en-
tire video may not be available. In either of these cases the energy
function may be approximately minimized by stepping through the
video one frame at a time with the values of the previous time frame
fixed. That is, frame t−1 is first computed. Its pixel values are then
held fixed and frame t is computed while enforcing the temporal
constraints. The very first video frame can be computed without us-
ing temporal constraints. In this paper, only the de-blocking results
for streaming YouTube videos were created using this approach (See
supplementary video).

5 Applications and improvements

In this section we present new applications we have developed and
a few previously defined applications that we have improved using
our perceptually motivated formulation for image and video pro-
cessing. Each of these applications was written in less than two
hundred lines of C++ code using our image processing API1. We
hope that these simple to implement, yet effective, applications will
demonstrate just how intuitive and simple the solution to a percep-
tual image processing task can be when tackled using our formula-
tion.

Note that all applications defined in this section, unless explicitly
stated otherwise, use our robust weighting function (Section 3.2,
equations 5 & 6) for defining the gradient constraint weights (i.e.,
wx & wy). Before we delve into the details of the various filters
we first need to discuss our method for detecting gradient saliency
since it is used by a few of our applications.

5.1 Measuring local gradient saliency

We present a new measure for local gradient saliency inspired by
perception studies that have shown long coherent edges in an im-
age, even when faint, are perceptually salient to the HSV [Beaudot
and Mullen 2003; Elder and Goldberg 2001]. To account for the
perceptual importance of gradients that give rise to these edges, our
framework provides a long edge detector that applications can use
to measure the saliency of a local gradient.

Our long edge detector detects long, coherent edges instead of sim-
ply detecting edges with a strong magnitude. The edge detector
returns an image e with two channels: el and eo. The el channel
provides length of the dominant edge running through each pixel in
the input image. The eo channel provides local orientation of the
dominant edge at each pixel.

The edge length and orientation at each pixel is computed as fol-
lows. Local edges are first detected using Freeman and Adel-
sons [1991] steerable filter. The edge magnitudes are then normal-
ized in a 5×5 spatial window. Edge lengths are computed for every
pixel using a message passing scheme in which the sum of the nor-
malized edge magnitudes are summed in both directions parallel to
the edge direction. The messages are weighted based on the similar-
ity of the neighbour’s edge orientation. The implementation details
of our edge detector can be found in a technical report submitted as
supplementary material. One could also approximate our continu-
ously valued long edge detector by simply running the Canny edge
detector [Canny 1986] on the input image and then using a flood fill

1We plan to release the source code for our image processing API and

the filters presented in this section.

(a) (b) (c)

Figure 3: A qualitative comparison of our saliency sharpen filter
(Section 5.2) to the simple sharpen filter (Section 3.1). (a) Original
image. (b) Simple sharpen result. (c) Saliency sharpen result. No-
tice how saliency sharpen enhances the image without boosting the
noise or background texture.

algorithm at each pixel to estimate the length of the dominant edge
running through the pixel.

The main insight here is to factor in edge length instead of sim-
ply using the edge strength when measuring local gradient saliency.
There are many different ways of detecting long edges and an elab-
orate discussion of techniques for detecting long edges is beyond
the scope of our paper, which is why the implementation details of
our long edge detector are included in a supplementary technical
report.

5.2 Smart sharpening

Sharpening is one of the most commonly used image enhancement
filters. Unfortunately the simple sharpen filter (see Section 3.1)
intensifies all gradients in an image including gradients that give
rise to noise and background texture. A better sharpen filter would
only intensify those gradients that give rise to salient image fea-
tures. Our saliency sharpen filter uses the output of the long edge
detector (Section 5.1) to only boost the magnitude of gradients that
lie across long edges thus enhancing image saliency without adding
to image noise or background clutter. Our saliency sharpen filter is
defined as follows:

