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ABSTRACT | There are billions of photographs on the Internet,

representing an extremely large, rich, and nearly comprehensive

visual record of virtually every famous place on Earth. Unfortu-

nately, these massive community photo collections are almost

completely unstructured, making it very difficult to use them for

applications such as the virtual exploration of ourworld. Over the

past several years, advances in computer vision have made it

possible to automatically reconstruct 3-D geometryVincluding

camera positions and scene modelsVfrom these large, diverse

photo collections. Once the geometry is known, we can recover

higher level information from the spatial distribution of photos,

such as the most common viewpoints and paths through the

scene. This paper reviews recent progress on these challenging

computer vision problems, and describes how we can use the

recovered structure to turn community photo collections into

immersive, interactive 3-D experiences.
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I . INTRODUCTION

The Internet has become a vast, ever-growing repository of

visual information about our world. Virtually all of the

world’s famous landmarks and cities (and many not-so-

famous ones) have been photographed many different times,

both from the ground and from the air. Billions of these

photos can be found on mapping sites such as Google Maps

[23] and Microsoft’s Bing Maps [76], and on public photo-

sharing websites such as Flickr [19] and Photobucket [53].
For instance, a Flickr search for BTrafalgar Square[ results in

nearly 150 000 photos (as of June 2010), showing the square

from almost every conceivable viewing position and angle,

different times of day and night, changes in season, weather,

and decade, and during different events. Moreover, these

photos do not exist in isolation, but are surrounded by rich

context, such as textual tags describing the contents of

photos, metadata including who took the photo and when it
was taken, and Wikipedia articles [75]. There is also a wealth

of information represented in the behavior of large numbers

of photographers. For example, given all the world’s pho-

tos of Trafalgar Square, we could potentially identify the

most-photographed objects in the scene and find the most

common paths taken by tourists.

In short, these community photo collections and their

context represent a very rich set of information about our
world, and open up enormous opportunities, both for research

and for practical applications. Imagine mining these collec-

tions to create the ultimate virtual experience of a famous site.
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Such an experience could be extremely visually compelling,
giving us the ability to walk around in a photorealistic 3-D

version of the scene, to let us dial in any time of day or year,

and to let us revisit different events. In addition, such an

experience could be informed by additional contextual and

behavioral information. For instance, we could be guided to

the most interesting parts of the scene and provided

information about different buildings, statues, and paintings,

all through automatic analysis of existing data on the Web.
Unfortunately, a large gap exists between unstructured

community photo collections on sites such as Flickr and

this vision of a photorealistic digital replica of the world

augmented with contextual knowledge. How can we

automatically recover useful geometric and semantic struc-

ture from the unorganized, uncalibrated clouds of photos

on the Internet? Researchers in the field of computer vision

have for decades studied aspects of these problems, such as
3-D reconstruction from images. Historically, vision algo-

rithms have only been applied to very controlled data

setsVsuch as video frames or images captured in the

labVfar removed from the kinds of photos found on the

Web. Recent breakthroughs in computer vision, however,

have closed this gap considerably, opening up the pos-

sibility of extracting structure from photos found Bin the

wild.[ It is now possible, for example, to automatically
create 3-D models from images downloaded from Flickr, as

illustrated with Trafalgar Square in Fig. 1.

This paper describes our work on computer vision

algorithms and visualization tools that are taking us closer to

this vision of an immersive, photorealistic, and intelligent

virtual experience of our world. We begin by discussing the

problem of accurate 3-D reconstruction, as well as recovery

of appearance information, such as color and glossiness,
from community photo collections (Sections II and III). We

then describe our work on using the behavior of photo-

graphers to infer information about a scene. This includes

computing scene summaries that identify interesting views,

segmenting, and labeling individual objects, and finding

common paths through the scene (Sections IV and V). These

algorithms give us both geometric and semantic scene

structure. We then show how we can use this information to
create an interactive scene visualization system. This system,

described in Section VI, uses the derived geometry to display

the scene as a user moves around, and uses the inferred

semantic structure to suggest interesting views and paths.

Finally, we conclude by discussing some of the many

remaining open problems in recovering structure from

community photo collections (Section VII).

II . RECONSTRUCTING CAMERAS AND
SPARSE GEOMETRY

Each of the applications described in this paper rely on a

few essential computer vision algorithms. These algorithms

take the raw, unorganized images, and produce a midlevel,

geometric representation of the underlying scene, which
supports higher level tasks such as finding the most com-

mon views and paths (Sections IV and V). This midlevel

representation consists of three basic elements:

• a position and orientation for each input photo

describing where it was taken (the camera pose);

• a sparse set of 3-D points in the scene;

• a description of which 3-D points are visible in each

image.

Fig. 1. Point cloud reconstruction of Trafalgar Square from several thousand Internet photos. The reconstructed cameras are

shown as black wire-frame pyramids. Inset: one of the input photos taken from approximately the same viewpoint.
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We refer to this representation as a reconstruction.

Example reconstructions of three different scenesVthe Statue

of Liberty, Half Dome in Yosemite, and the ColosseumVare
shown in Fig. 2. Once a collection of photos has been

reconstructed, we can answer several questions about that

collection, including the following.

• Where was a given photo taken?

• What parts of the scene was it looking at?

• Do two photos see any common parts of the scene?

That is, do they overlap?

The problem of reconstructing geometry from images
has a long history in computer vision and photogrammetry.

Until recently, however, there were no computer vision

techniques for recovering this kind of structure from the

large, diverse sets of photos found on the Internet. How-

ever, the last decade has seen remarkable advances in

computer vision, and this kind of information can now be

reliably extracted completely automatically, without

requiring human input or GPS information. This technol-
ogy has started making its way into commercial applica-

tions such as Microsoft’s Photosynth [54], where users can

create 3-D visualizations from their own photo collections.

Recovering 3-D geometry from a set of 2-D images is a

challenging problem, because the process of photograph-

ing a scene results in the loss of a dimension (the depth of

the scene). However, the basic principles behind recover-

ing geometry from multiple images are fairly straightfor-
ward. Humans and many animals implicitly use multiview

geometry to sense depth with binocular vision. If we see

the same point in the world (the corner of a window, say)

in both eyes, we can implicitly Btriangulate[ that point to

determine its rough distance.1 This form of depth per-

ception depends on two key components: 1) identifying

which parts of the two images we perceive correspond to

the same point in the world, and 2) knowing where the
eyes are roughly located relative to each other (to enable

triangulation of corresponding points). We as humans use

these faculties without even thinking about them. A basic

problem in computer vision is to generalize and automate

these abilities, given many views taken from unknown

viewpoints.

The first problem, that of finding 2-D point matches

between images, is known as the correspondence problem.
There are many automated techniques for finding cor-

respondences between two images, but most work on the

principle that the same 3-D point in the world (the window

corner, for instance) will have a similar appearance in

different images, particularly if those images are taken

close together. Once we have solved the 2-D correspon-

dence problem, we then face the second problem: How can

we determine where each photo was taken and the 3-D
location of each scene point, given just a set of corres-

ponding 2-D points among the photos? If we knew the

camera poses but not the point positions, we could find

the points through triangulation; conversely, if we knew

the 3-D points, we could find the camera poses through a

process similar to triangulation called resectioning. Unfor-

tunately, we know neither the camera poses nor the points.

