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Figurel: Controlledsimulationsof a manrunning,createdut of water(top) andsmole (bottom).

Abstract

We describeanovel methodfor controllingphysics-baseduid sim-
ulationsthrough gradient-basedonlinearoptimization. Using a
technigueknown asthe adjoint method derivatives can be com-
putedefciently, even for large 3D simulationswith millions of
control parametersin addition,we introducethe rst methodfor
the full control of free-surficeliquids. We shav how to compute
adjoint derivatives througheachstep of the simulation,including
thefastmarchingalgorithm,anddescribea new setof control pa-
rametersspeci cally designedor liquids.

CR Categories: 1.3.7 [ComputerGraphics]: Three-Dimensional
GraphicsandRealism—Animation;
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1 Introduction

In recentyears,physics-base@nimationhasbecomepenasie in
computemgraphics producinganimationswith striking nuanceand
realism.In particular signi cant advancesn modelingthedynam-
ics of liquids and gaseshave yielded stunninganimationswhich
couldnever have beencreatechy hand.Unfortunatelyjust aswith
ary simulation, the animatorcannotfreely designthe animation:
directly editingsimulationparameteraffectsthedynamicsan com-
plex and unpredictablevays. Therefore,researcherfiave begun
seekinghigh-level controlmethodsfor complex dynamics.
Neverthelessthe ne-grained control of physically-basedsim-
ulation hasremainedout of reach. Suchdetailedcontrol might
easily require hundredsof thousandf free variables; previous

systemgequireda derivative simulationfor eachvariable,making
controlfeasibleonly at relatively coarsescales.To make full con-
trol tractablefor large simulations,we needtechniqueghat scale
well with thenumberof controlparameters.

In thiswork, we presensuchatechnique Our systemis givenan
initial state eithersmole or water anda setof keyframesprovided
by the animator The systemthenrepeatedlysimulatesthe uid,
iteratively solvingfor externalcontrolparametershathelpthesim-
ulation meetthe users keyframes. This closely follows Treuille
etal. [2003], exceptfor the crucialgradientcalculation.

To computethe gradientwe useanapproacHrom optimal con-
trol theory the adjointmethod,which drasticallyreduceghe sys-
tem's dependencen the numberof control parameters.This re-
sultsin a signi cant improvementover the state-of-the-artletting
us control simulationsof vastly larger scale,for long sequences
with mary keyframes.

Finally, whereasprevious work only dealt with controlling
smole, we also apply this framework to the level setsimulation
of liquids. Here,the maindif culty liesin formulatingthe adjoint
of the fastmarchingstep. We showv how this may be doneby ob-
servingthatthefastmarchingalgorithmis locally continuousThis
malesthe high-level controlof free-surfceliquids possiblefor the

rst time.

2 Related Work

Animating uid o ws of smole and water hasa long history in
computergraphicsand remainsan active areaof research.Early
proceduralvork waspioneeredy Kajiya andVon Herzen[1984].
Later, KassandMiller [1990] linearizedthe equationof water o w
to createrealtimesimulations.Modernphysics-baseduid simula-
tion beganwith thework of FosterandMetaxaswho usedthe full
Navier-Stolkesequationdo modelboth water[Fosterand Metaxas
1996] and gasegFosterand Metaxas1997b], producingconvinc-
ing uid owsonrelatively coarsegrids. Shortly thereafter Stam
[1999]addressethetimestefdimitationsin theseearliertechniques
by introducingthe StableFluids algorithm,which combinedsemi-
Lagrangiaredwectionwith animplicit viscositysolver. For smole,
Fedkiw et al. [2001] extendedthis approachwith a vorticity con-
nement forceto helpcounterachumericaldampening.
Semi-Lagrangiamdvectionhasalsoproven effective in model-
ing water simulations. Kunimatsuet al. [2001] combinedcubic



semi-Lagrangiaadwectionwith avolume-of- uid methodto create
nearrealtimeanimationsof water Thework of FosterandFedkiw
[2001] and Enright et al. [2002] addressedhe masslossinherent
in semi-Lagrangiamdwectionby couplinga level setmethodwith

particles currentlythe state-of-the-arin watersimulationfor com-
putergraphics. In this work, we usesemi-Lagrangiaradwection,
but we do not usethe hybrid-particletechnique.This is purely for

simplicity; we seeno reasonwhy our control methodshouldnot
extendto this more sophisticateanodel. Finally, researcherbave

recentlyturnedto pure particle methods basedon smoothedpar

ticle hydrodynamicg SPH),to modelwater o ws with promising
resultsMueller etal. 2003;Premozeet al. 2003].

Becauseof the dif culty of editing simulationsby hand,com-
puter graphicsresearcherdiave also consideredhow to contol
physics-baseimulations. Initial work was pioneerecby Barzel
etal. [1996], who discussedhe theoreticalunderpinningf con-
trol in termsof visual plausibility, and demonstrateén algorithm
for controlling pool balls. Later, Popwic et al. [2000; 2001] and
Chenng andForsyth[2000] separatelproposedontrolparadigms
for generarigid-bodysimulations.

