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Figure 1: The CAESAR data set is a collection of whole-body range scans of a wide variety of individuals. Shown here are several range
scans that have been hole-filled and fit to a common parameterization using our framework. Once this process is complete, we can analyze
the variation in body shape in order to synthesize new individuals or edit existing ones.

Abstract

We develop a novel method for fitting high-resolution template
meshes to detailed human body range scans with sparse 3D mark-
ers. We formulate an optimization problem in which the degrees of
freedom are an affine transformation at each template vertex. The
objective function is a weighted combination of three measures:
proximity of transformed vertices to the range data, similarity be-
tween neighboring transformations, and proximity of sparse mark-
ers at corresponding locations on the template and target surface.
We solve for the transformations with a non-linear optimizer, run at
two resolutions to speed convergence. We demonstrate reconstruc-
tion and consistent parameterization of 250 human body models.
With this parameterized set, we explore a variety of applications
for human body modeling, including: morphing, texture transfer,
statistical analysis of shape, model fitting from sparse markers, fea-
ture analysis to modify multiple correlated parameters (such as the
weight and height of an individual), and transfer of surface detail
and animation controls from a template to fitted models.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: deformations, morphing, non-rigid registration, syn-
thetic actors

1 Introduction

The human body comes in all shapes and sizes, from ballet dancers
to sumo wrestlers. Many attempts have been made to measure
and categorize the scope of human body variation. For example,
the photographic technique of Sheldon et al. [1940] characterizes
physique using three parameters: endomorphy, the presence of soft
roundness in the body; mesomorphy, the predominance of hard-
ness and muscularity; and ectomorphy, the presence of linearity
and skinniness. The field of anthropometry, the study of human
measurement, uses combinations of bodily lengths and perimeters
to analyze body shape in a numerical way.

Understanding and characterizing the range of human body
shape variation has applications ranging from better ergonomic de-
sign of human spaces (e.g., chairs, car compartments, and cloth-
ing) to easier modeling of realistic human characters for computer
animation. The shortcomings of high level characterizations and
sparse anthropometric measurements, particularly for body model-
ing, is that they do not capture the detailed shape variations needed
for realism.

One avenue for creating detailed human models is 3D scanning
technology. However, starting from a range scan, substantial ef-
fort is needed to process the noisy and incomplete surface into a
model suitable for animation. Further, the result of this effort is a
model corresponding to a single individual that tells us little about
the space of human shapes. Moreover, in the absence of a charac-
terization of this space, editing a body model in a way that yields a
plausible, novel individual is not trivial.

In this paper, we propose a method for creating a whole-body
morphable model based on 3D scanned examples in the spirit of
Blanz and Vetter’s morphable face model [1999]. We begin with a
set of 250 scans of different body types taken from a larger corpus
of data (Section 1.1). By bringing these scans into full correspon-
dence with each other, a difficult task in the context of related work
(Section 2), we are able to morph between individuals, and begin to
characterize and explore the space of probable body shapes.
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Figure 2: Parameterization of one of the CAESAR subjects. (a) Original scan, rendered with color texture (the white dots are the markers).
(b) Scanned surface without texture. The marker positions are shown as red spheres. (c) Detail of holes in the scanned data, caused by
occlusions and grazing angle views. Backfacing polygons are tinted blue. In clockwise order: the head, the underarm, between the legs, the
feet. Note that erroneous polygons bridging the legs have been introduced by the mesh-stitching process. (d) Detail of difficult areas after
template-based parameterization and hole filling (Section 3).

The central contribution of this paper is a template-based non-
rigid registration technique for establishing a point-to-point corre-
spondence among a set of surfaces with the same overall structure,
but substantial variation in shape, such as human bodies acquired
in similar poses. We formulate an optimization problem to solve
for an affine transformation at each vertex of a high-resolution tem-
plate using an objective function that trades off fit to the range data,
fit to scattered fiducials (known markers), and smoothness of the
transformations over the surface (Section 3). Our approach is ro-
bust in the face of incomplete surface data and fills in missing and
poorly captured areas using domain knowledge inherent in the tem-
plate surface. We require a set of feature markers to initialize the
registration, although we show that once enough shapes have been
matched, we do not require markers to match additional shapes. We
use our fitting algorithm to create a consistent parameterization for
our entire set of whole-body scans.

