
The Cone of Silence
Speech Separation by Localization

Introduction
Given a multi-microphone recording of an unknown number of speakers 
talking concurrently, we simultaneously localize the sources and separate 
the individual speakers. At the core of our method is a deep network, in the 
waveform domain, which isolates sources within an angular region        , 
given an angle of interest    and angular window size    . By exponentially 
decreasing    , we can perform a binary search to localize and separate all 
sources in logarithmic time. Our algorithm allows for an arbitrary number of 
potentially moving speakers at test time, including more speakers than seen 
during training. Experiments demonstrate state-of-the-art performance for 
both source separation and source localization, particularly in high levels of 
background noise.

Our method shows state-of-the-art separation performance in a simple 
scenario with 2 voices and 1 background. Our method strongly outperforms 
the best possible results obtainable with spectrogram masking and is slightly 
better than recent deep-learning baselines [2,3] operating on the waveform 
domain. Additionally, our method can accept explicitly known source 
location, slightly improving the separation performance (denoted as Ours -
Oracle Location)
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Real-world Scenarios
In the supplementary videos, we explore a variety of real-world scenarios. 
These include multiple people talking concurrently and multiple people 
talking while moving. 
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Table 3: Generalization to arbitrary many speakers. We report the separation and localization 
performance as the number of speaker varies. For this experiment, we trained a network using 
scenes with only up to 4 speakers.

Table 2 (left): Localization performance. 

Figure 5 (right): Error tolerance curve on mixtures with 2 voices and 1 background.

Our method shows state-of-the-art performance in the simple scenario with 
2 voices, but some baselines show similar performance to ours. However, 
when background noise is introduced, the gap between our method and the 
baselines increase greatly. Learning-based baseline, MLP-GCC, [4] 
struggles to distinguish a voice location from background noise.

Source Localization

Table 1 (left): Separation performance. Larger SI-SDRi is better. The SI-SDRi is computed by 
finding the median of SI-SDR increases evaluated on our synthetic dataset.
Figure 4 (right): Evidence that the network amplifies voices between             and suppresses 
all others.

Figure 3: Overview of Separation by Localization running binary search on an example scenario with 3 
sources. Each panel shows the spatial layout of the scene with the microphone array located at the 
center. During Step 1, the algorithm performs separation on candidate regions of 90°. The quadrants 
with no sound get suppressed and disregarded. The algorithm continues doing separation on smaller 
partitions of candidate regions until reaching the final step where the angular window size is 2°.

Generalization to high number of speakers

Project page: https://grail.cs.washington.edu/projects/cone-of-silence/

Figure 1 (left): Our network architecture.

Figure 2 (right): The encoder and decoder blocks. In both figures,    refers to the global 
conditioning variable corresponding to an angular window size    .

To specify an angle of interest    to the network, we shift the multi-channel 
audio signal based on the specified location. The shift amount for each 
channel can be computed based on the distance between source and 
microphone, speed of sound and sampling rate, using the following 
equation.

We specify an angular window size      by globally conditioning the network 
using the one-hot vector corresponding to the window size. Figures 1 and 2 
show our network architecture, adapted from [1].

Given an angular separation network, we separate and localize all voices in 
a single scene by exponentially decreasing the angular window size    . 
Initially, our method runs the separation network on each quadrant and 
respectively subdivides the search space until we have fine-grained 
localization resolution. Figure 3 demonstrates our separation and localization 
method.
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