
GradientShop: A Gradient-Domain Optimization Framework

for Image and Video Filtering

Pravin Bhat1 C. Lawrence Zitnick2 Michael Cohen1,2 Brian Curless1

1University of Washington 2Microsoft Research

(a) Input image (b) Saliency-sharpening filter (c) Pseudo-relighting filter (d) Non-photorealistic rendering filter

(e) Compressed input-image (f) De-blocking filter (g) User input for colorization (h) Colorization filter

Figure 1: The figure shows some of the image-enhancement filters we have created using the GradientShop optimization-framework. Gradi-
entShop has been designed to allow applications to explore gradient-domain solutions for various image processing problems.

Abstract

We present an optimization framework for exploring gradient-
domain solutions for image and video processing. The proposed
framework unifies many of the key ideas in the gradient-domain lit-
erature under a single optimization formulation. Our hope is that
this generalized framework will allow the reader to quickly gain a
general understanding of the field and contribute new ideas of their
own.

We propose a novel metric for measuring local gradient-saliency
that identifies salient gradients that give rise to long, coherent edges,
even when the individual gradients are faint. We present a general
weighting-scheme for gradient-constraints that improves the visual
appearance of results. We also provide a solution for applying
gradient-domain filters to videos and video streams in a coherent
manner.

Finally, we demonstrate the utility of our formulation in creat-
ing effective yet simple to implement solutions for various image-
processing tasks. To exercise our formulation we have created a
new saliency-based sharpen filter and a pseudo image-relighting
application. We also revisit and improve upon previously defined
filters such as non-photorealistic rendering, image de-blocking, and
sparse data interpolation over images (e.g., colorization using opti-
mization).

1 Introduction

Image filtering draws its theory from many different disciplines,
and it is used by a diverse community of users that includes sci-
entists, engineers, and artists. In the computer graphics and vision
community image filters are used extensively in all the standard
rendering and image processing pipelines. In fact, image filtering
is often the very first topic covered in most introductory graphics
and vision classes.

Over the years, numerous filters have been developed (e.g., sharp-
ening, denoising, morphological operations, quantization), for tasks
such as image enhancement, feature detection, and segmentation.
Most prevalent image filters directly manipulate pixel values in the
spatial domain or modulate frequencies in the frequency domain.
Our hypothesis is that there are three main factors that influence the
adoption of a particular domain for filtering:

• Domain knowledge: The first factor is accessibility of the
knowledge required to design solutions in a domain. The eas-
ier it is for newcomers to find and understand the domain lit-
erature, the more widespread its adoption is likely to be.

• Domain power: Secondly, certain problems are simply better
tackled in a particular domain because the solutions in this
domain might be more effective, faster, simpler to implement,
or more intuitive to understand when compared to possible
solutions in other domains.

• Domain tools: Finally, the quality of tools available in a par-
ticular domain greatly affects its adoption rate. For exam-
ple, a programmer might be inclined to implement a filter
in the spatial domain for the convenience factor, since most
programming languages make it easy to perform image in-
put/output and pixel manipulation. However, given access to
good frequency-domain tools (e.g., a fast Fourier transform
library) the same programmer might prefer to implement the
filter in the frequency domain if there are performance bene-
fits to be had.

Gradient domain:

In this paper we focus on a particular form of spatial-domain fil-
tering that has been popularized in recent years as gradient-domain
filtering. Gradient-domain filters manipulate pixel differences (e.g.,
first order image-gradients) in addition to pixel values of an image.
A motivation for filtering in the gradient domain is that gradients
are integral to the way in which we perceive images. Studies in-

dicate that the human visual system (HVS) does not perceive ab-
solute pixel values, but instead relies upon local contrast and ra-
tios [Attneave 1954; Barten 1999], which more directly correlate
with gradients in an image.

Primary goal: In the last decade, the computer graphics and vi-
sion community has made some excellent progress in expanding the
domain knowledge, power, and tools avaliable to gradient-domain
users. Unfortunately, being a relatively young subfield, the key
ideas in this literature are scattered across several seminal papers.
The primary goal of this paper is to generalize this body of work un-
der a common optimization framework. Our hope is that this gener-
alized framework will make gradient-domain knowledge more ac-
cessible to newcomers, thus allowing them to quickly gain a general
understanding of the field and contribute new ideas of their own. In
addition, we hope the gradient-domain tools (i.e., the GradientShop
API) released with this paper1, will foster continued research in this
area.

Secondary goal: A secondary goal of this paper is to increase
adoption of the gradient domain among graphics and vision pro-
grammers by demonstrating its domain power in designing image
filters that would otherwise be unintuitive or difficult to implement
in other domains. Gradient-domain filtering provides an easy and
intuitive way to alter the perception of an image by modifying its
underlying gradient field to selectively emphasize or de-emphasize
key image features. Moreover, this paper presents gradient-domain
solutions for several image filtering problems that have been pre-
viously pursued in other domains. Such gradient-domain solutions
can often be more effective, simpler to understand, and/or easier to
implement than their state-of-the-art counterparts in other domains.

Contributions: In this paper we present GradientShop, an opti-
mization framework for expressing gradient-domain solutions to
image and video processing problems. GradientShop allows appli-
cations to tackle challenging image processing problems by simply
specifying zeroth-order constraints (i.e., desired pixel values) and
first-order constraints (i.e., desired pixel-gradients over space and
time) in the optimization to compute the desired result.

Applications can exert further control by specifying weights for in-
dividual constraints, which are incorporated into GradientShop’s
weighted least-squares solver. Applications may specify their
own weighting scheme or, optionally, use GradientShop’s general
weighting scheme that has been designed to automatically improve
the visual quality of results for most applications when compared to
results obtained when using a uniform weighting scheme (i.e, when
using a standard, unweighted least-sqaures optimization).

Gradient-domain filters, when applied independently to individ-
ual frames in a video often suffer from flickering and temporal-
incoherence artifacts. Our framework decouples the task of defining
gradient-domain image filters from the task of applying these fil-
ters to a video coherently. GradientShop uses motion-compensated
temporal constraints to cause the temporal characteristics of the in-
put video (e.g., temporal coherence, illumination changes) to be be
enforced in the filtered result. In the case of video streams where
all video frames are not avaliable at once, GradientShop filters an
incoming video frame while enforcing temporal constraints to the
previously filtered video frame, thus helping alleviate the temporal-
incoherence problem of filtering video streams.

In addition, we present a new measure for local gradient saliency
that allows applications to better process and define gradient con-
straints. Our saliency measure is motivated by human perception
studies that have shown long coherent edges in an image, even when

1The GradientShop source code is freely avaliable on

www.GradientShop.com

faint, are perceptually salient to the HVS [Beaudot and Mullen
2003; Elder and Goldberg 2001]. In previous methods the saliency
of a local gradient is often approximated by its magnitude as in
Lischinski et al. [2006] or by a response to a local filter as in
Levin et al. [Levin et al. 2004a]. However, certain pixel gradients,
even when faint, give rise to long coherent edges which demar-
cate object boundaries, shadows, surface creases, and other signifi-
cant visual artifacts. To measure the perceptual importance of such
gradients, our framework accounts for the length of the underlying
dominant edge at each pixel and its local orientation. Thus we allow
applications to use this length and orientation information to bet-
ter estimate the saliency of local gradients when processing them.
Needless to say, an application may choose to ignore our saliency
measure or augment it by using an application-specific saliency de-
tector like a face detector.

Finally, we show how several image processing tasks can be ef-
fectively expressed in our formulation. Among the many appli-
cations we explore include saliency sharpening, pseudo-relighting,
de-blocking, sparse data interpolation over images (e.g., coloriza-
tion), and non-photorealistic rendering. Using our framework, most
filters that can be applied to a single image can also be automati-
cally applied to videos coherently by enforcing simple first-order
constraints along flow lines across time.