Fsaliency sharpen(u, e) → [d, g, w]

d(p) = u(p); wd(p) = c1

g
x(p) = ux(p) + c2 · ux(p) · el(p) · cos(eo(p))

g
y(p) = uy(p) + c2 · uy(p) · el(p) · sin(eo(p))

Fsaliency sharpen accepts as input the image to enhance (i.e, u)
and the edge detector results for the image (i.e., e). The data con-
straints and the parameter c1 (c1 > 0) keep the enhanced image
from drifting too far from the input. The desired gradient field g is
defined to intensify the magnitude of gradients that lie across long
edges and leave the other gradients unchanged. The parameter c2

controls the overall sharpening amount (c2 > 0). The term el (p)
spatially varies the sharpening amount by the length of the under-
lying edge. Finally, eo factors in local orientation of the underlying
edge and thus ensures that the sharpening is done perpendicular to
the local edge orientation.

See figure 3 and the supplementary video for a qualitative compar-
ison of our saliency sharpen filter to the simple sharpen filter.

5.3 Pseudo image relighting

Image relighting is the process of estimating what an image
would have looked like had it been captured under different light-
ing conditions. Previous relighting algorithms rely on estimat-
ing scene geometry in order to produce photorealistic lighting ef-
fects [Marschner and Greenberg 1997]. Instead, our relighting filter
is inspired from the observation that digital artists can often create
pseudo relighting effects by cleverly adding a few handcrafted in-
tensity ramps onto the original image (e.g., Figure 4g). Our relight-
ing filter allows the user to specify a new lighting direction on the
image plane and then it simply boosts all intensity gradients that
happen to be oriented along the specified direction. Integrating the
gradient field modified in this manner creates the desired lighting
effect by intensifying preexisting ramps in the image that happen
to be aligned with the desired lighting-direction. As a result, the
relit image looks natural even though the relighting is done with-
out computing any scene geometry. The formal definition of our
pseudo relighting filter is as follows:

Frelight(u, o) → [d, g, w]

Here, Frelight accepts as input the image to relight (i.e., u) and an
image containing the desired lighting angle for each pixel (i.e., o).
We could have used a single constant as the angle parameter instead
of o, which is an image of angles. However, by allowing the lighting
direction to vary spatially Frelight can be used to create a variety
of relighting effects as shown in Figure 4. The following are the
definitions used by Frelight to produce [d, g, w]:

d(p) = u(p); w
d(p) = c1

g
x(p) = ux(p) + c2 · ux(p) · a(p)

g
y(p) = uy(p) + c2 · uy(p) · a(p)

a(p) =
ux(p) · cos(o(p)) + uy(p) · sin(o(p)))

p

ux(p)2 + uy(p)2

The data constraints and the parameter c1 (c1 >= 0) keep the relit
image from drifting too far from the input. The desired gradient
field g is defined to boost the local gradient if it happens to be ori-
ented along the local lighting direction. The parameter c2 controls
the maximum gradient boost (c2 >= 0). The term a(p) is simply
computing the dot product (i.e., cosine of the angle) between the
normalized local gradient and the local lighting direction.

See Figure 4 and the supplementary video for various re-lighting
results produced by our framework. Figures 4f and 4g compare a
re-lighting result produced automatically by our system to a result
produced manually in Photoshop using a radial intensity ramp.

5.4 Painterly rendering

We will now present a filter for stylizing photographs and videos
with a painterly look. Our filter is inspired from a basic technique
employed by painters when depicting a scene – that is the exagger-
ation of salient features and the abstraction of non-salient features
in the scene. Like most of our other filters, the painterly render-
ing filter also measures the saliency of a region using the length
of the underlying edge detected by the long edge detector (Sec-
tion 5.1). Specifically, the filter suppresses gradients in regions with
short or no edges (i.e., abstraction) and intensifies gradients across

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4: The figure shows some of the pseudo relighting effects
created using the function Frelight. (a) Input image. (b) Image relit
to simulate an additional light source to the west of the face. The
effect is achieved by setting the local lighting direction for every
pixel (i.e., o(p) in Frelight) to point west. (c) Input image. (d) Im-
age relit to simulate the light fading into the vanishing point, thus
adding more depth to the image. The effect is achieved by setting
the local lighting direction for every pixel to point away from the
vanishing point. (e) Input image. (f) Image relit to simulate over-
head sun light. (g) The same relighting effect attempted in Pho-
toshop by using a radial intensity ramp. Notice that our result (f)
looks more realistic in comparison to the Photoshop edit (g). Also
see the supplementary video to observe the re-lighting effect more
clearly.

