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Figure 1 Each of these 3D meshes are made from a skeletally driven subdivision surface. The displacements for the subdivision surface are interpolated from
range-scan examples of the arm, shoulder, and torso in various poses. The joint angles for each pose are drawn from optical motion capture data.

Abstract
This paper presents an example-based method for calculating
skeleton-driven body deformations. Our example data consists of
range scans of a human body in a variety of poses. Using markers
captured during range scanning, we construct a kinematic skeleton
and identify the pose of each scan. We then construct a mutually
consistent parameterization of all the scans using a posable subdi-
vision surface template. The detail deformations are represented
as displacements from this surface, and holes are filled smoothly
within the displacement maps. Finally, we combine the range scans
using k-nearest neighbor interpolation in pose space. We demon-
strate results for a human upper body with controllable pose, kine-
matics, and underlying surface shape.
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1 Introduction
Creating realistic, virtual actors remains one of the grand challenges
in computer graphics. Convincingly modeling human shape, mo-
tion, and appearance is difficult, because we are accustomed to
seeing other humans and are quick to detect flaws. One possible
avenue to realism is through direct observation and measurement
of people. Motion capture, for instance, has become a standard
method for obtaining detailed samples of skeletal motion which can
themselves be edited plausibly, and image-based techniques show
promise for accurately modeling the appearance of skin. In this pa-
per, we explore a data-driven approach to modeling the shape of the

email: {allen,curless,zoran}@cs.washington.edu

human body in arbitrary poses.
Recent years have witnessed the evolution of numerous range

scanning technologies, including whole-body scanners that can
capture the static shape of a person quite accurately. Given such
a static scan, an animator can warp the body into a different pose,
but this approach ignores an important aspect of human movement:
muscles, bones, and other anatomical structures continuously shift
and change the shape of the body. Clearly, to create compelling
animations by observation we need more than just a single scan.
Scanning the subject in every pose needed for every frame of an
animation is impractical; instead, we propose a system in which
body parts are scanned in a set of key poses, and then animations
are generated by smoothly interpolating among these poses using
scattered data interpolation techniques.

The concept of interpolating sampled poses is not a new idea.
What makes our approach unique is the use of real-world data to
create a fully posable 3D model. In the process, we face several
challenges. First, in order to establish a domain for interpolation,
we must discover the pose of each scan. Second, interpolation
techniques require a one-to-one correspondence between points on
the scanned surfaces, but the scanned data consists of unstructured
meshes with no such correspondence. This problem is particularly
challenging because the scans are in different poses, so standard
rigid-body registration techniques will not work. Third, range scans
are frequently incomplete because of occlusions and grazing angle
views. Thus, we are faced with the challenge of filling holes in
the range data. Finally, due to the combinatorics of the problem,
we cannot capture a human body in every possible pose. Thus, we
must blend between independently posed scans.

In this paper, we present a general framework that addresses each
of these problems. Using markers placed on the subject during
range scanning, we reconstruct the pose of each scan. We then
create a hole-filled, parameterized reconstruction at each pose us-
ing displacement-mapped subdivision surfaces. Lastly, we create
shapes in new poses using scattered data interpolation and spatially
varying surface blending.

On the way to achieving our goal we make contributions to the
problems of fitting a skeleton to marker data, surface correlation for
articulated objects, fair hole filling of surfaces, example-based in-
terpolation with quaternion parameters, and blending range scans.
Our primary contribution, however, is the process itself and the
demonstration that we can derive realistic, posable human body de-
formations from range scan data.



1.1 Related work
The two main approaches to modeling body deformations are
anatomical modeling and example-based approaches. The idea be-
hind anatomical modeling is to use an accurate representation of
the major bones, muscles, and other interior structures of the body.
These structures are deformed as necessary when the body moves,
and a skin simulation is wrapped around the underlying anatomy to
obtain the final geometry. There is a large body of work on anatom-
ically based approaches, including Wilhelms and Gelder [1997],
Scheepers et al. [1997], Victor Ng-Thow-Hing [1999], and Aubel
and Thalmann [2001].

The primary strength of anatomical approaches is the ability to
simulate dynamics and complex collisions. The main drawback
is their computational expense, since one must perform a physical
simulation to generate every frame, while taking care to conserve
muscle volumes, and stretch the skin correctly.