In summary, our contributions include:

• a general framework for exploring gradient-domain solutions
for image & video filtering,

• a novel edge-length based measure for local gradient saliency,

• a general weighting scheme for gradient constraints that im-
proves the visual appearance of results,

• a solution for applying gradient-domain filters to videos and
video streams in a coherent manner, and

• a demonstration of our formulation in creating new, and im-
proving upon existing, image and video processing applica-
tions.

2 Related work

Our work draws heavily from the rich body of work done on
gradient-domain image processing by the computer graphics and
vision community. We review some of the work in this literature
that is most relevant to our optimization formulation. However, for
a more extensive introduction to the gradient-domain literature, the
reader is referred to Agrawal and Raskar’s [2007] excellent ICCV
course on the topic.

One of the first gradient-domain image filters was proposed by Fat-
tal et al. [2002]. Their work casts the tone-mapping problem as a
pure gradient-field integration problem (i.e., no zeroth order terms)
by attenuating large scale gradients in an HDR image and then solv-
ing for a LDR image that best approximates this attenuated gradient
field.

Perez et al. [2003] also used a pure gradient field integration ap-
proach to create seamless image composites. The approach they
take is similar to the technology used in Adobe Photoshop’s ‘heal-
ing brush’, the details of which were later published in an ECCV
2006 paper [Georgiev 2006]. Perez et al.’s algorithm copies the
gradients from a source image region onto a target region selected
by the user. This modified gradient field is then integrated while
keeping pixel colors outside the target region fixed using Dirich-
let boundary conditions. Levin et al. [2004b] used a similar ap-
proach for seamless image stitching. Levin et al. also showed that
their work could be used for de-blocking compressed images. We

present a similar method for image de-blocking (Section 6.4) that
additionally includes zeroth order terms in the optimization to sig-
nificantly improve the de-blocking quality.

Levin et al. [2004a] proposed a gradient-domain technique for in-
terpolating colors from a sparse set of user-drawn color scribbles
over a grayscale image in order to transform it into a photore-
alistic color image. Lischinski et al. [2006] showed that Levin’s
method can also be used to interpolate various local edits such as
modifications to colors, tonal values, and white balance of the im-
age. This user-specified data is interpolated over the image in a
piecewise-smooth manner with respect to the underlying gradient
field of the luminance image. We present a simple improvement to
this method (Section 6.5) that significantly reduces data bleeding
across faint edges by leveraging our edge-length based measure for
local gradient-saliency.

In their Color2Gray paper, Gooch et al. [2005] demonstrate a rather
interesting application of gradient-domain techniques. They inves-
tigate the problem of converting a color image to grayscale while
preserving the color saliency that is often lost in the standard color
to gray mapping (i.e., isoluminant colors mapping to the same gray
value). This work uses no zeroth order terms in its optimization.
However, unlike most gradient domain techniques, this technique
employs more than two first-order terms for each pixel in the opti-
mization (i.e., each pixel has constraints defined with respect to the
patch of pixels surrounding it).

Orzan et al. [2007] used a gradient-based approach to convert pho-
tographs into abstract renditions that capture their salient features.
They analyzed the multiscale output of the Canny edge detector
to determine both edge importance (measured by its lifetime along
the scale axis) and the characteristic edge scale. We propose a fil-
ter for non-photorealistic rendering that in comparison to Orzan’s
method uses zeroth order terms, a different edge saliency measure,
and is temporally consistent when applied to videos. A more de-
tailed comparison is provided in Section 6.2.

Agrawal et al. [2005] proposed a gradient projection technique to
fuse gradients obtained from ambient and flash images in a man-
ner that produces well-lit images without strong highlights. Later
Agrawal et al. [2006a] generalized this work to a class of edge-
suppressing operations on images. Agrawal et al. [2006b] further
studied the problem of robust surface reconstruction from a non-
integrable gradient field. In this last work, Agrawal et al. explored
several different weighting schemes, including but not limited to
robust statistics like M-estimators, for robustly satisfying gradient
constraints. In Section 3.2 we propose a simple weighting scheme
that is well-suited to finding robust solutions to our problem of inte-
grating filtered gradient-fields. Black et al.’s [1998] work is a great
resource on the relationship between robust statistics and problems
similar to gradient-field integration like anisotropic diffusion.

The temporal constraints (i.e., first-order constraints over time)
used in our formulation are inspired by the work of Levin et
al. [2004a] and Bhat et al. [2007]. Bhat et al. showed that fusing
temporal gradients defined along correspondence vectors from one
video with the spatial gradients from another video can be used to
combine the temporal characteristics of the former with the spatial
characteristics of the latter. We use similar motion-compensated
temporal-constraints to encourage the temporal characteristics of
the input video (e.g., temporal coherence, illumination changes)
to be enforced in the filtered result. We have found that defining
temporal-constraints without compensating for motion, as in the
works of Drori et al. [2004] and Wang et al. [2004], leads to arti-
facts like motion-trails and haloing in image filters that make large
changes to the spatial appearance of the input video. Thus, our for-
mulation decouples the task of defining a new image filter from the

task of applying that filter to a video coherently.

Our optimization formulation is most similar to the work of Zeng et
al. [2006], which proposes a variational model for image editing.
Similar to our work, Zeng et al. demonstrate the utility of using a
data term in gradient-domain problems. Zeng et al. applied their
data term to create a sharpen filter in the gradient domain and im-
prove the results of previous gradient-domain filters like Perez et
al.’s [2003] Poisson image editing work.

3 Optimization formulation for image pro-

cessing

In this section we introduce our optimization formulation for image
processing. In section 4 we extend this formulation to accommo-
date video processing.

The task of an image filter is to take an input image u and transform
it into the final image f . Our formulation simplifies the task of
writing image processing applications that can be expressed as an
energy function involving zeroth and first order terms of the image
f (i.e., Equation 2). For each pixel in f the application is allowed
to specify a single zeroth-order constraint (i.e., desired pixel value)
and two first order constraints (i.e., desired pixel gradients). The
application can also to specify a weight for each constraint in the
optimization.

An application that wishes to use our formulation has to define a
function of the following form:

F (u, · · ·) → [d, g, w] (1)

Inputs: The function F takes as input the unfiltered image u
and any metadata (e.g., parameter values, selection masks, edge
statistics) which F may choose to use in its computation. These
application-specific inputs to F will be described in further detail in
the applications section (Section 6). The input image u may contain
multiple channels (e.g., RGB, YUV, etc). However for simplicity
of exposition we will treat u as a single-channel image in this sec-
tion since each corresponding channel in the result f is solved for
independently in practice.

Outputs: The function F returns three images – [d, g, w]. The im-
age d is a single-channel image that provides the data constraint for
each pixel in f . The image g is a two-channel image where chan-
nels gx and gy specify the desired x-derivative and y-derivative of
f respectively. The image w is a three-channel image where chan-
nels wd, wx, and wy provide the weights for constraints in d, gx,
and gy respectively.

The final result f is generated by minimizing the following energy
function:

E(f) =
X

p∈f

Ed(p) + Eg(p) (2)

where p is a pixel in f , Ed is our data cost function, and Eg is our
gradient cost function. The energy terms Ed and Eg are quadratic
functions defined as follows:

Ed(p) = wd(p) [f(p) − d(p)]2 (3)

and

Eg(p) = wx(p) [fx(p) − gx(p)]2 + wy(p) [fy(p) − gy(p)]2 ,
(4)

where fx and fy denote the x and y derivative of the final image f .