(a) (b)

(c) (d)

Figure 5: A comparison of our method for painterly rendering
to Ozran and Winnemöller’s methods. (a) Original image. (b)
Ozran et al.’s result. (c) Winnemöller et al.’s result. (d) Our re-
sult. Unlike Ozran and Winnemöller’s methods, our method not
only abstracts away non-salient image features but also exaggerates
the contrast of salient image features (e.g., the hairline in this case),
which can help excentuate the non-photorealistic look of the result.

long edges (i.e., exaggeration of local contrast). Our painterly filter
Fpainterly is defined as follows:

Fpainterly(u, e) → [d, g, w]

d(p) = u(p); wd(p) = c1

g
x(p) = ux(p) · cos(eo(p)) · n(p)

g
y(p) = uy(p) · sin(eo(p)) · n(p)

n(p) = c2 ∗ (1 − e
el(p)∗el(p)

−2∗σ2)

Here, Fpainterly accepts as input the image to stylize (i.e., u) and
the edge detector results for the image (i.e., e). The function n
spatially varies the abstraction/exaggeration amount based on the
underlying edge light el(p). The parameter σ in function n con-
trols the abstraction amount; Large values of σ result in large scale
features of the input image being abstracted out in the result. The
parameter c2 (c2 >= 1) controls the amount of exaggeration of lo-
cal contrast across long edges. The data constraints and the param-
eter c1 (c1 >= 0) control how much the stylized image is allowed
to drift from the input image. As a postprocessing step, our system
can optionally overlay a simple visualization of the long edges de-
tected in the input image on top of the result to make it look as if
the artist outlined the salient edges using black brush strokes.

Now we will briefly compare our method for painterly rendering to
that of Ozran et al. [2007] and Winnemöller et al. [2006]. Ozran’s
method for painterly rendering only uses a gradient field integration
approach (i.e., no data constraints) and as a side effect has to use
more complicated contrast equalization and blurring steps to post
process their results. In contrast, the data constraints used in our
method cause the overall contrast and depth of field effects (e.g.,
spatially varying blur) in the input image to be automatically repro-
duced in the result to the amount desired by the user (i.e., using the
control parameter c1). Ozran’s method also does not address the

problem of applying their effect to videos in a temporally coherent
fashion. Unlike Ozran’s method and Winnemöller’s method, our
method not only abstracts away non-salient image features but also
exaggerates the contrast of salient image features, which can help
excentuate the non-photorealistic look of the result. However, un-
like Winnemöller’s method, our method does not currently perform
in real-time. See figure 5 and the supplementary video for a quali-
tative comparison of our method to Ozran and Holeger’s methods.

5.5 An improved de-blocking filter

A common problem with highly compressed images and videos
is that they appear blocky because each macroblock in the im-
age/video is compressed independently without accounting for spa-
tial coherence across block boundaries. Perception studies have
found blocking to be one of the most distracting compression ar-
tifacts ranking alongside low resolution and ringing artifacts. A
good de-blocking filter can therefore improve the perceived quality
of highly compressed videos found on sites like YouTube.