As it turns out, however, the correspondences place
constraints on the physical configuration of the cameras

and points.2 For instance, the two cameras must be situated

so that rays through corresponding pixels actually intersect

(or nearly intersect, given noise in the system). This is a

powerful constraint, as two 3-D rays chosen at random are

Fig. 2. 3-D reconstructions from Internet photo collections. We take image results from keyword search (top), and automatically recover

camera positions and scene geometry (bottom).

1Binocular vision is only one of a number of cues we can use to
estimate depth. Others include focus, parallax induced by the motion of
the head, and the apparent size of objects.

2We refer to each image as being taken by a different Bcamera,[
meaning a specific 3-D pose, even if the same physical device is used from
photo to photo.
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very unlikely to pass close to one another. Thus, given
enough point matches between two images, the geometry

of the system becomes sufficiently constrained that we can

determine the two camera poses and the 3-D point loca-

tions (up to a similarity transformation) [36], after which

we can estimate the 3-D point positions through standard

triangulation. The problem of using pixel correspondences

to determine camera and point geometry in this manner is

known as structure from motion (SfM).
The correspondence and SfM problems are challenging

tasks in computer vision, with a long history of research.

These problems are especially challenging for community

photo collections, which are captured by many different

cameras and under many different conditions (including

various times of day, seasons, and weather conditions).

However, research in computer vision over the past few

decades has made great strides towards solving these
fundamental problems.

The rest of this section briefly describes our approach

to solving these problems. First, a set of pixel correspon-

dences between all images is determined through feature

detection and matching. Second, an incremental SfM

algorithm is used to estimate the camera and scene geo-

metry. This approach is illustrated in Fig. 3.

A. Finding Correspondences
The goal of correspondence estimation is to take a raw

set of images and to find sets of matching 2-D pixels across

all the images. Each set of matching pixels ideally rep-

resents a single point in 3-D. Given a completely unorga-

nized set of images, how can we go about finding matching

2-D points? One common approach, and the one we use, is

to first find a set of distinctive local features in each
imageVthe image’s fingerprints, so to speakVand to then

identify similar-looking features in different images. This

feature matching problem brings up many interesting

questions. What is a Bfeature[ and what makes it dis-

tinctive? How do we represent the appearance of a feature?

How can we quickly find similar features in different

images? These questions have been the basis of a great deal

of research in computer vision for nearly three decades
[20], [29], [44].

For a long time these techniques were largely limited to

working with sets of images that were very similar, such as

consecutive frames of a video sequence. However, in the

past ten years, more powerful feature extractors have been

developed that achieve invariance to a wide class of image

transformations, including rotations, scales, changes in

brightness or contrast, and, to some extent, changes in
viewpoint [43], [48]. These techniques allow us to match

features between images taken with different cameras, with

different zoom and exposure settings, from different angles,

andVin some casesVat completely different times of day.

Thus, recent feature extractors open up the possibility of

matching features in Internet collections, which vary along

all of these dimensions (and more). In our system, we use

the scale-invariant feature transform (SIFT) [43], which has

become a popular tool for many computer vision applica-

tions. Fig. 4 shows an example of the output of SIFT given an

example image from the Trevi Fountain, and Fig. 5 shows
the power of modern feature matching techniques in

matching features between very different images.

Feature extractors such as SIFT take an image and

return a set of pixel locations that are highly distinctive.

For each of these features, the detector also computes a

Bsignature[ for the neighborhood of that feature, also

known as a feature descriptor: a vector describing the local

image appearance around the location of that feature.
Once features have been extracted from each image,

we match features by finding similar features in other

Fig. 3. Scene reconstruction pipeline. Reconstructing 3-D structure

from photo collections typically has three basic steps. We start with a

set of input images (in this case, three images of a cube) without any

knowledge of the 3-D shape of the scene or the camera positions.

First, we detect distinctive 2-D features in the input images, shown as

black disks over the detected features. We then look for matching

features between input images, shown by color-coding corresponding

features. Finally, we use the correspondences to estimate the 3-D

geometry of the cameras and points in a procedure known as structure

from motion. Structure from motion optimizes the recovered 3-D

structure for self-consistencyV3-D points should project close to their

detected 2-D locations. The cameras here are depicted as wireframe

pyramids; the apex of each pyramid is the center of projection of the

corresponding camera.
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images. In a brute force approach, we would compare every

feature in an image to every other feature in every other

image, looking for matches. However, using data structures

such as kd-trees, we can find nearby features without doing

a completely exhaustive search [3]. In our system, we still
consider every pair of images, using a kd-tree to find

matches between each image pair, resulting in a matching

algorithm that takes time quadratic in the number of input

images. Though this is a high computational cost, the

kd-trees make matching each individual pair of images very

efficient, and in addition the matching can be very easily

parallelized across a cluster of machines. However, better

algorithms are needed to scale image matching to entire
cities. Recent work has used ideas from the text-retrieval

community to create much more efficient image matching

algorithms [9], [50], [64]. These approaches create

vocabularies of visual features, and then index images using

the type of inverted file data structures commonly used in
text-retrieval systems such as Google.

Once all pairs of images have been matched, we can

construct an image connectivity graph to represent the

connections between the images in the collection. An

image connectivity graph contains a node for each image,

and an edge between any pair of images that have matching

features. A visualization of the connectivity graph for a

collection of Internet photos of the Trevi Fountain is
shown in Fig. 6. To create this visualization, the graph was

embedded in the plane using the neato tool in the Graphviz

graph visualization toolkit [25]. Neato works by modeling

the graph as a mass-spring system and solving for an

embedding whose energy is a local minimum.

The image connectivity graph for this collection has

several notable properties. There is a large, dense cluster

in the center of the graph that consists of photos that are
mostly wide-angle, frontal, well-lit shots of the fountain

[such as Fig. 6(a)]. Other images, including the Bleaf[
nodes [such as Fig. 6(b) and (c)] corresponding to tightly

cropped details, and nighttime images [such as Fig. 6(d)],

are more loosely connected to this core set.

B. Structure From Motion
Once we have a set of correspondences between

images, we can use them to recover the 3-D camera poses

and the 3-D position of each point represented in the set of

feature matches. This is known as the SfM problem. SfM

is, at heart, an optimization problem: we seek the

configuration of cameras and 3-D points which, when
related through the equations of perspective projection,

best agrees with the correspondences. This objective is

illustrated at the bottom of Fig. 3. When we project any

reconstructed 3-D point (such as the red corner of the

cube) into a reconstructed camera, the projection should

lie close to the 2-D image location where we detected that

point. Here, the projection operation is visualized with the

Fig. 4. Example set of detected SIFT features. Each detected

SIFT feature is displayed as a black box centered on the detected

feature location. SIFT detects a canonical scale and orientation for

each feature, depicted by scaling and rotating each box.

Fig. 5. SIFT feature matches between two images of the Trevi Fountain. Each match is shown by a small square of the same color in

both images. Matches are found despite the fact that the images are taken at different times of day, and in one image the scene is

significantly hidden by people in the foreground.
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dotted blue arrows connecting the red point to the center

of projection of each camera.

