Bundle Adjustment in the Large

Sameer Agarwal Noah Snavely Steven M. Seitz Richard Szeliski

Google Cornell University  Google & University of Washington  Microsoft Research

. . Dataset
Current Bundle adjustment algorithms do not scale Inexact Step Levenberg Marquardt 3 [T Ladyou
beyond 1-2K images. " 3o o Final 1L . t f i

eplace the exact soluion o Ty J 1 Ladvbug: images caplred fom a vehicl

Our Algorithm o min ||.J (zx) Azy + f(zr)||° + pll D(z) Az || 2. o 2. Skeletal: Sparse incremental reconstruction of
1. 14k images, 4.5M points in less than an hour. AT S . Flickr images.
2. Inexact step Levenberg Marquardt algorithm. with an approximate solution satisfying L e e 3. Final: Reconstructions from the final stage of
3. Predictable and minimal memory usage. 5wt "% %w  w skeletal sets algorithm on Flickr images.
4. No need for high performance BLAS/LAPACK. [ Hy(zr)Azg + g(zi)[| < nillg(xe)|
4. Easily parallelizable (shared and distributed memory) 1
5. Simple preconditioners give state of the art performance. Forcing sequence, controls the quality of LM step Experiments

Calculating the Inexact step

Exact Step Levenberg Marquardt

Use Preconditioned Conjugate Gradients.

Until convergence
Iilin HJ(ZE,IC)AZE,I€ + f(xk)||2 + [LHD(CE/JAIHF But which linear system ?
Tk
if | f (2 + Azg)[|* < || (zr) Az + f(20) || H, Az = —g | it W
XL k41 <— X k —|— ACE k _ _ i Veni(;Z Skelét”éﬁ(%ff@% imaggs) o V(;Or;ice Fing‘”(ﬁ%eéﬁ‘é)o;mages;04 Ladybug (1197 images)
14— )2 Large linear system. Easy to evaluate matrix-vector products.
else Or,
X — X — T —1 : T
Mkil 9 Mk B-—ECTE'|Ay=v—-EC 'w 1. The first few steps don't need to be very accurate, initial decrease can
k<« k+1 Much smaller linear system. Expensive to compute and store, be quite fas_t. .. . . . .
but 2. The quality of preconditioner decides performance in later iterations.

3. Simpler preconditioners give crude solutions fast and then stall.

Calculating the LM Step
4. Small problems: SBA/direct-factorization.

To = ETAy, r3 =C Yoo x4 = FExsg

Normal Equations x5 = BAy 5. Large problems: PCG with SSOR preconditioning.
J ' (z)J(z) + uD(x) " D(z)] Az = —J ' () f(z) B— EC'E"Ay = 25 — x4
Hessian Approximation H, Az = —g .., We can run PCG implicitly on the reduced camera matrix ~ >°lution Accuracy
at the Same COSt aS the Normal equatlons| explicit-direct explicit-sparse explicit-jacobi implicit-jacobi implicit-ssor normal-jacobi
Cameras [ B E| [Ay] _ [v 27 /7 4 7 7 7]
Points _ET Cl||Az| |w A o 7 ’ F | e
Lemma (Saad 2003): CG with on the reduced camera matrix T S S B Do e L
. . - it - e R e B R
Sonr Complment (5~ 5C~'57] 8y ——pC~y W apecondionerpebesane s OGenteremal - i
Az=CYw—ETAy) P ' S0 o . h
S—B—EC'ET mpy = |E B[P 0P I By ey e B ey o o Ry o
1. Expensive to compute and store 0 Lo erlE O = . L :
2. Extremely expensive to factorize T PP B P+ AP B S VPO N PR B S Y B P

Code and data on our website http://grail.cs.washington.edu/projects/bal