Work on uid controlin graphicswas initiated by Fosterand
collaboratorsFosterandMetaxaq1997a]proposedigh-level user
controlsoverthe uid parametersLater, FosterandFedkiw[2001]
controlledthe motion of water o w by exactly settingthe ow's
velocity atspeci ¢ locations.However, neitherof theseapproaches
allows theuserto enforcehigh-level objectivesfor the simulation.

Very recently Treuille et al. [2003] proposeda hew paradigm
to controlsmole simulationsthroughuserde ned keyframes.The
approachguidesthe simulationtowardsthe constraintaisinga set
of controlforceswhoseparameterarecomputedisinganon-linear
optimization. Our methodis largely basedon this work. However,
insteadof the inefcient forward gradientcomputationwe usea
technigue,the adjoint method,that is ordersof magnitudemore
ef cient. Thisallowsusto fully control3D simulationsn afraction
of the time it took Treuille et al. to compute2D simulations. We
alsoapply this framework for the rst time to the control of water
o ws. We arenot awareof ary previouswork on the directcontrol
of free-surfceliquids.

Concurrentlywith this work, Fattal et al. [2004] demonstrate
systemfor controlling smole simulationsthatalsoallows the user
to give high-level directions. As with our method,this approach
addscontrol variablesto the dynamics,but they avoid optimiza-
tion entirely, insteadoffering a closed-formsolutionfor the control
parameters While this techniquecannotguaranteghe optimality
of ary particularsolution,the authorsdemonstrat&ery impressie
animationscomputedat roughly the computationakostof an un-
controlledsimulation.

Gradientcomputatiorwith theadjointmethodhasalong history
in optimal control theory [Lions 1971]. Most relevantto us are
applicationsin computationaluid dynamics,whereoptimization
is importantin areassuchasdragreductionfor automobiledesign
anddataassimilationfor weatherforecastingGhil etal. 1997].

Adjoint techniqguescomein two varieties: continuousand dis-
crete.We referthereaderto the overview articlesby Bewley etal.
[2001;2002]for athoroughexpositionof the continuousapproach
including applicationsto uid mechanics.The discretenatureof
our problem(voxelizedgrids,discreteimestepsetc.) makesit, and
mary otherproblemsn graphicsparticularlysuitedfor thediscrete
approachGilesandPierce[2000] discusshoththe continuousand
discretevarietiesin detail, andwe have modeledour derivation of
thediscreteadjointmethodon their own.

3 Simulation

Physics-basedsimulation begins with an initial stateqg and re-
peatedlyappliesa sequencef operationsf; to the state,so that
gi+1 = fi(qgi) foralli 0, thusadwancingthe statethroughtime.

In our simulator the stateq = (v;r) consistsof a grid of ve-
locitiesv andagrid r representinghe uid material(densitiesor
smole, a surfacelevel setfor water)! Thefunctionsf; modelthe
Navier-Stokesequationghatdescribeuids.

For smole simulations,we usethe semi-Lagrangiarmrojection
model [Stam 1999; Fedkiw et al. 2001]. In eachtime step,we
performfour operations:

HEAT! PROJECT.

ADVECT! DIFFUSE!

Theseoperationsrestandardn uid simulation,andthedetailsare
not importantfor understandingur control model. Briey, AD-
VECT transportshe materialsand velocitiesthroughthe velocity
eld, DiIFrUSE accountsfor viscosity the HEAT stepappliesan
upwardsforce proportionalto the smole density and PROJECT en-
forcesincompressibility

Water simulation closely resemblessmole simulation, except
that the wateris representechot as a density eld, but asanim-
plicit function whosezero-isocontoude nes the surface. [Foster
andFedkiw 2001;Enrightet al. 2002] The sequencef operations
is alsoslightly different:

ADVECT! DIFFUSE! GRAVITY! PROJECT! REDISTANCE.
The GRAVITY operationappliesa downwards force to the wa-
ter, while REDISTANCE maintainsthe water surfaceas a signed-
distancefunction using the fast marchingalgorithm [Osher and

Sethian1988].

4 Control

Having givenanoverview of the simulationprocessywe now con-
siderhow to controlthedynamics.

4.1 Control Parameters

To controlary systemwe mustbe ableto someha in uence the
underlyingsimulation,namely througha setof externalcontrolpa-
rametersWe combineall of theseparameterito a controlvector
u, which encodesll of the externalin uencesthe systemhasover
thesimulation.

In our uid systemwe found thatthe mostuseful controlsare
the Gaussiarwind forcespresentedhn [Treuille etal. 2003]. These
allow the systemto insertsmall wind forcesto a local region of
the velocity eld v, scaledwith a Gaussiarfalloff. Theseadded
velocitieshelpguidethe uid towardstheusers keyframes.

In addition,whencontrollinglevel sets asecondypeof parame-
ter, whichwe dubasourceis alsouseful. Whereadorcesareadded
to thevelocity grid, sourcesareaddeddirectly to thegrid r , alsoin
alocal region with the sameGaussiarfalloff. We do notallow this
type of controlfor smole becausahatwould let the systemsolve
for thekeyframedtrivially, remaving massatthesmole's currentio-
cationandaddingit backatthekeyframe.For liquids, however, ary
alterationto theimplicit functionaway from the surfaceis nulli ed
whenthelevel setis redistancedTherefore sourcesanonly affect
the uid interfaceitself, slightly perturbingit inwardsor outwards.
We foundthat sourceswvere crucial to help control level set-based
animations both for matchingcomplex shapesandfor preserving
themassof the simulationover time.