Thus, the energy terms Ed and Eg are the squared errors between
the desired values specified by the function F and the actual val-
ues of the final image f . Each constraint also has a corresponding
weight, wd for the zeroth-order ‘data’ constraints and wx and wy

for the gradient constraints. These weights control the amount of
influence a constraint should have on the final image. As shown
later, several effects can be achieved by varying these weights, in-
cluding sparse data interpolation and the suppression of haloing ar-
tifacts common to gradient-domain techniques. Individual weights
can also be set to zero to completely disable the effect of the corre-
sponding constraint on the result.

Since our energy function E is quadratic, its minima can be
found using standard, weighted least-squares techniques like the
conjugate-gradient method [Shewchuk 1994]. To increase the run-
time performance of the solver, various preconditioners may be
used to better condition the optimization [Szeliski 2006]. Bhat et
al. [2008a] have proposed a fast Fourier-domain solver that can
used to solve filters that do not use spatially vary weights for the
constraints (i.e., wd, wx, and wy are not used). Recently Mc-
Cann and Pollard [2008] showed that a GPU accelerated conjugate-
gradient solver can minimize energy functions like ours in real-time
for megapixel-sized images.

For quick reference to the terms defined in this section see the glos-
sary in Appendix A.

3.1 A simple sharpen-Filter

To build the reader’s intuition for image processing using zeroth and
first order constraints and to provide further familiarity with our
notation, in this subsection we will define a simple sharpen-filter
Fsharpen using our formulation. This gradient-domain sharpen fil-
ter was first defined by Zeng et al. [2006] and was later proved
by Bhat et al. [2008a] to subsume the Laplacian sharpen-filter (i.e,
f = u − λ▽

2u) commonly used in image processing. The outputs
of Fsharpen are defined as follows:

d(p) = u(p); gx(p) = cs · ux(p); gy(p) = cs · uy(p);

wd(p) = c1; wx(p) = 1; wy(p) = 1

Here, the parameter cs is a scalar constant set to a value greater
than one. The sharpening behaviour of Fsharpen has an intuitive
interpretation. To increase the local constrast of the input image the
filter function Fsharpen sets the desired gradients of the result (i.e.,
gx and gy) to the gradients of the input (i.e., ux and uy) multiplied
by a scaling factor cs. The desired pixel-values of the result are
set to the input image (i.e, d = u). Setting the data constraints to
the input image ensures the final result does not drift too far from
the input image. Without the use of these this data constraint, the
optimization would satisfy the gradient constraints by simplying
multiplying the input image by the scaling factor [i.e., f = cs · u].
The spatial extent of the sharpening kernel is a function of the ratio
between the gradient scale factor and the data weight (i.e. cs/c1).

An example result of this sharpen filter can be seen in Figure 5.

3.2 A robust weighting scheme

The L2-norm is well known to be sensitive to outliers. This sensitiv-
ity causes the energy function Eg to produce visually unappealing
results, because it prefers several small errors instead of a few large
errors caused by local constraints (i.e., a desired gradient or pixel

(a) (b)

(c) (d)

Figure 2: This figure shows the effect our robust weighting func-
tion has on the quality of the saliency sharpen filter defined in sec-
tion 6.1. (a) Input image. (b) Image saliency sharpened with uni-
form weighting; notice the severe haloing artifacts on the woman’s
face and neck. (c) Image saliency sharpened using our robust
weighting. (d) IRLS result after solving ten weighted least-squares
problems. See Figure 10 for a similar comparison with the NPR
filter and pseudo re-lighting filter.

value) that are difficult to satisfy (i.e., outliers). The L2-norm re-
acts an outlier by distributing the error over a large region around
the outlier, which can result in haloing or pinching artifacts in re-
gions where the desired gradient field g is hard to satisfy (see the
example in Figure 2).

One solution to this problem is to use a more robust metric such
as the L1-norm, which would require slower, more complicated
optimization techniques like linear programming, or iteratively re-
weighted least squares (IRLS). Later in this section we compare
against the IRLS algorithm, which is a general method for minimiz-
ing a robust norm (e.g., L1-norm) by solving successive weighted
least squares problems. The method begins by weighting each con-
straint uniformly. In each successive weighted least squares prob-
lem the solution from the previous problem is used to downweight
the outliers.

Instead, we introduce an alternative technique that involves solving
a single weighted least squares problem. By applying the appro-
priate weights wx and wy to our gradient constraints, the visual
artifacts mentioned above can be considerably mitigated. While an
application may choose to define its own weights, we provide a de-
fault weighting function for the gradient constraints that works well
for most applications.

Our robust weighting function is based on the simple prior that the
gradient field of f is likely to deviate from g (thus leading to large
errors in the L2-norm) in regions where g deviates heavily from the
gradient field of u. By reducing the weights of these constraints
we can lower their influence on the resulting image. The weighting
functions are defined as follows:

wx =
1

(|ux − gx| + 1)b
(5)

wy =
1

(|uy − gy| + 1)b
(6)

Here the parameter b controls the sensitivity of Equation 4 to out-
liers and is typically set between 5 and 9; appendix B lists the value
of parameter b used by various filters presented in this paper. Fig-
ure 2 demonstrates the effect our robust weighting scheme has on
the visual quality of the saliency sharpening filter (described in Sec-
tion 6.1).

Figures 2 and 10 show the effect our robust weighting-function has
on the quality of various filters presented in this paper. Figure 2
shows a qualitative comparison of our single weighted least squares
method to that produced by the IRLS method after it has solved ten
weighted least-squares problems. In this example, our result looks
visually identical to the result produced by IRLS, which took ten
times longer to compute.

4 Generalization of the formulation to videos

To process an input video u using a filter function F defined us-
ing the image formulation in Section 3, one could apply F to each
video frame independently. Unfortunately, the resulting video f
generated using this approach often suffers from flickering artifacts
and therefore looks temporally incoherent.

To alleviate this temporal incoherence problem we are going to use
a technique proposed by Bhat et al. [2007]. Bhat et al. showed
that fusing temporal gradients defined along motion correspon-
dence vectors from one video with the spatial gradients from an-
other video can be used to combine the temporal characteristics of
the former with the spatial characteristics of the later. We use simi-
lar motion-compensated temporal constraints to cause the temporal
characteristics of the input video (e.g., temporal coherence, illumi-
nation changes) to be be enforced in the filtered result. Thus, our
formulation decouples the task of defining a new image filter from
the task of applying that filter to a video coherently.

In addition to the input video, our framework requires as input a set
of motion vectors between each consecutive pair of video frames.
These vectors are used to define the temporal constraints in the
optimization. Although optical flow remains a difficult research
problem, we have empirically found that if good motion vectors are
available for 50-60% of the pixels and confidence values are avail-
able for the motion vectors, then our method produces temporally
coherent results. For the streaming video results (Section 4.1) we
rely on the blockwise motion vectors encoded in the video, which
are obtained directly from the video decoder [Tomar 2006]. For all
other results shown in the supplementary video, we use the opti-
cal flow algorithm proposed by Sand and Teller [2006] to generate
motion vectors.

As in the image processing case, the application’s filter function F
is used to obtain the desired spatial constraints (i.e., d, gx, gy) for
each video frame. However, in the video processing case, for every
pixel in the video an additional first-order constraint gv is used to
influence what we call the flow gradient. The flow gradient is the
difference between a pixel and its motion-compensated neighbor in
the previous frame, and is computed as follows:

uv = u(x, y, t) − u(x + vx, y + vy, t − 1) (7)

Here the coordinate (x, y, t) gives the location of p in u and
(vx, vy) is a motion vector that maps p to its corresponding pixel in
the previous video frame. Thus (x + vx, y + vy, t − 1) gives the
coordinate of this corresponding pixel.

