
Optimal Gait and Form for Animal Locomotion

Kevin Wampler∗ Zoran Popović
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Abstract

We present a fully automatic method for generating gaits and mor-
phologies for legged animal locomotion. Given a specific animal’s
shape we can determine an efficient gait with which it can move.
Similarly, we can also adapt the animal’s morphology to be opti-
mal for a specific locomotion task. We show that determining such
gaits is possible without the need to specify a good initial motion,
and without manually restricting the allowed gaits of each animal.
Our approach is based on a hybrid optimization method which com-
bines an efficient derivative-aware spacetime constraints optimiza-
tion with a derivative-free approach able to find non-local solutions
in high-dimensional discontinuous spaces. We demonstrate the ef-
fectiveness of this approach by synthesizing dynamic locomotions
of bipeds, a quadruped, and an imaginary five-legged creature.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: animation, character dynamics, spacetime optimiza-
tion, gait

1 Introduction

Both scientists and artists have long been fascinated by the interplay
between the form and motion of animals. It is intuitively clear that
an elephant’s thick and sturdy limbs are related to its weight just as
a cheetah’s light stature and spring-loaded legs and spine are related
to its ability to run quickly. Despite this longstanding interest, there
are relatively few options in the way of automatic tools to aid in
determining how an animal should run given only information on its
shape, or for determining its shape given constraints on its motion.
This is a particularly noticeable problem when modeling animals
which are extinct or entirely fanciful.

Our approach to this problem focuses on terrestrial locomotion.
Given only the basic shape of a legged animal, we can fully au-
tomatically synthesize a visually plausible gait without relying on
any pre-authored or recorded motions. Similarly, given an initial
guess as to the shape of an animal and constraints on its motion,
such as the required speed of its gait, we can simultaneously solve
for the animal’s motion while reproportioning its skeleton so that it
can more efficiently move. We can also solve for the pattern and
timing in which an animal’s feet should contact the ground.
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We base our method for attacking these problems on an optimiza-
tion which attempts to solve for the most efficient shape and motion
for an animal, subject to a set of constraints dictated by the laws of
physics. Such approaches have been used extensively for anima-
tion in computer graphics, but due to the the dimensionality and
nonlinearity of the equations involved they have been notoriously
difficult to reliably apply to complex characters without a good ini-
tial guess for the motion. This problem is made worse by the diffi-
culty of applying efficient derivative-based optimization techniques
to solve for variables which are not easily formulated in a differen-
tiable manner, such as the order of the foot contacts.

We address these difficulties with a novel combination of an ef-
ficient derivative-free global optimization with a derivative-aware
optimization which is particularly well suited to solving for an ani-
mal’s form and motion without requiring a good initialization. This
allows us to leverage the ability of derivative-based optimizers to
efficiently generate closed-loop motions for complicated animals
with the ability of population based approaches to avoid local min-
ima and to manage poorly- or non-differentiable variables.

The motions and shapes generated by our approach appear visually
plausible and do not require any per-animal user authoring or preset
motion patterns. As far as we are aware, ours is the first method to
achieve this fully automatically for non-simplified characters with
highly underactuated motions. Although the biomechanical model
we employ is currently somewhat approximate, we hope that our
method’s ability to perform a de novo synthesis from basic physical
principles is a first step toward frameworks in which more accu-
rate biomechanical models may be applied to create truly accurate
motions for animals alive, extinct, and imaginary.

2 Related Work

There is an old and extensive body of scientific literature on the re-
lationship between shape and motion in animals. One of the best
known of these works is On Growth and Form[Thompson 1992]
which provides a fascinating investigation into the relationships be-
tween the forms of animals and physical or mathematical forms.
Later work, for instance Optima for Animals[Alexander 1996] and
Principles of Animal Design[Weibel et al. 1998] present optimiza-
tion as a technique for describing the shape and motion of animals.