Previous work in the spatial domain: There have been many at-
tempts in the past to define high-quality de-blocking filters in the
spatial domain [Averbuch et al. 2005; Castagno and Ramponi 1996;
Hong et al. 1996]. The best de-blocking filters in the spatial domain
tend to be similar to a bilateral filter. They take the weighted aver-
age of pixels across block boundaries in order to suppress block-
iness while trying not to over-blur the image. Most of the effort
in designing these filters goes into crafting a weighting kernel that
can suppress block edges but not affect the true edges in the im-
age. There are three major limitations of these spatial-domain ap-
proaches for de-blocking:

1. The de-blocking effect of these filters is localized to a few
pixels near the block boundaries. For severely compressed
images such de-blocking filters are unable to fully suppress
the blocking artifacts.

2. Increasing the size of the de-blocking kernel in order to in-
crease the de-blocking effect invariably over-smoothes the im-
age.

3. Applying these de-blocking filters to individual video frames
results in the introduction of temporal artifacts (e.g., flicker-
ing).

De-blocking using optimization: Fortunately, the de-blocking
problem can be tackled quite easily by using first order constraints
in our formulation. In compressed images the gradients across mac-
roblock boundaries (i.e, inter-block gradients) are much less reli-
able than the gradients inside the macroblocks (i.e., intra-block gra-
dients) since each macroblock is compressed independently. Ergo,
a straightforward de-blocking filter in our formulation would selec-
tively edit inter-block gradients in a manner that suppresses the per-
ceived blockiness. Our experiments show that inter-block gradients
with large magnitudes usually correspond to true image gradients
that simply happen to coincide with block boundaries. On the other
hand, inter-block gradients with small magnitudes usually corre-
spond to gradients with zero magnitude in the uncompressed image
and form the major source of perceived blockiness in a compressed
image. Therefore, our de-blocking filter selectively suppresses only
those gradients that lie across block boundaries and have a small
magnitude. The formal definition of our de-blocking filter is as fol-
lows:

Fdeblock(u) → [d, g, w]

d(p) = u(p); wd(p) = c1

(a) (b)

(c) (d)

Figure 6: A demonstration of our improvement to Levin’s method
for de-blocking images. (a) Original image. (b) Image after com-
pression. (c) De-blocking result using gradient suppression but
no data constraints (similar to Levin’s approach); Notice how the
highly compressed regions get flattened in appearance. (d) Result
produced by our de-blocking method, which uses gradient suppres-
sion to reduce blockiness and data constraints to maintain fidelity
to the input.

g
x(p) = G(ux(p))

g
y(p) = G(uy(p))

G(g) =



g if g is an intrablock gradient
g * S (g) otherwise

,

S(g) = 1 − e
g∗g

−2∗σ2

The data constraints and the parameter c1 (c1 > 0) keep the de-
blocked image from drifting too far from the input u. The function
G suppresses only those gradients that lie across block boundaries,
which can be easily determined by the file format (i.e., compression
type) of u. The function S suppresses gradients with magnitudes
close to zero. The parameter σ controls the amount of gradient sup-
pression that happens at block boundaries and this parameter can
be learned a priori by using pairs of compressed and uncompressed
images. See figures 1 & 6 and the supplementary video for image
and video de-blocking results.

Now we will briefly compare our method for de-blocking to that
of Levin et al. [2003], which also works by suppressing inter-block
gradients. Their gradient suppression function requires access to
the DCT coefficients of each macroblock, which might not be avail-
able to the application. More significantly, their approach is a pure
gradient field integration approach (i.e., no data constraints). This
severely affects their de-blocking quality in regions where the mac-
roblocks only have a single DC coefficient (i.e, a single color). For
example, several macroblocks in the sky and water regions of Fig-
ure 6b only have a single color. Without the use of data constraints
(i.e., c1 = 0), suppressing the inter-block gradients removes the
image blockiness but also flattens the appearance of the result (See
figure 6c). In contrast, our use of data constraints causes the colors
in the macroblocks to be smoothly interpolated over the sky and
water regions as shown in Figure 6d.

