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Figure1: Controlledsimulationsof amanrunning,createdoutof water(top)andsmoke (bottom).

Abstract

Wedescribeanovelmethodfor controllingphysics-based�uid sim-
ulationsthroughgradient-basednonlinearoptimization. Using a
techniqueknown as the adjoint method, derivatives can be com-
putedef�ciently , even for large 3D simulationswith millions of
control parameters.In addition,we introducethe �rst methodfor
the full control of free-surfaceliquids. We show how to compute
adjoint derivatives througheachstepof the simulation,including
the fastmarchingalgorithm,anddescribea new setof controlpa-
rametersspeci�cally designedfor liquids.

CR Categories: I.3.7 [ComputerGraphics]:Three-Dimensional
GraphicsandRealism—Animation;
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1 Intr oduction

In recentyears,physics-basedanimationhasbecomepervasive in
computergraphics,producinganimationswith striking nuanceand
realism.In particular, signi�cant advancesin modelingthedynam-
ics of liquids and gaseshave yielded stunninganimationswhich
couldnever have beencreatedby hand.Unfortunately, just aswith
any simulation,the animatorcannotfreely designthe animation:
directlyeditingsimulationparametersaffectsthedynamicsin com-
plex and unpredictableways. Therefore,researchershave begun
seekinghigh-level controlmethodsfor complex dynamics.

Nevertheless,the �ne-grainedcontrol of physically-basedsim-
ulation has remainedout of reach. Suchdetailedcontrol might
easily requirehundredsof thousandsof free variables;previous

systemsrequireda derivative simulationfor eachvariable,making
control feasibleonly at relatively coarsescales.To make full con-
trol tractablefor large simulations,we needtechniquesthat scale
well with thenumberof controlparameters.

In thiswork,wepresentsuchatechnique.Oursystemis givenan
initial state,eithersmokeor water, andasetof keyframesprovided
by the animator. The systemthenrepeatedlysimulatesthe �uid,
iteratively solvingfor externalcontrolparametersthathelpthesim-
ulation meetthe user's keyframes. This closely follows Treuille
etal. [2003],exceptfor thecrucialgradientcalculation.

To computethegradient,we useanapproachfrom optimalcon-
trol theory, the adjoint method,which drasticallyreducesthe sys-
tem's dependenceon the numberof control parameters.This re-
sultsin a signi�cant improvementover the state-of-the-art,letting
us control simulationsof vastly larger scale,for long sequences
with many keyframes.

Finally, whereasprevious work only dealt with controlling
smoke, we also apply this framework to the level set simulation
of liquids. Here,themaindif�culty lies in formulatingtheadjoint
of the fastmarchingstep. We show how this maybedoneby ob-
servingthatthefastmarchingalgorithmis locally continuous.This
makesthehigh-level controlof free-surfaceliquidspossiblefor the
�rst time.

2 Related Work

Animating �uid �o ws of smoke and water hasa long history in
computergraphicsandremainsan active areaof research.Early
proceduralwork waspioneeredby Kajiya andVon Herzen[1984].
Later, KassandMiller [1990] linearizedtheequationof water�o w
to createrealtimesimulations.Modernphysics-based�uid simula-
tion beganwith thework of FosterandMetaxas,who usedthefull
Navier-Stokesequationsto modelbothwater[FosterandMetaxas
1996] andgases[FosterandMetaxas1997b],producingconvinc-
ing �uid �o ws on relatively coarsegrids. Shortly thereafter, Stam
[1999]addressedthetimesteplimitationsin theseearliertechniques
by introducingtheStableFluidsalgorithm,which combinedsemi-
Lagrangianadvectionwith animplicit viscositysolver. For smoke,
Fedkiw et al. [2001] extendedthis approachwith a vorticity con-
�nement forceto helpcounteractnumericaldampening.

Semi-Lagrangianadvectionhasalsoproveneffective in model-
ing water simulations. Kunimatsuet al. [2001] combinedcubic



semi-Lagrangianadvectionwith avolume-of-�uid methodto create
nearrealtimeanimationsof water. Thework of FosterandFedkiw
[2001] andEnright et al. [2002] addressedthe masslossinherent
in semi-Lagrangianadvectionby couplinga level setmethodwith
particles,currentlythestate-of-the-artin watersimulationfor com-
putergraphics. In this work, we usesemi-Lagrangianadvection,
but we do not usethehybrid-particletechnique.This is purely for
simplicity; we seeno reasonwhy our control methodshouldnot
extendto this moresophisticatedmodel. Finally, researchershave
recentlyturnedto pureparticlemethods,basedon smoothedpar-
ticle hydrodynamics(SPH),to modelwater �o ws with promising
results[Mueller etal. 2003;Premozeetal. 2003].