The value of the desired flow gradients (i.e., the temporal con-
straints specified by gv) is computed as a function Fv of the cor-

responding flow gradient in the original video, i.e. gv(p) =
Fv(uf (p)) (Equation 10).

Adding these constraints to our energy function E(f), we get:

E(f) =
X

p∈f

Ed(p) + Eg(p) + Ev(p). (8)

Similar to the data and gradient energy functions, Ev(p) is defined
as:

Ev(p) = wv(p) [fv(p) − gv(p)]2 (9)

gv(p) = Fv(uv(p)) (10)

where fv(p) represents the flow gradient in the result at pixel p. The
term wv(p) controls the weight given to p’s temporal constraint
(i.e., gv(p)). A typical choice is to set wv(p) to the confidence
in the accuracy of p’s motion vector thus effectively disabling the
temporal constraints in regions with bad motion vectors. In all our
experiments Fv was set to the identity function thus causing the re-
sult video f to mimic the temporal behaviour of the input video u –
that is the result video preserves the temporal coherence and light-
ing changes seen in the input video. However, application designers
may choose to modify the behaviour of Fv to better suit their needs.

4.1 Generalization to streaming videos

Though the energy function defined in Equation 8 can be optimized
across an entire video, as videos increase in length this global op-
timization can become computation and memory intensive. It may
also be the case that the input video is streaming and thus the en-
tire video may not be available. In either of these cases the energy
function may be approximately minimized by stepping through the
video one frame at a time with the values of the previous frame
fixed. That is, frame t − 1 is first computed. Its pixel values are
then held fixed and frame t is computed while enforcing the tempo-
ral constraints. The very first video frame can be computed without
using temporal constraints. The idea of using a variational approach
for filtering an incoming frame in a video stream by treating pixels
in the previously filtered video-frame as hard constraints was also
concurrently proposed by Paris [Paris 2008].

In this paper, only the de-blocking results for streaming YouTube
videos were created using this approach (see supplementary video).

5 Measuring local gradient saliency

Before we delve into the details of the various filters we have im-
plemented using GradientShop, we first need to discuss our method
for detecting local gradient saliency since it is used by a few of
our applications. We present a new measure for local gradient
saliency inspired by perception studies that show long coherent-
edges, even when faint, are perceptually salient to the HSV [Beau-
dot and Mullen 2003; Elder and Goldberg 2001]. To account for
the perceptual importance of gradients that give rise to such edges,
our framework provides a long-edge detector that applications can
use to measure the saliency of a local gradient.

Our long edge detector finds long, coherent edges instead of simply
detecting edges with strong magnitude. The edge detector returns
an image e with two channels: el and eo. The el channel provides
length of the dominant edge running through each pixel in the in-
put image. The eo channel represents the local orientation of the
dominant edge at each pixel.

The main insight here is to factor in edge length instead of simply
using the edge magnitude when measuring local gradient saliency.
The local edge orientation is used to distribute the saliency weight
over the two orthonal-gradients in x and y directions. Thus our
proposed saliency measure for local gradients is as follows:

sx(p) = cos2(eo(p)) · el(p) · ux(p) (11)

sy(p) = sin2(eo(p)) · el(p) · uy(p) (12)

where, sx(p) and sy(p) form our saliency enhanced gradients cor-
responding to ux(p) and uy(p). These saliency enhanced gradients
are used by various applications as decribed in Section 6.

5.1 Implementation details

Our algorithm begins by computing local edge magnitude and ori-
entation at each pixel, using steerable filters [Freeman and Adel-
son 1991]. Other filters besides steerable filters may also be used,
such as finite differences between neighboring pixels. However, we
found that the larger spatial extent of steerable filters leads to more
robust results. Since we are only concerned with the primary ori-
entation of the underlying image structure, the steerable-filter used
is the second derivative of the Gaussian. For a pixel p in an image,
this steerable filter estimates local edge magnitude pm and edge
orientation po. A visualization of pm is shown in Figure 3(b).

Since our algorithm needs to detect long, coherent edges even when
faint (i.e., not simply edges with strong magnitudes), the estimated
local magnitude pm for each pixel is normalized with respect to the
magnitudes in it’s local neighborhood w (i.e., a 5x5 window).

p̂m =
pm − µw

σw + ǫ
,

where µw and σw denote the average and the standard deviation of
edge magnitudes in the pixel neighborhood w. The result from this
step is shown in Figure 3(c).

5.1.1 Length estimation using message passing

Having computed the local magnitudes p̂m and orientations po, the
algorithm then estimates the length of the underlying edge at each
pixel pl using a message-passing scheme. The length of an edge
is defined to be the sum of the normalized, local, edge magnitude
for each pixel along the edge. The problem of approximating edge
length at a pixel is broken into two sub-problems of estimating the
lengths of two sub-edges that start at the pixel and proceed in two
opposite directions given by the local edge orientation (i.e., po and
po + π). During a single iteration of the message-passing scheme
each pixel receives two messages that estimate the length of the two
sub-edges for the current iteration:

mt
0(p) =

X

q

wα(q) · wθ(q) · (q̂m + mt−1
0 (q)),

mt
1(p) =

X

q

wα(q) · wθ(q) · (q̂m + mt−1
1 (q)).

The pixel q comes from the four pixels at integer coordinates near-
est to the floating-point coordinate obtained when p is projected a

distance of
√

2 along the edge orientation po for m0(p) and po + π
for m1(p).

(a) (b)

(c) (d)

Figure 3: Example of our local gradient saliency measure: (a) orig-
inal image, (b) local edge magnitudes given by the steerable fil-
ter, (c) normalized edge magnitudes, and (d) local gradient saliency

(i.e.,
p

sx(p)2 + sy(p)2) produced by our method.

The information at pixel q is weighted by two functions – wα and
wθ . The function wα computes the weights for bilinear interpo-
lation between the integer coordinates to approximate the floating-
point coordinate. The function wθ measures the similarity of the
local edge orientations at p and q as follows:

wθ(q) = exp(−(pθ − qθ)
2/2σ2

θ),

where the variance σ2
θ is set to π/5.

Using this message-passing scheme, the normalized edge magni-
tudes are propagated along edges for a specified number of itera-
tions. All results in this paper were computed using 60 iterations.
The messages for the first iteration are initialized to zero. Note that
this message-passing scheme only approximates the length of the
underlying edge. For example, an edge that forms a loop with a
perimeter that is greater than the number of iterations will be es-
timated to be longer than its actual length due to some edge mag-
nitudes being counted more than once. The final edge length and
orientation for each pixel is set as follows:

el(p) = mt
0(p) + mt

1(p) + p̂m

eo(p) = po

A visualization of the local gradient saliency computed using the
metric given in Equations 11-12 is shown in Figure 3(d).

5.2 Evaluation

In this subsection we will use the NPR filter introduced in Sec-
tion 6.2 to compare the performance of our saliency measure
against the performance of other methods. The NPR filter sim-
ply decreases the magnitude of gradients that have low saliency
and boosts the magnitudes of gradients with high saliency. Thus
the NPR filter exaggerates salient features in an image while ab-
stracting away non-salient details to produce a non-photorealistic
rendering of the input image.

Figure 4 compares the effect various saliency measures have on
the result produced by the NPR filter. We use the following four
saliency measures for comparison:

1. Gradient-magnitude measure: this measure simply uses the
local gradient-magnitude computed using finite differences to
measure the local gradient saliency.

2. Itti’s measure: this saliency measure was defined by Itti et
al. [1998] to estimate the amount of visual attention drawn
by an image region. Itti’s saliency measure is inspired by the
behavior and the neuronal architecture of the early primate
visual system.