5.6 Improved sparse data interpolation

In their seminal work Levin et al. [2004] demonstrated an opti-
mization approach for colorizing grayscale images using a few user
drawn color scribbles. Lischinski et al. [2006] observed that Levin’s
work was in fact a general and a very powerful technique for inter-
polating sparse data over images. Lischinski pointed out that most
data channels in images, and not just color channels, are best in-
terpolated in a spatially piecewise-smooth manner with respect to
the luminance channel of the image. Lischinski’s work showed the
generality of Levin’s work by interpolating a variety of data types
including tonal values, blurring amounts, and white balance correc-
tions specified by the user using a few paint strokes. Lischinski’s
method maps quite easily to our formulation as follows:

Flischinski(u, d) → [d, g, w]

w
d(p) =



∞ if d(p) is defined
0 otherwise

g
x(p) = 0; gy(p) = 0

The function Flischinski accepts as input an image u that will guide
the data interpolation and an image d that contains the user data
(e.g., scribbles, paint strokes). The image u is grayscale or in log-
luminance space depending on the data to be interpolated. The
weights for the data constraints in wd encourages the result to main-
tain fidelity to the user input where defined. The null gradient field
in g in union with our default weighting function for gradient con-
straints (Section 3.2, equations 5 & 6) causes the data in d to be
interpolated in a piecewise smooth manner with respect to u. In
fact, the function Flischinski in union with our default weighting
function causes the energy function in equation 2 to become equiv-
alent to the energy function used by Lischinski’s method.

Improvement: Linchiski’s method interpolates sparse data in a
piecewise-smooth manner with respect to the underlying image.
However, their function for estimating regions where the smooth-
ness constraints have to be softened (i.e., to create the piecewise
smooth behavior) depends on the magnitude of a single, local gra-
dient in the image (i.e., Equations 5 & 6). We make a simple
modification to Linchiski’s method by using our long edge detec-
tor to more robustly detect regions that should produce a break in
the smoothness of the interpolation. Thus our improvement sig-
nificantly reduces the amount of data bleeding in the result (or
conversely the amount of user strokes required to produce the de-
sired result). We redefine the weights for the gradient constraints in
Flischinski as follows:

w
x(p) =

1

(c · el(p) · cos(eo(p)) + ǫ)b

w
y(p) =

1

(c · el(p) · sin(eo(p)) + ǫ)b

Here, c is a scalar parameter that controls the sensitivity of the data
interpolation to the underlying edge length (i.e., el(p)). The weight-
ing functions also take into account the local edge orientation (i.e,
eo(p)) in order to soften the smoothness constraints across, but not
along, long edges.

Figures 1 & 7 show two results created using our improved data in-
terpolation algorithm. Also, the supplementary video shows results
interpolating data over an entire video where only a few frames
have been marked by the user. Figure 7 compares our improved
method to Lischinski’s method. The sky and water regions in this

(a) (b)

(c) (d)

Figure 7: A demonstration of our improvement to Lischinski’s
method for sparse data interpolation over images. (a) Original color
image. (b) User scribbles specifying the desired recolorizing of the
image. (c) Colorization result produced by Lischinski’s method;
Notice the color bleeding between the sky and the ocean. (d) The
colorization result produced by our improved method.

example are separated by faint local gradients causing Lischinski’s
method to exhibit more data bleeding in comparison to our im-
proved method.

6 Discussion

In this paper, we have provided a perceptually-motivated
optimization-framework for image and video processing. We have
tried to account for three well-known perceptual biases of the HVS
in our formulation by:

• allowing applications to define desired pixel gradients in ad-
dition to desired pixel values,

• proposing a new measure for gradient saliency that uses edge
length in addition to edge strength,

• and proposing a robust weighting scheme that approximates
the more robust L1-norm in order to produce visually pleasing
results.

We have demonstrated the versatility of our formulation by de-
signing and improving a variety of image processing applications.
The ease with which new applications can be developed using our
framework should be apparent given the simple, intuitive solutions
we arrived at for the applications we visited, which include:

• a new saliency sharpening filter,

• a new pseudo relighting filter,

• a new painterly rendering filter,

• an improved de-blocking filter, and

• an improved sparse data interpolation method.