SfM, though still an active research area, is another

crowning achievement of computer vision and photogram-

metry over the past few decades. While the basics of pro-

jective geometry were understood in the Renaissance, our

understanding of the mathematical theory underlying

multiview geometry has been significantly improved by
fundamental research since the late 1980s [18], [30]. Early

work focused on reconstructing geometry from two views

[42], with more recent work addressing the multiview

reconstruction problem [69]–[71]. Unfortunately, the

optimization underlying SfM involves a complex, nonlin-

ear objective function with no closed-form solution, due to

nonlinearities in perspective geometry. Most modern

approaches use nonlinear least squares algorithms to mini-
mize this objective function, a process known as bundle
adjustment [72].

Until recently, most work on the multiview SfM

problem focused on controlled image sequences, such as

frames of a video. However, the advent of more powerful

feature matching techniques opened up the possibility of

reconstructing geometry from fundamentally uncontrolled
sets of photos, such as Internet imagery. Prior to our work,
Schaffalizsky and Zisserman [58] and Brown and Lowe [5]

developed SfM systems that successfully reconstructed

unordered image sets captured by a single photographer.

In our work, we showed that SfM could be applied to

photos found Bin the wild,[ reconstructing scenes from

several large Internet photo collections [66]. To solve the

resulting large-scale nonlinear optimization, we recon-

struct the scene incrementally, starting from a single pair
of images, then adding new images and points in rounds,

running a global nonlinear optimization after each round.

This incremental process is visualized for the Trevi

Fountain photo collection in Fig. 7.3

Our system has been remarkably effective in recon-

structing geometry from images from the Internet, working

on almost every example collection we have downloaded.

Several reconstructions are shown in Figs. 1, 2, and 7. The

system is also robust to problem cases such as incorrect
matches (images which do not match the desired scene; such

images are automatically discarded), crowds occluding

much of the scene, and low-quality images (up to a point).

We have also been able to register historical images, such as

the photograph of Half Dome taken by Ansel Adams shown

in Fig. 8. Hence, one application of our system is

determining the viewpoint from which famous photographs

were captured, then taking a new photo from the same
viewpoint, a process often known as rephotography [57].

The rest of this paper discusses other types of

information we can derive once this basic structure is in

place, then describes how we can use this information in

an interactive scene visualization tool.

III . DENSE SCENE RECONSTRUCTION

Given a set of input images in a community photo

collection, SfM is able to reconstruct a sparse geometric
model consisting of the 3-D positions of matched image

features. While this is sufficient for some applications such

as the image-based visualizations presented in Section VI,

we might wonder how much more information can be

3More details on this algorithm can be found in [65], and code for our
SfM system is freely available at http://phototour.cs.washington.edu/
bundler/.

Fig. 6. Image connectivity graph for the Trevi Fountain. This graph contains a node (red dot) for each image in a set of photos of the

Trevi Fountain, and an edge between each pair of photos with matching points. The size of a node is proportional to its degree.

There are two dominant clusters corresponding to daytime photos [e.g., image (a)] and nighttime photos [image (d)]. Similar views of the facade

are clustered together in the center of the graph, while nodes in the periphery of the graph, e.g., (b) and (c), are more unusual (often closeup)

views. An interactive version of this graph can be found at http://phototour.cs.washington.edu/imagegraphs/Trevi/.
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extracted. In particular, is it possible to reconstruct an

accurate and dense geometric model of objects in our

world from community photo collections alone? Likewise,

can we also reconstruct appearance information such as

surface color and the degree of gloss?

For decades, researchers in the vision and graphics

community have been developing a wide variety of
techniques to capture scene geometry and appearance.

Traditionally, the input data for these approaches are

images or videos captured specifically for the purpose of

reconstruction. In many cases, capture conditions such as

camera positions or illumination need to be tightly

controlled (e.g., the system of Debevec et al., used to

capture the shape and reflectance of the Parthenon [12],

[14] required a carefully controlled capture setup). In con-
trast, images in a community photo collection are typically

captured by different photographers under uncontrolled

conditions. As illustrated in Figs. 9 and 10, lighting,

foreground clutter, and scale can differ substantially from

image to image. Thus, one of the major challenges for scene

reconstruction from community photo collections is to

develop techniques that work even for such general and

uncontrolled input data. Note that these techniques enable

us not only to make use of the wealth of existing image data

on the Web for reconstruction, but can also drastically
simplify the requirements for Btraditional[ capture appli-

cations since conditions do not need to be tightly

controlled.

In this section, we first discuss an approach to recover

dense geometry for a scene using multiview stereo

techniques. We then describe a technique to capture

detailed appearance information for these scenes, such as

Fig. 8. A registered historical photo. Left: Moon and Half Dome, 1960.

Photograph by Ansel Adams. We registered this historical photo to our

Half Dome model. Right: rendering of DEM data for Half Dome from

where Ansel Adams was standing, as estimated by our system.

The white border was drawn manually for clarity. (DEM and color

texture courtesy of the U.S. Geological Survey.)

Fig. 7. Incremental SfM. Our incremental SfM approach reconstructs the scene a few cameras at a time. This sequence of images shows the

Trevi data set at three different stages of incremental reconstruction. Left: the initial two-frame reconstruction. Middle: an intermediate stage,

after 60 images have been added. Right: the final reconstruction with 360 photos.

Fig. 9. Community photo collection consisting of images of the Trevi

Fountain collected from the Internet. Varying illumination and

camera response yield strong appearance variations. In addition,

images often contain clutter, such as the tourist in the rightmost image,

that varies significantly from image to image.

Fig. 10. Images of Notre Dame with drastically different sampling

rates. All images are shown at native resolution, cropped to a size of

200 � 200 pixels to demonstrate a variation in sampling rate of more

than three orders of magnitude.
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color and degree of gloss, again using images from com-
munity photo collections.

A. Multiview Stereo Reconstruction
Multiview stereo (MVS) techniques take as input a set

of images with known camera parameters (position and

orientation of the camera, focal length, image distortion

parameters). These parameters can be determined in a

separate calibration step or reconstructed using the SfM

system described in Section II. Given the camera param-

eters for an image, we can compute a viewing ray per pixel,

i.e., a ray in space containing all 3-D scene points that
project to this pixel. The distance of the visible scene point

to the camera along the viewing ray (and therefore also its

3-D position) is however not yet known. The goal of MVS

is to find these distances, or depths for each pixel, and to

use this information to construct a dense 3-D object model.

See [60] for a classification and evaluation of recent MVS

techniques.

As illustrated in Fig. 11, each depth along a viewing ray
in one image yields a different projected location in the

other images. Thus, finding the correct depth can be posed

as a matching problem (similar to the correspondence

problem described in Section II), where we want to find

the depth for which the projected locations in all images

look as similar to each other as possible. We therefore

search for the depth for which the resulting corresponding

patches, small regions in the images around the projected
locations as shown in Fig. 11 (top), are consistent. For

traditional data sets captured under laboratory conditions

such as the temple data set [60] shown in Fig. 11, this

matching problem can be challenging, e.g., in areas of low

texture where matches are not unique or in case of

occlusions where corresponding areas may not be visible in

all images. Matching becomes even more difficult for

community photo collections, which exhibit tremendous

variation in appearance and viewing parameters, as they

are acquired by an assortment of cameras at different times

of day and in various weather.
We introduced a novel MVS approach [22] that is based

on the following observation about large community photo

collections: given the massive numbers of images available

online, there should be large subsets of images of any

particular site that are captured under compatible lighting,

weather, and exposure conditions, as well as sufficiently

similar resolutions and large enough distance between the

cameras (just as with our own two eyes, two cameras need
to be separated by some distance to yield good information

about depth through parallax, i.e., differing displacements

of objects at different depths). By automatically identifying

such subsets, we can dramatically simplify the matching

problem, by using images that are similar in appearance

and scale while providing enough parallax for accurate

reconstruction.