Bothforcesandsourcesrescaledy theirrespectie controlpa-
rameterseforebeingappliedto theunderlyingsystem.Therefore,
while we formulatethe adjoint methodfor arbitrarydifferentiable
control,in practice the forcesarelinear. In otherwordsthe func-
tion f thatappliescontrolparametersanbe expressedsfollows:

1We denotethelevel setby r , insteadof thetraditionalf , to avoid am-
biguity with our objective function; .



f(a) = g+ Mw, 1)

whereM is the matrix thatconvertsthe control vectorto anincre-
mentalstateon timestept.

4.2 Objective Function

Now thatthe systemis ableto in uence the simulation,it mustbe
ableto measurénow well the users goalsaremet. To do this, we
createanobjective functionj whichbothmeasuretow closelythe
simulationmeetsthe keyframes,andalsopenalizegshe systemfor
usingtoo muchcontrol.

The userspeci es a setof keyframesf g; g and corresponding
weightmatricesd W g which describetheregion of interestfor each
timestept. For example,W could be setonly to matchvelocities,
to weight certainregions of spacehigherthanothers,or to ignore
the keyframe entirely Additionally, the userspeci esa “smooth-
ness”term a, which weighshow muchto penalizethe systemfor
excessve useof the controls. This allows the userto specifyhow
muchtheanimationshouldconformto the underlyingdynamics.

Thesewo goals, delity to thekeyframesandphysicalplausibil-
ity, respectiely comprisethe two termsof the objective function:

. 1y . N . N
j= 34 iwga) o )i+ ajiMuii? . (2)
t=0

Here, g is a preprocessindunction we apply to the statebefore
computingthe objective function. For smole, no preprocessings
necessaryandg is theidentity. For water however, directly com-
paringsigned-distancéunctionsturnsout to be a poor metric. In-
steadwe would like thepenaltyto be proportionalto the volumeof
spacen whichthestateandkeyframedo notagree We canapprox-
imatethisvolumecomparisorby settingg(x) = 2arctarfx)=p. This
differentiable S-shapedunctionmovespositive regionsof thegrid
to + 1, andnegative regionsto  1; thereforethe objective function
will comparenotlevel setdistancesbut discrepanciebetweerthe
positive andnegative regionsin thetwo grids.

4.3 Implementation

Boththecontrolparameterandobjective functioncanbesmoothly
integratedinto our framework by addingtwo new operations:at
the beginning of eachstep,an ApPLY CONTROL operationupdates
the stateaccordingto the control vector; at the end of the step,
the MATCHKEYFRAME operationincrementsthe objective func-
tion accordingto how well the simulationapproximateshe users
constraintsM ATCHK EY FRAME leavesthe stateitself untouched.

4.4 Optimization

These two special operations, APPLYCONTROL and
MATCHKEYFRAME, allow us to evaluate how well the con-
trol vectorin uencesthe simulation. Thus,the problemis reduced
to a continuougunctionminimization:

arggninj (CIHOE

Thereare mary standardgnumericalmethodsfor minimizing a
continuoudfunction. As in Treuille et al. [2003], we usea limited
memory quasi-Nevton optimizationtechnique[Zhu et al. 1994].
Sincethisis aderivative-baseaptimization,we mustnotonly eval-
uatej , but alsocomputeits gradientdj =du.

In computegraphicsthis gradienttomputatiorhastraditionally
beenthebottleneckfor controlbecaus@achparameterequiredits
own derivative computation.Oneof the the main contributions of
our paperis to shav how the adjointmethodong usedin the opti-
mal controlcommunity canbeadaptedo this andotherderivative-
basedoroblemsin computergraphics.

5 The Adjoint Method

We now take a step back to considergradientcomputationab-
stractly We shall begin by shaving how the adjoint methodcan
be viewed asa specialcaseof linear duality. Thenwe will apply
theseideasspeci cally to the problemof uid control.

5.1 Duality

At theheartof theadjointmethodis a substitutionof variablesthat
allows usto computethe gradientof a function quickly. This sub-
stitution canbe viewed in termsof linearduality [Giles andPierce
2000]. Suppos¢hatthematrix A andthevectorsg andc areknown,

andthatwe would lik e to computethe vectorproduct

g"b suchthat Ab=c

in termsof the unknavn vectorb. A straightforvard approach
would beto rst solve for b andthencomputethe vectorproduct.
An alternatve would beto introducea vectors andcompute:

s'c suchthat ATs= g.

This is known asthe dual of the problem. The equivalencecanbe
shavn throughsubstitution:

s'c=s"Ab= (AT9)Tb=g'b.

Of course,this new linear systemis not necessarilyary easierto
solve. However, considera new casewherethe unknavn vectorb
andtheknown vectorc areactuallymatricesB andC. By thesame
logic, the vectormatrix product

g'B suchthat AB=C 3)

is equialentto

s'C suchthat ATs= g. 4)

Now thesetwo linear systemdook quite different! Theformerin-
volvessolving for the entirematrix B, while the latteris the same
singlelinearsystemasin ouroriginalexample.Clearly in thiscase,
hugebene tscanbereapedy solvingthe dualformulation.