In addition, we demonstrate the utility of our approach by pre-
senting a variety of applications for creating human digital charac-
ters (Section 4). These applications include somewhat conventional
techniques such as transferring texture from one individual to an-
other, morphing between shapes, and principal component analy-
sis (PCA) of the shape space for automatic synthesis of novel indi-
viduals and for markerless matching. In addition, we demonstrate
a form of feature analysis that enables modifying individuals by
editing multiple correlated attributes (such as height and weight),
plausible shape synthesis using only markers, and transfer of ani-
mation controls (skeletal and skinning) between the reconstructed
models. We conclude the paper with some discussion and ideas for
future work (Section 5).

1.1 Data set

Our source of whole-body 3D laser range scans is the Civilian
American and European Surface Anthropometry Resource Project
(CAESAR). The CAESAR project collected thousands of range
scans of volunteers aged 18–65 in the United States and Europe.
Each subject wore gray cotton bicycle shorts and a latex cap to
cover the hair; the women also wore gray sports bras. Prior to
scanning, 74 white markers were placed on the subject at anthropo-
metric landmarks, typically at points where bones can be palpated
through the skin (see Figure 2a and b). The 3D location of each
landmark was then extracted from the range scan. In addition, an-
thropometric measurements were taken using traditional methods,

and demographic data such as age, weight, and ethnic group were
recorded.

The raw range data for each individual consists of four simul-
taneous scans from a Cyberware whole body scanner. These data
were combined into surface reconstructions using mesh stitching
software. Each reconstructed mesh contains 250,000-350,000 trian-
gles, with per-vertex color information. The reconstructed meshes
are not complete (see Figure 2c), due to occlusions and grazing an-
gle views. During the mesh-stitching step, each vertex was assigned
a “confidence” value, as described by Turk and Levoy [1994], so
that less reliable data are marked with lower confidence. For our ex-
periment, we used a subset of the meshes in the CAESAR dataset,
consisting of 125 male and 125 female scans with a wide variety of
body types and ethnicities.

2 Related work

In this section, we discuss related work in the areas of modeling
shape variation from examples, finding mutually consistent surface
representations, filling holes in scanned data, and non-rigid surface
registration.

The idea of using real-world data to model the variation of hu-
man shape has been applied to heads and faces several times. De-
Carlo et al. [1998] use a corpus of anthropometric facial mea-
surements to model the variation in face shapes. Blanz and Vet-
ter [1999] also model facial variation, this time using dense surface
and color data. They use the term morphable model to describe the
idea of creating a single surface representation that can be adapted
to fit all of the example faces. Using a polygon mesh representation,
each vertex’s position and color may vary between examples, but its
semantic identity must be the same; e.g., if a vertex is located at the
tip of the nose in one face, then it should be located at the tip of the
nose in all faces. Thus, the main challenge in constructing the mor-
phable model is to reparameterize the example surfaces so that they
have a consistent representation. Since their head scans have cylin-
drical parameterization, Blanz and Vetter align the features using a
modified version of 2D optical flow.

In the case of whole body models, finding a consistent represen-
tation becomes more difficult, as whole bodies cannot be param-
eterized cylindrically. Praun et al. [2001] describe a technique to
establish an n-way correspondence between arbitrary meshes of the
same topological type with feature markers. Unfortunately, whole-
body range scans contain numerous holes (see Figure 2c) that pre-



vent us from using matching algorithms, such as Praun’s, that rely
on having complete surfaces.