The interrelationship between morphology and locomotion is also
of interest in robotics, biomechanics and paleontology. Optimiza-
tion based approaches are again common in these contexts but the
dimensionality and nonlinearity of these optimizations often limits
the problems which can be studied. Hutchinson and Gatesy[2006]
describe some of the difficulties related to the synthesis of dinosaur
gaits. This difficulty has typically limited its applicability to highly
simplified models or has required a good initialization for the op-
timization. For instance, optimization over morphology and gait
[Paul and Bongard 2001], and optimization over different gait styles
[Srinivasan and Ruina 2006] have both been applied to simplified
bipedal models.



In computer graphics, optimal dynamic character motions are syn-
thesized primarily by solving a large variational problem, often re-
ferred to as spacetime optimization [Witkin and Kass 1988]. The
continuous optimization methods often used for these problems
tend to get “stuck” easily in local minima, and consequently have
been used primarily to alter an existing motion sequence when ap-
plied to complex characters [Popović and Witkin 1999; Fang and
Pollard 2003; Liu et al. 2005; Liu et al. 1994; Popović and Witkin
1999; Rose et al. 1996; Witkin and Kass 1988]. Some techniques
have been developed to alleviate the need for an initial motion by ei-
ther using a database of similar motions as in [Safonova et al. 2004]
or by utilizing a specialized dynamics formulation as in [Fang and
Pollard 2003], which has produced reasonable flipping and tum-
bling motions with little initialization. Unfortunately these meth-
ods are not yet able to generate plausible de novo gaits for ani-
mals for which we do not have example motions. This problem
is further compounded when we wish to allow the foot timings to
change in the optimization. Time warping has been used to allow
small changes in foot timings [Liu et al. 2006], but cannot capture
changes such as that between a walk and a run. Our work tries to
remove these limitations of the spacetime optimization in order to
optimize for larger characters, their morphology and optimal gait.

An alternative to the use of a continuous optimization to solve for
a character’s motion is to apply population based methods such as
evolutionary and genetic algorithms. Auslander et al.[1995] opti-
mized for simplified characters with fixed morphology while Pol-
lard and Hodgins[1997] used repeated simulated annealing to adapt
a controller to a human character with different proportions. Sim-
ulated annealing was also used to determine the sinusoidal control
pattern of swimming creatures [Grzeszczuk et al. 1998]. Synthesis
of different gaits using a pose control graph optimized through a
combination of a local sampling technique with a variation on ran-
dom restart has been achieved by [van de Panne 1996]. One of the
best known works in this area is Evolving Virtual Creatures[Sims
1994]. This paper presents a genetic algorithm to search for both a
shape and a control strategy which would allow a creature to best
perform a pre-specified task, such as swimming or moving on land.
The resulting animations are highly entertaining and often lifelike,
but rarely resemble those of actual animals in the case of terres-
trial locomotion. These sorts of population based optimization ap-
proaches have the advantage that they do not rely on derivatives and
can avoid local minima to an extent, but they appear to have trou-
ble achieving the highly under-actuated motions shown by many
real animals. There is also some evidence to suggest that they scale
less well to the high dimensional spaces required by these problems
[Koh et al. 2008].

More recently, authored parametric methods have been used to gen-
erate morphology-dependent locomotion patterns for an interactive
game environment (Spore) [Hecker et al. 2008]. This paper was
one of the key motivations to automatically synthesize more physi-
cally and energetically realistic motions. Other approaches provide
the user with tools to author the torque actuations of a gait and then
simulate the animal via forward dynamics [Raibert and Hodgins
1991; Kry et al. 2009].

Our method is similar in spirit to that of Sims’ and others in that
it is based upon an optimization which simultaneously solves for
both form and motion, but the specifics of how we achieve this are
different. Instead of optimizing over completely different skeleton
topologies, we only vary the lengths and radii of an animal’s limbs.
This restriction allows us to use efficient derivative-based optimiza-
tion methods to solve for shapes and motions more closely resem-
bling those found in nature. Although this means that we cannot
automatically add an extra leg to an animal, in practice the range
of possible shapes is still large – a dog and a horse have the same
topology.

