Bundle Adjustment in the Large

Sameer Agarwal
Google

Noah Snavely
Cornell University

Steven M. Seitz
Google & University of Washington

Richard Szeliski Microsoft Research

Current Bundle adjustment algorithms do not scale beyond 1-2K images.

Our Algorithm

- 1. 14k images, 4.5M points in less than an hour.
- 2. Inexact step Levenberg Marquardt algorithm.
- 3. Predictable and minimal memory usage.
- 4. No need for high performance BLAS/LAPACK.
- 4. Easily parallelizable (shared and distributed memory)
- 5. Simple preconditioners give state of the art performance.

Exact Step Levenberg Marquardt

Until convergence

$$\min_{\Delta x_k} \|J(x_k)\Delta x_k + f(x_k)\|^2 + \mu \|D(x_k)\Delta x_k\|^2$$
if $\|f(x_k + \Delta x_k)\|^2 < \|J(x_k)\Delta x_k + f(x_k)\|^2$

$$x_{k+1} \leftarrow x_k + \Delta x_k$$

$$\mu \leftarrow \mu/2$$
else
$$x_{k+1} \leftarrow x_k$$

$$\mu \leftarrow 2 * \mu$$

$$k \leftarrow k + 1$$

Calculating the LM Step

Normal Equations

$$\left[J^{\top}(x)J(x) + \mu D(x)^{\top}D(x)\right]\Delta x = -J^{\top}(x)f(x)$$

Hessian Approximation $H_{\mu}\Delta x = -g$

$$\begin{array}{ccc} \mathsf{Cameras} & B & E \\ \mathsf{Points} & E^\top & C \end{array} \begin{bmatrix} \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} v \\ w \end{bmatrix}$$

Schur Complement
$$\begin{bmatrix} B - EC^{-1}E^{\top} \end{bmatrix} \Delta y = v - EC^{-1}w$$

$$\Delta z = C^{-1}(w - E^{\top}\Delta y)$$

$$S = B - EC^{-1}E^{\top}$$

- 1. Expensive to compute and store
- 2. Extremely expensive to factorize

Inexact Step Levenberg Marquardt

Replace the exact solution to

$$\min_{\Delta x_k} \|J(x_k)\Delta x_k + f(x_k)\|^2 + \mu \|D(x_k)\Delta x_k\|^2$$

with an approximate solution satisfying

$$||H_{\mu}(x_k)\Delta x_k + g(x_k)|| \le \eta_k ||g(x_k)||$$

Forcing sequence, controls the quality of LM step

Use Preconditioned Conjugate Gradients.

But which linear system?

$$H_{\mu}\Delta x = -g$$

Large linear system. Easy to evaluate matrix-vector products. Or.

$$[B - EC^{-1}E^{\top}] \Delta y = v - EC^{-1}w$$

Much smaller linear system. Expensive to compute and store, but

$$x_2 = E^{\top} \Delta y, \ x_3 = C^{-1} x_2, \ x_4 = E x_3$$

 $x_5 = B \Delta y$

$$[B - EC^{-1}E^{\top}]\Delta y = x_5 - x_4$$

i.e., We can run PCG *implicitly* on the reduced camera matrix at the same cost as the Normal equations!

Lemma (Saad 2003): CG with on the reduced camera matrix with a preconditioner P is the same as CG on the normal equations with the SSOR preconditioner:

$$M(P) = \begin{bmatrix} P & E \\ 0 & C \end{bmatrix} \begin{bmatrix} P^{-1} & 0 \\ 0 & C^{-1} \end{bmatrix} \begin{bmatrix} P \\ E^{\top} & C \end{bmatrix}$$

Dataset

- 1. Ladybug: Images captured from a vehicle driving down a street.
- 2. Skeletal: Sparse incremental reconstruction of Flickr images.
- 3. Final: Reconstructions from the final stage of skeletal sets algorithm on Flickr images.

Experiments

- 1. The first few steps don't need to be very accurate, initial decrease can be quite fast.
- 2. The quality of preconditioner decides performance in later iterations.
- 3. Simpler preconditioners give crude solutions fast and then stall.
- 4. Small problems: SBA/direct-factorization.
- 5. Large problems: PCG with SSOR preconditioning.

Solution Accuracy