Our system incorporates this view selection idea into an
existing MVS approach by Otto and Chau [52] and recon-

structs a depth map, i.e., an image with depth values per

pixel, for each image in the community photo collection.

Pixels that cannot be matched reliably are left undefined.

Fig. 12 shows an example view from a community photo

collection of the Statue of Liberty and the reconstructed

depth map from two different viewpoints.

The reconstructed depth maps for all the different
images can be combined into a single consistent 3-D model

using standard geometry processing techniques (see [22]

for details). This fusion of depth maps yields two major

advantages. First, the depth maps typically contain varying

noise and outliers due to the difficulty of the matching

Fig. 11. The stereo principle. Depending on the depth along the viewing

ray in the left image, a pixel and the surrounding image patch are

projected onto different locations in other images. For the correct

depth, the patch and its projections in other images are consistent

barring occlusions or other unmodeled effects. Multiview stereo

approaches follow the same principle using more than two images.

Images are taken from a standard benchmark data set [60].

Fig. 12. A view of the Statue of Liberty and the corresponding depth

map. Left: original input image from a community photo collection.

Center: reconstructed depth map rendered from the original camera

viewpoint. Right: the same depth map textured with the input image

and rendered from a novel viewpoint.
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problem discussed above. Combining multiple depth maps

can reduce these artifacts and therefore improves the

quality of the reconstructed surface. Second, the input

images in a community photo collection depict the scene
from different perspectives and under different conditions

(e.g., lighting and scene clutter as shown in Fig. 9).

Consequently, the reconstructed depth maps typically

contain different parts of the scene so that combining them

also improves the completeness of the reconstructed model.

Fig. 13 shows a merged 3-D model of the Duomo in Pisa

reconstructed from a community photo collection with

56 images. The model in the center was created from
several 3-D scans acquired with a laser scanner and serves

as ground truth. As is evident from the rightmost image,

the two models match closely. The MVS reconstruction is

within about 0.25% of the laser scanned model [22] using

the accuracy metric of [60].

B. Relighting Objects From Image Collections
The appearance of an object is characterized not only

by its geometry, but also by its reflectance, i.e., the way in

which it interacts with light. Different materials, such as

stone, bronze, wood, and plastic, all reflect light in
different ways, giving each material a characteristic look.

Some materials, such as chalk, are diffuse and reflect

incoming light equally in all directions. The appearance of

such diffuse materials does not change as we look at the

material from different directions. Most opaque objects,

however, are not completely diffuse, and reflect light in a

more complex way that depends on our viewpoint.4 For

instance, many materials are glossy, resulting in highlights
that appear to move on the surface as we view the material

from different directions. Gloss itself is not simple, and

can have different characteristics for different materials

(as can be observed when one goes to buy paint for a room,

and has to choose between eggshell, satin, semigloss, high

gloss, and other types of paint). Fig. 14 shows an example

of how different materials interact with light.

In order to fully capture the appearance of an object

and enable rendering of that object from any viewpoint, we
need to recover reflectance properties for every point on

the surface of the object. There are many techniques for

acquiring reflectance in the lab, using specialized equip-

ment and controlled lighting including [13], [38], [46], and

[80]. However, it is not possible to take objects like the

Statue of Liberty or the Notre Dame Cathedral into the lab.

Other techniques that work in outdoor settings need

additional information about the lighting during capture
[12], [14], [78]. Can we recover material properties solely

from community photo collections where lighting is

neither known nor controlled?

4In fact, transparent or translucent objects interact with light in even
more complex ways, as light rays can enter the object at one point, bounce
around inside, and exit at a different point. In our work, we only consider
opaque objects.

Fig. 13. Comparison of a reconstructed geometry model with ground truth. Left: merged model of the Duomo in Pisa reconstructed from a

community photo collection with 56 images. Middle: laser scanned model of the Duomo serving as ground truth. Right: false color rendering of the

two registered models overlaid on top of each other demonstrating that the two models match closely. (Scanned Duomo model courtesy of

Visual Computing Group, CNR, Pisa, Italy.)

Fig. 14. Reflectance properties for three different materials.

Here, samples of different materials are placed in the scene, and

photographed under illumination from a bright light source.

The camera is close to the mirror direction of the light source.

The left image shows a diffuse surface, which scatters incoming light

equally in all directions. The middle image is of a glossy material that

reflects most of the light in and close to the mirror direction

forming a broad highlight. The right image shows a standard mirror

that reflects all light in the mirror directionVnote that we get an image

of the light source. (Images and drawings courtesy of

Hendrik Lensch [37].)
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In [27], we approach this question by developing a
technique to recover reflectance and illumination from

community photo collections alone. The output of this

technique is a model where we can change both the lighting

and the viewpoint, and get back a realistic image of the

object. Our approach relies on a number of assumptions

about the scene and about the lighting. For instance, we

assume that all light sources are very far away, which is true

for the sun and the sky, but not for floodlights or light rays
bouncing between objects in the scene. We also assume

that each material present in a scene can be described as a

linear combination of a small number of basis materials

(see [27] for complete details of our assumptions). While

there is a great deal of work left to be done on this problem,

our work takes a step towards enabling reflectance

estimation solely from uncontrolled images gathered Bin

the wild.[
The idea behind the approach is straightforward and

uses a technique known in the computer graphics literature

as inverse rendering [4], [45], [56], [77]. We treat each

image in the community photo collection as a measurement
of what the scene looks like from a specific point of view

(the known camera position) and under the (unknown)

illumination for that image. Our goal is to determine a

complete scene model, including the scene geometry
(recovered using MVS as described in the previous sec-

tion), the reflectance at each surface point, and the illu-

mination present in each image, that closely predicts the

measurements. Given an estimate of these unknowns, we

can render the scene, i.e., create an image of what the scene

model would look like with the estimated material

properties and under the estimated illumination. If these

estimates are correct, each rendered image should match
the corresponding real image. For efficiency reasons, we

perform this rendering step in the wavelet domain [49],

[74] exploiting the structure of natural images and natural

lighting environments. Comparing the real and rendered

images, we can update the estimates of the unknown

reflectance and illumination conditions and iterate until

convergence.

Fig. 15 illustrates an example for the Statue of Liberty
using the six input images in Fig. 15(a). After estimating the

reflectance and per-image illumination, we can create high-

quality renderings using the estimated illumination, as

shown in Fig. 15(b). Fig. 15(c) shows the Statue of Liberty

rendered under two novel illumination conditionsVa

single spot light (left two images) and a measured illu-

mination environment [11] (right three images). The latter

are renderings of the statue as it would appear if mini-
aturized and placed in the Uffizi Gallery, Florence, Italy.

