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ABSTRACT
We demonstrate a realtime system which infers and tracks
the assembly process of a snap-together block model using a
Kinect R© sensor. The inference enables us to build a virtual
replica of the model at every step. Tracking enables us to
provide context specific visual feedback on a screen by aug-
menting the rendered virtual model aligned with the physical
model. The system allows users to author a new model and
uses the inferred assembly process to guide its recreation by
others. We propose a novel way of assembly guidance where
the next block to be added is rendered in blinking mode with
the tracked virtual model on screen. The system is also able to
detect any mistakes made and helps correct them by provid-
ing appropriate feedback. We focus on assemblies of Duplo R©

blocks.

We discuss the shortcomings of existing methods of guidance
— static figures or recorded videos — and demonstrate how
our method avoids those shortcomings. We also report on a
user study to compare our system with standard figure-based
guidance methods found in user manuals. The results of the
user study suggest that our method is able to aid users’ struc-
tural perception of the model better, leads to fewer assembly
errors, and reduces model construction time.
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INTRODUCTION
Block model assembly toys have retained their popularity
over time. These are particularly liked by children who
start assembling models at an early age, developing spatial
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Figure 1: System setup. The user builds the model in the
Play area and uses the Add/Remove/Recheck boxes to interact
with the system. The Kinect R© looks down from the right and
passes the captured video/depth stream to our system to track
the model and infer the assembly process in realtime. Visual
feedback is shown on the display in front of the user.

skills useful throughout life. Lego R© and their larger cousin
Duplo R© blocks are well known snap-together blocks for as-
sembling models. These blocks are designed to be easily as-
sembled into interesting models and de-assembled for reuse.

Model assembly often follows printed step-by-step instruc-
tions as shown in Figure 3. Such step-by-step instructions
can be hard to follow and are not very robust to mistakes dur-
ing the assembly process. Also, rebuilding a model that we
created at some earlier point in time would require re-finding
the instructions. Or if we want to share our original phys-
ical models with friends who want to build a replica, there
are no easily generated instructions. We could save/share the
completed model in its physical state but then we might run
out of blocks while building more models, and even so, the
completed model serves as a poor instructional device. The
Lego Designer Tool [26] allows users to create virtual models
using a keyboard and a mouse and can then generate instruc-
tions for them. But making a model virtually can be far less
intuitive than actually making the physical model.

Ideally, we can save the construction of the model in some
digital format from which it is easy for the same user or oth-
ers to rebuild it later in future. One could take photographs
or video of the model during construction. Casually captured
videos of the construction process may be useful in guiding
the rebuilding process, but can be confusing or tedious to fol-



Figure 2: Our system uses 2× 4 Duplo R© blocks.

low especially if there is any back-tracking in the construction
process. A user could also create a well-annotated set of in-
structions in form of photos or figures like standard Lego R©

blocks instructions; however, this requires great skill and sig-
nificant effort. We would like to enable users to build mod-
els with minimal interference from the recording mechanism
and to be able to store and transmit instructions to rebuild that
model later with ease.

In this paper, we design and implement a system which
watches the user assemble a model using a camera with depth
sensing and infers the assembly process in realtime. Figure 1
shows the setup of our system. It dynamically tracks the
physical model and displays a virtual replica on the screen
in front of the user in the same pose as the in-hand physical
model. In Authoring mode, it records the step-by-step addi-
tion of blocks. Removal of blocks is also handled, effectively
deleting the previous addition of that block. In Guidance
mode, step-by-step instructions are superimposed on the dig-
ital replica, again following the dynamically changing pose
of the physical model being constructed. The system detects
mistakes made and gives appropriate feedback to the user,
thus avoiding the user’s frustration of undoing and redoing
multiple steps for making a correction in the assembly.

The Authoring and Guidance system uses a combination of
color-based and depth-based (3D) tracking. We leverage the
widely available Kinect R© sensor which gives us depth infor-
mation along with color. Although blocks come in varying
shapes and sizes, to keep the inference problem computation-
ally tractable, we work here only with Duplo R© blocks that
each have a 2 × 4 arrangement of studs, as shown in Fig-
ure 2. We later discuss how our solution can be extended to
include other different types of blocks. Even with both color
and depth sensors and the single block type, inconsistent and
noisy depth sensing, specular reflections, and the partial oc-
clusions caused by the user’s hands present significant chal-
lenges to creating a responsive and robust system. We counter
all these challenges in our work both through sensor fusion,
and by designing the user interface to lead the user gracefully
through the block modeling process. We present a working
system which allows for realtime inference and feedback in
block model assemblies.

We report on a user study to answer some specific questions
related to the guidance system, comparing it to traditional
guidance via static images. We measure time taken to com-
plete assembly tasks and count the number of mistakes made
by users.

We explore two broad directions in this paper - a novel way
of guiding assembly process and a realtime system to track

Figure 3: Traditional method of guiding model assembly
tasks using images.

and infer the assembly process. In the next two sections, we
review the prior work in these directions. We then present
the design, implementation and potential applications of our
system. After that, we describe the user study, analyze its
results and conclude the paper by discussing potential future
work.

RELATED WORK: GUIDING THE ASSEMBLY
Agrawala et al. [1] provide an excellent summary of the is-
sues in designing the presentation of many assembly tasks.
Heiser et al. [10] and Agrawala et al. [2] have studied design
principles for producing visually comprehensible and acces-
sible instructions for assemblies, and develop algorithms for
producing such instructions. A key observation is that creat-
ing effective static instructions for three dimensional tasks is
difficult and should follow established design principles.

We now discuss some common modes of presenting assembly
instructions to the users and discuss what depth perception
cues they provide.