As it turnsout, the control problemwe would like to solve in-
volvescalculatinga vectormatrix productof thisform. Theadjoint
methodexploits this powerful aspectof duality to drasticallyim-
prove the ef ciency of this computation.

5.2 Gradient Calculation

Let us now delve more speci cally into a particulartype of opti-
mizationproblemoftenseenin graphicsof which physicalsimula-
tion is oneexample.

Supposeve have a xed initial stateqg, which we evolve into n

gi+1 = fi(gi;u), (%)

whereeachf; is an arbitrary differentiablefunction parameterized
by a controlvectoru. We aggregjatetheseinto onelong vector:

h i

This allows usto write equation(5) as

Q= F(Q;u). (6)



This equationis essentiallya constrainton the optimization; for
Q to represent valid simulationgeneratedy the sequencd; of
functions,equation(6) musthold.

Finally assumehat we have a differentiableobjective function
j (Q;u) andwe wouldlik e to computeits derivative with respecto
the controlvector:

o _ 5190, 1) -
du TQdu fu’

Computingthis directly is extremely costly, asthe matrix dQ=du
consistsof an entire statesequencdor eachcontrol. As we shall
see,the adjointmethodprovidesa way of side-steppinghis com-
putationwhile still arriving atexactderivativesof j .

Differentiatingthe constraintequation(6) givesusa linear con-
straintonthederivative matrix dQ=du. Thus,the rst termof equa-
tion (7) callsfor calculating

1] 6 oA fF
Q du Q du fu’

Notice that this is the exact situation describedin equation(3),

implying that the vectormatrix productmight be much more ef-

ciently calculatedusingthe dual! Usingthe samesubstitutionas

equation(4), we introducea vectorR (equialentto s above), and

theproductin equation(8) caninsteacbe computedas

suchthat |

fF L /i
RT— suchthat | -—— R= - . 9
fu 1Q 1Q ®)
We call this new vectorthe adjoint vector. If we cancalculatethis
adjointR, theoverall gradientcannow be computedsimply:
di = RT E + ﬂ
du fu Tu
Now we mustdescribenow to calculateR itself. First, rewrite the
constraintin equation(9) as

(10

U /I
R= — R+ _—— . 11
@ "1 an
The key to solving this lies in the sparsestructureof TF=1Q,
with its off-diagonalblocksrepresentingach f;=1q;. Much the
sameway that Q is an aggrejate of a sequencef forward states

T U/
= - T+t — .
Tai Tai
Notethateachadjointstatedepend®n the subsequendtate;there-
fore,whereagheregularsimulationstatesarecomputedorwardin
time, theseadjointstatesnustbe computedn reverse

12)

5.3 Implementation

To make this more concrete,we now explain the speci c steps
involved in the adjoint computation. First, the forward states

sequencegccordingto equation(12). As eachadjointstateis com-
puted,the objective functionis incrementedaccordingto equation
(10). Whenr4 has nally beencalculatedbothj anddj =du are
known, at essentiallythe costof two computation®f j .

We storethe forward statesq; becauseequation(12) depends
on themfor the adjointcalculation. As a result,the algorithmhas
memoryrequirementéinear in thenumberof timestepsThisis the
maindravbackof theadjointmethod.

Figure2: Statesduringthe forward passarestoredto be usedlater
for computingthereversepass.

To addresshis problem the centralissueis granularity:at what
level shouldthefunctionsf; bede ned? At the nest level, it is pos-
sibleto considereachmachinenstructionto beits own function;in
fact, this formsthe basisof the “reversemode” automaticdifferen-
tiation [Griewank 2000]. Unfortunately a naive implementatiorof
this approachwould requirea tremendougmountof memoryand
is infeasiblefor all but the smallestproblems.

We optinsteadto view the problemat a coarseilevel of granu-
larity, matchingthe functionsf; to the uid simulationoperations.
Eachoperationis responsibldor storingdatafor the adjointcalcu-
lation: oneoperatiomrmight storeall therelevantinformation,while
anothemight storeonly somedataandrecomputethe reston the
y . This exible framewvork, sometimesalled checkpointing al-
lows the systemdesignerto trade computationtime for memory
usagedependingnthe hardwareconstraints.

If the memory requirementsare still unmanageablethe user
mustbreakthe simulationinto smallersubproblemsFor example,
layeredmultiple shooting[Treuille et al. 2003] was designedfor

uid controlapplicationgo helpavoid localminima,but it alsosig-

ni cantly reducesnemoryconsumptiorby consideringonly short
sequenceatatime. In practice becausef thegranularityatwhich
we choseto implementthe adjoint method,we did not nd these
techniquesecessary

6 Adjoint Fluid Contr ol

Having describecdthe adjoint methodin theory we now demon-
stratehow to apply it to our system. As mentionedin Section3,

eachfunctionf; is oneof the operationsusedto simulate uids. In

otherwords,for smole:

fo= APPLYCONTROL,

f1 = ADVECT,
fo = DIFFUSE,
f3 = HEAT,

f4 = PROJECT,

fs = MATCHKEYFRAME,
fe = APPLY CONTROL, €tC...

andsimilarly for water In both caseswe simulatethe uid for-
wardin time by applyingeachoperationin turn. Then,the adjoint
stateis initialized and passedhrougheachoperation$ adjointstep
in reverseorder Thereforeto calculatethegradientywe mustknow
whatthis “adjoint step”meandor eachoperatiorf (for theremain-
derof this sectionwe omit the subscriptgo avoid confusion).