Filling holes is a challenging problem in its own right, as dis-
cussed by Davis et al. [2002]. Their method and other recent, direct
hole-free reconstruction methods [Carr et al. 2001; Whitaker 1998]
have the nice feature that holes are filled in a smooth manner. How-
ever, while smooth hole-filling is reasonable in some areas, such as
the top of the head and possibly in the underarm, other areas should
not be filled smoothly. For example, the soles of the feet are cleanly
cut off in the CAESAR scans, and so fair surface filling would cre-
ate a smooth bulbous protrusion on the bottoms of the feet. The
region between the legs is even more challenging, as many recon-
struction techniques will erroneously bridge the right and left legs,
as shown in Figure 2c. Here, the problem is not to fill the holes, but
to add them.

The parameterization method described in our previous
work [Allen et al. 2002] might seem to be a candidate for solv-
ing this problem. There, we start from a subdivision template that
resembles the range surface, then re-parameterize the surface by
sampling it along the template normals to construct a set of dis-
placement maps, and finally perform smooth filling in displacement
space. (A related displacement-mapped technique, without hole-
filling, was also developed by Hilton et al. [2002].) Here smooth-
ness is defined relative to the template surface, so that, for example,
the soles of the feet would be filled in flat. However, to avoid cross-
ing of sample rays, displacement-mapped subdivision requires that
the template surface already be a fairly close match to the original
surface [Lee et al. 2000], which is not trivial to achieve automati-
cally considering the enormous variation in body shapes.

Kähler et al. [2002] parameterize incomplete head scans by de-
forming a template mesh to fit the scanned surface. Their technique
has the additional benefit that holes in the scanned surface are filled
in with geometry from the template surface, creating a more real-
istic, complete model. Their deformation is initialized using volu-
metric radial basis functions. The non-rigid registration technique
of Szeliski and Lavallée [1994] also defines a deformation over a
volume, in their case using spline functions. Although these ap-
proaches work well for largely convex objects, such as the human
head, we have found that volumetric deformations are not as suit-
able for entire bodies. The difficulty is that branching parts, such
as the legs, have surfaces that are close together spatially, but far
apart geodesically. As a result, unless the deformation function is
defined to an extremely high level of detail, one cannot formulate a
volumetric deformation that affects each branch independently. In
our work, we formulate a deformation directly on the body surface,
rather than over an entire volume.

Our matching technique is based on an energy-minimization
framework, similar to the framework of Marschner et al. [2000].
Marschner et al. regularize their fitting process using a surface
smoothness term. Instead of using surface smoothness, our op-
timization minimizes variation of the deformation itself, so that
holes in the mesh are filled in with detail from the template surface.
Feldmar and Ayache [1994] describe a registration technique based
on matching surface points, normals, and curvature while main-
taining a similar affine transformation within spherical regions of
space. Our smoothness term resembles Feldmar and Ayache’s “lo-
cally affine deformations,” but we do not use surface normals or
curvature, as these can vary greatly between bodies. Further, our
smoothness term is defined directly over the surface, rather than
within a spherical volume.

3 Algorithm

We now describe our technique for fitting a template surface, T , to a
scanned example surface, D. Each of these surfaces is represented
as a triangle mesh (although any surface representation could be
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Figure 3: Summary of our matching framework. We want to find
a set of affine transformations Ti, that, when applied to the ver-
tices vi of the template surface T , result in a new surface T

′ that
matches the target surface D. This diagram shows the match in
progress; T ′ is moving towards D, but has not yet reached it. The
match proceeds by minimizing three error terms. The data error,
indicated by the red arrows, is a weighted sum of the squared dis-
tances between the transformed template surface and D. Note that
the dashed red arrows do not contribute to the data error because
the nearest point on D is a hole boundary. The smoothness er-
ror penalizes differences between adjacent Ti transformations. The
marker error penalizes distance between the marker points on the
transformed surface and on D (here v3 is associated with m0).

used for D). To accomplish the match, we employ an optimization
framework. Each vertex vi in the template surface is influenced
by a 4× 4 affine transformation matrix Ti. These transformation
matrices comprise the degrees of freedom in our optimization, i.e.,
twelve degrees of freedom per vertex to define an affine transfor-
mation. We wish to find a set of transformations that move all of
the points in T to a deformed surface T ′, such that T ′ matches well
with D.