Figure-based guidance. Figures (as drawings or pho-
tographs) are the most common way of providing instructions
in assembly tasks. The user is shown a figure or multiple
figures depicting the current state of the model and showing
where the new block goes as in Figure 3. This type of in-
struction is used both for toy models such as Lego R© as well
as in many other assembly tasks such as IKEA R© furniture as-
sembly. Each figure provides monocular depth cues such as
occlusion, perspective, relative size, and shading. While all
these cues can aid structural perception, the spatial perception
literature [7] has shown that motion cues also play a central
role in understanding shape. Motion parallax [8] and the ki-
netic depth effect [28] can greatly enhance the structural per-
ception of the model. In addition, any structure that the user
understands from static figures needs to be mentally aligned
to the physical model in his hand. Once done, the user can add



the new block. We call this perceptual alignment from vir-
tual model to physical model perception transfer. Perception
transfer can induce errors in structural understanding which
we hope to minimize in our guidance system.

Video-based guidance. An alternative to figure-based in-
structions is video-based guidance, presenting the user with
recorded videos of the assembly steps. The user can then
pause, play or repeat each video clip to understand the in-
struction and then perform it. Videos can provide the same
depth cues as figures, but also provide motion cues that lead to
better structural perception. Video instructions can also show
the motion of the parts as they are being placed which can be
particularly useful if the task requires complex moves. How-
ever, the user may find it hard to control the system, needing
to pause the video sometimes to understand or replay the clip
multiple times. Further, the problem of perception transfer
discussed for the figures still remains. Pongnumkul et al. [21]
have developed a system for generating Pause-and-Play video
tutorials and discuss these common problems.

Kraut et al. [16] have done experiments that show a signif-
icant increase in the performance of users on a bicycle as-
sembly task when they work in a collaborative work space
getting video instructions from their own viewpoint from an
expert compared to doing the tasks using an online figure-
based manual. Our system is related to this work in the sense
that we provide live feedback from the user’s viewpoint by
tracking the model being built.

It is known that the spatial perception skills of an individ-
ual depend on many factors [9, 25, 22, 6] and while an in-
structional figure/video may be clear for one user, it might be
confusing for another. This observation suggests that an in-
teractive system adapting to the users’ handling of the model
could improve the assembly process.

Augmented Reality-based guidance. Augmented Reality
(AR) techniques try to minimize the problem of perception
transfer by creating an immersive environment to merge the
virtual instructions and the physical model. Augmented Re-
ality has been applied to assembly tasks and tested in user
studies such as Tang et al. [27], Henderson et al. [11] and
Boud et al. [5], which evaluate and demonstrate the advan-
tages of using AR techniques over the traditional figure-based
techniques. Hou et al. [12] have argued the benefits of using
augmented reality and also mention the idea of playing pre-
recorded animation clips at each step of the assembly which
are better than static figures. In all these systems, highly spe-
cialized equipment is needed, the models are typically sta-
tionary and the motion cues are due to parallax caused by
head motion. In our system, we use an inexpensive, widely
available color+depth sensor along with a common computer
display to provide motion cues based on the motion of a real
model held in the hand.

Guidance in our system. One of our goals is to solve the
problems of perception transfer and lack of control while pro-
viding the same visual cues as figures or video for structural
perception. The system tracks the physical model’s motion
and continuously shows the replica on the screen in approxi-

mately the same orientation as the user’s viewpoint with the
instruction step superimposed on it. The continuous render-
ing on the screen can be seen as a video that is being gener-
ated on the fly from the user’s viewpoint along with the in-
struction. This instruction mode overcomes the problems of
lack of control and perception transfer.

Since the rendering on the screen is governed by the user’s
handling of the physical model, the user is in complete con-
trol of the pose of the model in which the instruction is being
shown to him. This minimizes the need for perception trans-
fer. The system also provides all the depth perception cues
provided by the static images and the recorded video.

We experimentally compare our system with the figure-based
guidance method that is most commonly used. We do not
compare with the recorded video-based systems because, in
essence, our system is also a video-based guidance system
where the video is not pre-recorded but generated on-the-fly
based on how the user views the physical model.

RELATED WORK: TRACKING THE ASSEMBLY
There has also been work to track and evaluate the correct-
ness of assembly steps presented to the user. Molineros et
al. [20] put encoded markers on each part for tracking it and
detecting connections with other parts. They also precompute
a connection graph between parts and feature descriptors for
all configurations. Ju et al. [15] presented a system called
Origami Desk which uses special hardware built into paper to
sense folds and hence detect completion of predefined steps.
These frameworks can be extended to a free mode where the
user is allowed to connect any part anywhere or make a fold
anywhere. However, this involves precomputation to learn
descriptors for the complete space of allowed manipulations
over all the parts. Searching over this space in realtime will be
even harder. Our work presents a realtime system which can
track and evaluate an assembly process of Duplo R© blocks.

Recently, there has also been work on tracking manipulations
done by user in the free mode. Jota et al. [14] present a sys-
tem which captures and projects virtual replicas of physical
objects put together by the user. However, the quality of the
virtual replicas suffers due to the inherent noise in Kinect R©’s
depth sensing. There is no inference to establish connections
between the parts. Anderson et al. [3] use special circuitry-
augmented blocks to determine the assembly process of a
model and then convert it to a more detailed and less blocky
virtual model. Our system understands the model assembly
without any special hardware and also focuses on guiding the
model’s re-creation in a sequential manner.