IV. SCENE SUMMARIZATION
AND SEGMENTATION

A Flickr search for Trafalgar Square results in nearly

150 000 photos, presented as a list of thumbnails in

seemingly random order. Can we use a reconstruction of

such a set of photos to construct an artifact that is easier to

digest? Our goal in scene summarization is to condense a

photo collection into a smaller set of canonical views that

quickly conveys the essence of the full collection. A good
summary should contain views that appear frequently in

the collection, without much redundancy. (See Fig. 16 for

a summary of Rome computed automatically by our

algorithm.) A summary can also be interactive, allowing

a user to browse the scene at a high level before Bdrilling

down[ into specific views.

Earlier summarization approaches did not use comput-

er vision, and relied solely on metadata associated with the
images, such as timestamps, textual tags, and geotags [2],

[34]. Unfortunately, user-supplied metadata is often absent

or unreliable, leading to the use of image analysis (and the

resulting scene reconstructions) as the basis for our

summarization technique. (A subsequent user study by

Kennedy and Naaman [35] found that using visual feature

matching led to summaries that users found 39% more

Brepresentative[ and 22% more Bsatisfying[ than summa-
ries computed from tags alone.) The success of our vision-

based method depends on a simple assumption that the

distribution of photos taken by users and submitted to

Flickr reflects the relative importance of different views of

a scene.

Our approach to scene summarization involves three

related subproblems. The first is to partition the image set

into groups of images, each corresponding to a different

Fig. 15.Relighting a model of the Statue of Liberty. (a) Input images for

the Liberty data set; (b) object rendered under estimated illumination;

(c) object rendered under point light illumination (left two images)

and under the Uffizi environment map [11] (right three images).
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representative view of that scene. The second is to

identify a canonical image to represent each group. The

third is to compute textual tag information that best

represents each view. Computing a city summary further
requires identifying all of the distinct sites of interest in

that city.

At a technical level, our approach works by applying

clustering techniques to partition the image set into groups

of related images, based on the visual structure repre-

sented in the image connectivity graph for the collection

(such as the one shown in Fig. 6). The clustering and

representative images are computed using a greedy
approximation to a k-means-like objective that is guaran-

teed to achieve a solution with quality above a constant

fraction of the optimal solution. The resulting clustering

can also be used to browse the collection of images by

content. Descriptive textual tags for each cluster are

computed using probabilistic reasoning on histograms of

image-tag co-occurrences. A good tag should appear in

many images within the cluster (preferably from multiple
users) and less frequently outside the cluster. Due to the

large amount of noise in user tags, obtaining high-quality

tags turns out to be nontrivial. Further details on our scene

summarization method can be found in [61].

Can we go further? Instead of clustering the images, is

it possible to segment the scene itself into objects that

people find interesting? It turns out that we can perform

such a segmentation using a field-of-view cueVphotogra-
phers are likely to take pictures Bof[ interesting objects,

rather than pictures where multiple objects are partially

overlapping with the frame. This means that scene points

that appear together in many images are likely to belong

to the same object. We can use this cue, along with a

spatial proximity cue (nearby scene points are more likely

than distant points to belong to the same object), to cast

the problem of scene segmentation into a framework

similar to latent semantic analysis [15], [32], ordinarily
used on word-document co-occurrences in text. With this,

we can decompose a sparse set of 3-D scene points and

their image co-occurrences into a set of latent objects.

This sparse 3-D segmentation can then be used to high-

light interesting objects in images (Fig. 17), and in some

cases, select good text labels from the pool of noisy

image tags from Flickr (Fig. 18). More details are avail-

able in [62].

Fig. 16. Rome summary. A summary of 20 000 images of Rome, consisting of a representative image from the 18 largest scenes,

along with automatically selected tags.

Fig. 17. Regions highlighted by importance. These importance images

are from several scenes. Cluster importance is a function of the number

of images containing scene points from the cluster, as well as the

cluster size (to discount large background clusters). Importance is

indicated by color saturation, with different hues for different clusters.

In other words, the colored regions correspond to parts of the scene

that are photographed frequently relative to their size.
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V. FINDING PATHS THROUGH THE
WORLD’S PHOTOS

Section IV describes techniques for identifying interesting,
representative viewpoints given a large collection of photos

of a scene. In addition to common viewpoints, there tend to

be common paths through a scene. These paths often

correspond to actual paths and walkways, but the way

people move through and photograph a scene is also

influenced by the content of the scene. For instance, if the

scene has a dominant object, people often tend to take

photos of that object from a range of surrounding
viewpoints. If we look at the spatial distribution of

reconstructed photos taken by many different people, we

often see Borbits[ form around such objects. Fig. 19 shows a

set of reconstructed viewpoints from Flickr photos of the

Statue of Liberty. Notice how these views form two orbits

around the statue, one on the island, and one further out in

the water (captured from boats). Even if we knew nothing

about the contents of the scene, these viewpoints alone
indicate that there is an interesting object in the center

(because all the cameras are trained on that single point),

and that people tend to photograph that object from two

different distances.

These paths are interesting in themselves, as they can

be used to infer people’s behavior as they move through a

scene. In addition, these paths are extremely useful in

building a scene-exploration interface for people who have
never been to that place, as described in Section VI. By

identifying consensus views and paths over many photo-

graphers, we can potentially learn a set of good navigation

controls specific to each scene, i.e., controls that guide

new virtual visitors to the interesting objects and paths.

For instance, in the Statue of Liberty example, we can

detect the two orbits around the statue, and then present

these orbits as controls to a user of our 3-D interface. This
section briefly describes our work on finding orbits and

other paths [67].

In our work, we find three types of paths, in addition to

the representative views of the previous section:

• orbits;

• panoramas;

• paths from one representative view, orbit, or

panorama to another.
An orbit is an arc of a circle focused on a nodal point

(usually the center of an object). A panorama is a set of images

all taken near the same location, but looking in different

directions. Photos taken at the top of the Leaning Tower of

Pisa, for instance, would likely make a good panorama.5

Finally, it should be easy for a user of a 3-D interface to travel

from one good path or viewpoint to another. To enable this,

our system computes good paths between any two views.
These computed paths attempt to emulate how a person

would move through the scene. We now briefly discuss how

we find these different types of paths.

A. Orbits and Panoramas
Finding orbits and panoramas in a set of reconstructed

camera locations is a form of clusteringVwe want to

identify sets of cameras that lie close to an arc (for an

orbit) or to a single point (for a panorama). At the same

time, we want the arc (or range of viewing directions, for a

panorama) to be large enough to seem meaningful, to
avoid detecting many small, spurious paths.

To find good orbits, we first look for evidence of strong

orbit centers. A strong orbit center is a point in the scene

towards which many different cameras are pointed (in

other words, a point which appears in the center of many

different photos). We find such candidate orbit centers by

clustering the intersection points between rays passing

through the centers of pairs of cameras. Regions where
many such rays intersect indicate potentially interesting

objects.6 We then look for strong arcs centered on each

orbit center, i.e., long arcs that pass close to a large

number of camera centers (see [67] for more detail on this

process). For the Statue of Liberty, for example (Fig. 19),

we detect a single orbit point, and two arcs around this

point. Panoramas are detected through a similar process of

clustering camera locations to identify good panorama
centers.