We evaluate the quality of the match using a set of error func-
tions: data error, smoothness error, and marker error. These error
terms are summarized in Figure 3 and described in detail in the fol-
lowing three sections. Subsequently, we describe the optimization
framework used to find a minimum-error solution. We then show
how this approach creates a complete mesh, where missing data in
the scan is suitably filled in using the template.

3.1 Data error

The first criterion of a good match is that the template surface
should be as close as possible to the target surface. To this end,
we define a data objective term Ed as the sum of the squared dis-
tances between each vertex in the template surface and the example
surface:

Ed =
n

∑
i=1

wi dist2(Tivi,D), (1)

where n is the number of vertices in T , wi is a weighting term to
control the influence of data in different regions (Section 3.5), and
the dist() function computes the distance to the closest compatible
point on D.

We consider a point on T
′ and a point on D to be compatible

if the surface normals at each point are no more than 90◦ apart
(so that front-facing surfaces will not be matched to back-facing
surfaces), and the distance between them is within a threshold (we
use a threshold of 10 cm in our experiments). These criteria are
used in the rigid registration technique of Turk and Levoy [1994].
In fact, if we had forced all of the Ti to be a single rigid body



transformation, then minimizing this data term would be virtually
identical to the method of Turk and Levoy.

To accelerate the minimum-distance calculation, we precompute
a hierarchical bounding box structure for D, so that the closest tri-
angles are checked first.

3.2 Smoothness error

Of course, simply moving each vertex in T to its closest point in D

will not result in a very attractive mesh, because neighboring parts
of T could get mapped to disparate parts of D, and vice-versa. Fur-
ther, there are infinitely many affine transformations that will have
the same effect on a single vertex; our problem is clearly undercon-
strained using only Ed .

To constrain the problem, we introduce a smoothness error, Es.
By smoothness, we are not referring to smoothness of the deformed
surface itself, but rather smoothness of the actual deformation ap-
plied to the template surface. In particular, we require affine trans-
formations applied within a region of the surface to be as similar as
possible. We formulate this constraint to apply between every two
points that are adjacent in the mesh T :

Es = ∑
{i,j|{vi,vj}∈edges(T )}

||Ti −Tj||
2
F (2)

where || · ||F is the Frobenius norm.
By minimizing the change in deformation over the template sur-

face, we prevent adjacent parts of the template surface from being
mapped to disparate parts of the example surface. The Es term also
encourages similarly-shaped features to be mapped to each other.
For example, flattening out the template’s nose into a cheek and
then raising another nose from the other cheek will be penalized
more than just translating or rotating the nose into place.

3.3 Marker error

Using the Ed and Es terms would be sufficient if the template and
example mesh were initially very close to each other. In the more
common situation, where T and D are not close, the optimization
can become stuck in local minima. For example, if the left arm
begins to align with the right arm, it is unlikely that a gradient de-
scent algorithm would ever back up and get the correct alignment.
Indeed, a trivial global minimum exists where all of the affine trans-
formations are set to a zero scale and the (now zero-dimensional)
mesh is translated onto the example surface.

To avoid these undesirable minima, we identify a set of points
on the example surface that correspond to known points on the tem-
plate surface. These points are simply the anthropometric markers
that were placed on the subjects prior to scanning (see Figure 2a
and b). We call the 3D location of the markers on the example
surface m1...m, and the corresponding vertex index of each marker
on the template surface κ1...m. The marker error term Em minimizes
the distance between each marker’s location on the template surface
and its location on the example surface:

Em =
m

∑
i=1

||Tκi
vκi

−mi||
2 (3)

In addition to preventing undesirable minima, this term also en-
courages the correspondence to be correct at the marker locations.
The markers represent points whose correspondence to the template
is known a priori, and so we can make use of this fact in our opti-
mization. However, we do not require that all salient features have
markers. (If we did, then we would need many more markers than
are present in the CAESAR data!) The smoothness and data error
terms alone are capable of aligning areas of similar shape, as long
as local minima can be avoided.