In a contemporaneous work, Miller et al. [18] solve a sim-
ilar problem of tracking and inferring how a Duplo R© block
model is built. They assume that the model always stays with
its base on the table to reduce the tracking to 3 degrees of
freedom (DOF): two for in-plane translation and one for in-
plane rotation. Their representation is voxel-centric, rather
than part-centric, requiring all voxels occupied by the model
to be seen to correctly model the assembly. These restrictions
limit their system to simple block models, usually built layer
by layer. Their user study to measure model acquisition ac-
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Figure 4: Processing pipeline: The Segmenter receives a color plus depth image from the camera and segments out the back-
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and the tracked pose to detect any update. Appropriate visual feedback is rendered to the user and the virtual model is updated.

curacy shows scanning errors due to tracking misalignment,
hand pixels, and parts that are less visible. In comparison,
our work uses 6-DOF tracking, allowing in-hand manipula-
tion, and belief accumulation from multiple views for infer-
ence of whole-part additions/subtractions, and subsequently
avoids many errors inherent in their system. Further, we en-
able two-way feedback between the user and the system com-
pared to only system-to-user feedback in their work. We be-
lieve this leads to richer human-computer interaction expe-
rience. Additionally, we report on a user study comparing
motion-tracked guidance to traditional methods.

SYSTEM OVERVIEW
Our system consists of a Kinect R© depth+color camera above
and to the right of a table surface in front of which the user
sits as shown in Figure 1. The Kinect R© looks obliquely down
on the table surface. At the back of the table is a monitor
facing the user; when the physical model is being tracked, the
monitor shows a virtual replica of the model from the point of
view of the user. A set of 2× 4 Duplo R© blocks sits off to the
side of the table within reach of the user. The table surface
has four demarcated regions - Play area, Add box, Remove
box and Recheck box. We refer to the last three together as
Control boxes.

The system operates in two modes - Authoring and Guidance.
In the Authoring mode, the user builds a model by adding or
removing blocks one at a time. The user can freely move
around the model in the Play area during the whole process.
A tracked virtual replica is shown on the screen. To add a new
block, he first places the new block in the Add box and then
adds it to the model. The system checks where the block has
been added. Once the system detects the block’s most likely
position, it shows the update in blinking mode superimposed
on the virtual replica in the display. If the detection is correct,
the user can move to the next step directly. Otherwise, the
user puts his hand in the Recheck box and the system checks
again for the update. To remove a block, the user removes
it from the model and places it in the Remove box and the
system again starts the cycle of update detection.

In the Guidance mode, there is a pre-loaded model and a se-
quence of block additions required to build it. As before, a

tracked virtual replica of the model in the Play area is shown
on the screen, but with the block to be added next also shown
in blinking mode superimposed on the replica. To add the
block, the user first places the new block in the Add box and
then adds the block to the partial assembly. The system ver-
ifies the update. If the update is correct, it loads the next
instruction. Otherwise, a notification is displayed providing
feedback about the mistake and asks the user to correct it.
Please see the supplementary video for a recordings of sys-
tem usage.

For tracking the model and inferring updates, the system
needs an internal representation for the block model. We
now describe that representation, followed by the processing
pipeline for the Kinect R©’s data stream.

Representation for Block Models
We assume that the model resides in a voxelized space where
each voxel is of size 16mm × 16mm × 19.2mm, the official
size of a 1 × 1 Duplo R© block. The model is made of 2 ×
4 Duplo R© blocks either red, green, blue or yellow in color.
Each block occupies a volume equivalent to 8 voxels.

The following structures are maintained for the model at any
point -

• List of blocks where each block has a color and list of vox-
els it occupies.

• Map of the complete voxelized space where each voxel is
either unoccupied or maps to the block occupying it.

• Mesh model used in rendering.

• Point cloud of the model, denoted as Pv , used for 3D align-
ments.

We also have a mesh model and point cloud representation
for one 2 × 4 block which can be added to or removed from
the virtual model in any color. The mesh model is from
Google’s 3D warehouse, converted into a dense point cloud
using MeshLab. The point cloud Pv is a union of translated
and rotated copies of this block point cloud, with points re-
moved in areas that are covered by other blocks.



Processing Pipeline
Figure 4 shows the work flow of the system. The Kinect R©

camera provides a continuous stream of images with an RGB
color and depth at each pixel. The Segmenter module takes
each color+depth image from the camera and prunes it to
the pixels corresponding to the physical model in the Play
area. It also checks for user inputs through Control boxes
and converts that into an op type (add, remove or recheck)
and op color (for add or remove). The Tracker module aligns
the model’s point cloud with the virtual model’s point cloud.
This aligned data plus the user inputs are then passed on to
the Update Detector module.

SEGMENTING THE CAMERA DATA
We first convert the Kinect R© color+depth images into colored
3D camera point clouds, Pc, by back-projecting the pixels
to the known depths from the Kinect R©. We filter out pix-
els which do not correspond to the physical model such as
the background and hands. The system starts with an empty
work area and we store the background depth for each pixel.
For subsequent images, for every pixel in the incoming depth
image, if the observed depth is less than 95% of the back-
ground depth, we mark that pixel as foreground. The 95%
value is empirically determined to counter the depth inaccu-
racies from the Kinect R© camera. We also filter out the pixels
whose corresponding 3D points do not lie within the Play
area or any of the Control boxes.

Pixels above the Control boxes set the op type and op color
based on majority occupancy. The Recheck box is given pri-
ority over Add and Remove boxes since it lies further from the
user. If op type is add or remove, we set op color by finding
the majority color of the points in the corresponding box.

The remaining 3D pixels above the Play area are either part
of the user’s hands or the model. We use a color-histogram-
based classifier built prior to the start of the system to distin-
guish between the hands and Duplo R© blocks, and remove the
hand pixels. The remaining pixels above the play area form
the point cloud corresponding to the physical model, Pc.

TRACKING THE MODEL
A key component of the system is the ability to track the
physical model as the user moves it around with or without
adding/removing a block. This allows us to render the virtual
model from the user’s viewpoint on the screen and enables us
to render additional feedback or instructions about the next
step of the task. The tracking system runs at real-time frame
rates. Currently, we do not guarantee robust tracking if the
model is turned upside down. This is because the sensor can-
not capture enough geometry on the hollow side of blocks and
hence leading to less reliable tracking.