In order to optimize over the foot contact times and aid in avoiding
local minima, we employ a hybrid optimization technique which
combines a derivative-aware spacetime constraints approach as the
inner loop to a derivative-free global optimization based on the co-
variance matrix adaptation evolution strategy [Hansen et al. 1996].
This approach appears to have a greatly increased efficiency over
existing population based constrained optimizers (see appendix A)
and is well suited to the problem of gait and morphology optimiza-
tion.

3 Continuous Optimization

The inner loop to our optimization is formed by a derivative-based
spacetime constraints approach. Our formulation is not fundamen-
tally different from previous approaches, but is notable in two key
respects. Firstly, we have specifically focused the optimization on
generating a closed-loop gait cycle, and it is capable of solving for
such a motion without a good initialization. Secondly, in order to
avoid unrealistic results without relying on a good initialization we
must be more thorough in the optimization’s formulation than is
typical.

We take as input an animal defined as a kinematic tree of connected
limbs. We model each limb as a cylinder with a length, radius,
and mass. Pairs of limbs are connected by joints which define a
parametrized transformation from the endpoint of the parent limb
to the endpoint of the child limb. Generally this transformation
consists of a rotation followed by a translation along the length of
the child limb. We further define a special joint at the root giving
the global rotation and translation of the animal. In addition we
require that the limb endpoints of the animal’s feet and the limb
corresponding to its head (if any) be specified.

Given such a description of an animal we define its motion over a
single gait cycle with a set of variables describing the parameters
for its joints at each of a fixed number of frames. For each foot, at
each frame when it is in contact with the ground, we define six vari-
ables giving the force and torque exerted on the foot via this contact,
denoted by fi,jc and ti,jc . We also include three variables for each
rotational joint parameter defining its passive actuation characteris-
tics, represented by a spring stiffness, rest state, and a dampening
constant. In later sections we will include additional variables con-
trolling the shape of the animal and when each foot is in contact
with the ground.

To optimize for a gait we take a “treadmill” approach. That is, if we
wish to derive a gait for an animal running at some velocity Vgait,
we solve an optimization where the animal stays stationary overall
and instead has its feet moving at −Vgait. This allows us to easily
define the optimization to be cyclic by applying all terms which
rely on temporal derivatives, such as the physical constraints, in a
cyclically looping manner.

To aid in writing later equations, we define here some common
terms which will appear in our equations:

m the default mass of the animal
q a single joint degree of freedom
f ,t force and torque, respectively
p(i, j) position of bone endpoint (node) or joint j at frame i
v(i, j) the linear velocity of node j at frame i
R(i, j) The 3× 3 rotation matrix of node j at frame i

In addition, unless noted otherwise, we will use i to index over
frames, j to index over joints or bone endpoints, l to index over
limbs, and jc to index over ground contacts. So for instance fi,j
will refer to the force at joint j in frame i.



Our optimization utilizes several dynamic and kinematic terms, dis-
cussed next. For the moment, note that the current formulation
requires that the frames at which each foot is in contact with the
ground be fixed in advance. We will later introduce method by
which we can allow the foot contact times to vary in the global op-
timization.

3.1 Kinematic constraints

The simplest of the constraints used in our optimization are those
enforcing a kinematic validity to the motion. The first of these en-
force that all parts of the skeleton should remain above the plane of
the ground and that the feet should be on the ground and have the
correct velocity when in contact:

∀i,p : p(i, p)y ≥ 0 (1)

∀i,jc : p(i, jc)y = 0 (2)

∀i,jc : v(i, jc) = −Vgait (3)

For efficiency and ease of differentiation we enforce non-self-
intersection only approximately by having the user provide a list
of pairs of points in the animal (p1,1, p1,2), . . . (pn,1, p1,2) and en-
force a minimum distance constraint between these points:

∀i,k : ‖p(i, pk,2)− p(i, pk,i)‖2 ≥ r2 (4)