An alternative paradigm is the example-based approach, where
an artist generates a model of some body part in several different
poses with the same underlying mesh structure. These poses are
correlated to various degrees of freedom, such as joint angles. An
animator can then supply new values for the degrees of freedom
and the examples are interpolated appropriately. Example-based
approaches are much faster computationally, and creating exam-
ples is often easier than creating a detailed and accurate anatomical
model.

Lewis et al. [2000] and Sloan et al. [2001] describe similar tech-
niques for applying example-based approaches to meshes. Both
techniques use radial basis functions to supply the interpolation
weights for each example, and, for shape interpolation, both re-
quire hand-sculpted meshes that ensure a one-to-one vertex corre-
spondence exists between each pair of examples. This paper will
also use an example-based approach, but the key difference is that
we will start with uncorrelated range-scan data. In fact, with our
method, even the poses of the examples will be derived from the
data.

Other example-based approaches use scanned or photographed
data. In the domain of facial animation, example-based techniques
have been developed by Pighin et al. [1998], Guenter et al. [1998],
and Blanz and Vetter [1999]. One of the few attempts to create
articulated deformations from scanned examples is the work of Tal-
bot [1998], who created a partial arm model with one degree of
freedom. Our work takes a broader scope and can be applied to
complex articulated figures.

1.2 Problem formulation
We formulate the problem of creating a posable human body as a
scattered data interpolation problem in which shape examples are
blended linearly to create new shapes. Thus, we must define a do-
main over which samples are taken and represent the samples in a
form suitable for blending. The domain consists of all of the knobs
that an animator will be able to tweak, such as controls for joint
angles, muscle loads, body types, and so on. In our example upper-
body model, the domain will consist entirely of joint angles, but in
principle any kind of parameters could be used. Throughout this
paper we will refer to a vector in the joint space as q.

Having established the interpolation domain, we next need to
select and enforce a representation suitable for blending between
the example shapes. For unstructured range scans, this amounts
to constructing a correspondence between surface points on dif-
ferent scans, i.e. , a mutually consistent parameterization. To this
end, we will employ displaced subdivision surfaces, as introduced
by Lee et al. [2000]. Displaced subdivision surfaces consist of a
template subdivision surface, T , and a displacement map d that
describes the final surface S by displacing the template along the
normal, n̂, to the template surface. This representation is a kind
of layered model [Chadwick et al. 1989], where the the local de-
tail deformations are separated from the large scale (mostly affine)
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Figure 2 (a) Photograph of the subject in the scanner. The left arm is about
to be scanned. The ropes help the subject remain motionless during the scan.
(b) The scanned surface with color data, rendered emissively. Note that sur-
faces parallel to the scanner’s rays, such as the side of the torso, are not cap-
tured. The four meshes that were captured simultaneously have been regis-
tered. (c) Scanned surfaces after applying dot-enhancing filter to the color
data. (d) Combined and clipped arm scan, rendered with Gouraud shading.

transformations applied to each body part. We will drive the under-
lying template surface using the pose, q, resulting in a pose-varying
surface:

S(u, q) = T(u, q) + d(u, q)n̂(u, q) (1)

Notice that d is also a function of the pose, q. Unlike stan-
dard displaced subdivision surfaces, our displacements are based
on multiple example shapes, allowing scattered data interpolation
techniques to be applied. In particular, the interpolated displace-
ments are a weighted sum of the example displacements:

d(u, q) =
n

∑

i=1

wi(u, q)di(u) (2)

where n is the number of examples, di(u) is the displacement
map for the ith example, wi(u, q) is the scattered data interpolation
weighting function for the ith example, and d(u, q) is the interpo-
lated displacement map for pose q.

In the remainder of the paper, we describe the steps taken to
construct an example-based posable human body:

1. Capture a set of example scans with markers (Section 2).

2. Using the markers, solve for the global kinematics of the body,
k, and the local pose of each scan, qi (Section 3).

3. Create a template surface, T(u, q), based on the kinematics of
the body, parameterize and resample the examples into dis-
placement maps di(u), and fill in any missing values (Sec-
tion 4).

4. Compute the interpolation weights, wi(u, q) (Section 5).

We demonstrate results using an upper body model in Section 6
and discuss conclusions and future work in Section 7.

2 Data acquisition
This section explains how we acquired our example data set. The
overall idea is to sample the body’s shape in a variety of poses cov-
ering the full range of motion for each joint. At the same time,
we capture the location of markers on the body that we will use to
determine the pose of each scan.