Becauseof the dif�culty of editing simulationsby hand,com-
puter graphicsresearchershave also consideredhow to control
physics-basedsimulations. Initial work waspioneeredby Barzel
et al. [1996], who discussedthe theoreticalunderpinningsof con-
trol in termsof visual plausibility, anddemonstratedan algorithm
for controlling pool balls. Later, Popović et al. [2000; 2001] and
Chenney andForsyth[2000]separatelyproposedcontrolparadigms
for generalrigid-bodysimulations.

Work on �uid control in graphicswas initiated by Fosterand
collaborators.FosterandMetaxas[1997a]proposedhigh-level user
controlsover the�uid parameters.Later, FosterandFedkiw[2001]
controlledthe motion of water �o w by exactly settingthe �o w's
velocityatspeci�c locations.However, neitherof theseapproaches
allows theuserto enforcehigh-level objectivesfor thesimulation.

Very recently, Treuille et al. [2003] proposeda new paradigm
to controlsmoke simulationsthroughuser-de�ned keyframes.The
approachguidesthesimulationtowardstheconstraintsusinga set
of controlforceswhoseparametersarecomputedusinganon-linear
optimization.Our methodis largely basedon this work. However,
insteadof the inef�cient forward gradientcomputation,we usea
technique,the adjoint method,that is ordersof magnitudemore
ef�cient. Thisallowsusto fully control3D simulationsin afraction
of the time it took Treuille et al. to compute2D simulations.We
alsoapply this framework for the �rst time to thecontrolof water
�o ws. We arenot awareof any previouswork on thedirectcontrol
of free-surfaceliquids.

Concurrentlywith this work, Fattal et al. [2004] demonstratea
systemfor controllingsmoke simulationsthatalsoallows theuser
to give high-level directions. As with our method,this approach
addscontrol variablesto the dynamics,but they avoid optimiza-
tion entirely, insteadofferingaclosed-formsolutionfor thecontrol
parameters.While this techniquecannotguaranteethe optimality
of any particularsolution,theauthorsdemonstratevery impressive
animationscomputedat roughly the computationalcostof an un-
controlledsimulation.

Gradientcomputationwith theadjointmethodhasa longhistory
in optimal control theory [Lions 1971]. Most relevant to us are
applicationsin computational�uid dynamics,whereoptimization
is importantin areassuchasdragreductionfor automobiledesign
anddataassimilationfor weatherforecasting[Ghil et al. 1997].

Adjoint techniquescomein two varieties: continuousanddis-
crete.We referthereaderto theoverview articlesby Bewley et al.
[2001;2002]for a thoroughexpositionof thecontinuousapproach
including applicationsto �uid mechanics.The discretenatureof
ourproblem(voxelizedgrids,discretetimesteps,etc.)makesit, and
many otherproblemsin graphics,particularlysuitedfor thediscrete
approach.GilesandPierce[2000] discussboththecontinuousand
discretevarietiesin detail,andwe have modeledour derivationof
thediscreteadjointmethodon theirown.

3 Simulation
Physics-basedsimulation begins with an initial stateq0 and re-
peatedlyappliesa sequenceof operationsf i to the state,so that
qi+ 1 = f i(qi) for all i � 0, thusadvancingthestatethroughtime.

In our simulator, the stateq = (v; r ) consistsof a grid of ve-
locitiesv anda grid r representingthe�uid material(densitiesfor
smoke, a surfacelevel setfor water).1 The functionsf i modelthe
Navier-Stokesequationsthatdescribe�uids.

For smoke simulations,we usethe semi-Lagrangianprojection
model [Stam 1999; Fedkiw et al. 2001]. In eachtime step,we
performfour operations:

ADVECT ! DIFFUSE ! HEAT ! PROJECT.

Theseoperationsarestandardin �uid simulation,andthedetailsare
not importantfor understandingour control model. Brie�y , AD-
VECT transportsthe materialsandvelocitiesthroughthe velocity
�eld, DIFFUSE accountsfor viscosity, the HEAT stepappliesan
upwardsforceproportionalto thesmokedensity, andPROJECT en-
forcesincompressibility.

Water simulationclosely resemblessmoke simulation, except
that the water is representednot asa density�eld, but asan im-
plicit function whosezero-isocontourde�nes the surface. [Foster
andFedkiw2001;Enrightet al. 2002]Thesequenceof operations
is alsoslightly different:

ADVECT ! DIFFUSE ! GRAVITY ! PROJECT ! REDISTANCE.

The GRAVITY operationappliesa downwards force to the wa-
ter, while REDISTANCE maintainsthe water surfaceas a signed-
distancefunction using the fast marchingalgorithm [Osher and
Sethian1988].

4 Contr ol
Having givenanoverview of thesimulationprocess,we now con-
siderhow to controlthedynamics.

4.1 Contr ol Parameter s

To controlany system,we mustbeableto somehow in�uence the
underlyingsimulation,namely, throughasetof externalcontrolpa-
rameters.Wecombineall of theseparametersinto acontrolvector,
u, which encodesall of theexternalin�uencesthesystemhasover
thesimulation.