For every camera point cloud, Pc, we compute a transforma-
tion that aligns the virtual cloud, Pv , with Pc. We use the
ICP (Iterative Closest Point) algorithm proposed by Besl and
McKay [4] to align the point clouds by solving for a 6D trans-
formation: 3D rotation and 3D translation. As a side effect of
the algorithm, we also get a set of outliers, O, points in Pc

which do not find a match in Pv . When a user makes changes

to the model, these “outliers” correspond to differences be-
tween the previous and updated state of the model; thus, we
use the outliers later for update detection.

Given an initial transformation T0 between the point clouds,
the ICP algorithm iteratively solves for the final transforma-
tion Tf . The algorithm first applies T0 to Pv to create a trans-
formed virtual point cloud. For each point in Pc, it finds the
closest point in the transformed Pv , accelerated with a K-d
tree. Correspondences with distances greater than an outlier
threshold are rejected (for the purpose of alignment, though
retained for model update). The transformation is then up-
dated by minimizing the total squared distances between the
remaining correspondences. This optimization is solved in
closed form. The same steps are repeated with the updated
transformation until convergence. At each iteration, we re-
duce the outlier-rejection threshold.

Since the ICP algorithm performs a greedy, local optimiza-
tion, success depends on good initialization, T0. Typically,
T0 is set to the Tf from the previous tracked frame. How-
ever, when the model first appears before the camera, there
is no previous transformation available. Further, the system
can lose track of the physical model, e.g., when the motion
is too fast. We detect loss of tracking when the distance be-
tween the nearest point correspondences becomes too large.
Thus, when tracking is lost or a model is newly introduced,
we require a method for pose initialization.

Pose Initialization
To initialize the pose, we need to estimate a suitable 3D trans-
lation and 3D rotation. For 3D translation, we simply use the
difference between the 3D centroids of Pv and Pc.

To estimate an initial rotation, we exploit the fact that the
model primarily consists of mutually orthogonal or parallel
planar faces. We estimate the dominant face normal direc-
tions, resulting in a small set of possible rotations to align Pc

and Pv . In fact, two normal directions suffice, as the third
direction can be inferred.

First, we estimate normals at every point in Pc based on each
point’s position and the positions of its nearest neighbors. We
cluster the normals into bins in direction space, i.e., bins over
the unit sphere. A Hough-transform finds a pair of mutually-
orthogonal bins in the direction space which has the most nor-
mals supporting it. Given this pair of directions, there are 24
possible orientations of the X , Y , and Z axes such that any
two line up with this pair. We prune out half of the possible
orientations by assuming the hollow side of the blocks does
not face up. Hence the 3D rotation search space can be pruned
to testing 12 candidate orientations, j = 1...12.

Then, for each orientation candidate j, we transform the vir-
tual model points Pv using the corresponding candidate ro-
tation as well as the previously estimated translation. The
visible parts of the transformed Pv are selected using a depth
buffer rendering from the camera’s viewpoint. We then run
the ICP algorithm to refine the orientation to arrive at a can-
didate transformation Tj . Applying Tj to Pv results in a can-
didate point set Pj to match against samples Pc from the
Kinect R©. We choose the best transformation candidate Tj



INITIAL STATE

OPERATION
INDICATED
(start timer 

countdown)

OPERATION
CONFIRM

(start timer 
countdown)

OPERATION
CHECK

(check for 
update)

OPERATION
UPDATE

(update model     
representation)

op_type = 
recheck

update
detectedop_type = 

add || remove
timer 

runs out
timer runs 

out, OR

op_type = 
add || remove

INITIAL STATE

OPERATION
UPDATE

(update model     
representation, 
load next step)

CORRECT COLOR 
BLOCK BEING 

ADDED
(start timer 

countdown)

CHECK
 BLOCK POSITION 
(check for update)timer runs out correct update detectedop_type = add AND

op_color is correct

if wrong op_color, 
give feedback

GUIDANCE MODE

AUTHORING MODE

WRONG
 BLOCK POSITION 

(give feedback)

op_type = recheck
wrong block 

position detected
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which has the minimum match error between Pc and Pj . For
the match error, we render the colored point clouds Pc and
transformed Pj from the camera’s viewpoint to create two
color images. We first quantize the image colors into the pos-
sible red, green, blue, and yellow model colors and partition
the images into abutting 50 × 50 windows. For each win-
dow, we build a color histogram and cluster the pixels into the
bins of corresponding colors. The pixels in Pc’s projection
may have saturated pixels which cannot be classified as any
color. We put them in a separate bin called saturated-color
bin. We set the match error between the images as the sum
of the match costs between the histograms of corresponding
windows.

We use the Earth Mover’s Distance (EMD) [23] metric to
match any ith histograms in the two images. This metric
measures the cost of recreating the latter histogram by mov-
ing around the data in former. There is a cost to move data
between the bins. We set the cost to move pixels from any
color to a different color as 1. We set the cost to move pixels
from saturated-color bin to any color bin as 0.

Model Tracking at the Start
The model tracking does not work well for small models be-
low 4-5 blocks. There are two reasons for this:

• Noise in the camera data. The data from the Kinect R© is
particularly noisy near depth discontinuities. For smaller
point clouds this noise is a significant fraction of the data
and the tracking runs into problems.

• Structure mismatch. If the user adds or removes a block,
we still track it using a pre-updated virtual model until
the update is detected and incorporated into the model.
When the model is small, the structural change of even one

block confounds the tracking as the outliers from the newly
added block overwhelm the points from before the update.

To start a new model we ask the user to place the first block
in a fixed position in the Play area and add blocks to it at
that location. This greatly reduces the possible candidates to
search over. We modify the matching algorithms for aligning
point clouds to allow for small translations from the known
pose. Once the model has 5 blocks, we remove this restriction
and allow the user to freely move the model around. The
system now dynamically tracks it as described earlier.