3.4 Combining the error

Our complete objective function E is the weighted sum of the three
error functions:

E = αEd +βEs + γEm, (4)

where the weights α , β , and γ are tuned to guide the optimization
as described below. We run the optimization using L-BFGS-B, a
quasi-Newtonian solver [Zhu et al. 1997].

One drawback of the formulation of Es is that it is very local-
ized; changes to the affine transformation need to diffuse through
the mesh neighbor-by-neighbor with each iteration of the solver.
This locality leads to slow convergence and makes it easy to get
trapped in local minima. We avoid this problem by taking a mul-
tiresolution approach. Using the adaptive parameterization frame-
work of Lee et al. [1998], we generate a high and a low resolution
version of our template mesh, and the relationship between the ver-
tices of each. We first run our optimization using the low resolution
version of T and a smoothed version of D. This optimization runs
quickly, after which the transformation matrices are upsampled to
the high-resolution version of T , and we complete the optimization
at full resolution.

We also vary the weights, α , β , and γ , so that features move
freely and match up in the early stages, and then finally the data
term is allowed to dominate. Although the marker data is useful for
global optimization, we found that the placement of the markers
was somewhat unreliable. To reduce the effect of variable marker
placement, we reduce the weight of the marker term in the final
stages of the optimization. The overall optimization schedule is as
follows:

At low resolution:

1. Fit the markers first: α= 0, β= 1, γ= 10
2. Allow the data term to contribute: α= 1, β= 1, γ= 10

At high resolution:

3. Continue the optimization: α= 1, β= 1, γ= 10
4. Allow the data term to dominate: α= 10, β= 1, γ= 1

3.5 Hole-filling

We now explain how our algorithm fills in missing data using do-
main information. Suppose that the closest point on D to a trans-
formed template point Tivi is located on a boundary edge of D (as
shown by the dashed red lines in Figure 3). In this situation we set
the weight wi in Ed to zero, so that the transformations Ti will only
be affected by the smoothness term, Es. As a result, holes in the
example mesh will be filled in by seamlessly transformed parts of
the template surface.

In addition to setting wi to zero where there is no data, we also
wish to downweight the importance of poor data, i.e., surface data
near the holes and samples acquired at grazing angles. Since each
vertex in the CAESAR mesh has a confidence value based on these
criteria, we simply set wi to the barycentrically interpolated confi-
dence value of the closest point on D. (In practice, we scale and
clamp the confidence values so that the range 0 . . .0.2 maps to a wi
in the range 0 . . .1.) Because the weights taper gradually to zero
near holes, we obtain a smooth blend between regions with good
data and regions with no data.

In some areas, such as the ears and the fingers, the scanned data
is particularly poor, containing only scattered fragments of the true
surface. Matching these fragments automatically to the detailed
template surface is quite difficult. Instead, we provide a mecha-
nism for manually identifying areas on the template that are known
to scan poorly, and then favor the template surface over the scanned
surface when fitting these areas. In the marked areas, we mod-
ify the data term’s wi coefficient using a multiplicative factor of
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Figure 4: Using a template mesh to synthesize detail lost in the
scan. (a) The template mesh. Since we know the ear does not
scan well, we weight the ear vertices to have a zero data-fitting
term (shown in green). (b) Since the template mesh does not have
the CAESAR markers, we use a different set of markers based on
visually-identifiable features to ensure good correspondence. (c) A
head of one of the subjects. Interior surfaces are tinted blue. (d) The
template head has been deformed to match the scanned head. Note
that the ear has been filled in. (e) Another scanned head, with a sub-
stantially different pose and appearance from the template. (f) The
template mapped to (e). The holes have been filled in, and the tem-
plate ear has been plausibly rotated and scaled.