Performance Performance is a major concern when it comes to
least squares based methods for image processing. Our unopti-
mized C++ code currently spends a few seconds for one megapixel
images and nearly one minute per video frame (at 800x600 resolu-
tion) starting from the application specific filtering to the full 3D op-
timization. However, there is plenty of room of improvement since
most of the computation time is spent in the weighted least squares

optimization 2. Our software based conjugate gradient solver, can
be significantly sped up using GPU acceleration and a precondi-
tioner similar to the one proposed by Szeliski et al. [2006]. In fact,
McCann and Pollard [2008] have recently shown that a GPU ac-
celerated conjugate gradient solver can minimize energy functions
like ours in realtime for megapixel-sized images.

Future Work There are several image processing applications
that are likely to yield successful solutions when expressed using
our formulation. For example, the LDR2HDR problem tackled by
Rempel et al. [2007] could probably be solved with high quality
results using our framework. Another interesting exploration of
our formulation would be in removing compression artifacts like
ringing and mosquito noise, which when combined with our de-
blocking filter could significantly improve the perceived quality of
streaming videos (e.g., YouTube and teleconferencing videos).

Our optimization framework also has much untapped potential in
the interactive image editing domain, especially when combined
with learning algorithms that could automatically identify the type
of pixels/gradients the user wants to manipulate given a few exam-
ple brush strokes. Such interactive tools could be used to remove
unwanted texture, glare, shadows, and other annoying artifacts from
an image by simply drawing a few rough strokes. Conversely, such
tools could also be used to selectively enhance portions of the im-
age for dramatic emphasis. In the coming years, we hope to see the
graphics community use and extend our optimization framework to
create exciting new image and video processing applications.

References

AGRAWAL, A., AND RASKAR, R., 2007. Gradient domain manip-
ulation techniques in vision and graphics.

AGRAWAL, A., RASKAR, R., NAYAR, S., AND LI, Y., 2005. Re-
moving photography artifacts using gradient projection and flash
exposure sampling.

AGRAWAL, A., RASKAR, R., AND CHELLAPPA, R. 2006.
Edge suppression by gradient field transformation using cross-
projection tensors. In 2006 Conference on Computer Vision and
Pattern Recognition (CVPR 2006), 2301–2308.

ATTNEAVE, F. 1954. Some informational aspects of visual percep-
tion. Psychol Rev 61, 3 (May), 183–193.

AVERBUCH, A., SCHCLAR, A., AND DONOHO, D. 2005. De-
blocking of block-transform compressed images using weighted
sums of symmetrically aligned pixels. IEEE Transactions on Im-
age Processing 14, 2 (February), 200–212.

BARTEN, P. G. 1999. Contrast Sensitivity of the Human Eye and
Its Effects on Image Quality. International Society for Optical
Engineering.

BEAUDOT, W., AND MULLEN, K., 2003. How long range is con-
tour integration in human color vision?

BHAT, P., ZITNICK, C. L., SNAVELY, N., AGARWALA, A.,
AGRAWALA, M., CURLESS, B., COHEN, M., AND KANG,
S. B. 2007. Using photographs to enhance videos of a static
scene. In Rendering Techniques 2007 (Proceedings Eurograph-
ics Symposium on Rendering), J. Kautz and S. Pattanaik, Eds.,
Eurographics, 327–338.

2In the case of applications presented in this paper 95% of the time is

spent on the least squares optimization

Original image Robust weighting result Uniform weighting result

Figure 8: The figure shows the effect our robust weighting function (Section 3.2) has on the quality of the painterly rendering filter (top row)
and pseudo re-lighting filter (bottom row). The left column shows the original image; the middle column shows the result when using robust
weighting; and the right column shows the result when using uniform weighting. Notice the absence of haloing and pinching artifacts in the
middle column. See Figure 2 for a similar comparison with the saliency sharpen filter.