Left arm data set (36 scans)
Elbow bend 0◦, 60◦, 90◦, 130◦

Elbow twist 0◦, 60◦, 130◦

Wrist flexion −45◦, 0◦, 30◦

Left shoulder data set (33 scans)
flexion, neutral, extension
abduction, neutral, adduction

Shoulder and
medial rotation, neutral, lateral rotation

clavicle
shoulder girdle elevation (shrug), depression,
protraction (forwards), retraction (backwards)

Torso data set (27 scans)
pronation, neutral, supination (twist)

Waist and
left and right lateral flexion, neutral

abdomen
left and right rotation, neutral

Table 1 We captured three data sets, each of which covered the range of mo-
tion of a group of joints, shown in the left column. The joint angles that we
sampled are described in the right column. For an explanation of the termi-
nology, the reader may refer to any reference on biomechanics or kinesiology,
such as Gowitzke and Milner [1988].

2.1 Range scanning
We acquired our surface data using a Cyberware WB4 whole-body
range scanner. This scanner captures range scans and color data
from four directions simultaneously and has a sampling pitch of
5 mm horizontally and 2 mm vertically. Figure 2(a) shows the
subject in the scanner. Overhead ropes helped the subject remain
motionless during the seventeen seconds of scanning time. The
scanned surface with color data is shown in Figure 2(b). The same
mesh after merging the four scans [Curless and Levoy 1996] and
clipping out the arm is shown in Figure 2(d).

2.2 Pose coverage
To create an upper body model, we needed to sample all poses of the
wrist, elbow, shoulder, and torso. Due to the combinatorial nature
of the problem, we split the upper body into three data sets captured
separately: the arm, the shoulder, and the torso. We can split the
body up because the joints on each part have little influence on the
shape of distant body parts. At the interface between adjacent body
parts, we must overlap the capture regions and blend them at a later
stage. We also save work by capturing only the left arm and left
shoulder and later mirroring the data to the right side.

Table 1 gives a summary of all captured poses. In the interest
of taking as few scans as possible we made our sampling space
fairly sparse. We sampled at least three angles for each degree of
freedom, giving us a neutral middle value and the two extremes that
generally have the most dramatic shape changes.

2.3 Markers
To enable precise determination of each scan, we placed colored
markers on the subject using costume make-up. The markers are
picked up by the scanner’s color video cameras and mapped onto
each range image. We used eight different marker colors to aid the
identification process. Note that reflectance discontinuities when
picked up by a range sensor can lead to geometric errors [Curless
and Levoy 1995]. Our range data does not suffer from these arti-
facts, because the whole-body scanner uses an infrared laser and
does not distinguish between skin and make-up colors.

For the arm and shoulder data sets, we used forty-eight markers,
and for the torso data set we used ninety markers. Our goal was
to have at least three markers visible per body part (the minimum
number of markers capable of establishing a coordinate frame), and
since the markers were often occluded or hard to identify we placed
roughly four times that many.

Estimating poses from the marker imagery requires two pre-
processing steps: locating the 3D coordinates of each marker and

(a)
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Figure 3 (a) Our upper body skeleton after optimization. The large spheres
are quaternion joints, and the cones are single-axis joints. (b) The con-
trol points for this skeleton, and the corresponding subdivision surface. The
checkerboard pattern delineates the subdivision patches. (c) The control points
and subdivision surface after refitting.

labeling and identifying the markers across all scans. To automate
the process of locating the markers, we applied a broad Laplacian
convolution filter to the color data of each range scan. This filter
makes the dots stand out from the skin, as shown in Figure 2(c), so
they can easily be identified by searching for extreme color values.
Our marker-finding algorithm groups neighboring pixels of similar
color and rejects clusters that are too large, too small, or too near
the edge. By referring back to the range values, we find the 3D
location of each pixel in the cluster and take the centroid.

The second step of marker-finding is to label the markers. Each
marker that was placed on the subject is assigned a numerical index.
We then determine the index of each marker located in the marker-
finding step. We applied the graph-matching technique of Gold and
Rangarajan [1996] based on matching geometric relationships and
marker color; unfortunately we found this approach unsuitable due
to the large number of missing markers. Consequently we label
the markers manually after running our automatic location-finding
technique. We hope to automate this step in future work.

3 Determining kinematics and pose

We can think of each scan as an example of the body’s shape in
one particular pose. Therefore, we need to know the exact pose,
qi, of each scan. We also need to know the kinematics, k, of the
body’s skeleton, that is, the fixed transformations between each
joint. This section describes our method for automatically deter-
mining the poses and kinematics of the scanned bodies.