DETECTING MODEL UPDATES
When the user indicates an update to the model (add or re-
move), the system uses the output of the tracker to detect the
update. Separate finite state machines implement the Author-
ing and Guidance modes as shown in Figure 5. These are a
formal representation of the system usage already described
in detail in the System Outline section.

In Authoring mode, when the user indicates an operation, the
system checks for changes in the model as the user moves the
model around in front of the sensor. Once the system detects
the update, it echoes this in the display. If the user thinks the
system is in error and asks for a recheck, the system rechecks;
otherwise, it updates the model and moves to the next step.

In Guidance mode, the system checks for the correct color
and position of the block and gives appropriate feedback to
the user. It goes to the next step automatically if the detected
update matches the instruction otherwise it waits for the user
to correct the mistake and ask for recheck. Note that only
block additions take place in the Guidance mode. Any block
removals during the Authoring mode effectively undo the pre-
vious addition of that block.



Creating the Candidate Set for Updates
At any stage in the assembly we maintain a set of candidate
updates to the model. The candidate updates are one of two
types, addition or removal, depending on the indicated oper-
ation. In addition mode, we traverse the voxel space and find
sets of unoccupied voxels where a new block could be added.
To ensure connectivity in the model, these sets must be con-
nected to at least two occupied voxels; i.e., we assume the
user is creating a single, rigid model, each piece connected to
the model using at least two studs.

In removal mode, the candidates are simply any block that
can be removed without leaving the remaining model discon-
nected, i.e. (1) either the space directly above those blocks
or below is completely free and (2) they are not the only con-
nected neighbors to any other blocks connected to them. The
second condition does not apply when the remainder model
has just one block. We can do this analysis using the vox-
elized representation to find such candidates.

We also add one more candidate to both modes which cor-
responds to no addition/removal, the state of the model just
before the user adds/removes a block.

For each valid candidate, j, we maintain a belief, b(j), which
denotes the belief that candidate j should be chosen to update
the model. The current belief is based upon the tracked cam-
era data stream consisting of (1) the point cloud seen by the
camera, Pc, (2) the transformation T which best aligns the
un-updated virtual model’s point cloud, Pv , to Pc and (3) the
outlier points, O, given T .

Updating the Belief Distribution
After each new block addition or removal, all the b(j) are
set to 0. We then update the b(j)’s each time new camera
data comes in. It is often difficult to determine which block
has been added or removed from a single viewpoint due to
input noise, occlusion, and structural ambiguities. Thus, we
accumulate beliefs from more than one pose of the model as
the user turns the model to reveal new views.

From each pose, we score the possible candidates based on
how well the camera point cloud Pc, matches with the virtual
point cloud corresponding to candidate j, denoted by Pj . For
an addition candidate, Pj is obtained by adding the (colored)
point cloud of the new block to Pv . For a removal candidate,
Pj is obtained by removing the point cloud of the block from
Pv . For the no addition/removal candidate, Pj is simply equal
to Pv .

To compute the matching score, we first align Pc with each of
the Pj’s using ICP. The Pj’s are structurally close to Pv and
we have already aligned Pv with Pc using the transformation
T . Hence we use T as the initial transform for these ICP
alignments. We then compute the match error for each can-
didate using the same matching metric as used for comparing
poses for tracking . For addition candidates, we also set the
error to infinite if the majority of outliers which occupy the
voxels of the candidate are not of the indicated color. We do
the same for removal candidates if the corresponding block is
not of the indicated color.

We sort the match errors in increasing order. The top three
ranking candidates get the belief scores of 3, 2 and 1 and the
rest get a score of 0. To select a best update candidate, we
require beliefs from at least three poses separated by at least
10 degrees of rotation to make a decision (for small models,
when the system is working with a fixed pose, we remove
this requirement). To accumulate beliefs from three well-
separated views, we begin with the initial transformation, call
this T1, and average beliefs into a belief set b1(j) over subse-
quent nearby observations until T has changed by at least 10
degrees of rotation from T1. This establishes a second trans-
formation, T2, with a new set of beliefs b2(j) for each candi-
date. We continue to collect beliefs over subsequent nearby
observations, averaging them with the beliefs corresponding
to the nearer of T1 or T2. We also continuously check for a
new transformation, T3, at least 10 degrees from both T1 and
T2, and, if found, begin a new average set of beliefs b3(j).
More views and distributions are added if the user continues
moving the model to orientations that are at least 10 degrees
away from all previous views.

Once belief sets associated with at least three well-separated
views have been accumulated, we normalize each set to sum
to 1 and then sum all normalized sets to get an overall set,
B(j). If the ratio of the highest scoring candidate in this set
is at least 1.25 (chosen empirically) times that of the second
best candidate, then we declare the highest scoring candidate
as the winner. If we cannot declare a winner, then we wait
for more camera data from new poses to update the beliefs,
continuously checking for a winner as beliefs are updated. If
the no addition/removal candidate is the winner, which can
occur if the user has not yet added/removed a block, we reset
the belief sets and re-start checking for an update.

Moving to the Next Step
If the system selects a candidate as the update but the user
then asks for a recheck, we remove that candidate from fur-
ther consideration, reset the belief sets, and the update check-
ing process restarts. In practice, we find that the user needs
to request a recheck less than one out of twenty additions or
removals.

Once the model update has been identified (and approved by
the user in Authoring mode), we update the internal represen-
tation of the model. The model’s virtual cloud Pv is set to
the point cloud corresponding to the winning candidate. For
block addition, we append the new block to the list of blocks
and map the corresponding voxels in the voxel space to it. For
block removal, it is removed from the list and the correspond-
ing voxels are marked as unoccupied.