We rst considerthe standarduid operationswhich do not di-
rectly affect the objectve functionj . In this case,when updat-
ing the adjoint stateaccordingto equation(12), the secondterm
vanishesandthe adjoint stepjust becomes multiplication by the
transposef thederivative

7T
Ta
The following subsectionswill demonstratehow to compute
this transposealerivative for eachof the standardoperations. Fi-

nally, we will considerthe specialcasesof AppPLY CONTROL and
MATCHKEYFRAME.



6.1 Heat

In smole simulations the HEAT operationaddsupward velocities
proportionalto theamountof smole densityin eachgrid cell:

W= v+ hr.

Here,v?, is the y-componenbf the cell's velocity after heatis ap-
plied, andh is a userspeci ed heatconstant. Therefore letting f
denotethe HEAT operation:f(q) = Hq, wherethe matrix H adds
the scaleddensitiesto the y-componenbf the velocities. This ad-
joint of thelinear stepis merelythetransposef the matrix:

-
LU
Tq
In otherwords,we scaletheadjointstatesy-velocitiesaddingthem
to its densitygrid.

6.2 Gravity

Evensimpler the GRAVITY operationfor waterappliesa constant
downward force to the interior of theliquid. Sincethis force does
not dependcontinuouslyon the state,its deriative is the identity.
Thatis, the adjointof this stepleavesthe stateuntouched.

6.3 Projection and Diffusion

Anotherclassof operationgPROJECT andDIFFUSE) involvessolv-
ing a linear system. In general,the adjoint involves solving the
transposdinear system.However, theseoperationsaresymmetric,
so the adjointand forward computationsareidentical: we project
anddiffusetheadjointstatein the sameway asthe original state.

Note that this requiresan accuratdinear solver. Another ap-
proachwould be to take the adjoint derivativesthroughthe linear
solwer itself. However, we did not nd this necessary

6.4 Advection

Unlike the previous operations ADVECT is nonlinear To demon-
stratetheadjointoperationwe describeadwectingr throughv (ad-
vectingthevelocitiesis analogous).

In semi-Lagrangiaadwection,pathsoriginatingfrom eachvoxel
arebacktracedhroughthe velocity grid. Eachgrid cell is updated
by linearly interpolatingthevalueattheendof its path.Let h(r ;x)
betheinterpolationfunctionthattakesaninputgrid r andacorre-
spondinggrid of x, andreturnsr resampledat positionsx. Both
dh=dr and dh=dx can be easily derived from the interpolation
equations.

For simplicity we presentan Eulerstepbacktrace(theseideas
alsoextendto more comple integrators). Thus, we canwrite the
ADVECT operationf as

f(a)= h(rixo V),

wherexg arethe positionsat the voxel centersandr andv arethe
componentsf g.

We mustcomputethe adjoint matrix (7f=7qg) T, in otherwords
(7f=7r)T and(7f=1v)T. Both canbe computedin termsof the
known derivativesof linearinterpolation:

oo

mh T
w0 W

T
L -

dx v dx

dhox T+ dh T

6.5 Level Set Redistancing

The REDISTANCE operationis considerablymore complex than
thosedescribedabore. Giventhe highly discretenatureof this op-

eration,relying on the heapsortlgorithm,onemight expectit not

to lenditself to deriative calculation. One of the contributions of

this paperis to shav that reasonableerivatives can be computed
by observinghatthe operationis locally smooth.

Our redistancingoperationis basedon the fastmarchingalgo-
rithm asdescribedby Adalsteinssorand Sethian[1998]. We now
sketchthe algorithmso that we may subsequentlylescribeits ad-
joint. In generalthe REDISTANCE operationreinitializesthe level
setto a signed-distancéinctionto avoid a slow degradationof the
surface.

Thefastmarchingalgorithm rst considersll voxels neighbor
ing the interfaceand estimateghe signeddistanceby linearly ap-
proximatingthe surfacelocation. The redistancedyrid valuer |0 at
grid celll is the solutionto a quadraticequation

ar®+brf+c=0 (13)

wherethecoefcients a, b, andc arefunctionsof r atl andatadja-
centvoxels oppositethe interface. Voxels away from the interface
arecomputedn orderof increasingdistancefrom the surface. As
above, the grid value r,0 is computedas a solutionto a quadratic
equation.However, in this case the coefcients a; b;c of (13) are
functionsof neighboringvoxelsthathave alreadybeenredistanced.

Thus, redistancingnvolves solving a seriesof quadraticequa-
tions startingat the front and moving progressiely outwards. A
min-heapdatastructureof unprocessedandidate/oxelsef ciently
manageshetraversalorder Figure3 shavsthetraversalorder and
the arraws indicatethe o w of information during the algorithm.
At the interface,information o ws acrossthe front; elsevhere, it
always o ws outwards.

® \\.1 ° ®0 s
R

Figure3: Voxel traversalorderduringfastmarching.