3.1 Skeleton
We construct a skeleton containing the joints that the end user of our
system will be able to animate. The goal is to have a skeleton that is
a good approximation of true human kinematics, but not too com-
plicated to solve for or animate. This tradeoff exposes some impor-
tant design issues. For example, the human shoulder joint consists
of four joints: one between the sternum and clavicle, one between



the clavicle and scapula, one between the scapula and humerus,
and one between the scapula and the rib cage [Luttgens and Wells
1982]. However, the second and third joints are very close together,
and the fourth joint has very little independent movement. Thus,
we simplify the shoulder complex to two joints: a clavicle joint
and a shoulder joint. The human spine is much more complicated,
consisting of seventeen joints each with its own range of motion.
We reduce the spine to just two joints, one at the waist and one
at the abdomen. Another example is the elbow, which consists of
two single-axis joints. Animators typically make the assumption
that the axes of these joints are perpendicular and colocated. This
is not in keeping with the actual bone structure of the human arm,
and so our choice of skeleton allows the axes to have any relative
orientation and an arbitrary translation between them. (We prefer a
small translation, to prevent the bones from moving along the axes
of rotation during the optimization.)

The skeleton hierarchy is rooted with a base transformation
which moves from the origin of world coordinates to the coordinate
frame of the hips. After the base transformation, each rotation joint
in our skeleton is followed by a translation to the next joint. We
will call these translation components the bone translations. Our
upper-body skeleton (after optimization) is show in Figure 3(a).

3.2 Local marker positions
The local marker positions, m, are a collection of 3D points de-
scribing the position of each marker within its joint’s coordinate
frame. We initially assign each marker to a joint coordinate frame
based on its location on the body. For example, markers on the
lower back are placed in the waist joint’s coordinate frame, and
markers on the upper back are placed in the abdomen joint’s coor-
dinate frame. The markers will be treated as if they moved rigidly
with the skeleton. This assumption is not entirely accurate be-
cause of the body deformations that move the marker in non-rigid
ways. However, we have obtained satisfactory results by using
many markers and taking a least squares approach.

Even though the local marker positions will not be used at all in
our deformation-building process, it is necessary to calculate them
when solving for the poses and kinematics.

3.3 Optimization
A summary of all of the skeleton parameters is shown in Table 2.
The goal of the optimization step is to determine the values of all
of these parameters that best match the marker data.

Note that we can generate arbitrarily many versions of the same
skeleton by applying a constant rotation to one joint in all frames,
and then adjusting the bone translations and local marker posi-
tions to compensate. As a result, our skeleton parameterization is
under-determined. For example, we could call the elbow angle of a
straight arm 0◦ or 180◦ or any other angle, and all other arm poses
will be measured relative to this. To eliminate this extra degree of
freedom, we must lock all of the rotation joints in one of the scans
to fixed values (such as zero) in order to provide a frame of refer-
ence to which the rotations will be compared. We call this special
scan the reference scan.

Defining a reference scan offers an additional advantage: it pro-
vides an initial guess for the local marker positions, m. Since the
joint angles are pre-determined for the reference scan, we need only
supply a rough approximation for the base transformation. The lo-
cal marker positions for all markers visible in that scan can be easily
computed and later refined.

We also lock any degrees of freedom that cannot be determined
from the given marker data. For example, since we scanned only
the left arm, we cannot solve for the joint angles in the right arm.
In addition, we lock the torso joints for all of the arm and shoulder
scans, and the arm angles in all of the torso scans.

We can now optimize over all remaining degrees of freedom.
The objective function minimizes the sum of the squares of the dis-

# global # per-scanName
DOFs DOFs

Base translation 0 3
Base rotation 0 4
Waist rotation 0 4
Waist translation 3 0
Abdomen rotation 0 4
Left/right abdomen translation 3 0
Left/right clavicle rotation 0 8
Left/right clavicle translation 3 0
Left/right shoulder rotation 0 8
Left/right upper arm translation 3 0
Left/right elbow bend 2 2
Left/right elbow translation 3 0
Left/right elbow twist 2 2
Left/right lower arm translation 3 0
Left/right wrist bend 2 2
Left/right hand translation 0 0
Local marker positions 411 0