PERFORMANCE AND APPLICATIONS
The system runs in realtime on a desktop PC with 12-core,
3.33GHz Xeon CPU and uses at most 500MB of RAM. To
achieve this performance, the implementation is highly mul-
tithreaded with separate threads for tracking, rendering and
checking updates. Within the update thread, the candidates
are evaluated in parallel.

The system takes about 2-5 seconds to infer each model up-
date. The tracking works in realtime although it lags slightly



(a) (b)

Figure 6: Models authored using our system.

if the model motion is fast. We have used our system to build
models up to 85 blocks in size. At that point the tracking
speed reduces to about 5 frames per second. Figure 6 shows a
few models that users have authored while using our system.

The bottleneck of the system is nearest neighbor correspon-
dence search in ICP alignments for tracking and candidate
evaluations. These searches can be done in parallel for 3D
points in a cloud, but we were limited by the number of
CPU threads that we could use. In the future we believe
that our system can benefit from exploiting the parallelization
potential in GPUs as shown by recent works like KinectFu-
sion [13].

We now describe a few applications of our system.

Generating Tutorials for Model Assembly
The captured assembly of a model is a sequence of add or re-
move operations. To generate an assembly tutorial, we would
like to omit any steps that involve adding and then later re-
moving a block. We delete such add/remove operations from
the representation. This may cause the remainder of the se-
quence to have block additions which do not connect to any
blocks added before them. We reorder the steps by postpon-
ing the addition of such blocks until they have a connection
with the prior model. It is easy to prove that the assembly se-
quence of any model can be reordered in this way. This rep-
resentation can then be used to then generate tutorials or ex-
planations in form of images with or without annotations [17,
19].

Ease of Sharing and Recreating Models
The captured assembly sequences from the Authoring mode
can also be used as input to our Guidance mode which uses
exactly the same hardware setup. This allows for an easier
way for people to create and share their models with other
users or save these representations for future re-creation.

Access to Virtual Replicas
The output of the Authoring mode is a virtual 3D replica of
the model. These virtual models could be used for different
purposes, e.g., as content for games and animations.

(a) Baseline interface (b) Track interface

Figure 7: Photographs of the two guidance interfaces that we
test in the user study. The Baseline interface depicts two static
views of the model. In the Track interface the orientation of
the model tracks that of the model in the user’s hand.

USER STUDY
There are many aspects of the Authoring and Guidance sys-
tem for which we can ask questions that can best be answered
by observing user behavior. In this work, we conducted a
study that focuses on the Guidance system as it can be com-
pared to other more traditional guidance modes.

In particular, we conducted a user study to focus on the dif-
ferences between two interfaces for providing instructions for
adding blocks to Duplo R© models. The first interface (Base-
line) provides two static views of the model (with the new
block) on the screen. The new block blinks, alternating be-
tween opaque and semi-transparent. These views were man-
ually chosen to give the best possible view of the new block
from two different directions. Figure 7a shows a photograph
of this system in progress. This interface is close to the cur-
rent methods found in user manuals for the assembly tasks.
The second interface, (Track), is our tracking-based system
which shows the virtual model on the screen in the same pose
as the physical model in the user’s hands. The display updates
in real-time as the user moves around the model. The block
to be added is again shown in blinking mode as in Baseline.
Figure 7b shows a screenshot of this interface. Please refer to
supplementary videos which show how participants use these
interfaces.

For Baseline, we decided against using the more traditional
way of showing before and after figures of the step. Rather,
in the two interfaces being tested, we use the same visual-
ization for the new block to be added to avoid the results
being confounded by this difference. Also, we do not use
the mistake-detection capability in Track since we wish to di-
rectly compare the instruction modes.

We conduct two tests, one in which we focus on single-block
additions, and the other on multiple sequential-block addi-
tions.



(a) Model A (b) Model B (c) Model 1 (d) Model 2 (e) Model 3

(f) Model 4 (g) Model 5 (h) Model 6 (i) Model 7 (j) Model 8

Figure 8: Initial models used in the user study tasks. Models A and B have 4 blocks each and remaining models have eight blocks
each. Participants added one block to each of the 8-block models and 12 blocks in sequence to each of the 4-block models. The
transparent block in each of the models is the block that needs to be added next.

Task Design
We assembled ten initial block models, shown in Figure 8.
Models A and B initially have four blocks each and Models
1 − 8 have eight blocks each. The task in the study was to
add one block to each of the 8-block models, and 12 blocks
sequentially to the two 4-block models. Each participant had
to complete half of the tasks (4 one-block additions and one
12-block addition) with one of the conditions, and then the
remaining tasks with the other condition. We shuffled the
models randomly between the two conditions for each par-
ticipant. Also, the order in which the participant used the
conditions was randomly decided to counter the effect of any
3D-perception learning that might occur by completing the
tasks.

For each block addition, we measured the time taken to add
that block. We also noted if the block addition was correct or
not. We analyze the effect of the interface conditions on these
two dependent variables - the time taken to make the update
and correctness.

Procedure
Before starting the assembly tasks, the participants were
asked to answer a set of ten questions to test their spatial vi-
sual ability. These questions had a mixture of Mental Ro-
tation questions [24] and 3D structure assembly and paper-
folding visualization questions, which are commonly part of
a spatial IQ test. We might expect that the people with high
spatial visual ability perform well in any interface conditions
and hence we wanted to test this possible dependence. We
also collected information about the gender, education level
(undergraduate or graduate) and previous experience with
Lego R© blocks on a Likert scale of 1 to 5. In our analysis, we
wanted to analyze the possible effects of these factors also.