B. Paths Between Views
We also want to enable transitions from any view to any

other view, as a means of automatically moving a user from

5Note that we do not refer to a panorama in the traditional sense of a
360� image, often stitched together from several normal images. Instead,
by panorama, we simply mean a location where different people have
stood and taken photos in different directions. Note that a panorama is a
degenerate Bpath[ in terms of changes in camera location, but we define a
path to include changes in orientation as well.

6A similar procedure was used by Epshtein et al. to find salient objects
in a scene [17].

Fig. 18. Automatically tagged regions. Region tags automatically

computed from our segmentation, and used to label two images of

(a) Trafalgar Square, (b) Old Town Square, and (c) Piazza Navona.

We compute these labels using noisy user-submitted tags downloaded

from Flickr, automatically associating a single tag (or no tags)

with each scene point cluster. In these images, we manually moved the

labels to make them more readable.
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one part of the scene to another. One approach would be to

simply linearly interpolate the starting and ending camera

positions and orientations. However, this approach often

fails to produce paths that naturally emulate how a person

would move through the scene. For instance, Fig. 20 shows

an overhead view of a point cloud reconstruction of the

Pantheon in Rome. Consider a transition between the
green and red views shown in Fig. 20. A linear path (dotted

black line) between the two viewpoints passes through the

wall of the Pantheon, hence this is an impossible path.

How can we generate more natural paths? Our approach is

to leverage the fact that we have samples of where people

actually stood when they visited the scene. These locations

are guaranteed to be free space regions unobstructed by

walls and other obstacles. Just as important, they likely lie
along common paths through the scene and are taken in

interesting viewing directions.

Thus, we have developed an algorithm to compute

paths through scenes based on two criteria:

• proximity: the path should always be close to the

location (and orientation) of an input photo;

• smoothness: the path should be as smooth as pos-

sible (to avoid unnatural, zig-zagging paths).
Our algorithm is a variant of Dijkstra’s shortest path

algorithm [16] on a graph defined on the set of input

viewpoints, giving us a sequence of cameras that our path

should pass through (the blue cameras shown in Fig. 20).

Using a piecewise linear path through these cameras as an

initial path, we apply a smoothing filter to generate the

final, smooth transition.

VI. SCENE VISUALIZATION

The preceding sections have described several ways of

extracting structure from large, unorganized photos of

famous places. Now, we discuss how to use this structure

to create interactive, immersive 3-D experiences of scenes

underlying these photo collections. There are several
important components of a 3-D user interface, including:

• rendering: how do we display and animate a

scene?

• navigation: what controls should we give to the

user for moving around in a scene?

These two problems have been the focus of a great deal

of research in computer graphics and human–computer

Fig. 20. Using path planning to compute a transition between photos.

A transition from an image outside the Pantheon (green) to an image

inside (red) computed using our path-planning algorithm. The black

dotted line shows a linearly interpolated path between these two

nodes. The blue cameras are the intermediate nodes visited on the

transition graph. The black solid curve shows our smooth path through

these cameras. Red line segments indicate the viewing directions at

samples along this path.

Fig. 19. Paths through the Statue of Liberty photo collection. Left: several Flickr images of the Statue of Liberty, from a collection of

388 input photos. Right: reconstructed camera viewpoints for this collection, revealing two clear orbits, shown here superimposed on a satellite

view. Our goal is to automatically discover such orbits and other paths through view space to create scene-specific controls for browsing

photo collections.
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interaction. The techniques used for these problems
depend greatly on the representation of the underlying

scene. In computer animation and games, the dominant

approach is to manually create detailed 3-D models by

hand, then render them using standard 3-D rendering

algorithms such as raytracing and z-buffering. Unfortu-

nately, these models often require substantial time and

expertise to create. As we described in Sections II and III,

our work is a step towards creating such geometry com-
pletely automatically from existing photos on the Web.

In addition to rendering approaches based on dense

geometry, we can also render scenes directly from the

photos themselves using an approach known as image-

based rendering (IBR). IBR techniques use a database of

images to synthesize new views of a scene by combining

pixels from multiple input images. One of the first IBR

systems was the Aspen Moviemap project of Andrew
Lippman [41]. This project sought to recreate an experience

of the town of Aspen, CO, by capturing omnidirectional

images while driving through the streets of the town, then

assembling the images into an interactive city walkthrough.

This pioneering work laid the groundwork for many other

systems, including Google’s Streetview [73]. While the

Aspen Moviemap always displayed the closest database

image to the user’s current viewpointVa form of nearest-
neighbor viewpoint interpolationVmore recent work in

IBR has developed ways to synthesize a continuum of views

[7], [24], [39], [47].

Most work in IBR has focused on rendering scenes from

databases of dense, fairly uniformly captured images, quite

unlike the photos found in community photo collections

(one notable exception is the work of Buehler et al. on the

unstructured lumigraph [6]). In addition, the problem of
navigating these scenes has been less well studied than the

rendering problem, despite its importance to the user

experience. In our work, we have addressed the challenge of

rendering scenes from Internet photo collections, and of

giving users understandable, intuitive 3-D navigation con-

trols. This section describes how we use recovered geometric

and semantic structure for rendering and navigation.7

A. Rendering
Given a set of diverse, nonuniformly sampled photos of

a scene, how can we display coherent renderings as a user

moves around in 3-D? One approach is to simply display

the kinds of point clouds or geometric models shown in

Figs. 2 and 12. However, these renderings simply do not

have the richness inherent in an actual photo (although the

appearance modeling work of Section III-B is moving us
closer to photorealism). The input photos contain many

elementsVsky, clouds, water, crowdsVthat are difficult

to model explicitly with geometry and reflectance infor-

mation. Thus, in order to preserve the character of the

photographs, we have mainly explored image-based

rendering techniques.

Our basic approach to rendering can be thought of as

follows: we treat the input cameras as slide projectors, and
treat the scene itself as a projection surface onto which the

camera images are projected. To render the scene into a

novel viewVthe user’s virtual cameraVwe project an

input view onto the scene, then reproject back into the

output viewpoint, as illustrated in Fig. 21. The design of

our image-based rendering system requires the answers to

two basic questions:

1) What input image do we project into the output
view? The answer depends on what navigation

mode the user is in. In the next section, we describe

several different styles of controls for scene

navigation. One type of control moves the user

from one photo to another based on requests such as

zoom in and move left. In this mode, we project both

the starting photo and the destination photo into the

user’s virtual view during each transition, cross-
fading them to produce a morph. Other navigation

modes allow the user to move freely through the

scene (or freely along a constrained path, such as an

orbit). For these modes, there is no starting and

ending photo, so the system continually selects the

best input photo to display based on a photo scoring

function. This scoring function takes into account

several factors: the proximity of the input photo to
the virtual viewpoint, the resolution of the input

photo, and how much of the virtual view it covers

when reprojected. As the user moves around, dif-

ferent images become the Bbest[ photo to display.

For instance, when the user zooms in, the system

tends to select a higher resolution photo, and when

the user moves, the system selects a photo closer to

the new viewpoint. Whenever a new photo is

7The interfaces we describe are best shown through video, and
examples can be found online at http://phototour.cs.washington.edu/ and
http://phototour.cs.washington.edu/findingpaths/.