Table 2 Degrees of freedom (DOFs) of the skeleton. Global DOFs are con-
stant across all scans; per-scan DOFs take on a different value for each scan.
The left/right translations are mirror images of each other and thus share
DOFs. The single-axis rotations in the arm have two global DOFs indicat-
ing the direction of the axis and two per-scan DOFs for the angles about that
axis on the left and right arm. The hand translation has no DOFs because there
are no joints below the hand in our model. We will call the per-scan DOFs qi,
and the local marker positions m; the remaining global DOFs comprise the
kinematics, k.

tances between the calculated marker positions and the observed
marker positions:

arg min
m,q,k

p
∑

i=1

m
∑

j=1

‖oij − c(mj; qi, k)‖2 (3)

where p is the number of poses, m is the number of markers, oij is
the observed location of marker j in scan i, and c(mj; qi, k) is the
calculated position of the same marker. In cases where a marker
cannot be located in a pose due to scanning limitations, we omit the
corresponding term from the summation.

This skeleton-finding problem is identical to the problem of fit-
ting a skeleton to optical motion capture data. Silaghi et al. [1998]
and Herda et al. [2001] have investigate this problem and describe
a local (joint-by-joint) optimization technique for initializing the
global optimization stated above. An initialization is necessary be-
cause the search space contains many local minima. However, we
can avoid this extra step of running a local optimization using two
improvements.

First, because we calculated initial values for the local marker
positions using the reference scan, we can start our global solver
with these positions locked. The solver usually reaches a bad local
minimum because it moved the local marker positions to unrea-
sonable locations and compensated with erroneous poses and bone
lengths. By locking the local marker positions, we guide the solver
toward finding reasonable poses first. After this optimization con-
verges, we run it again with the local marker positions unlocked to
get the best fit.

The second technique we use to aid convergence is scaling the
degrees of freedom (DOFs). By scaling the DOFs, we ensure that
all of their gradients have the same magnitude, improving solver
performance [Gill et al. 1989]. First of all, we must account for the
fact that our set of DOFs contains three kinds of values: radians,
meters, and quaternions. We scale each of these so that their values
range from -1 to 1. We then further scale each DOF according to
how many joints are influenced by it. Thus, per-scan DOFs have a
scaling factor equal to the number of transforms below that DOF,
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Figure 4 (a) To construct a displaced subdivision surface, we cast rays (red
arrows) perpendicular to the template subdivision surface (dashed blue line)
to the nearest scanned surface (thick gray line). Because the direction of each
ray is determined by the subdivision surface, we need only record the distance.
(b) If the template surface is too curved and the scanned surface is too far
away, then the rays can cross, causing the parameterization to fold over on
itself. This can be avoided by ensuring that the template surface is close to the
scanned surface.

and global DOFs are weighted by the number of transforms they
influence multiplied by the number of scans.

We use L-BFGS-B, a quasi-Newtonian solver to optimize the
goal function [Zhu et al. 1997]. We analytically compute the deriva-
tives of Equation 3 relative to each degree of freedom. The running
time for convergence is approximately forty minutes on a 1.5 GHz
Pentium 4. This optimization only has to be run once because it
incorporates all of the scanned poses for all body parts.

4 Determining deformations

At this point, we have determined the joint angles and the bone lo-
cations for each scan. The next step is to represent the deformations
that each body part undergoes in each pose. The key issue here is
one of correspondence: if we choose a vertex in one scan, where is
the corresponding vertex in the other scans?

4.1 Parameterization

To overcome this difficulty, we devise a parameterization that is
based on the skeleton, since each scan has the same skeleton in a
known pose. To do this, we need to choose a parameterization that
can move with the skeleton. One possibility is a cylindrical cross-
section based parameterization as used by Shen et al. [1994]. This
parameterization works well for cylinder-like body parts such as the
arm, but it is inconvenient to use for branching body parts, such as
the torso.

A more general parameterization can be derived from displaced
subdivision surfaces, as described by Lee et al. [2000]. Essentially,
one creates a subdivision surface that approximates the real sur-
face, and records the distance to the real surface along the normal
by raycasting, as shown in Figure 4(a). We employ a Catmull-
Clark subdivision surface [Catmull and Clark 1978] starting from a
quadrilateral control mesh. We could have used other displacement-
based approaches, such as displaced B-spline surfaces [Krishna-
murthy and Levoy 1996]; we chose a subdivision surface template
because of its ease in handling irregular vertices, i.e., control ver-
tices with valence other four, which appear near the red patches in
Figure 3(c). The work of Praun et al. [2001] could also provide con-
sistent parameterizations across poses, though this approach oper-
ates on hole-free meshes and would require substantial modification
to interpolate articulated body structures.