In dering the adjoint of this operation,the main dif culty
is adaptingdifferentiability to the discontinuousheapsort-based
traversalorder The key insight is that sufciently small pertur
bationsof the watersurfacedo notin generalchangethe traversal
order Thereforewhenlinearizingthis operationwe considerthe
order x edandview eachredistancedoxel asasmalldifferentiable
functionof its neighborsjgnoringthe min-heap.

Sinceinformation travels outwardsfrom the interface, the ad-
joint informationtravels in the oppositedirection. Consequently
whencomputingthe adjointwe startwith the voxel traversediast,
andwork our way inwardstowardsthe interface,againstthe direc-
tion of thearrowsin Figure3.

Whenupdatingeachvoxel, we ignorethe speci ¢ methodused
to solve the quadraticequationandinsteadtake derivatives of the
(13)itself:

o _ Wﬂr%r'(h %Q%r'm' Wﬂr_criﬁ

s 2a+ b ’

wheremis agrid cell onwhich a, b, or c depends.



Whenthe adjointis completethe entireadjointlevel setis zero,
exceptfor grid points neighboringthe interface. This is not sur
prising: redistancinghe level setdependnly on the valuesof r
adjacento the surface;therefore the operationhaszeroderivative
with respecto all othervalues.

We note that while small perturbationsof the level setdo not
in generl changethe traversalorder in somecasesthey do, an
extremeexamplebeingtopologicalchangesin practice however,
we foundthatour approacto fastmarchingyieldedderivativesno
lessaccuratehanthosefor the otheroperations.

6.6 Keyframe Matching

Having consideredthe standardoperations,we nov move to
the special control operations. Whereasall of the previous
stepssimulatedthe uid without affecting the objective function,
MATCHKEYFRAME doesthe reverse: it leaves the stateq un-
touchedwhile incrementing accordingo equation(2).

To computetheadjointof MATCHK EY FRAME, we notethatthis
is the only operationwherej dependdirectly on the stateq. By
equation(12), the reverseoperationinvolvesincrementingthe ad-
joint stateby (7j =1q)T.

6.7 Applying Control

The AppPLY CONTROL operationaddscontrolto the stateaccording
to equation(1). Letting f again denotethis operation,we seethat
=79 = 1. Thereforejn thereversedirection,this operationeaves
the adjointstateuntouched.

However, it still hasveryimportantrole to play! Becausef=1u
is nonzero,equation(10) tells us thatthe APPLY CONTROL OpeFr
ation mustincrementthe objectie function gradient. Indeed this
is the only operationthat affects the gradient,forming the bridge
betweerthe adjointstatesandthe gradientcomputation.Substitut-
ing deriatives of equationg1) and(2) into (10), we seethatthe
operationincrementghe gradientasfollows:

dj dj
ﬁ £+ r Mg+ auM M.

7 Results

We have usedour systento generat@ numberof controlledsmole
andwatersimulations andhave demonstratethatit runsordersof
magnitudefasterthanthe systemdescribedn [Treuille etal. 2003].
In 2D, this meansthat we canspecifyvirtually unlimited control,
suchaspairingeverysimulationvariablewith acontrolvariable.In
3D, we canproducesophisticate@nimationcompletelyinfeasible
usingearliersystems.

Figure4 shawvs threeexamplesof our systemcontrolling a vis-
cous uid. In theseoptimizations,a ball of clay-like materialis
droppedontoa at surface. A keyframe controlsthe shapeof the
clay's nal restingposition. In all of theseexamples,we found
thatthe systemhada mucheasiettime controllingthe simulationif
controlswereplacedonly aftergroundcontact.We believe thatthis
is becausémpactcreatesa highly nonlinearshock,throughwhich
linearizingthe equationgrovidesa poorapproximation.

We have alsousedour systemto control smolke simulations as
canbe seenin Figure5. In this case we corvertedmesheof the
Stanfordbunry and armadillo modelsto densitykeyframes. Our
systemthensolved for simulationsin which a ball of smole rises
to form theseshapesWith over 100 000 control parametergach,
thesesimulationswould have beencomputationallyintractableus-
ing previous control algorithms. Our systemproducedvery close
matchesto the keyframes. As can be seenin the accompanging
video, the animationsfaithfully reproducene scaledetail suchas
thetail andhornsof thearmadillo.

Our systemalso can be usedto touch up existing simulations.
For example,Figure6(b) shavs a simulationin which alargedrop
of waterfalls into a pool. To malke the resultingsplashmoredra-
matic,the systenfollows ananimators sketchof adropletof water
rising out of the splashand crashingback down. Figure 6(c) il-
lustratesan even moredramatic thoughlessrealistic, effect: three
dropletsemepge symmetricallyfrom the splash.

In gure 6(a),we shov aresultthatwascreatedvith akeyframe
at every timestepfrom meshdataof a manpunching.In this case,
our systeminterpolatesthe keyframesin a uid-lik e mannerby
choosingforcesthatdirectthe smole throughthe keyframes. The
wispsof smole trailing theman's armillustratehow thekeyframes
canbe hit while retainingthe dynamicqualitiesof real uids.