Fig. 21. Reprojection. To render the scene from a new viewpoint

corresponding to the user’s current position and orientation (the

‘‘virtual camera’’ shown in blue), we take an input photo (the red

camera on the left) and reproject it into the virtual camera. The

reprojection process involves first projecting the photo onto a virtual

projection surface in the scene (here, simply a plane indicated by the

solid black line), then projecting back into the virtual camera.
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selected, the system cross fades between the
previously selected photo and the new photo.

2) What geometry do we use for the projection

surface? The natural choice would be the dense

reconstructions of Section III. The advantage of

using such detailed, accurate models is that the

resulting reprojection looks more accurate when

seen from a different virtual viewpoint. However,

these models also have their disadvantages. Some
parts of the scene, such as the sky and the ground,

may not have been reconstructed, and thus the

projection surface may have large holes. In addi-

tion, people and other dynamic elements often

appear in Internet photos. Such transient objects

will not be represented in the 3-D model, and often

look unnatural when projected onto detailed

surface geometry.
In contrast, we have found that using an extremely

simple projection surfaceVa single plane per input

imageVproduces good results in many cases, and avoids

some of the problems of the more detailed geometry. The

use of planar projection surfaces is illustrated in Fig. 21.

For each input camera, we select its projection surface by

robustly fitting a plane to the 3-D points visible in that

camera. This approach results in less accurate reprojec-
tions, but looks more natural, perhaps because we are used

to seeing planar distortions from everyday life (e.g., when-

ever we see a billboard from an oblique angle). Moreover,

planes are very common in man-made environments, so

planar projection surfaces are often good approximations

to the true geometry. On the other hand, in scenes that are

not well approximated by single planes, this approach does

not always work well. Developing better projection
surfaces for rendering is still an active research area,

with recent work focusing on fitting piecewise planar

surfaces to architectural scenes [21], [63].

B. Navigation
In addition to rendering, navigation is a key component

of a 3-D user interface. We have developed several new

types of photo browsing and scene navigation controls
based on the geometric and semantic structure described

in the previous sections.

1) Photo-Based Controls: First, the recovered geometric

structure enables powerful new photo-based controls for

exploring scenes and finding new photos. For instance,

once we know where each photo was taken, it becomes

easy to answer questions such as: Which photos show a
wider angle view of the scene than a given photo? Which

photos show what’s to the left? Which photos are similar?

Our system allows for queries based on these types of

questions. For instance, Fig. 22 shows, for an example

image of the Notre Dame cathedral, the results of using

our system to search for all photos which 1) show more

detail, 2) show similar parts of the scene, and 3) show

more surrounding context.

2) Object Selection: For each photo, we also know which

3-D points are visible, and where they appear in that

photoVand we know where these points appear in other
photos as well. This knowledge enables a new type of object
selection control. To find a photo of an object, a user can

simply select that object in one photo, and the system

automatically finds the best photo of the selected object,
then moves the user’s viewpoint to that photo. When users

select a region of a photo, they are implicitly selecting a set

of 3-D points as well. Thus, the question of finding a good

photo reduces to that of finding a good photo of the

selected 3-D points. We define a Bgood[ photo of a set of

points to be one that shows most of the points (but is well

cropped) and views them from a frontal angle. An example

of this search feature is shown in Fig. 23.

3) Suggested Controls: Even more powerful are naviga-

tion controls based on the scene summaries and common

paths described in Sections IV and V. Building good 3-D

scene navigation controls is a surprisingly difficult prob-

lem; it is often easy for users to get lost in a scene,

especially one they are unfamiliar with [28]. A completely

Fig. 22. Photo-based controls. Left: an image from a reconstruction of the Notre Dame cathedral. Right: the results of searching for details (top),

similar images (middle), and zoom-outs (bottom), starting from this input image.
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free-form navigation interface, such as those common in

3-D games, allows a user to go wherever they choose, but

users might not know where they should go to see the
interesting parts of a scene. For instance, consider Prague’s

Old Town Square, a well-known tourist site with many

notable landmarks. These include the Old Town Hall with

its famous astronomical clock, the Tyn Cathedral, the

St. Nicholas Church, and the Jan Hus Memorial statue. An

ideal interface for exploring this scene would make it easy

to find all of the important landmarks, and offer additional

controlsVsuch as an orbit control for the statueVwhen
appropriate. These landmarks and controls are precisely

the kind that our scene summarization and path-finding

algorithms attempt to find based on the consensus of

people who have been there before and taken photos.

Our system suggests these detected views and paths to

the user as a set of constrained navigation controls for

orbiting, panning, and moving to interesting views. These

controls are particularly useful for users who are un-
familiar with a scene. The controls instantly inform the

user which parts of the scene are worth exploring, and

automatically take the user to those places using the path-

planning capabilities described in Section V. Fig. 24 shows
several suggested controls for the Statue of Liberty and the

Pantheon.

C. Additional Applications
The structure we extract from photo collections also

enables a number of additional applications. The object

selection capability above takes advantage of the fact that

we know where each 3-D point appears in each image. This

information also allows us to create powerful tools for

image annotation. In Section IV, we described how we can

automatically use Flickr tags to annotate photos and
objects. In addition, we can also take an annotated region

in one photo and propagate that annotation to all the other

photographs through their common 3-D points. Thus, a

user can label an entire photo collection by annotating just

a single photo. In our system, a user does this by simply

dragging a box around a region of a photo and typing in a

label. An example of automatic propagation of annotations

is shown in Fig. 25.
Our system also allows users to classify photos into

different categories, such as day and night. We can then

create controls for changing the appearance of a scene by

toggling between categories of photos. We created such a

control for the reconstructed Trevi Fountain photo

collection, giving the user the ability to alternate between

daytime and nighttime views of the fountain. An example

is shown in Fig. 26.
Another application of our system is to create a 3-D

slideshow from a personal photo collection. Suppose that

you visit the Pantheon and take your own set of photos,

showing friends and family in a few discrete locations (e.g.,

the front façade, the altar, looking up at the oculus). SfM

techniques are not likely to register these photos together

due to insufficient overlap, unless they are captured much

more frequently than is customary with personal photo
collections. However, if these photos are registered with

Fig. 23. Object selection. Left: the user drags a rectangle around the

statue in the current photo. Right: the system finds a new,

high-resolution photograph of the selected object, and moves to that

view. Additional images of the object are shown in the thumbnail

pane at the bottom of the screen.

Fig. 24. Suggested orbits and panoramas. Two screenshots from our user interface showing suggested controls. The main view of the scene

takes up most of the image, and the suggested controls are shown at the bottom. Left: the pane at the bottom shows the two orbits detected

for the Statue of Liberty. The user is currently exploring the outer orbit. Green arrows on the sides of the screen indicate that the user can

orbit to see additional views. Right: here, the user is at the Pantheon, and the pane at the bottom shows detected panoramas. The user is

exploring one such panorama, and again arrows appear to show which directions the user can pan in to see additional views.

Snavely et al. : Scene Reconstruction and Visualization From Community Photo Collections

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1385

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2010 at 18:52:37 UTC from IEEE Xplore.  Restrictions apply. 



the much denser set of photos of the Pantheon archived on

the Internet, we can plan paths between the personal image
set to create a 3-D slideshowVin a sense, retracing our

steps through the Pantheon by leveraging other peoples’

photos to fill in the gaps. The video on our project website

shows such a slideshow created from four personal photos,

combined with several hundred community photos of the

Pantheon. Fig. 27 shows several images in this personal

photo tour in context in our viewer.