Geometrically we model each foot contact as occurring at a single
point. This simple approach does not allow more detailed modeling
of a foot’s structure such as the heel-toe roll in human gaits or the
use of the toes to push off the ground in some animal gaits. For-
tunately most non-human animals have small ground contact areas,
but we have still found it necessary to explicitly define a preferred
orientation for a foot on the ground by adding constraints enforcing
each foot’s rotation about the y-axis to be zero when in contact:

∀i,jc : R(i, jc)x,z −R(i, jc)z,x = 0 (5)

Finally, to remove the translational invariance of the optimization
and keep the resulting gait from drifting arbitrarily we add a term to
keep the average position of the animal along the x-z plane centered
at the origin. ∑

i

p(i, root)x =
∑
i

p(i, root)z = 0 (6)

3.2 Mass normalization

In the following description of the dynamical constraints and ob-
jective function to our optimization some terms are normalized by
the default mass of the animal. This helps keep the optimization
better conditioned for animals of large mass and is similar to meth-
ods employed by [Srinivasan and Ruina 2006; Hodgins and Pollard
1997]. We achieve this normalization by treating the optimization
variables for the ground reaction forces as scaled by the mass of the
animal fi,jc

m
and ti,jc

m
and introducing a similar multiplicative nor-

malization term to the other equations which deal with dynamics.
This allows us keep all intermediate computations in standard SI
units – a benefit in defining terms which depend on constants such
as the maximum stress a muscle can support, as discussed later in
section 3.6.

3.3 Dynamic constraints

We phrase the dynamical constraints of our method with a Newton-
Euler formulation reminiscent of Fang and Pollard [2003] by ex-
pressing the dynamical constraints about the animal’s center of

mass, yielding a total of six dynamical constraints per frame. In or-
der to calculate these constraints more efficiently we approximate
each limb by a point mass located at the limb’s center of mass. At
each frame, we ensure that time derivatives of the animal’s linear
and angular momenta are equal to the net force and torque on the
animal respectively:

∀i : ṗi = mg +
∑
jc

fi,jc (7)

∀i : L̇i =
∑
jc

(pi, jc −CMi)× fi,jc + ti,jc (8)

Where pcm and vcm give the position and velocity of a limb’s
center of mass and CMi gives the position of the center of mass of
the animal at frame i.

In order to ensure physical validity we also constrain the ground
contact forces to be within a friction cone:

∀i,jc :
1

m

(
µ fi,jc⊥ −

∥∥∥fi,jc‖∥∥∥) ≥ 0 (9)

Where f‖ and f⊥ represent the components of the contact force
parallel and perpendicular to the ground respectively. We simi-
larly constrain the torque components of the ground reactions to lie
within an ellipsoid scaled by the force component of the reaction,
approximating the behavior of a foot which has an area of contact
with the ground, even though the foot in our optimization is still
geometrically a point:

∀i,jc :
1

m

2
(

fi,jc
2
⊥ −

∥∥∥∥ti,jc‖
νb

∥∥∥∥2

−
(

ti,jc⊥
νt

)2
)
≥ 0 (10)

Where µ is the coefficient of static friction and νb and νt give
bounds on the maximum allowed torques in the directions parallel
and perpendicular to the ground respectively. In all our optimiza-
tions we use µ = 0.5 and νb = νt = 0.02

3.4 Passive elements

In addition to being able to actuate their joints through muscular
exertion, many animals also have musculo-skeletal structures that
behave like springs or dampers and passively actuate these joints.
The importance of these in reproducing styles of walk in humans
was noted in [Liu et al. 2005], which may also be referred to for a
more thorough discussion of these terms.