BHAT, P., CURLESS, B., COHEN, M., AND ZITNICK, L. 2008.
Fourier Analysis of the 2D Screened Poisson Equation for Gra-
dient Domain Problems.

CANNY, J. 1986. A computational approach to edge detection.
IEEE Trans. Pattern Anal. Mach. Intell. 8, 6, 679–698.

CASTAGNO, R., AND RAMPONI, G., 1996. A rational filter for the
removal of blocking artifacts in image sequences coded at low
bitrate.

ELDER, J. H., AND GOLDBERG, R. M. 2001. Image editing in
the contour domain. IEEE Transactions on Pattern Analysis and
Machine Intelligence 23, 3, 291–296.

FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002. Gra-
dient domain high dynamic range compression. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 249–256.

FREEMAN, W. T., AND ADELSON, E. H. 1991. The design and
use of steerable filters. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence 13, 9, 891–906.

GOOCH, A. A., OLSEN, S. C., TUMBLIN, J., AND GOOCH, B.
2005. Color2gray: salience-preserving color removal. ACM
Trans. Graph. 24, 3, 634–639.

HONG, S., CHAN, Y., AND SIU, W. 1996. A practical real-time
post-processing technique for block effect elimination. II: 21–
24.

LEVIN, A., ZOMET, A., PELEG, S., AND WEISS, Y., 2003. Seam-
less image stitching in the gradient domain.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. In SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers, ACM Press, New York, NY, USA, 689–694.

LISCHINSKI, D., FARBMAN, Z., UYTTENDAELE, M., AND

SZELISKI, R. 2006. Interactive local adjustment of tonal val-
ues. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, ACM
Press, New York, NY, USA, 646–653.

MARSCHNER, S. R., AND GREENBERG, D. P. 1997. Inverse light-
ing for photography. In Proceedings of the Fifth Color Imaging
Conference, Society for Imaging Science and Technology.

MCCANN, J., AND POLLARD, N. S. 2008. Real-time gradient-
domain painting. ACM Transactions on Graphics (SIGGRAPH
2008) 27, 3 (Aug.).

ORZAN, A., BOUSSEAU, A., BARLA, P., AND THOLLOT, J. 2007.
Structure-preserving manipulation of photographs. In Interna-
tional Symposium on Non-Photorealistic Animation and Render-
ing (NPAR).

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers,
ACM Press, New York, NY, USA, 313–318.

REMPEL, A. G., TRENTACOSTE, M., SEETZEN, H., YOUNG,
H. D., HEIDRICH, W., WHITEHEAD, L., AND WARD, G. 2007.
Ldr2hdr: on-the-fly reverse tone mapping of legacy video and
photographs. ACM Trans. Graph. 26, 3, 39.

SAND, P., AND TELLER, S. 2006. Particle video: Long-range mo-
tion estimation using point trajectories. In CVPR ’06: Proceed-
ings of the 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, IEEE Computer Society,
Washington, DC, USA, 2195–2202.

SHEWCHUK, J. R. 1994. An introduction to the conjugate gradient
method without the agonizing pain.

SU, S. L., DURAND, F., AND AGRAWALA, M. 2005. De-emphasis
of distracting image regions using texture power maps. In APGV
’05: Proceedings of the 2nd symposium on Applied perception
in graphics and visualization, ACM, New York, NY, USA, 164–
164.

SZELISKI, R. 2006. Locally adapted hierarchical basis precon-
ditioning. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
ACM Press, New York, NY, USA, 1135–1143.

TOMAR, S. 2006. Converting video formats with ffmpeg. Linux J.
2006, 146, 10.

WINNEMÖLLER, H., OLSEN, S. C., AND GOOCH, B. 2006. Real-
time video abstraction. ACM Trans. Graph. 25, 3, 1221–1226.

ZENG, Y., CHEN, W., AND PENG, Q. 2005. A novel varia-
tional image model: Towards a unified approach to image edit-
ing. Journal of Computer Science and Technology.