...
...(a) (b) (c)

Figure 5: We begin with a hole-free, artist-generated mesh (a), and
map it to one of the CAESAR meshes using a set of 58 manually
selected, visually identifiable landmarks. We then use the resulting
mesh (b), and 72 of the CAESAR markers (plus two we added), as
a template for all of the male scans. For the female scans, we first
map our male template to one of the female subjects, and then use
the resulting mesh as a template (c).

zero, tapering towards 1 at the boundary of the marked area. As a
result, the transformation smoothness dominates in the marked re-
gions, and the template geometry is carried into place. As shown in
Figure 4, this technique can have a kind of super-resolution effect,
where detail that was not available in the range data can be drawn
from the template.

4 Applications

We used our matching algorithm to create a hole-free and mutu-
ally consistent surface parameterization of 250 range scans, using
the workflow illustrated in Figure 5. To bootstrap the process, we

Figure 6: To test the quality of our matching algorithm, we apply
the same texture (each column) to three different meshes. The mesh
in each row is identical. On the left, we use a checkerboard pattern
to verify that features match up. The right-hand 3× 3 matrix of
renderings use the textures extracted from the range scans. (The
people along the diagonal have their original textures.)

matched a high quality, artist-generated mesh to one of the CAE-
SAR scans using 58 manually selected landmarks. This fitted mesh
served as a template for fitting to the remaining models with the
help of the CAESAR markers. Of the 74 CAESAR original mark-
ers, the two located on the lower ribs varied in placement to such
an extent that we omitted them. To compensate, we manually in-
troduced a new marker at the navel in each scan, as well as a new
marker at the tip of each nose to improve the matching on the face.

In the remainder of this section, we demonstrate how the repre-
sentation provided by our matching algorithm can be used to ana-
lyze, create, and edit detailed human body shapes.

4.1 Transfer of textures and morphing

As in Praun et al. [2001], once we have a consistent parameteri-
zation, we can transfer texture maps between any pair of meshes.
Although this is a simple application, its success hinges on the qual-
ity of our matching algorithm. Figure 6 demonstrates transferring
texture between three subjects.

Similarly, we can morph between any two subjects by taking
linear combinations of the vertices. Figure 7 demonstrates this ap-
plication. In order to create a good morph between individuals, it
is critical that all features are well-aligned; otherwise, features will
cross-fade instead of moving. Notice that even features that were
not given markers, such as the bottom of the breasts and the waist-
line, morph smoothly.

4.2 Principal component analysis

Principal component analysis (PCA) has been used to analyze fa-
cial features [Praun et al. 2001; Blanz and Vetter 1999; Turk and
Pentland 1991]. The main advantage is data compression, since the
vectors with low variance can be discarded, and thus the full data
set does not need to be retained in order to closely approximate the
original examples.

Suppose we match k scanned examples, and our template surface
has n vertices. We stack the vertices of the parameterized scans into
k column vectors si of height 3n. Let the average of {si} be s, and



Figure 7: Morphing between individuals. Each of the keyframe models (outlined) are generated from a Gaussian distribution in PCA space.
These synthesized individuals have their own character, distinct from those of the original scanned individuals. The in-between models are
created by linearly interpolating the vertices of the keyframes.

ui be si − s. We assemble the ui into a 3n × (k − 1) matrix U.
Principal component analysis of U yields a set of principal vectors
c1...k−1, each of size 3n. Associated with each principal vector ci is
a variance σ 2

i , and the vectors are sorted so that σ 2
1 ≥ σ2

2 ≥ ·· · ≥

σ2
k−1.

We can use these variance terms to synthesize new random indi-
viduals. By sampling from the Gaussian distribution that the PCA
represents, we can create an unlimited number of new individu-
als who, for the most part, have a realistic appearance, but do not
look like any particular individual from the example set. A few
randomly-generated models are outlined in red in Figure 7. (Note
that we run PCA separately on the male and female data.)