In our �uid system,we found that the mostusefulcontrolsare
theGaussianwind forcespresentedin [Treuille et al. 2003]. These
allow the systemto insert small wind forcesto a local region of
the velocity �eld v, scaledwith a Gaussianfalloff. Theseadded
velocitieshelpguidethe�uid towardstheuser's keyframes.

In addition,whencontrollinglevel sets,asecondtypeof parame-
ter, whichwedubasourceis alsouseful.Whereasforcesareadded
to thevelocitygrid, sourcesareaddeddirectly to thegrid r , alsoin
a local region with thesameGaussianfalloff. We do not allow this
typeof control for smoke becausethatwould let thesystemsolve
for thekeyframestrivially, removingmassatthesmoke'scurrentlo-
cationandaddingit backatthekeyframe.For liquids,however, any
alterationto theimplicit functionaway from thesurfaceis nulli�ed
whenthelevel setis redistanced.Therefore,sourcescanonly affect
the�uid interfaceitself, slightly perturbingit inwardsor outwards.
We found thatsourceswerecrucial to helpcontrol level set-based
animations,both for matchingcomplex shapesandfor preserving
themassof thesimulationover time.

Bothforcesandsourcesarescaledby theirrespectivecontrolpa-
rametersbeforebeingappliedto theunderlyingsystem.Therefore,
while we formulatethe adjoint methodfor arbitrarydifferentiable
control, in practice,the forcesarelinear. In otherwordsthe func-
tion f thatappliescontrolparameterscanbeexpressedasfollows:

1We denotethelevel setby r , insteadof thetraditionalf , to avoid am-
biguity with ourobjective functionj .



f(q) = q+ Mtu, (1)

whereMt is thematrix thatconvertsthecontrolvectorto anincre-
mentalstateon timestept.

4.2 Objective Function

Now that thesystemis ableto in�uence thesimulation,it mustbe
ableto measurehow well theuser's goalsaremet. To do this, we
createanobjectivefunctionj whichbothmeasureshow closelythe
simulationmeetsthekeyframes,andalsopenalizesthesystemfor
usingtoomuchcontrol.

The userspeci�es a set of keyframesf q�
t g and corresponding

weightmatricesf Wtg whichdescribetheregionof interestfor each
timestept. For example,Wt couldbesetonly to matchvelocities,
to weight certainregionsof spacehigherthanothers,or to ignore
the keyframeentirely. Additionally, the userspeci�esa “smooth-
ness”terma , which weighshow muchto penalizethesystemfor
excessive useof thecontrols. This allows theuserto specifyhow
muchtheanimationshouldconformto theunderlyingdynamics.

Thesetwo goals,�delity to thekeyframesandphysicalplausibil-
ity, respectively comprisethetwo termsof theobjective function:

j (u) =
1
2

n

å
t= 0

�
jjWt (g(qt ) � g(q�

t )) jj2 + a jjMtujj2
�

. (2)

Here, g is a preprocessingfunction we apply to the statebefore
computingtheobjective function. For smoke, no preprocessingis
necessary, andg is the identity. For water, however, directly com-
paringsigned-distancefunctionsturnsout to bea poormetric. In-
stead,wewould like thepenaltyto beproportionalto thevolumeof
spacein whichthestateandkeyframedonotagree.Wecanapprox-
imatethisvolumecomparisonby settingg(x) = 2arctan(x)=p. This
differentiable,S-shapedfunctionmovespositiveregionsof thegrid
to + 1, andnegative regionsto � 1; therefore,theobjective function
will comparenot level setdistances,but discrepanciesbetweenthe
positiveandnegative regionsin thetwo grids.

4.3 Implementation

Boththecontrolparametersandobjectivefunctioncanbesmoothly
integratedinto our framework by addingtwo new operations:at
thebeginningof eachstep,anAPPLYCONTROL operationupdates
the stateaccordingto the control vector; at the end of the step,
the MATCHKEYFRAME operationincrementsthe objective func-
tion accordingto how well thesimulationapproximatestheuser's
constraints.MATCHKEYFRAME leavesthestateitself untouched.

4.4 Optimization

These two special operations, APPLYCONTROL and
MATCHKEYFRAME, allow us to evaluate how well the con-
trol vectorin�uencesthesimulation.Thus,theproblemis reduced
to acontinuousfunctionminimization:

argmin
u

j (q0;u).

Therearemany standardnumericalmethodsfor minimizing a
continuousfunction. As in Treuille et al. [2003], we usea limited
memoryquasi-Newton optimizationtechnique[Zhu et al. 1994].
Sincethisis aderivative-basedoptimization,wemustnotonly eval-
uatej , but alsocomputeits gradient,dj =du.