Lee et al. [2000] use a simplified version of the target mesh to
define the control points. In our case, we want the control points to
depend on the skeleton. We define coordinate frames on the skele-
ton based on joint coordinate frames. We then place rings of control
points into these frames and a form a quadrilateral control mesh
that follows the skeleton. To ensure that we have smooth transi-
tions near the joints, the control point coordinate frames may be
combinations of adjacent joint coordinate frames. For example, the
coordinate frame centered at the abdomen joint has a rotation half-
way between the lower spine’s orientation and the upper spine’s
orientation. The resulting surface appears in Figure 3(b).

4.2 Fair hole filling
One of the critical problems with range scan data is that the meshes
are generally incomplete. To interpolate the examples, however,
we need complete information. One might think that the problem
could be avoided by basing the pose space interpolation at each
vertex on just the examples that do not contain a hole at that point.
This approach has two problems. First, surface discontinuities will
arise at the hole boundaries, because the adjacent points will be
based on data drawn from different meshes. Secondly, the presence
of holes is strongly correlated with the pose of the body, and so
entire groups of poses will not have any data for a particular area.
Thus, the missing data could only be drawn from poses that are
quite different from the ones with holes.

Instead, we fill holes directly in each scan. Hole-filling in 3D
can be quite tricky; we simplify the problem by operating directly
on the displacement maps. We can easily detect the presence of
holes within our parameterization when a displacement ray does
not hit the surface. Our idea is to fill the holes by smoothly inter-
polating displacement values from neighboring vertices. Using the
displacement parameterization we have made our 3D hole-filling
problem analogous to the 2D problem of image inpainting, by con-
sidering the displacement values to be a grayscale image (on an
unusual manifold).

Observing that our displacement “images” are typically very
smooth and continuous, we fill in the missing area by minimizing
curvature using a discrete thin-plate objective function. Since the
points near the missing data are typically unreliable, we also apply
the objective function near the edges of the holes, but with an addi-
tional term to keep those points close to their original value. Stated
mathematically, we compute:

arg min
d(uj)

n
∑

j=1

κj

[

d(uj) − d̂(uj)
]2

+ (1 − κj)
[

∇2d(uj)
]2

(4)

where

n = the number of points to be filled or faired

uj = jth point in the parameterization u

d(uj) = the new displacement at uj

d̂(uj) = the original displacement at uj

κj = 0 inside the hole, ramping toward 1

within three pixels of the hole

The results of this algorithm as applied to one of the scans are
shown in Figure 5. The results are generally satisfactory; the most
noticeable artifact is the absence of range sensor noise in the filled
region.

4.3 Refitting
A significant problem with displaced subdivision surfaces occurs
when the template surface is too far from the scanned surface and
the curvature is too high. In this situation adjacent rays will cross
and part of the surface will be covered several times. This prob-
lem is illustrated in Figure 4(b). The solution is to ensure that the
subdivision surface is close enough to the scanned surface.

Our initial mesh, shown in Figure 3(b), is reasonably close to the
scanned mesh, but it still has some problem areas. To avoid requir-
ing excessive hand-tweaking from the user, we seek an automatic
refitting step. Ideally, we would like to optimize the template’s con-
trol points so that the surface is as close as possible to the data
surface at all points in all poses. We take a simpler approach that
works reasonably well in practice. After calculating the hole-filled
displaced subdivision surface, we move the control points so that
the subdivision surface goes exactly through the scanned surface at
the control points in a selected “average” pose. This step is done by
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Figure 5 Hole-filling an arm scan. On the top we show the displacement val-
ues on the template surface; blue indicates zero displacement, magenta a neg-
ative displacement, and cyan a positive displacement. The subdivision surface
with the displacements applied is shown on the bottom. (a) Original surface
after parameterization. There is a large hole along then forearm, and smaller
holes in the underarm, shoulder, and hand. (b) We initialize the missing areas
with a zero displacement. (c) After running one-quarter of the smoothing opti-
mization. (d) After full optimization. The discontinuity between the shoulder
and the torso is intentional.

solving the linear system MA = V, where V is the desired template
surface locations at each control point, M is the limit mask matrix,
and A is the new control point positions. Since there are only 72
control points, this is an easy calculation. The refitted surface is
shown in Figure 3(c).

An additional motivation for having a template surface that is
close to the scanned mesh is that it allows us to reject rays that
intersect too far away. This problem occurs particularly in regions
such as the elbow crease and underarm where cast rays pass through
holes in the mesh and hit a surface much further away. Having
a well-fit template surface allows us to easily reject these rays by
treating large displacements as holes.