3. Canny edge-detector based measure: this measure multiplies
the local gradient-magnitude by the grayscale output of the
Canny edge-detector.

4. Our measure; Section 6.2 describes how the NPR application
uses our saliency measure.

In the scene shown in Figure 4a the person in the foreground has
low constrast with respect to the background. Unlike our saliency
measure, the other saliency measures fail to identify the gradients
across the silhouette of the person to be salient. The NPR filter
is best able to delineate the foreground while abstracting away the
clutter from the background when using our saliency measure in
comparison to the other measures described above. For the in-
put image in Figure 4j, most saliency measures overemphasize the
saliency of the short but strong edges around individual bricks in
the wall. However, our saliency measure neither overemphasizes
the saliency of these gradients nor does it fail to identify the salient
but faint gradients in the sky region.

Figure 9 uses the sparse data interpolation (SDI) application defined
in Section 6.5 to compare the performance of our saliency measure
against that of the gradient-magnitude based measure. See Sec-
tion 6.5 for details on how the SDI application uses our saliency
measure. Our measure considerably reduces data bleeding in this
application compared to the gradient-magnitude measure, thus re-
quiring less user-input (i.e., data scribbles). In Figure 9 the input
image contains semantic regions (e.g., ocean and sky) that are de-
lineated by faint edges (e.g., horizon), which causes the gradient-
magnitude based measure to leak data between the different seman-
tic regions.

6 Applications

In this section we present new applications we have developed and
a few previously defined applications that we have improved us-
ing our perceptually motivated formulation for image and video
processing. Each of these applications was written in less than
two hundred lines of C++ code using the GradientShop API2. We
hope that these simple-to-implement, yet effective, applications

2The GradientShop source code is freely avaliable on

www.GradientShop.com

(a) (b) (c)

Figure 5: A qualitative comparison of our saliency sharpen filter
(Section 6.1) to the simple sharpen filter (Section 3.1). (a) Original
image. (b) Simple-sharpen result. (c) Saliency-sharpen result. No-
tice how saliency sharpen enhances the image without boosting the
noise or background texture.

will demonstrate just how intuitive and simple the solutions to many
image processing tasks can be when tackled in the gradient domain.

Note that all applications defined in this section, unless explicitly
stated otherwise, use our robust weighting function (Section 3.2,
equations 5 & 6) for defining the gradient constraint weights (i.e.,
wx & wy). The parameter values used in each application have
been listed in Appendix B and can also be obtained from our source
code avaliable on the project website [Bhat et al. 2008b].

6.1 A saliency sharpen filter

Sharpening is one of the most commonly used image-enhancement
filters. Unfortunately the simple sharpen filter (see Section 3.1)
intensifies all gradients in an image, including gradients that arise
from noise and background texture. A better sharpen filter would
only intensify those gradients that correspond to salient image fea-
tures. Our saliency sharpen filter uses the output of the long-edge
detector (Section 5) to only boost the magnitude of gradients that lie
across long edges thus enhancing salient gradients without boost-
ing image noise or background clutter. Our saliency sharpen filter
is defined as follows:

Fsaliency sharpen(u, e) → [d, g, w]

d(p) = u(p); wd(p) = c1

gx(p) = ux(p) + c2 · sx(p)

gy(p) = uy(p) + c2 · sy(p)

Fsaliency sharpen accepts as input the image to enhance (i.e, u) and
the result of the long-edge detector (i.e., e). The data constraints
and the parameter c1 (c1 > 0) keep the enhanced image from drift-
ing too far from the input. The desired gradient field g is defined to
intensify the magnitudes of gradients that lie across long edges and
leave the other gradients unchanged. The parameter c2 controls the
overall sharpening amount (c2 > 0). Here, sx(p) and sy(p) provide
the saliency enhanced gradients at location p as per the definitions
in the Equations 11-12.

See Figure 5 and the supplementary video for a qualitative compar-
ison of our saliency sharpen filter to the simple sharpen filter.

6.2 A filter for non-photorealistic rendering

We will now present a filter for stylizing photographs and videos us-
ing non-photorealistic rendering (NPR). Our filter is inspired from a
basic technique employed by illustrators when simplifying a scene
– that is the ‘abstracting away’ of non-salient features in the scene
and the exaggeration of salient features. Like most of our other fil-
ters, the NPR filter also measures the saliency of a region using the
length of the underlying edge detected by the long-edge detector
(Section 5). Specifically, the filter suppresses gradients in regions
with short or no edges (i.e., abstraction) and intensifies gradients
across long edges (i.e., exaggeration of local contrast). Our NPR
filter Fstylize is defined as follows:

Fstylize(u, e) → [d, g, w]

d(p) = u(p); wd(p) = c1

gx(p) = ux(p) · cos2(eo(p)) · n(p)

gy(p) = uy(p) · sin2(eo(p)) · n(p)

n(p) = c2(1 − e
(el(p))2

−2σ2)

Here, Fstylize accepts as input the image to stylize (i.e., u) and the
result of the long-edge detector (i.e., e). The function n spatially
varies the abstraction/exaggeration amount based on the underly-
ing edge light el(p). The parameter σ in function n controls the
abstraction amount; large values of σ result in large scale features
of the input image being abstracted away in the result. The pa-
rameter c2 (c2 ≥ 1) controls the amount of exaggeration of local
contrast across long edges. The data constraints and the parameter
c1 (c1 ≥ 0) control how much the stylized image is allowed to drift
from the input image. As a postprocessing step, our system option-
ally overlays a simple visualization of the long edges detected in
the input image on top of the result to make it look as if the artist
outlined the salient edges using black brush strokes.

Now we will briefly compare our method for non-photorealistic
rendering to that of Ozran et al. [2007] and Winnemöller et
al. [2006]. Ozran’s method for NPR uses a pure gradient field inte-
gration approach (i.e., no data constraints) and as a side effect has
to use more complicated contrast equalization and blurring steps to
post process their results. In contrast, the data constraints used in
our method cause the overall contrast and depth of field effects (e.g.,
spatially varying blur) in the input image to be automatically repro-
duced in the result to the amount desired by the user (i.e., using
the control parameter c1). Ozran’s method also does not address
the problem of applying their effect to videos in a temporally co-
herent fashion. Unlike Ozran’s method and Winnemöller’s method,
our method not only abstracts away non-salient image features but
also exaggerates the contrast of salient image features, which can
help excentuate the non-photorealistic look of the result. However,
unlike Winnemöller’s method, our method does not currently per-
form in real-time. See figure 6 and the supplementary video for a
qualitative comparison of our method to Ozran and Winnemöller’s
methods.