In computergraphics,thisgradientcomputationhastraditionally
beenthebottleneckfor controlbecauseeachparameterrequiredits
own derivative computation.Oneof the themaincontributionsof
ourpaperis to show how theadjointmethod,longusedin theopti-
malcontrolcommunity, canbeadaptedto thisandotherderivative-
basedproblemsin computergraphics.

5 The Adjoint Method
We now take a step back to considergradientcomputationab-
stractly. We shall begin by showing how the adjoint methodcan
be viewed asa specialcaseof linear duality. Thenwe will apply
theseideasspeci�cally to theproblemof �uid control.

5.1 Duality

At theheartof theadjointmethodis asubstitutionof variablesthat
allows usto computethegradientof a functionquickly. This sub-
stitutioncanbeviewedin termsof linearduality [Giles andPierce
2000].SupposethatthematrixA andthevectorsg andc areknown,
andthatwewould like to computethevectorproduct

gTb suchthat Ab = c

in terms of the unknown vector b. A straightforward approach
would be to �rst solve for b andthencomputethevectorproduct.
An alternativewouldbeto introduceavectorsandcompute:

sTc suchthat ATs= g.

This is known asthedual of theproblem.Theequivalencecanbe
shown throughsubstitution:

sTc = sTAb = (ATs)Tb = gTb.

Of course,this new linear systemis not necessarilyany easierto
solve. However, considera new casewheretheunknown vectorb
andtheknown vectorc areactuallymatricesB andC. By thesame
logic, thevector-matrixproduct

gTB suchthat AB= C (3)

is equivalentto

sTC suchthat ATs= g. (4)

Now thesetwo linearsystemslook quitedifferent! Theformer in-
volvessolving for theentirematrix B, while the latter is thesame
singlelinearsystemasin ouroriginalexample.Clearly, in thiscase,
hugebene�tscanbereapedby solvingthedualformulation.

As it turnsout, the control problemwe would like to solve in-
volvescalculatingavector-matrixproductof this form. Theadjoint
methodexploits this powerful aspectof duality to drasticallyim-
prove theef�ciency of this computation.

5.2 Gradient Calculation

Let us now delve morespeci�cally into a particulartype of opti-
mizationproblemoftenseenin graphics,of whichphysicalsimula-
tion is oneexample.

Supposewe have a �xed initial stateq0, which we evolve into n
subsequentstatesq1; : : : ;qn accordingto theupdaterule

qi+ 1 = f i(qi ;u), (5)

whereeachf i is an arbitrarydifferentiablefunctionparameterized
by acontrolvectoru. Weaggregatetheseinto onelongvector:

Q =
h
qT

1 ; : : : ;qT
n

i T
,

andonelongvectorfunction:

F(Q;u) =
h
f0(q0;u)T ; : : : ; fn� 1(qn� 1;u)T

i T
.

Thisallowsusto write equation(5) as

Q = F(Q;u). (6)



This equationis essentiallya constrainton the optimization; for
Q to representa valid simulationgeneratedby the sequencef i of
functions,equation(6) musthold.

Finally assumethat we have a differentiableobjective function
j (Q;u) andwewould like to computeits derivativewith respectto
thecontrolvector:

dj
du

=
¶j
¶Q

dQ
du

+
¶j
¶u

. (7)

Computingthis directly is extremelycostly, asthe matrix dQ=du
consistsof an entirestatesequencefor eachcontrol. As we shall
see,theadjointmethodprovidesa way of side-steppingthis com-
putationwhile still arriving atexactderivativesof j .

Differentiatingtheconstraintequation(6) givesusa linearcon-
straintonthederivativematrixdQ=du. Thus,the�rst termof equa-
tion (7) callsfor calculating

¶j
¶Q

dQ
du

suchthat
�

I �
¶F
¶Q

�
dQ
du

=
¶F
¶u

. (8)

Notice that this is the exact situation describedin equation(3),
implying that the vector-matrix productmight be much more ef-
�ciently calculatedusingthedual! Using thesamesubstitutionas
equation(4), we introducea vectorR (equivalentto s above), and
theproductin equation(8) caninsteadbecomputedas

RT ¶F
¶u

suchthat
�

I �
¶F
¶Q

� T

R =
¶j
¶Q

T
. (9)

We call this new vectortheadjoint vector. If we cancalculatethis
adjointR, theoverall gradientcannow becomputedsimply:

dj
du

= RT ¶F
¶u

+
¶j
¶u

. (10)

Now we mustdescribehow to calculateR itself. First, rewrite the
constraintin equation(9) as

R =
�

¶F
¶Q

� T

R+
¶j
¶Q

T
. (11)

The key to solving this lies in the sparsestructureof ¶F=¶Q,
with its off-diagonalblocksrepresentingeach¶f i=¶qi . Much the
sameway that Q is an aggregateof a sequenceof forward states
q1; : : : ;qn, wemayview R asanaggregateof asequenceof adjoint
statesr1; : : : ; rn. Equation(11) impliesthatrn = (¶j =¶qn)T and

r i =
�

¶f i
¶qi

� T

r i+ 1 +
�

¶j
¶qi

� T

. (12)

Notethateachadjointstatedependson thesubsequentstate;there-
fore,whereastheregularsimulationstatesarecomputedforwardin
time, theseadjointstatesmustbecomputedin reverse.