4.3 Feature analysis

Principal component analysis helps to characterize the space of hu-
man body variation, but it does not provide a direct way to explore
the range of bodies with intuitive controls, such as height, weight,
age, and sex. Blanz and Vetter [1999] devise such controls for sin-
gle variables using linear regression. Here we show how to relate
several variables simultaneously by learning a linear mapping be-
tween the controls and the PCA weights. If we have l such controls,
the mapping can be represented as a (k−1) × (l+1) matrix, M:

M
[

f1 · · · fl 1
]T

= p, (5)

where fi are the feature values of an individual, and p are the corre-
sponding PCA weights.

We can draw feature information from the demographic data as-
sociated with each CAESAR scan. After assembling the feature
vectors into an (l+1) × k feature matrix F, we solve for M as

M = PF+, (6)

where F+ is the pseudoinverse of F. We can then create a new fea-
ture vector, e.g., a desired height and weight, and create an average-
looking individual with those characteristics, as shown in the left
part of Figure 10 on the last page of this paper. (Since this method
is a linear approximation, and since weight is roughly proportional
to volume, we actually use the cube root of the weight, to make it
comparable with the height measurements.)

In addition, we can create delta-feature vectors of the form:

∆f =
[

∆f1 · · · ∆fl 0
]T (7)

where each ∆fi is the difference between a target feature value and
the actual feature value for an individual. By adding ∆p = M∆f to
the PCA weights of that individual, we can edit their features, e.g.,
making them gain or lose weight, and/or become taller or shorter,
as shown in the right part of Figure 10.

(a) (b) (c) (d) (e)

Figure 8: PCA-based fitting. (a) A scanned mesh that was not in-
cluded in the data set previously, and does not resemble any of the
other scans. (b) A surface match using PCA weights and no marker
data. (c) Using (b) as a template surface, we get a good match to
the surface using our original method without markers. (d) Next, we
demonstrate using very sparse data; in this case, only the 74 marker
points. (e) A surface match using PCA weights and no surface data.

4.4 Markerless matching

Principal component analysis also gives us a way to search the
space of possible bodies given partial data. Instead of finding a
smooth set of transformations applied to each vertex (as described
in section 3.2), we can search for a set of principle component
weights that match the data. This is similar to the bootstrapping
technique of Blanz and Vetter [1999].

Suppose we have a body scan without any marker data. If the
template surface is close enough to the new scan, then we can use
the same optimization as before, but if the new scan is substan-
tially different then the match will fail. In this case, we search in
PCA space instead of transformation space, and replace Es with the
following term indicating the likelihood of a particular set of PCA
weights:

Ep =
k′

∑
i=1

(pi/σi)
2, (8)

where the pi are the PCA weights, σ 2
i are the corresponding vari-

ances, and k′ is the number of components used.
The new data term is similar to the one in Section 3.1, except we

are matching against the PCA-reconstructed surface, r:

r = s+
k′

∑
j=1

pjcj (9)

E′
d =

n

∑
i=1

wi dist2([r3i r3i+1 r3i+2]
T,D) (10)



The overall error that we optimize is a weighted sum of Ep and E′
d .

As in Blanz and Vetter [1999], we set k′ to be small initially, and
increase it in stages. Once a closest fit is found using this optimiza-
tion, we use the reconstructed shape as the template surface for our
original algorithm (minus the marker term) and complete the fit.
Figure 8a–c demonstrates this approach.

4.5 Marker-only matching

We now consider the converse situation, where no surface data is
available, and we have only the marker data, as shown in Figure 8d.
One could get just marker data using less expensive equipment
than a laser range scanner (e.g., using a handful of calibrated pho-
tographs of a stationary subject). Using the Ep term from the previ-
ous section, and a similarly modified Em term, we can estimate the
approximate shape of the subject (Figure 8e).