6.3 A pseudo-relighting filter

Image relighting is the process of estimating what an image
would have looked like had it been captured under different light-
ing conditions. Previous relighting algorithms rely on estimat-
ing scene geometry in order to produce photorealistic lighting ef-
fects [Marschner and Greenberg 1997]. Instead, our relighting fil-
ter is inspired by the observation that digital artists can often create

(a) (b)

(c) (d)

Figure 6: A comparison of our method for non-photorealistic ren-
dering to Ozran and Winnemöller’s methods. (a) Original image.
(b) Ozran et al.’s result. (c) Winnemöller et al.’s result. (d) Our
result. Unlike Ozran and Winnemöller’s methods, our method not
only abstracts away non-salient image features but also exaggerates
the contrast of salient image features (e.g., the hairline in this case),
which can help accentuate the non-photorealistic look of the result.

pseudo-relighting effects by cleverly adding a few handcrafted in-
tensity ramps onto the original image (e.g., Figure 7g). Our relight-
ing filter allows the user to specify a new lighting direction on the
image plane, and then it simply boosts all intensity gradients that
happen to be oriented along the specified direction. Integrating the
gradient field modified in this manner creates the desired lighting
effect by intensifying pre-existing ramps in the image that happen
to be aligned with the desired lighting direction. As a result, the
relit image looks natural even though the relighting is done with-
out computing any scene geometry. The formal definition of our
pseudo-relighting filter is as follows:

Frelight(u, o) → [d, g, w]

Here, Frelight accepts as input the image to relight (i.e., u) and an
image containing the desired lighting angle for each pixel (i.e., o).
We could have used a single constant as the angle parameter instead
of o, which is an image of angles. However, by allowing the lighting
direction to vary spatially Frelight can be used to create a variety
of relighting effects as shown in Figure 7. The following are the
definitions used by Frelight to produce [d, g, w]:

d(p) = u(p); wd(p) = c1

gx(p) = ux(p) + c2 · ux(p) · a(p)

gy(p) = uy(p) + c2 · uy(p) · a(p)

a(p) = max (0,
ux(p) · cos(o(p)) + uy(p) · sin(o(p))

p

ux(p)2 + uy(p)2
)

The data constraints and the parameter c1 (c1 ≥ 0) keep the relit
image from drifting too far from the input. The desired gradient
field g is defined to boost the local gradient if it happens to be ori-
ented along the local lighting direction. The parameter c2 controls
the maximum gradient boost (c2 ≥ 0). The term a(p) computes the

dot product (i.e., cosine of the angle) between the normalized local
gradient and the local lighting direction, and then clamps all nega-
tive values of the dot product to zero using the max operator. Thus
in effect the term a(p) only boosts those gradients that are aligned
with the lighting direction, leaving other gradients unchanged.

See Figure 7 and the supplementary video for various relighting
results produced by our framework. Figures 7f and 7g compare a
relighting result produced automatically by our system to a result
produced manually in Photoshop using a radial intensity ramp.

6.4 A de-blocking filter

A common problem with highly compressed images and videos
is that they appear blocky because each macroblock in the im-
age/video is compressed independently without accounting for spa-
tial coherence across block boundaries. Perception studies have
found blocking to be one of the most distracting compression ar-
tifacts ranking alongside low resolution and ringing artifacts. A
good de-blocking filter can therefore improve the perceived quality
of highly compressed videos found on sites like YouTube.

Previous work in the spatial domain: There have been many at-
tempts in the past to define high-quality de-blocking filters in the
spatial domain [Averbuch et al. 2005; Castagno and Ramponi 1996;
Hong et al. 1996]. Some of the best de-blocking filters in the spa-
tial domain tend to be similar to a bilateral filter. They take the
weighted average of pixels across block boundaries in order to sup-
press blockiness while trying not to over-blur the image. Most of
the effort in designing these filters goes into crafting a weighting
kernel that can suppress block edges but not affect the true edges in
the image. There are three major limitations of these spatial-domain
approaches for de-blocking:

1. The de-blocking effect of these filters is localized to a few
pixels near the block boundaries. For severely compressed
images such de-blocking filters are unable to fully suppress
the blocking artifacts.

2. Increasing the size of the de-blocking kernel in order to in-
crease the de-blocking effect invariably over-smoothes the im-
age.

3. Applying these de-blocking filters to individual video frames
results in the introduction of temporal artifacts (e.g., flicker-
ing).

De-blocking using optimization: Fortunately, the de-blocking
problem can be tackled easily by using first order constraints in
our formulation. In compressed images, the gradients across mac-
roblock boundaries (i.e, inter-block gradients) are much less reli-
able than the gradients inside the macroblocks (i.e., intra-block gra-
dients) since each macroblock is compressed independently. Thus,
a straightforward de-blocking filter in our formulation would selec-
tively edit inter-block gradients in a manner that suppresses the per-
ceived blockiness. Our experiments show that inter-block gradients
with large magnitudes usually correspond to true image gradients
that simply happen to coincide with block boundaries. On the other
hand, inter-block gradients with small magnitudes usually corre-
spond to gradients with zero magnitude in the uncompressed image
and form the major source of perceived blockiness in a compressed
image. Therefore, our de-blocking filter selectively suppresses only
those gradients that lie across block boundaries and have a small
magnitude. The formal definition of our de-blocking filter is as fol-
lows:

Fdeblock(u) → [d, g, w]

(a) (b)

(c) (d)

Figure 8: A demonstration of our improvement to Levin’s method
for de-blocking images. (a) Original image. (b) Image after com-
pression. (c) De-blocking result using gradient suppression but
no data constraints (similar to Levin’s approach); Notice how the
highly compressed regions get flattened in appearance. (d) Result
produced by our de-blocking method, which uses gradient suppres-
sion to reduce blockiness and data constraints to maintain fidelity
to the input.

d(p) = u(p); wd(p) = c1

gx(p) = G(ux(p))

gy(p) = G(uy(p))

G(h) =

h · S(h) if h is an interblock gradient value
h otherwise

,

S(h) = 1 − e
h2

−2σ2

The data constraints and the parameter c1 (c1 > 0) keep the de-
blocked image from drifting too far from the input u. The function
G suppresses only those gradients that lie across block boundaries
(i.e., inter-block gradients). The location of the block boundaries
can be easily determined by the file format (i.e., compression type)
of u. The function S suppresses gradients with magnitudes close to
zero. The parameter σ controls the amount of gradient suppression
that happens at block boundaries and this parameter can be learned
a priori by compressing a database of raw images to obtain training
data. See figures 1 & 8 and the supplementary video for image and
video de-blocking results.

Now we will briefly compare our method for de-blocking to that of
Levin et al. [2004b], which also works by suppressing inter-block
gradients. Their gradient suppression function requires access to
the DCT coefficients of each macroblock, which might not be avail-
able to the application. More significantly, their approach is a pure
gradient field integration approach (i.e., no data constraints). This
severely affects their de-blocking quality in regions where the mac-
roblocks only have a single DC coefficient (i.e, a single color). For
example, several macroblocks in the sky and water regions of Fig-
ure 8b only have a single color. Without the use of data constraints
(i.e., c1 = 0), suppressing the inter-block gradients removes the
image blockiness but also flattens the appearance of the result (See
figure 8c). In contrast, our use of data constraints causes the colors

in the macroblocks to be smoothly interpolated over the sky and
water regions as shown in Figure 8d.

Our de-blocking filter can also be be thought of as a generalization
of the image de-quantization work done by Kim et al. [2007]. In
their work, Kim et al. look at the problem of restoring color vari-
ations inside uniform regions of a color-quanitized image. Their
algorithm works by minimizing the magnitude of gradients that lie
across the boundary between two uniform regions. The flattening
behaviour of these gradient constraints is balanced by a data term
that encourages the pixel value in the result to be similar to the value
in the input image. Our algorithm behaves identicially in regions
of the image that have been heavily quantized (e.g., macroblocks
that contain a single color). However, for macroblocks that con-
tain texture information our algorithm also enforces the underlying
gradients that give rise to these textures, thus encouraging the de-
blocking result to utilize this additional information.