5.3 Implementation

To make this more concrete,we now explain the speci�c steps
involved in the adjoint computation. First, the forward states
q1; : : : ;qn arecalculatedin order, asin anordinarysimulation,ex-
cept that each simulationstatemustbe stored. Then, the adjoint
statesr1; : : : ; rn arecalculated,proceedingbackwardsthroughthe
sequence,accordingto equation(12). As eachadjointstateis com-
puted,theobjective function is incrementedaccordingto equation
(10). Whenr1 has�nally beencalculated,both j anddj =du are
known, atessentiallythecostof two computationsof j .

We storethe forward statesqi becauseequation(12) depends
on themfor theadjoint calculation.As a result,thealgorithmhas
memoryrequirementslinear in thenumberof timesteps.This is the
maindrawbackof theadjointmethod.

Figure2: Statesduringtheforwardpassarestoredto beusedlater
for computingthereversepass.

To addressthis problem,thecentralissueis granularity:at what
level shouldthefunctionsf i bede�ned?At the�nest level, it is pos-
sibleto considereachmachineinstructionto beits own function;in
fact,this formsthebasisof the“reversemode”automaticdifferen-
tiation [Griewank2000]. Unfortunately, a naive implementationof
this approachwould requirea tremendousamountof memoryand
is infeasiblefor all but thesmallestproblems.

We opt insteadto view theproblemat a coarser-level of granu-
larity, matchingthe functionsf i to the �uid simulationoperations.
Eachoperationis responsiblefor storingdatafor theadjointcalcu-
lation: oneoperationmightstoreall therelevantinformation,while
anothermight storeonly somedataandrecomputethe reston the
�y . This �e xible framework, sometimescalledcheckpointing,al-
lows the systemdesignerto tradecomputationtime for memory
usage,dependingon thehardwareconstraints.

If the memory requirementsare still unmanageable,the user
mustbreakthesimulationinto smallersubproblems.For example,
layeredmultiple shooting[Treuille et al. 2003] was designedfor
�uid controlapplicationsto helpavoid localminima,but it alsosig-
ni�cantly reducesmemoryconsumptionby consideringonly short
sequencesatatime. In practice,becauseof thegranularityatwhich
we choseto implementthe adjoint method,we did not �nd these
techniquesnecessary.

6 Adjoint Fluid Contr ol
Having describedthe adjoint methodin theory, we now demon-
stratehow to apply it to our system. As mentionedin Section3,
eachfunctionf i is oneof theoperationsusedto simulate�uids. In
otherwords,for smoke:

f0 = APPLYCONTROL,
f1 = ADVECT,
f2 = DIFFUSE,
f3 = HEAT,
f4 = PROJECT,
f5 = MATCHKEYFRAME,
f6 = APPLYCONTROL, etc. . .

andsimilarly for water. In both cases,we simulatethe �uid for-
wardin time by applyingeachoperationin turn. Then,theadjoint
stateis initialized andpassedthrougheachoperation's adjointstep
in reverseorder. Therefore,to calculatethegradient,wemustknow
whatthis “adjoint step”meansfor eachoperationf (for theremain-
derof thissection,weomit thesubscriptsto avoid confusion).

We �rst considerthestandard�uid operations,which do not di-
rectly affect the objective function j . In this case,when updat-
ing the adjoint stateaccordingto equation(12), the secondterm
vanishes,andtheadjointstepjust becomesa multiplicationby the
transposeof thederivative

�
¶f
¶q

� T

.

The following subsectionswill demonstratehow to compute
this transposederivative for eachof the standardoperations.Fi-
nally, we will considerthe specialcasesof APPLYCONTROL and
MATCHKEYFRAME.



6.1 Heat

In smoke simulations,the HEAT operationaddsupwardvelocities
proportionalto theamountof smokedensityin eachgrid cell:

v0
y = vy + hr .

Here,v0
y is the y-componentof the cell's velocity after heatis ap-

plied, andh is a user-speci�ed heatconstant.Therefore,letting f
denotethe HEAT operation:f(q) = Hq, wherethe matrix H adds
thescaleddensitiesto they-componentof thevelocities.This ad-
joint of thelinearstepis merelythetransposeof thematrix:

�
¶f
¶q

� T

= HT .

In otherwords,wescaletheadjointstate'sy-velocities, addingthem
to its densitygrid.

6.2 Gravity

Evensimpler, theGRAVITY operationfor waterappliesa constant
downward force to the interior of the liquid. Sincethis forcedoes
not dependcontinuouslyon the state,its derivative is the identity.
Thatis, theadjointof this stepleavesthestateuntouched.