5 Interpolation and Reconstruction
Referring back to our formulation in Equations 1 and 2, we have
now established a template surface, T(u, q), and a complete dis-
placement map, di(u, q), for each example. All that remains is to
specify the weighting function for each example, wi(u, q). We split
this into two functions: wp

i (q), which performs scattered data inter-
polation based on the pose, and wb

i (u), which blends the arm, shoul-
der, and torso data sets. These two functions will be multiplied to
give: wi(u, q) = wp

i (q)wb
i (u).

5.1 Pose-based weight calculation
Given a new point in the pose space we need to calculate a weight,
wp

i (q), for each example. The interpolated displacements will be
a linear combination of the examples, using these weights. These
weights have three constraints:

1. At an example point, the weight for that example must be one,
and all other weights must be zero.

2. The weights must always sum to one.

3. The weights must be continuous so that animation will be
smooth.

We initially tried using cardinal radial basis functions, as de-
scribed by Sloan et al. [2001]. This worked well for the our arm
model because it consists only of single-axis rotations. However,
when working with full quaternion rotations, naive application of

(a)

(b)

(c)

(d)

Figure 6 Blending the three data sets. (a) A sample arm pose. (b) A sample
shoulder pose. (c) A sample torso pose. (d) Blend of arm, shoulder, and torso,
with a mirrored right shoulder and right arm. Color indicates the blending
weight.

radial basis function interpolation does not work well, because it
treats the quaternion components (or Euler angles) as if they were
independent linear dimensions. Another problem with cardinal ra-
dial basis functions is that they give negative weights. Although
there is no problem with small negative weights, in some regions
of joint space the magnitude of the weights becomes quite large,
exaggerating the deformations to an unreasonable degree.

An alternative technique is k-nearest-neighbors interpolation.
The idea is to choose the k closest example points and assign each of
them a weight based on their distance. All other points are assigned
a weight of zero. The goal is to create a function of the distances
that meets the three criteria listed above. Buhler et al. [2001] devel-
oped an interpolation function of this sort. Before normalization, it
takes the form:

wp
i (q) =

1
D(q, qi)

−
1

D(q, qt)
(5)

where D(q, qi) is the distance between the new points and example
i, and t is the index of the kth closest example. For our upper body
model, we found that k = 8 gave satisfactory results.

We use a different distance function for each data set. For
scans from the arm data set we use a distance function of
√

(∆elbow angle)2 + (∆forearm twist)2 + (∆wrist angle)2. In the
shoulder and torso data sets, the pose space includes quaternions,
so we define a more appropriate distance function: the great-arc
length between the two quaternions on a four-dimensional sphere.

The weights must be normalized since they will not necessarily
sum to one. If the desired pose is equal to an example pose, then
that example has infinite weight and, after normalization, is the sole
contributor to the reconstructed shape in that pose.

5.2 Combining Parts
Using the technique above for calculating wp

i , we can interpolate
the shape of each body part separately. The final step is to blend
the body parts together using the spatially varying blending weight,
wb

i .
Subdivision patches which are only covered by one data set have



Figure 7 An interpolation, in gray, between two poses with different elbow angles (above) and different shoulder and clavicle angles (below). The red models on
the right were generated by applying the displacements from the left-most poses onto the subdivision surface from the right-most poses. The top red model shows
that the protrusion of the elbow and the slight contraction of the biceps are determined by the displacements. In the bottom red model notice that the dimples at the
top of the shoulder and at the scapulae, and the correction of the underarm are not visible if the displacements are not updated.

a blending weight wb
i (u) of 1 if i is a member of the data set and 0

otherwise. For areas that are covered by more than one data set, we
need to smoothly blend across the overlapping region. Therefore
our blending function must take the value 0 at one boundary and 1 at
the other boundary of the overlap region. A linear blending function
based on Euclidean distance has this property. However, we also
want our function to be C1 continuous at the edges. Therefore we
need to use a higher order blending function; we chose to use one
wave of the cosine function as follows:

wb
i (u) = 1 +

1
2

cos

[(

b(ui)
x

− 1. 0

)

π

]

(6)

where b(ui) is the distance between ui and the patch boundary, and
x is the width of the overlap region.

The blending weights for our upper body model and a sample
blend are shown in Figure 6. We can construct a right arm and
shoulder by mirroring all joint angles and deformation data through
the sagittal plane, thereby avoiding the work of scanning both arms.