After completing the initial set of questions, the participants
started using one of the two interface conditions. Before start-
ing each condition, we gave them a demo of the interface

with a training model, separate from those in the tasks, and
asked them to practice adding 4 blocks to it sequentially. Un-
der each condition, they first did the single-block additions to
four of the 8-block models, and then completed twelve block
additions sequentially to one of the 4-block models. After
completing every block addition, the participants were pro-
vided feedback about the correctness of the block addition.
Providing feedback was important for the case of the 4-block
models because we did not want the effect of a mistake at an
earlier stage to cause a mistake at a later stage. We did not
record the time taken for corrective feedback and correction
in our time record of the task completion.

After the participants finished all the tasks, they were asked to
fill a post-study survey which asked for qualitative feedback
about the two conditions. We asked them about their prefer-
ence for the systems, if any, and also for any other interface
ideas that could help guide them better. We report qualitative
comments.

Participants
Sixteen participants (eight female, eight male, ages 20 to 30)
volunteered. Twelve of them had built models with blocks as
a child and all of them had experience in doing some 3D as-
sembly tasks like furniture, electronics etc. Each participant’s
study lasted for about 45 minutes.

Results
We analyze the results of the experiment in three ways. First,
we discuss the one-block additions to eight of the ten mod-
els across the users and the conditions to make a quantitative
comparison of the two interfaces. Second, we use the mea-
surements from the twelve sequential block additions to the
4-block models to see how the time taken varies when the
basic model remains the same. We analyze each of the two
models separately for this. Third and last, we report the quali-
tative feedback from our participants about the two interfaces.
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(b) Percentage speedup for models.

Figure 9: Percentage speedup over all the one-block addi-
tion tasks (value greater than 0 means that the Track interface
takes less time).

Comparing the Interfaces for the One Block Additions
We analyze the results using two dependent measures - the
time taken to complete the block additions in milliseconds
and the correctness.

We perform a mixed-model analysis of variance where Time
is the dependent factor, and Participant and Model are ran-
dom effects. Modeling Participant as random effect accounts
for any variation in individual performance, and modeling
Model accounts for any difference in difficulty of block ad-
dition across the models. We use the following variables as
fixed effects -

• Gender

• Score: The score of each participant on the set of ten spatial
IQ questions.

• Education: Level of education - undergraduate or graduate.

• Experience: Personal experience with building Lego R©

models (increasing scale of 1 to 5).

• Interface: The interface condition - Baseline or Track.

The mixed-model analysis reveals that only Interface has a
statistically significant effect on Time (F(1,104) = 4.4932, p <
0.05). The average time taken for the tasks using Baseline is
21.809 seconds (stdev = 10.1s) and for the tasks using Track is
18.871 seconds (stdev = 8.1s), an improvement of about 14%.
The 95% confidence interval for the difference in the mean

(a) Model A. (b) Model B.

Figure 10: The two 16-block models, each built by adding 12
blocks sequentially by the participants.

times is from 0.189 seconds to 5.687 seconds of improvement
for Track over Baseline.

We define the speedup as the percentage increase in the speed
of performing the step using Track vs Baseline. Specifically,

speedup = 100 ∗ (Time(Baseline)

Time(Track)
− 1)

A value above zero indicates that Track took less time and
vice versa. In Figures 9a and 9b we show the speedup for
individual users and models respectively. Although the per-
user and per-model time averages have been aggregated over
a small sample of the models and users respectively, they
provide evidence for the statistically significant improvement
from the mixed-model variance analysis.

In a second point of comparison between the interfaces, the
users made 3 mistakes out of total 64 single-block additions
while using Baseline while no mistakes were made in the
same block additions while using Track. We observed that the
participants preferred to take longer times to complete a step
rather than making a mistake as they were correcting their ac-
tions continuously before actually adding the block to avoid
making the mistake.

Comparing the Interfaces for Multi-Block Additions
Here, we analyze the times to add blocks one after the other
to the same model. We want to see if there is any dependence
on the times taken as the model grows, or any dependence
on the particular steps or on the interface. For this, we con-
sider two 4-block models to which the participants make 12
sequential block additions using the two interfaces, one inter-
face per model. We do a mixed-model analysis of variance
for each of the models separately. Figure 10 shows the two
complete models and we refer to them as Model A and Model
B. As before, we use Participant as a random effect and Inter-
face as a fixed effect. We add the size of the model (number
of blocks) at every step, denoted by variable Step, as another
fixed effect. In this analysis, we will call a step harder if it
takes a longer time to add that block.

For Model A, the mixed-model analysis reveals that Time is
significantly affected by both Interface (F(1,11) = 5.3956, p <
0.05) and Step (F(11,154) = 11.6386, p < 0.0001). The mean
times for Track and Baseline interfaces over all the steps are
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interface takes less time. The red outline indicates statistically sig-
nificant result (p < 0.05))

Figure 11: Metrics for Model A.

11.577 seconds (stddev = 5.38s) and 17.303 seconds (stddev
= 17.08s) respectively. The 95% confidence interval for the
difference in the mean times is from 0.438 seconds to 11.014
seconds of improvement for Track over Baseline. Figure 11a
shows the mean times for the individual steps. We do not
observe any correlation between the step (which is also the
number of blocks in the model) and the times taken. We do
observe that some steps take longer to complete than others,
and hence are harder. The Interface by Step interaction is sig-
nificant (F(11,154) = 6.1956, p < 0.0001) with Track show-
ing a stronger effect on harder steps. Figure 11b shows the
percentage speedup for different steps with the statistically
significant data points marked in red. By observing the sig-
nificant data points, we can infer that using Track can help
users to understand the structure better particularly when the
block update step is harder.

The participants made 7 mistakes in building Model A using
Baseline compared to none using Track.