6.3 Projection and Diffusion

Anotherclassof operations(PROJECT andDIFFUSE) involvessolv-
ing a linear system. In general,the adjoint involves solving the
transposelinearsystem.However, theseoperationsaresymmetric,
so the adjoint andforward computationsareidentical: we project
anddiffusetheadjointstatein thesamewayastheoriginal state.

Note that this requiresan accuratelinear solver. Another ap-
proachwould be to take the adjoint derivativesthroughthe linear
solver itself. However, wedid not �nd thisnecessary.

6.4 Advection

Unlike thepreviousoperations,ADVECT is nonlinear. To demon-
stratetheadjointoperation,wedescribeadvectingr throughv (ad-
vectingthevelocitiesis analogous).

In semi-Lagrangianadvection,pathsoriginatingfrom eachvoxel
arebacktracedthroughthevelocity grid. Eachgrid cell is updated
by linearly interpolatingthevalueat theendof its path.Let h (r ;x)
betheinterpolationfunctionthattakesaninput grid r anda corre-
spondinggrid of x, andreturnsr resampledat positionsx. Both
dh=dr and dh=dx can be easily derived from the interpolation
equations.

For simplicity we presentan Euler-stepbacktrace(theseideas
alsoextendto morecomplex integrators).Thus,we canwrite the
ADVECT operationf as

f(q) = h (r ;x0 � v),

wherex0 arethepositionsat thevoxel centersandr andv arethe
componentsof q.

We mustcomputethe adjoint matrix (¶f=¶q)T , in otherwords
(¶f=¶r )T and(¶f=¶v)T . Both canbe computedin termsof the
known derivativesof linearinterpolation:

�
¶f
¶r

� T

=
�

¶h
¶r

� T

,
�

¶f
¶v

� T

=
�

dh
dx

¶x
¶v

� T

= � vT
�

dh
dx

� T

.

6.5 Level Set Redistancing

The REDISTANCE operationis considerablymore complex than
thosedescribedabove. Giventhehighly discretenatureof this op-
eration,relying on theheapsortalgorithm,onemight expectit not
to lend itself to derivative calculation.Oneof thecontributionsof
this paperis to show that reasonablederivativescan be computed
by observingthattheoperationis locally smooth.

Our redistancingoperationis basedon the fastmarchingalgo-
rithm asdescribedby AdalsteinssonandSethian[1998]. We now
sketchthealgorithmso thatwe maysubsequentlydescribeits ad-
joint. In general,theREDISTANCE operationreinitializesthelevel
setto a signed-distancefunctionto avoid a slow degradationof the
surface.

Thefastmarchingalgorithm�rst considersall voxelsneighbor-
ing the interfaceandestimatesthe signeddistanceby linearly ap-
proximatingthesurfacelocation. Theredistancedgrid valuer 0

l at
grid cell l is thesolutionto aquadraticequation

ar 02
l + br 0

l + c = 0 (13)

wherethecoef�cients a, b, andc arefunctionsof r at l andatadja-
centvoxelsoppositethe interface.Voxelsaway from the interface
arecomputedin orderof increasingdistancefrom thesurface.As
above, the grid valuer 0

l is computedasa solution to a quadratic
equation.However, in this case,the coef�cients a;b;c of (13) are
functionsof neighboringvoxelsthathavealreadybeenredistanced.

Thus, redistancinginvolvessolving a seriesof quadraticequa-
tions startingat the front andmoving progressively outwards. A
min-heapdatastructureof unprocessedcandidatevoxelsef�ciently
managesthetraversalorder. Figure3 showsthetraversalorder, and
the arrows indicatethe �o w of informationduring the algorithm.
At the interface,information �o ws acrossthe front; elsewhere,it
always�o wsoutwards.

Figure3: Voxel traversalorderduringfastmarching.

In deriving the adjoint of this operation, the main dif�culty
is adaptingdifferentiability to the discontinuousheapsort-based
traversalorder. The key insight is that suf�ciently small pertur-
bationsof thewatersurfacedo not in generalchangethe traversal
order. Therefore,whenlinearizingthis operation,we considerthe
order�x edandview eachredistancedvoxelasasmalldifferentiable
functionof its neighbors,ignoringthemin-heap.

Sinceinformation travels outwardsfrom the interface,the ad-
joint information travels in the oppositedirection. Consequently,
whencomputingtheadjointwe startwith thevoxel traversedlast,
andwork our way inwardstowardstheinterface,againstthedirec-
tion of thearrows in Figure3.

Whenupdatingeachvoxel, we ignorethespeci�c methodused
to solve the quadraticequationandinsteadtake derivativesof the
(13) itself:

¶r 0
l

¶r 0
m

=
¶a

¶r 0
m

r 02
l + ¶b

¶r 0
m

r 0
l + ¶c

¶r 0
m

2a+ b
,

wherem is agrid cell onwhicha, b, or c depends.