Our lastexamples shavn at the beginning of this paperin Fig-
urel, shawv uid simulationsof afully articulatedmotion-captured
human.To shaw theversatilityof our systemwe optimizedthis se-
quencebothfor smole andwater While the geometryandmotion
are presered acrossboth animations the dynamicsremainfaith-
ful to theunderlying uid: the smole manbillows vapor while the
watermanhasdrop-like globulesof water o wing acrosshis body.
Theseoptimizationseachused1:5 million control variablesand
600MB of memoryover45 50 36 grid cellsand46 timesteps.
In eachcase,the rst half of the animationwas solved, andthen
the secondhalf solved usingthe solutionto the rst half asinitial
conditions.We split the simulationthis way to speedcorvergence.

Theseresultstook betweentwo hours(for the bunry) andtwo
days(for the waterman)to compute. Theseruntimesboundsare
not “tight” in the sensethat we ran simulationswith overly strin-
gentcorvergencecriteriato avoid halting beforean adequatesolu-
tion wasreachedIn the caseof the clay simulations for example,
the systemhadalreadyfound goodsimulationswell beforethe op-
timizationcornverged.

8 Discussion and Future Work

In this work, we have introduceda framework for controlling uid
simulationsusingaderivative calculationthatrunsordersof magni-
tudefasterthanpreviousmethods We do soby adaptingheadjoint
method,usedin optimal control theory to computeexact deriva-
tives of the coarse,inexact solvers most often usedin graphics.
Withouthaving to run additionalderivative simulationgor eachpa-
rameteyour framavork canbe givennearlyunlimited control over
asimulation,enabling—forthe rst time—the ne-grainedcontrolof
large uid animations.

Additionally, this paperintroducesthe rst work fully control-
ling a level setsurfacethroughthe Navier-Stokes equations. By
taking adjoint deriativesthroughthe fastmarchingstep,we have
shavn that derivative-basedptimizationscan be usedto control
watersimulationsgvenin the presencef highly discontinuousp-
erationssuchasthe heapsoralgorithm.

Nevertheless discontinuitiesin the water simulator did make
controlmoredif cult. In additionto theredistancingperationwe
notethat,for water the projectionanddiffusionoperationsarealso
discontinuous.This is becausehe linear systemsareonly solved
ontheinterior of the uid. If thesurfacemovesslightly, the setof
interior cellscanchangeandwe mustsolwve a different(albeitsim-
ilar) linear system. Thesediscontinuitiesrenderedhe derivatives
lessaccuratehanfor smoke, making control harder With smole
simulationsthe optimizationscouldbetunedto analmostarbitrary
precisionwhile watersimulationsoften could only reacha certain
level of detail. Evenwith thislossof accurag, we wereableto con-
trol complex watersimulationshrougha variety of constraintsWe
areinterestedn further investigating the typesof operationghat
canor cannotbe successfullycontrolled.

For example,we would lik e to extendthis adjointcontrolmodel
to more sophisticatedwater simulation techniques,such as the
hybrid-particlemethod. While addingand subtractingparticlesto



Figure4: Fromidenticalinitial conditions,clay falls into variousshapes:a cross(top), a torus (middle), anda man (bottom). Thesewere
eachoptimizedon grids of dimension50 23 50 for 10 timesteps With over 300,000control parametersthe systemusedabout200MB
of memory

Figure5: (top) The Stanfordbunry. (bottom)The Stanfordarmadillo. Both weresimulatedona50 50 50 grid with a singlekeyframe
(thethird imagein the sequence)100,000controls;about600MB memory

@ (b) (c)

Figure6: (a) A smole punchin a 90; 000voxel volumewith over 600 000 Gaussiarwind force parameterslistributedover the 20 timesteps,
andrequiringabout550MB of memory (b) A controlleddropletemegesfrom awatersplash.(c) Threedropletsrise from the samesplash.
Thesewateroptimizationsusedabout95MB of memoryin 10timestepsver30 30 30grid cells.



thesystemmightintroducediscontinuitiespur experiencewith the
discontinuitiedgn fastmarchingsuggestshatthe framevork could
cope.

Becausehe adjointmethodcaneasilyhandlehugecontrolvec-
tors, the bottleneckin our framework hasmoved from the evalua-
tion of the objective functionto the optimizeritself. Whenthe sys-
tem hastroublematchingkeyframesiit is oftenbecausét is given
excessie control and cannotnavigate the complex searchspace.
This suggestshatintelligent modelreductionon the controlsmay
reapconsiderabldene ts.

We would alsolik e to considerothercontrol paradigms.While
keyframing is extremely powerful, thereare mary timeswhenwe
mightwantto describesomeotherpropertyof the uid motion. For
example,we mightwantawave to breakata speci ¢ time, without
specifyingthe exact shapeof the surface. If thesemetricscould
be encodednto a differentiableobjectie function, they could be
addedto our system.

Most importantly we are excited by the mary possibleap-
plications of the adjoint method in computer graphics. This
approachcan certainly extend directly to controlling other types
of physics-basedsimulations,but its applicability is not limited
to this domain. We hopethat this work inspiresothersto explore
how this paowerful techniquemightbeappliedto their own research.

Acknowledgments. The authorswould lik e to thank Jessic&ris-
tan Miller for providing the video voiceover. In addition, the au-
thorsareparticularlygratefulto JohnAnderson PeterSchmid,and
DonnaCalhounfor their valuableinsightson the adjoint method.
This work was supportedby the UW Animation Research_abs,
NSFgrantsCCR-0092970ITR grantllS-0113007 Alfred P. Sloan
Fellowship, NSF GraduateResearch-ellowship, Electronic Arts,
Sory andMicrosoft Research.