D. Photosynth
Our work on reconstruction and visualization of

unordered photo collections is being used in Microsoft’s

Photosynth [54] system. Photosynth, shown in Fig. 28, is a

3-D photo visualization tool that uses the same underlying

representation (camera positions and points) as in our

work and that supports some similar types of controls,

including zooming and orbiting. There are also several

interesting differences. In Photosynth, instead of having
the user drag a box around an object to see a more detailed

photo, the system suggests different photos as the user

moves the mouse cursor around the screen. If a closeup of

the object that the cursor is hovering over is available, a

quadrilateral outline appears, highlighting that region of

the screen, as shown in the left image of Fig. 28. Clicking

on an outline results in a transition to the selected photo.

Photosynth also supports a Bsplatter[ mode, in which the
photos are viewed in a 2-D arrangement.

In order to support interactive browsing of large collec-

tions of high-resolution photos over a network connection,

Photosynth efficiently streams image data using a system

called Seadragon, which computes which parts of which

photos are visible on the screen, and at what resolution

each photo (or part of a photo) is viewed. Only the required

data are then sent over the network, and higher resolution
data are smoothly blended onto the screen as they are

received.

To date, enthusiastic Photosynth users have created

tens of thousands of Photosynths, some of which, such as

those of the Presidential inauguration created by MSNBC

photographers, have been viewed over a quarter million

times.

VII. CONCLUSION

In this paper, we have described recent progress in

digitizing and visualizing our world from data gathered

through the ultimate distributed capture processVmillions

of people simply taking photos and uploading them to
the Web. We believe that these tools and models can

have significant impact in education, in science, and in

everyday life. A virtual, photorealistic model of the world

allows anyone with an Internet connection to remotely

experience and learn about any location on Earth. Our

tools also allow scientists and historiansVarmed only

with a digital cameraVto easily create 3-D models of

cultural artifacts, archaeological sites, and other places
and objects, or to view a progression of registered

photographs showing the evolution of a site over time

(see, for instance, the 4-D Cities project at Georgia

Institute of Technology, which is building a time-varying

3-D model of Atlanta, GA [1], [59]). This ability is espe-

cially critical for sensitive sites where it might be difficult

to use a laser scanner, or for objects that have been

Fig. 25. Example of annotation transfer. Three regions were annotated in the photograph on the left; the annotations were automatically

transferred to the other photographs, a few of which are shown on the right. Our system can handle partial and full occlusions.

Fig. 26. Switching between day and night in the Trevi Fountain.

Left: a daytime view of the Trevi Fountain. Right: the result of switching

to a nighttime view; the same viewpoint is shown at a different

time of day.
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damaged or destroyed and have only been captured
through photography. In the hands of the general public,

these tools will let anyone create, explore, and share 3-D

models of their home, neighborhood, car, cat, or anything

else they might wish to document.

A number of significant challenges still lie ahead. One

of the most important is scale. Ultimately, we would like to

use our methods to reconstruct as much of the Earth’s

surface as possible, requiring Internet-scale matching and
reconstruction algorithms. For many cities, there are

millions of photos on the Internet. For instance, a search

for BRome[ on Flickr results in nearly two million photos.

How can we scale to such vast photo collections without

requiring many years of running time? Recent matching

algorithms [8], [9], [26], [51] have demonstrated the ability

to operate effectively on data sets that approach this scale,

although more work is needed to improve the accuracy of
these methods, especially for community photo collections.

Furthermore, the large redundancy in online photo

collections means that a small fraction of images may be

sufficient to produce high-quality reconstructions, an

observation we have begun to explore by extracting image

Bskeletons[ from large collections [68]. Perhaps the most

important challenge is to find ways to effectively
parallelize all the steps of our reconstruction pipeline to

take advantage of multicore architectures and cloud

computing [81]–[83].

There has also been interesting recent work in analyzing

image collections at Web scale. For instance, Quack et al. [55],

Crandall et al. [10], and Zheng et al. [79] used massive

collections of georegistered images (35 million in the case of

[10]) to find, label, and summarize all of the world’s
significant landmarks, and to trace the most common paths

on a city scale [10]. Once these databases have been gathered,

they also open up the possibility for world-scale matching

algorithmsVimagine taking a random photo taken anywhere

in the world, and localizing it not using GPS, but by matching

it to a massive collection of georegistered photographs.

Researchers including Hays and Efros [31] and Li et al. [40]

have begun looking at this problem.
There is also a great deal of work left to be done on

reconstructing better geometry and appearance models for

scenes. This is especially true for dynamic elements such

as clouds, crowds, flowing water in fountains and streams,

and weather conditions such as rain and fog. These

phenomena are critical for creating a vivid experience of a

Fig. 28. Screenshots from Microsoft’s Photosynth. A reconstruction of Venice’s Piazza San Marco from 467 photos. Left: the normal display

showing one main photo and several other semitransparent photos showing context. Right: a view of the point cloud.

Fig. 27. Personal photo tour of the Pantheon. In this sequence, a user has added their own personal collection to the Pantheon data set.

This allows the user to create a 3-D slideshow through their own photos, using the community’s photos to fill in the gaps (please see the video at

http://phototour.cs.washington.edu/findingpaths/ for an animated version of this tour).
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place, but are traditionally very difficult to model. For this
problem, the growing amounts of video data on the Web

might help complement the still photos that have been our

primary source of data.

While our initial work has focused on what is possible

given large Internet collections, rigorous evaluation of

these methods is also an important direction for future

research. How accurate is the geometry we are getting?

How good are the scene summaries and object segmenta-
tions we compute? How effective are the user interfaces

we have developed? These are to some extent open

questions, although we have done some initial quantitative

evaluation of the accuracy in geometry (e.g., see Fig. 13).

However, evaluation is itself a challenging problem for

these applications. For 3-D reconstruction, there is usually

no accurate ground truth for locations for images found on

the Internet, and most places in the world have not been
scanned in 3-D; thus, an interesting direction is to gather

accurate ground truth for a number of landmarks through

laser scanning. For the more subjective applications we

explore, such as scene summarization, user studies may be

an appropriate means of evaluation.

Finally, there is a large opportunity to connect the

visual data on the Web to other types of information, such

as Wikipedia pages, landmark databases, weather infor-
mation, and street maps. The same community of

photographers that capture and upload images could also

potentially specify contextual information about their

photos, especially if they purposefully contribute to a

growing visual database of the world. Instead of finding

photos that are Baccidentally[ useful for 3-D reconstruc-
tion, we envision a site where people intentionally submit

photos for the purpose of reconstructing the world. Users

could also annotate images and provide links to additional

content, resulting in a kind of visual Wiki [33]. Such a site

would have the additional benefit of encouraging people to

submit missing photos that fill in gaps in the model, rather

than, say, yet another identical photo of the same famous

landmark.
Computer vision as a whole is having increasing success

in a number of practical applications. Our hope is that, as

the techniques we describe here become more and more

robust and scalable, computer vision will have the same

impact on the Internet (and the world at large) in the

next ten years as text search and retrieval have had in the

last ten. h
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