Whentheadjointis complete,theentireadjointlevel setis zero,
except for grid pointsneighboringthe interface. This is not sur-
prising: redistancingthe level setdependsonly on thevaluesof r
adjacentto thesurface;therefore,theoperationhaszeroderivative
with respectto all othervalues.

We note that while small perturbationsof the level set do not
in general changethe traversalorder, in somecasesthey do, an
extremeexamplebeingtopologicalchanges.In practice,however,
we foundthatour approachto fastmarchingyieldedderivativesno
lessaccuratethanthosefor theotheroperations.

6.6 Keyframe Matching

Having consideredthe standardoperations,we now move to
the special control operations. Whereasall of the previous
stepssimulatedthe �uid without affecting the objective function,
MATCHKEYFRAME does the reverse: it leaves the stateq un-
touchedwhile incrementingj accordingto equation(2).

To computetheadjointof MATCHKEYFRAME, wenotethatthis
is the only operationwherej dependsdirectly on the stateq. By
equation(12), the reverseoperationinvolvesincrementingthead-
joint stateby (¶j =¶q)T .

6.7 Appl ying Contr ol

TheAPPLYCONTROL operationaddscontrolto thestateaccording
to equation(1). Letting f again denotethis operation,we seethat
¶f=¶q = I . Therefore,in thereversedirection,thisoperationleaves
theadjointstateuntouched.

However, it still hasvery importantrole to play! Because¶f=¶u
is nonzero,equation(10) tells us that the APPLYCONTROL oper-
ation mustincrementthe objective function gradient. Indeed,this
is the only operationthat affects the gradient,forming the bridge
betweentheadjointstatesandthegradientcomputation.Substitut-
ing derivativesof equations(1) and(2) into (10), we seethat the
operationincrementsthegradientasfollows:

dj
du

 
dj
du

+ rTMt + a uMT
t Mt .

7 Results
Wehaveusedoursystemto generateanumberof controlledsmoke
andwatersimulations,andhavedemonstratedthatit runsordersof
magnitudefasterthanthesystemdescribedin [Treuilleetal. 2003].
In 2D, this meansthat we canspecifyvirtually unlimited control,
suchaspairingeverysimulationvariablewith acontrolvariable.In
3D, wecanproducesophisticatedanimationscompletelyinfeasible
usingearliersystems.

Figure4 shows threeexamplesof our systemcontrollinga vis-
cous�uid. In theseoptimizations,a ball of clay-like material is
droppedonto a �at surface. A keyframecontrolsthe shapeof the
clay's �nal restingposition. In all of theseexamples,we found
thatthesystemhadamucheasiertimecontrollingthesimulationif
controlswereplacedonly aftergroundcontact.Webelievethatthis
is becauseimpactcreatesa highly nonlinearshock,throughwhich
linearizingtheequationsprovidesapoorapproximation.

We have alsousedour systemto control smoke simulations,as
canbe seenin Figure5. In this case,we convertedmeshesof the
Stanfordbunny andarmadillomodelsto densitykeyframes. Our
systemthensolved for simulationsin which a ball of smoke rises
to form theseshapes.With over 100;000controlparameterseach,
thesesimulationswould have beencomputationallyintractableus-
ing previous control algorithms. Our systemproducedvery close
matchesto the keyframes. As can be seenin the accompanying
video,theanimationsfaithfully reproduce�ne scaledetailsuchas
thetail andhornsof thearmadillo.

Our systemalsocanbe usedto touchup existing simulations.
For example,Figure6(b) shows a simulationin which a largedrop
of waterfalls into a pool. To make the resultingsplashmoredra-
matic,thesystemfollowsananimator'ssketchof adropletof water
rising out of the splashand crashingback down. Figure 6(c) il-
lustratesanevenmoredramatic,thoughlessrealistic,effect: three
dropletsemergesymmetricallyfrom thesplash.

In �gure 6(a),weshow aresultthatwascreatedwith akeyframe
at every timestepfrom meshdataof a manpunching.In this case,
our systeminterpolatesthe keyframesin a �uid-lik e mannerby
choosingforcesthatdirect thesmoke throughthekeyframes.The
wispsof smoke trailing theman'sarmillustratehow thekeyframes
canbehit while retainingthedynamicqualitiesof real�uids.

Our lastexamples,shown at thebeginningof this paperin Fig-
ure1, show �uid simulationsof a fully articulatedmotion-captured
human.To show theversatilityof oursystem,weoptimizedthisse-
quencebothfor smoke andwater. While thegeometryandmotion
arepreserved acrossboth animations,the dynamicsremainfaith-
ful to theunderlying�uid: thesmoke manbillows vapor, while the
watermanhasdrop-like globulesof water�o wing acrosshis body.
Theseoptimizationseachused1:5 million control variablesand
600MB of memoryover 45� 50� 36 grid cellsand46 timesteps.
In eachcase,the �rst half of the animationwassolved, andthen
the secondhalf solved usingthe solutionto the �rst half asinitial
conditions.Wesplit thesimulationthisway to speedconvergence.