6 Results
We have tested our system for creating posable human shapes start-
ing from the data set described in Section 2. Figure 7 shows two
simple interpolations between novel poses. In each of these fig-
ures we also show the effect of moving the template surface but
not adjusting the displacements in order to illustrate the difference
between the deformation caused by the template surface and the de-
formation cause by the interpolated displacements. The most egre-
gious error in the non-interpolated meshes is at the elbow, where
the bones of the arm do not protrude. Other prominent artifacts in-
clude a lack of swelling of the biceps, and for the shoulder example,
missing creases in the shoulder, and a protrusion in the right under-
arm. The interpolated meshes have none of these problems and are
a more faithful portrayal of the subject’s anatomy.

We can also control our model with motion capture data. Fig-
ure 1 demonstrates a variety of poses drawn from motion capture of
a different individual, with the joint angles mapped onto the range
scanned subject’s skeleton. The accompanying video shows full
animations generated from motion capture data. Although some of
the poses in Figure 1 go beyond the range of pose space that we
captured, the template surface enables extreme poses to look rea-
sonable.

The biggest problems arise in the crease areas, such as the inside
of the elbow and the underarm. Creases cause problems for three
reasons. First, they cannot be accurately scanned because parts of

the surface are completely occluded. Secondly, creases are by their
very nature areas of high curvature, which, as shown in Figure 4(b),
can be a problem for the displaced subdivision surface parameter-
ization. Our refitting algorithm helps, but occasionally poorly pa-
rameterized areas remain. Finally, our approach does not perform
actual collision detection. As a result, it cannot be expected to ob-
tain correct results when the deformations are caused by collisions.
Figure 7 shows evidence of these issues; in the top right gray pose,
a small ridge near the elbow crease is caused by interpolating a
creased and non-creased surface.

One strength of our approach is speed. Our upper body model
has a control mesh with 65 faces, and each face is subdivided five
times, giving a mesh with roughly sixty-six thousand vertices. Even
with this dense mesh, we can generate and render novel poses at
nearly interactive rates (3-5 frames per second); this rate can be
increased by by sampling at a smaller subdivision level.

Although the model we have developed yields a fairly faithful
reproduction of the posable shape of only a single individual, the
framework does enable some editing operations to change the body
appearance of that individual. For instance, changing bone lengths
or scaling the template control points relative to the skeleton are
straightforward to implement; examples of these operations appear
in Figure 8.

7 Conclusion

We have developed an end-to-end system for capturing human body
scans, estimating poses and kinematics, reconstructing a complete
displaced subdivision surface in each pose, and combining the sur-
faces using k-nearest-neighbors scattered data interpolation in pose
space. The result is an example-based, posable model that captures
high definition shape changes over large ranges of motion. The in-
terpolations are nearly interactive, with the capability of trading off
speed for resolution, and the representation permits editing opera-
tions such as changing the underlying surface shape and kinematics.

Our work leaves ample room for future research. In the short
term, we would like to explore more automatic techniques for pose
estimation, such as fully automatic marker detection and identifi-
cation or even non-rigid, markerless registration. As noted in the
previous section, creases cause problems for constructing displaced
subdivision surfaces. Possible solutions include finding a better
template surface optimized across all poses (rather than an arbi-
trary “average” pose) or computing a template that itself changes
from pose to pose after fitting to each one. Extending our technique
to handle other degrees of freedom such as muscle load (e.g, when



(a) (b)
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Figure 8 By simply scaling the location of the template surface’s control
points relative to the bones, we can alter the appearance of the animated char-
acter. (a) Original appearance; (b) forearm 6 cm shorter; (c) 20% thinner
across all body parts; (d) 44% fatter.

lifting heavy objects) would also be useful.
In the longer term, generalizing beyond a single example sug-

gests a number of future directions. The ability to edit the surface
template and the skeleton hints at the possibility of more sophis-
ticated editing, e.g., exaggerating deformations, or even mapping
deformations onto other bodies scanned in fewer poses. In addi-
tion, scanning large numbers of people would allow more degrees
of freedom for modeling the human body by example, e.g., expos-
ing controls for male-ness and female-ness [Blanz and Vetter 1999].
Finally, the posable model we have developed does not encompass
dynamical behaviors or deformations due to collisions. Combining
example-based techniques with anatomical and physically based
modeling promises to be a fruitful area for future research.
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