References

ADALSTEINSSON, D., AND SETHIAN, J. 1998. The FastCon-
structionof ExtensionVelocitiesin Level SetMethods.Journal
of ComputationaPhysics148 2—22.

BARZEL, R., HUGHES, J. F., AND Woo0D, D. 1996.Plausiblemo-
tion simulationfor computeranimation.ln EGCAS96: Seventh
International\orkshopon ComputerAnimationandSimulation

BEWLEY, T. R., MoIN, P.,, AND TEMAM, R. 2001. Dns-based
predictive controlof turbulence:anoptimalbenchmarkor feed-
backalgorithms.Journal of Fluid Mecanics447, 179-225.

BEWLEY, T. R. 2002. The emeging rolesof model-baseaon-
trol theoryin uid mechanics.In Advancesn TurbulencelX.
Proceeding®f the Ninth EuropeanTurbulenceConfeence

CHENNEY, S., AND FORSYTH, D. A. 2000. SamplingPlausi-
ble Solutionsto Multi-body ConstraintProblems.In Computer
Graphics(SIGGRAPH2000) ACM, 219-228.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Ani-
mationandRenderingof Complex WaterSurfaces.In Computer
Graphics(SIGGRAPH2002) ACM, 736-744.

FATTAL, R., AND LISCHINSKI, D. 2004. Tamget-drven smole
animation.ACM Transactionson Graphics23, 3 (Aug.).

FEDKIW, R., STAM, J., AND JENSEN, H. 2001.VisualSimulation
of Smole. In ComputerGraphics(SIGGRAPH2001) ACM,
15-22.

FOSTER, N., AND FEDKIW, R. 2001. PracticalAnimationof Lig-
uids. In ComputerGraphics(SIGGRAPH2001) ACM, 23-30.

FOSTER, N., AND METAXAS, D. 1996. RealisticAnimation of
Liquids. Graphical Modelsand Image Processings8, 5, 471—
483.

FOSTER, N., AND METAXAS, D. 1997. Controlling uid anima-
tion. ComputerGraphicsinternational 178-188.

FOSTER, N., AND METAXAS, D. 1997. Modelingthe Motion of
aHot, TurbulentGas. In ComputerGraphics(SIGGRAPHI7),
ACM, 181-188.

GHIL, M., IDE, K., BENNETT, A. F., COURTIER, P, KIMOTO,
M., AND (EDS.), N. S. 1997. Data Assimilationin Meteool-
ogy and Oceangraphy: Theoryand Practice. Meteorological
Societyof JaparandUniversalAcademyPress.

GILES, M. B., AND PIERCE, N. A. 2000. An introductionto the
adjointapproachto design. Flow, Turbulenceand Comlustion
65, 393-415.

GRIEWANK, A. 2000. Evaluating Derivatives,Principles and
Techniquesof Algorithmic Differentiation SIAM.

KAJvYA, J. T., AND VON HERZEN, B. P. 1984. Ray Tracing
Volume Densities. ComputerGraphics(SIGGRAPH84) 18, 3
(July), 165-174.

KAsSs, M., AND MILLER, G. 1990.Rapid,StableFluid Dynamics
for ComputerGraphics. ACM ComputerGraphics(SIGGRAPH
'90) 24, 4 (August),49-57.

KUNIMATSU, A., WATANABE, Y., FuJil, H., SAITO, T., AND
HiwaDpA, K. 2001. Fastsimulationandrenderingtechniques
for uid objects. ComputerGraphics Forum (Proceedingsof
Eurographics)20, 3, 357-367.

LioNs, J. P. 1971.0ptimalControl of System&overnedby Partial
Differential Equations SpringefVerlag,New York.

MUELLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
baseduid simulationfor interactve applications.In Proceed-
ings of ACM SIGGRAPHSymposiunon ComputerAnimation
SCA2003 154-159.

OSHER, S., AND SETHIAN, J., 1988. Fronts Propa@ting with
CunatureDependanSpeed:Alogorithms Basedon Hamilton-
JacobiFormulations.

PopPovIC, J., SEITZ, S. M., ERDMANN, M., POPOVIC, Z., AND
WITKIN, A. 2000.Interactve Manipulationof Rigid Body Sim-
ulations.In ComputeiGraphics(SIGGRAPH000) ACM, 209—
218.

PopoviC, J. 2001. Interactive Designof Rigid-BodySimulatons
for ComputerAnimation PhD thesis,Carngie Mellon Univer-
sity.

PREMOZE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND
WHITAKER, R. 2003. Particle BasedSimlation of Fluids.
ComputerGraphics Forum (Proceedingsof Eurographics) 22,
3,401-410.

STAM, J. 1999. StableFluids. In ComputeiGraphics(SIGGRAPH
99), ACM, 121-128.

TREUILLE, A., MCNAMARA, A., POPOVIC, Z., AND STAM, J.
2003. Keyframe control of smole simulations. ACM Transac-
tionson Graphics22, 3 (July), 716-723.

ZHu, C., BYRD, R, LU, P, AND NOCEDAL, J., 1994. Lbfgs-b:
Fortransubroutinedor large-scaldboundconstrainedptimiza-
tion.