Theseresultstook betweentwo hours(for the bunny) andtwo
days(for the waterman)to compute.Theseruntimesboundsare
not “tight” in the sensethat we ran simulationswith overly strin-
gentconvergencecriteriato avoid haltingbeforeanadequatesolu-
tion wasreached.In thecaseof theclay simulations,for example,
thesystemhadalreadyfoundgoodsimulationswell beforetheop-
timizationconverged.

8 Discussion and Future Work
In this work, we have introduceda framework for controlling�uid
simulationsusingaderivativecalculationthatrunsordersof magni-
tudefasterthanpreviousmethods.Wedosoby adaptingtheadjoint
method,usedin optimal control theory, to computeexact deriva-
tives of the coarse,inexact solvers most often usedin graphics.
Withouthaving to runadditionalderivativesimulationsfor eachpa-
rameter, our framework canbegivennearlyunlimitedcontrolover
asimulation,enabling–forthe�rst time–the�ne-grainedcontrolof
large�uid animations.

Additionally, this paperintroducesthe �rst work fully control-
ling a level set surfacethroughthe Navier-Stokes equations.By
takingadjointderivativesthroughthe fastmarchingstep,we have
shown that derivative-basedoptimizationscan be usedto control
watersimulations,evenin thepresenceof highly discontinuousop-
erationssuchastheheapsortalgorithm.

Nevertheless,discontinuitiesin the water simulator did make
controlmoredif�cult. In additionto theredistancingoperation,we
notethat,for water, theprojectionanddiffusionoperationsarealso
discontinuous.This is becausethe linear systemsareonly solved
on theinterior of the�uid. If thesurfacemovesslightly, thesetof
interiorcellscanchange,andwemustsolveadifferent(albeitsim-
ilar) linear system. Thesediscontinuitiesrenderedthe derivatives
lessaccuratethanfor smoke, makingcontrol harder. With smoke
simulations,theoptimizationscouldbetunedto analmostarbitrary
precision,while watersimulationsoftencouldonly reacha certain
level of detail.Evenwith this lossof accuracy, wewereableto con-
trol complex watersimulationsthroughavarietyof constraints.We
are interestedin further investigating the typesof operationsthat
canor cannotbesuccessfullycontrolled.

For example,we would like to extendthis adjointcontrolmodel
to more sophisticatedwater simulation techniques,such as the
hybrid-particlemethod.While addingandsubtractingparticlesto



Figure4: From identicalinitial conditions,clay falls into variousshapes:a cross(top), a torus(middle),anda man(bottom). Thesewere
eachoptimizedon gridsof dimension50� 23� 50 for 10 timesteps.With over 300,000controlparameters,thesystemusedabout200MB
of memory.

Figure5: (top) TheStanfordbunny. (bottom)TheStanfordarmadillo. Both weresimulatedon a 50� 50� 50 grid with a singlekeyframe
(thethird imagein thesequence).100,000controls;about600MBmemory.

(a) (b) (c)

Figure6: (a)A smokepunchin a90;000voxel volumewith over600;000Gaussianwind forceparametersdistributedover the20 timesteps,
andrequiringabout550MB of memory. (b) A controlleddropletemergesfrom a watersplash.(c) Threedropletsrisefrom thesamesplash.
Thesewateroptimizationsusedabout95MB of memoryin 10 timestepsover30� 30� 30grid cells.



thesystemmight introducediscontinuities,ourexperiencewith the
discontinuitiesin fastmarchingsuggeststhat theframework could
cope.

Becausetheadjointmethodcaneasilyhandlehugecontrolvec-
tors, thebottleneckin our framework hasmoved from theevalua-
tion of theobjective functionto theoptimizeritself. Whenthesys-
temhastroublematchingkeyframes,it is oftenbecauseit is given
excessive control and cannotnavigate the complex searchspace.
This suggeststhat intelligentmodelreductionon thecontrolsmay
reapconsiderablebene�ts.

We would alsolike to considerothercontrolparadigms.While
keyframing is extremelypowerful, therearemany timeswhenwe
mightwantto describesomeotherpropertyof the�uid motion.For
example,wemightwantawave to breakataspeci�c time,without
specifyingthe exact shapeof the surface. If thesemetricscould
be encodedinto a differentiableobjective function, they could be
addedto oursystem.

Most importantly, we are excited by the many possibleap-
plications of the adjoint method in computer graphics. This
approachcan certainly extend directly to controlling other types
of physics-basedsimulations,but its applicability is not limited
to this domain. We hopethat this work inspiresothersto explore
how thispowerful techniquemightbeappliedto theirown research.
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