For Model B, the mixed-model analysis reveals no significant
effect of Interface on Time. The mean times for Track and
Baseline interfaces over all the steps are 10.028 seconds and
10.224 seconds respectively. Step does have a significant ef-
fect (F(11,165) = 3.5202, p < 0.0002) which indicates the
varying difficulty level across steps. Figure 12a shows the
mean times for each step. The Interface by Step interaction
does show significant improvement of Track in some cases.
Figure 12b shows the percentage speedup for this model with
the statistically significant data points in red again supporting
the observation that using Track can help the harder steps.
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(b) Percentage speedup (value greater than 0 means that the Track
interface takes less time. The red outline indicates a statistically
significant result (p < 0.05))

Figure 12: Metrics for Model B.

The participants made no mistakes while building this model
using either of the interfaces.

Perhaps the most interesting observation with the multi-step
models is that Track provides larger improvements for the
steps in the models which are harder than the others. To fur-
ther quantify this observation, we plot the speedups against
the mean time taken to complete a block addition using Base-
line across both all the ten models. Higher mean time for a
step indicates that it was relatively harder. Figure 13 shows
this scatter diagram. We fit a line using least squares to the
points (shown in red) indicating a positive correlation, ie. the
speedup obtained using Track over Baseline increases with
the difficulty of the step.

Qualitative feedback
Eleven of the sixteen users said that they preferred Track since
it gave them flexibility of moving the model around and un-
derstanding its structure better. It was less mentally taxing.
Three users preferred Baseline since they wanted the guid-
ance to remain static and preferred to move the model around
to match the shown view and then add the block. Based on
this, we can imagine another interface which does the track-
ing in the background, and allows the user to ask for the in-
struction in the current pose of the model if desired.

All the users said that the assembly process using Track was
more enjoyable experience. They talked about the ability to
record stories using models and building virtual models on
the fly. As one user said, “This tracking-based system will
make playing with Lego R© blocks more fun”.
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Figure 13: Scatter plot of percentage speedup vs mean time
taken to do a block addition using Baseline (an indicator of
the step’s hardness). Fitting a line using least squares (shown
in red) indicates a positive correlation between the mean time
and speedup obtained by using Track over Baseline.

Based on our interactions with the users, we feel that the
type of guidance varies with users. While the tracking-based
system does show improvement in model-building times and
fewer mistakes made, some users may still prefer the static
views or getting static-views on demand.

Results Summary and Discussion
The results suggest that dynamically updating the pose of a
virtual model to correspond with the real model in a user’s
hands can improve both speed and accuracy. We observed no
mistakes made with the Track system while a total of 10 mis-
takes were made with the static Baseline instructions. We also
observed significant speedups for the tasks with the dynamic
systems.

Clearly, we have only scratched the surface of the questions
raised. All of the models are quite simple compared to the
richness of Lego R© models available. We can conjecture that
our results may even be stronger as the complexity increases
but we have only limited evidence for this from our experi-
ments. The simplicity of our models is also constrained by
the technology. The resolution of the Kinect R© device pre-
cluded using the smaller Lego R© block for example. We can
hope that this aspect of the system cam improve over time.

CONCLUSION AND FUTURE WORK
We have demonstrated a system which tracks an evolving
Duplo R© block model in realtime. In Authoring mode, the
system learns the assembly through block additions and re-
movals. In Guidance mode, a user is prompted to construct
a predefined model by presenting instructions in the same
pose as that of the physical model. It also provides feedback
about mistakes and appropriate corrections to the model. We
discuss the shortcomings of existing static figures or videos
of the instruction steps and show how our guidance method
avoids these. A user study comparing our system with the
traditional figure-based guidance method suggests that our
method is able to aid users’ structural perception of the model
and hence leads them to make fewer mistakes and construct
the models in less time.

Some people still prefer the traditional system because they
do not want the instruction to move with the physical model.
In the future, a system which tracks the physical model con-
tinuously but only shows the instruction in the current pose
on demand may satisfy all users. Based on our informal dis-
cussions with the participants, we noticed that different peo-
ple tend to use different features of the image for adding the
blocks. While some looked at edges, others counted the num-
ber of studs in the blocks, and others looked at visibility cues.
An interesting future direction would be to analyze what fea-
tures people tend to use for different types of assembly tasks
and adapt the presentation accordingly. Additionally, we can
explore new human-computer interactions for guidance like
the user being guided to bring the physical model in the same
pose as that of instruction. A user study could also be done
to correlate people’s spatial IQ scores to the guidance method
that they prefer.

We hypothesized that depicting the virtual model on the
screen in the same pose as the physical model minimized the
need of perception transfer. To further reduce that, we are
considering replacing the display screen in our current sys-
tem with a projector attached with the camera. The projector
can project the instruction step directly on the physical model
or near it on the work surface. Further, the projector can be
used to display extra information about the model or its dif-
ferent parts for educational or guidance purposes.

We want to extend this work in future to handle blocks of
more sizes and shapes. Rigid blocks made of standard 1 × 1
Duplo R© units are not hard to include as they easily fit into
the voxelized representation. We can identify the shape of
the block when the user puts in it Add or Remove box and
evaluate the appropriate candidates. In fact, we have already
extended our work to initially load a library of parts which
the user wants to use in the model. The system uses a learnt
area-based descriptor to distinguish parts. However, in the
future we would like to handle blocks of curved shapes and
articulated parts. It would also be useful to move away from
a block-at-a-time update approach and allow for making sub-
assemblies and merging them. This might require a different
model representation and present more computational chal-
lenges.

We would also like to extend our framework for other types
of assembly tasks like furniture assembly, and home repairs.
This may require waiting for higher resolution sensors than
the Kinect R© or using multiple sensors and then fusing the
data. However we also think some of the complexity can
be overcome with better algorithms. Tracking and candi-
date evaluation algorithms can be vastly sped up by the use
of GPUs and we plan to exploit this in future. We hope this
initial work inspires others to take on new applications for
this type of technology.
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