4.6 Instrumentation transfer

Beyond providing tools for realistic human body analysis and mod-
eling, we hope to create figures that can be readily animated. To ani-
mate an articulated figure, we first need to define a skeleton for con-
trolling the pose, and then associate each vertex’s position with the
skeleton in some way. This association process is called skinning,
and a variety of techniques are used in popular animation packages.
In this paper, we assume that one of the meshes has been properly
instrumented with a skeleton for animation. This instrumentation
can be done manually, or using a semi-automatic process such as
the one proposed by Hilton et al. [2002].

Once we have instrumented one model, we would like to transfer
its skeleton and skinning information to other parameterized scans,
or to synthesized or edited characters. To transfer a skeleton, we be-
gin by choosing 2–3 points on the surface to act as markers for each
joint in the skeleton. These points can be the original anthropomet-
ric markers or other points; the main criterion is that their position
is approximately rigid with respect to their associated joint. We
then calculate the local position of these markers in the joint’s co-
ordinate frame. Having chosen a set of vertices as markers on one
mesh, we know the location of those markers on any other mesh
because of our consistent parameterization. Using inverse kinemat-
ics, we can then solve for the skeleton pose and bone lengths that
give the best match between each marker’s position in the joint co-
ordinate frame and its global position derived from the mesh. This
approach is not precise, since the marker’s local position is assumed
to be fixed, whereas in reality the local position depends on body
thickness. However, with enough markers a reasonable skeleton
can be determined for animation purposes, as shown in Figure 9.

Once the skeleton transfer is complete, the skinning information
must be transferred as well. We employ a skinning scheme based
on per-vertex weights. In this case, the transfer is trivial: since the
vertices in each mesh are in correspondence, the weights can be
directly copied.

5 Discussion and future work

In this section, we summarize some of the insights gained from this
research and suggest a few future directions.

First of all, we found that, as a general reconstruction strategy,
our template-based method works fairly well in practice. We were
able to match all of our scanned examples to a reasonable degree. In
less than 5% of the examples, the lips were misaligned, due largely
to the paucity and variable placement of the CAESAR markers on
the face.

One assumption made during this work is that the pose of the
template is similar (though not necessarily identical) to the target

Figure 9: Skeleton transfer. We manually created a skeleton and
skinning method for the scanned individual in the top left. The
skeletons for the other three scanned individuals in the top row
were generated automatically. In the bottom row, we show each
of the parameterized scans put into a new pose using the skeleton
and transferred skinning weights.

surface. If the poses are quite different, then the optimized tem-
plate has to contain locally dissimilar transformations at bending
joints, something that we currently penalize. An area for future
work is to employ a posable template that tries to match the pose of
the character in addition to the other fitting criteria. Interestingly,
we also found that the small variations in pose that were present
in our dataset, while not problematic for our fitting procedure, did
impact the PCA analysis. Some of the components corresponded
roughly to features one might expect, such as height variation and
approximate body types (or both), but a number of them also clearly
included pose variations. By factoring out pose, we would expect to
achieve a more compact PCA representation. Indeed, such a model
could also be used to accomplish objectives such as body shape es-
timation from photographs of bodies in arbitrary poses, in the spirit
of Blanz and Vetter’s [1999] work on human faces.

Our PCA analysis is really only suggestive of the kind of in-
formation we might learn from human body datasets. Our devel-
opment of the space of body shapes is based on a relatively small
dataset, and indeed we hope to incorporate more of the CAESAR
scans in the future. Still, PCA is just one tool in the statistician’s
toolbox – a tool that sees the data as samples drawn from a sin-
gle, multi-dimensional Gaussian distribution. Applying more so-
phisticated analyses (e.g., mixtures of Gaussians) to determine the
“true” landscape of human shape variations remains an area for fu-
ture work.

Finally, although we demonstrate transfer of animation param-
eters such as a skeleton and skinning weights, the quality of the
results is only as good as the skinning algorithm used on the tem-
plate. Transferring more sophisticated surface motions, e.g. em-
ploying example-based methods developed by a number of re-
searchers [Lewis et al. 2000; Sloan et al. 2001; Allen et al. 2002],
could lead to more sophisticated and compelling animation transfer.
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