6.5 A filter for sparse data interpolation

In their seminal work Levin et al. [2004a] demonstrated an opti-
mization approach for colorizing grayscale images using a few user
drawn color scribbles. Lischinski et al. [2006] observed that Levin’s
work was in fact a general and powerful technique for interpolating
sparse data over images. Lischinski et al. pointed out that most
data channels in images, and not just color channels, are best inter-
polated in a spatially piecewise-smooth manner with respect to the
luminance channel of the image. They demonstrated the generality
of Levin’s work by interpolating a variety of data types including
tonal values, blurring amounts, and white balance corrections spec-
ified by the user with a few paint strokes. Lischinski’s method maps
quite easily to our formulation as follows:

Fsparse interp(u, d) → [d, g, w]

wd(p) =

∞ if d(p) is defined
0 otherwise

gx(p) = 0; gy(p) = 0

The function Fsparse interp accepts as input an image u that will
guide the data interpolation and an image d that contains the user
data (e.g., scribbles, paint strokes). The image u is grayscale or
in log-luminance space depending on the data to be interpolated.
The weights for the data constraints in wd encourages the result to
maintain fidelity to the user input where defined. The null gradient
field in g in union with our default weighting function for gradient
constraints (Section 3.2, equations 5 & 6) causes the data in d to
be interpolated in a piecewise smooth manner with respect to u. In
fact, the function Fsparse interp in union with our default weighting
function causes the energy function in equation 2 to become equiv-
alent to the energy function used by Lischinski’s method. Subsitut-
ing zero for the gradient constrains in Equation 4 we get:

Eg(p) =
fx(p)2 + fy(p)2

(|ux(p)| + 1)b + (|uy(p)| + 1)b

Improvement: Lischinski’s method interpolates sparse data in a
piecewise-smooth manner with respect to the underlying image.
However, their function for estimating regions where the smooth-
ness constraints have to be softened (i.e., to create the piecewise
smooth behavior) depends on the magnitude of a single, local gra-
dient in the image (i.e., Equations 5 & 6). We make a simple
modification to Lischinski’s method by using our long edge detec-
tor to more robustly detect regions that should produce a break in

(a) (b)

(c) (d)

Figure 9: A demonstration of our improvement to Lischinski’s
method for sparse data interpolation over images. (a) Original color
image. (b) User scribbles specifying the desired recolorizing of the
image. (c) Colorization result produced by Lischinski’s method;
Notice the color bleeding between the sky and the ocean. (d) The
colorization result produced by our method.

the smoothness of the interpolation. Thus our improvement sig-
nificantly reduces the amount of data bleeding in the result (or
conversely the number of user strokes required to produce the de-
sired result). We redefine the weights for the gradient constraints in
Fsparse interp as follows:

wx(p) =
1

(|sx(p)| + 1)b

wy(p) =
1

(|sy(p)| + 1)b

Here, sx(p) and sy(p) provide the saliency enhanced gradients at
location p as per the definitions in the Equations 11-12. Parame-
ter b controls the sensitivity of data interpolation to local gradient
saliency.

Figures 1 & 9 show two results created using our data interpolation
algorithm. Also, the supplementary video shows results interpolat-
ing data over an entire video where only a few frames have been
marked by the user. Figure 9 compares our method to Lischinski’s
method. The sky and water regions in this example are separated
by faint local gradients causing Lischinski’s method to exhibit more
data bleeding in comparison to our method.

7 Discussion

In summary, we have presented a gradient-domain optimization
framework for image and video processing that unifies many of the
ideas introduced in prior work under a general framework. Further,
our work presents a novel edge-length based measure for local gra-
dient saliency, which we have demonstrated to be a useful measure
when processing local gradients in an image. We also presented a
simple weighting scheme that is well suited for finding robust solu-
tions to our problem of integrating filtered gradient fields.

In Section 6 we demonstrated the versatility of our formulation
by designing and improving a variety of image-processing appli-
cations. The ease with which new solutions can be developed using

our framework should be apparent given the simple, intuitive solu-
tions we have arrived at for the applications we considered, which
include filters for:

• saliency sharpening,

• non-photorealistic rendering,

• pseudo-relighting,

• de-blocking, and

• sparse data interpolation.

Performance Performance is a major concern when it comes to
least-squares based methods for image processing. Our unopti-
mized C++ code currently spends a few seconds for one megapixel
images and nearly one minute per video frame (at 800x600 resolu-
tion) starting from the application specific filtering to the full 3D op-
timization. However, there is plenty of room of improvement since
most of the computation time is spent in the weighted least-squares
optimization 3. Our software based conjugate gradient solver, can
be significantly sped up using GPU acceleration and a precondi-
tioner similar to the one proposed by Szeliski et al. [2006]. In fact,
McCann and Pollard [2008] have recently shown that a GPU ac-
celerated conjugate gradient solver can minimize energy functions
like ours in realtime for megapixel-sized images.

Future Work There are several image processing applications
that are likely to yield successful solutions when expressed using
our formulation. For example, the LDR2HDR problem addressed
by Rempel et al. [2007] could probably be solved with high qual-
ity results using our framework. Another interesting exploration of
our formulation would be in removing compression artifacts like
ringing and mosquito noise, which when combined with our de-
blocking filter could significantly improve the perceived quality of
streaming videos (e.g., YouTube and teleconferencing videos).

Our optimization framework also has much untapped potential for
interactive image editing, especially when combined with learn-
ing algorithms that could automatically identify the type of pix-
els/gradients the user wants to manipulate given a few example
brush strokes. Such interactive tools could be used to remove un-
wanted texture, glare, shadows, and other undesirable artifacts from
an image by simply drawing a few rough strokes. Conversely, such
tools could also be used to selectively enhance portions of the im-
age for dramatic emphasis. In the coming years, we hope to see the
graphics community use and extend our optimization framework to
create exciting new image and video processing applications.

3In the case of applications presented in this paper 95% of the time is

spent on the least-squares optimization

A Glossary of main terms

u unfiltered image (i.e, input image)
f filtered, result (i.e, result image)
p an arbitrary pixel in f
F filter function defined by application
[d, g, w] output produced by F
g desired gradient-field of f (i.e., gradient constraints)
gx channel in g specifying the desired x-derivate of f
gy channel in g specifying the desired y-derivate of f
d desired pixel values of f (i.e., data constraints)
w weights for constraints in g and d
wd channel in w specifying the weights for constraints in d
wx channel in w specifying the weights for constraints in gx

wy channel in w specifying the weights for constraints in gy

E evaluates f ’s fidelity to d and g
Ed evaluates f ’s fidelity to d
Eg evaluates f ’s fidelity to g
Ev evaluates f ’s fidelity to the temporal coherence seen in u
e result of the long-edge detector on an image

el channel in e specifying edge length at each pixel
eo channel in e specifying edge orientation at each pixel

B Parameter values for applications

Application b c1

Simple sharpen 0 3.0E-002
Saliency sharpen 5 3.0E-002
Pseudo-relighting 9 1.0E-004
Non-photorealistic rendering 9 1.9E-002
De-blocking 0 2.0E-003
Sparse data interpolation 20 NA

References

AGRAWAL, A., AND RASKAR, R., 2007. Gradient domain manip-
ulation techniques in vision and graphics.

AGRAWAL, A., RASKAR, R., NAYAR, S., AND LI, Y., 2005. Re-
moving photography artifacts using gradient projection and flash
exposure sampling.

AGRAWAL, A., RASKAR, R., AND CHELLAPPA, R. 2006.
Edge suppression by gradient field transformation using cross-
projection tensors. In 2006 Conference on Computer Vision and
Pattern Recognition (CVPR 2006), 2301–2308.

AGRAWAL, A., RASKAR, R., AND CHELLAPPA, R. 2006. What
is the range of surface reconstructions from a gradient field. In
In ECCV, Springer, 578–591.

ATTNEAVE, F. 1954. Some informational aspects of visual percep-
tion. Psychol Rev 61, 3 (May), 183–193.

AVERBUCH, A., SCHCLAR, A., AND DONOHO, D. 2005. De-
blocking of block-transform compressed images using weighted
sums of symmetrically aligned pixels. IEEE Transactions on Im-
age Processing 14, 2 (February), 200–212.

BARTEN, P. G. 1999. Contrast Sensitivity of the Human Eye and
Its Effects on Image Quality. International Society for Optical
Engineering.

BEAUDOT, W., AND MULLEN, K. 2003. How long range is con-
tour integration in human color vision? In Visual Neuroscience,
vol. 15, 51–64.

BHAT, P., ZITNICK, C. L., SNAVELY, N., AGARWALA, A.,
AGRAWALA, M., CURLESS, B., COHEN, M., AND KANG,
S. B. 2007. Using photographs to enhance videos of a static
scene. In Rendering Techniques 2007 (Proceedings Eurograph-
ics Symposium on Rendering), J. Kautz and S. Pattanaik, Eds.,
Eurographics, 327–338.

BHAT, P., CURLESS, B., COHEN, M., AND ZITNICK, L. 2008.
Fourier Analysis of the 2D Screened Poisson Equation for Gra-
dient Domain Problems.

BHAT, P., CURLESS, B., COHEN, M., AND ZITNICK,
L., 2008. Gradientshop - image and video processing.
http://www.GradientShop.com, May 2008.

BLACK, M. J., SAPIRO, G., MARIMONT, D., AND HEEGER, D.,
1998. Robust anisotropic diffusion.

CASTAGNO, R., AND RAMPONI, G., 1996. A rational filter for the
removal of blocking artifacts in image sequences coded at low
bitrate.

DRORI, I., LEYVAND, T., FLEISHMAN, S., COHEN-OR, D., AND

YESHURUN., H. 2004. Video operations in the gradient domain.
Tech. rep., Tel-Aviv University.

ELDER, J. H., AND GOLDBERG, R. M. 2001. Image editing in
the contour domain. IEEE Transactions on Pattern Analysis and
Machine Intelligence 23, 3, 291–296.

FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002. Gra-
dient domain high dynamic range compression. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 249–256.

FREEMAN, W. T., AND ADELSON, E. H. 1991. The design and
use of steerable filters. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence 13, 9, 891–906.

GEORGIEV, T. 2006. Covariant derivatives and vision. In ECCV
’06: Proceedings of the 9th European Conference on Computer
Vision.

GOOCH, A. A., OLSEN, S. C., TUMBLIN, J., AND GOOCH, B.
2005. Color2gray: salience-preserving color removal. ACM
Trans. Graph. 24, 3, 634–639.

HONG, S., CHAN, Y., AND SIU, W. 1996. A practical real-time
post-processing technique for block effect elimination. II: 21–
24.

ITTI, L., KOCH, C., AND NIEBUR, E. 1998. A model of saliency-
based visual attention for rapid scene analysis. Pattern Analysis
and Machine Intelligence, IEEE Transactions on.

KIM, TAE-HOON, AHN, JONGWOO, CHOI, AND GYU, M. 2007.
Image dequantization: Restoration of quantized colors. Com-
puter Graphics Forum 26, 3 (September), 619–626.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. In SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers, ACM Press, New York, NY, USA, 689–694.

LEVIN, A., ZOMET, A., PELEG, S., AND WEISS, Y. 2004. Seam-
less image stitching in the gradient domain. In Eighth European
Conference on Computer Vision (ECCV 2004), Springer-Verlag,
377–389.

LISCHINSKI, D., FARBMAN, Z., UYTTENDAELE, M., AND

SZELISKI, R. 2006. Interactive local adjustment of tonal val-
ues. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, ACM
Press, New York, NY, USA, 646–653.

MARSCHNER, S. R., AND GREENBERG, D. P. 1997. Inverse light-
ing for photography. In Proceedings of the Fifth Color Imaging
Conference, Society for Imaging Science and Technology.

MCCANN, J., AND POLLARD, N. S. 2008. Real-time gradient-
domain painting. ACM Transactions on Graphics (SIGGRAPH
2008) 27, 3 (Aug.).

ORZAN, A., BOUSSEAU, A., BARLA, P., AND THOLLOT, J. 2007.
Structure-preserving manipulation of photographs. In Interna-
tional Symposium on Non-Photorealistic Animation and Render-
ing (NPAR).

PARIS, S. 2008. Edge-preserving smoothing and mean-shift seg-
mentation of video streams. In ECCV ’08: Proceedings of
the 10th European Conference on Computer Vision, Springer-
Verlag, Berlin, Heidelberg, 460–473.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers,
ACM Press, New York, NY, USA, 313–318.

REMPEL, A. G., TRENTACOSTE, M., SEETZEN, H., YOUNG,
H. D., HEIDRICH, W., WHITEHEAD, L., AND WARD, G. 2007.
Ldr2hdr: on-the-fly reverse tone mapping of legacy video and
photographs. ACM Trans. Graph. 26, 3, 39.

SAND, P., AND TELLER, S. 2006. Particle video: Long-range mo-
tion estimation using point trajectories. In CVPR ’06: Proceed-
ings of the 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, IEEE Computer Society,
Washington, DC, USA, 2195–2202.

SHEWCHUK, J. R. 1994. An introduction to the conjugate gradient
method without the agonizing pain.

SZELISKI, R. 2006. Locally adapted hierarchical basis precon-
ditioning. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
ACM Press, New York, NY, USA, 1135–1143.

TOMAR, S. 2006. Converting video formats with ffmpeg. Linux J.
2006, 146, 10.

WANG, H., RASKAR, R., AND AHUJA, N. 2004. Seamless video
editing. In ICPR ’04: Proceedings of the Pattern Recognition,
17th International Conference on (ICPR’04) Volume 3, IEEE
Computer Society, Washington, DC, USA, 858–861.

WINNEMÖLLER, H., OLSEN, S. C., AND GOOCH, B. 2006. Real-
time video abstraction. ACM Trans. Graph. 25, 3, 1221–1226.

ZENG, Y., CHEN, W., AND PENG, Q. 2006. A novel varia-
tional image model: Towards a unified approach to image edit-
ing. Journal of Computer Science and Technology.

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m) (n)

Figure 4: A performance comparison for various gradient saliency measures when used in the NPR filter. (a) Input image. Images in the
second row (b-e) show visualizations of the saliency mask generated by various saliency measures – (b) gradient-magnitude measure, (c) Itti’s
measure, (d) Canny edge-detector, and (e) our saliency measure. Third row images (f-i) show the effect each saliency measure has on result
produced by the NPR filter. The fourth row shows the effect of each saliency measure (k-n) for another input image (j). See the images at full
resolution to observe the differences. Also, see Section 5.2 for details.

(a) (b) (c) (d) (e)

(f) (g)

Figure 7: The figure shows some of the pseudo-relighting effects created using the function Frelight. (a) Input image. (b) Image relit to
simulate an additional light source to the top of the face. The effect is achieved by setting the local lighting direction for every pixel (i.e.,
o(p) in Frelight) to point north. (c) Input image. (d) Image relit to simulate overhead sun light. (e) The same relighting effect attempted in
Photoshop by using a radial intensity ramp. Notice that our result (d) looks more realistic in comparison to the Photoshop edit (e). (f) Input
image. (g) Image relit to simulate the light fading into the vanishing point, thus adding more depth to the image. The effect is achieved by
setting the local lighting direction for every pixel to point away from the vanishing point. Also see the supplementary video to observe the
relighting effects more clearly.

Original image Uniform weighting result Our robust weighting result

Figure 10: The figure shows the effect our robust weighting function (Section 3.2) has on the quality of the NPR filter (top row) and pseudo
re-lighting filter (bottom row). The left column shows the original image; the middle column shows the result when using robust weighting;
and the right column shows the result when using uniform weighting. Notice the absence of haloing and pinching artifacts in the middle
column. See Figure 2 for a similar comparison with the saliency sharpen filter.