We support passive elements in our optimization by representing
the total torque at each joint as the sum of a passive and an active
component:

t = ta + tp (11)

Where ta is the component of the torque arising directly from mus-
cular exertion while tp is the component arising from passive actu-
ation. This allows the animal to achieve more efficient gaits and is
reflected in our objective function (13). We compute tp for a gait
by including three variables for each joint degree-of-freedom, qj ,
in the animal: A spring constant ksj , a spring rest length, q̄j , and
a dampening coefficient kdj . The passive force for that degree of
freedom can then be written as:

tpj = −ksj(qj − q̄j)− kdq̇j (12)

In our tests, we have found that the inclusion of passive elements
does not drastically alter the overall form of a gait, but does make
the resulting motions significantly smoother and more believable.



3.5 Objective

The objective function used in our optimization, if we are not opti-
mizing for morphology, is the sum of four terms:

C1
1

m

2∑
i,j

‖tai,j‖2 + (13)

C2

∑
i,q

q̇2 + (14)

C3

∑
i

∥∥ṗ(i, head)⊥
∥∥2

+ (15)

C4

∑
i

‖R(i, head)− I‖2 (16)

The first of these terms is standard in spacetime optimizations and
minimizes the muscular exertion of the animal, where the torques
used in this equation are found analytically from the motion and
contact forces using inverse dynamics. The second term penalizes
high-velocity joint motions and is necessary to avoid low-torque
but unrealistic ‘wiggling’ motions that would otherwise occur in
the flight phase of some gaits.

We also note that animals often attempt to keep their heads largely
stable. This is both so that the brain is not jostled too much, and be-
cause motion of the head interferes with the visual processes needed
to move through an environment. We thus use the third term to pe-
nalize translational motion of the head. Since motion of the head
in the direction an animal is running does not much interfere with
vision, we only penalize the component of this motion which is
perpendicular the the velocity of the gait. The fourth term func-
tions similarly and keeps the animal’s head facing in its direction of
motion.

We weight each of these terms with a constant so that their con-
tributions to the overall objective function are of the same general
magnitude. Note that although these constants were hand tuned, we
use the same values for all animals and gaits: C1 = 25, C2 = 0.1,
C3 = 25, C4 = 100

3.6 Morphological terms

The spacetime optimization described thus far follows closely in the
mold of previous approaches and is sufficient for generating gaits
on a fixed morphology when the foot contact timings are known
in advance. In order to allow optimization over morphology we
simply add two new optimization variables per limb controlling the
radius and length of the limb, scaling the mass of the bone propor-
tionally so that it maintains a constant density. Thus larger limbs,
while often providing an advantage in terms of locomotion, also
carry the disadvantage that they increase the animal’s mass.

Once we have added these variables to parametrize over different
shapes we must alter our objective function to better reflect the
tradeoffs of having larger versus smaller limbs. We achieve this
by redefining the torque minimization term in equation 13, replac-
ing it with a term attempting to minimize the active forces exerted
by the muscles, Ef , and a term attempting to minimize the stress
put upon the muscle fibers, Eσ:

C1

[∑
i,j

Ef (i, j)2 +
∑
i,j

Eσ(i, j)2
]

(17)

In order to calculate Ef and Eσ we must estimate at each actu-
ated joint, j, both the cross-sectional muscle areas of those muscles
controlling the joint, denoted aj , and a scaling factor for convert-
ing muscle forces into joint torques, denoted dj . In our approach

we take only the basic shape of the animal given by the optimiza-
tion variables and instead use a few simple heuristics to guess the
values of aj and dj . This has the advantage of simplifying the op-
timization but has the disadvantage that our model is a rather crude
biomechanical approximation of reality. Nevertheless this approach
has proved sufficient for qualitatively reasonable results in solving
for an animal’s shape.

We estimate aj for each joint, j, by assuming that 25% of a limb’s
cross-sectional area is taken up by muscle. Furthermore we note
that generally (although certainly not always) in nature large mus-
cles are connected at both ends to large limbs, partially because
large muscle loads may damage the bones in a small limb. We rep-
resent these properties with the equation:

aj = 0.25 π smin(rj,1, rj,2)2 (18)

where rj,1 and rj,2 are the radii of the limbs adjacent to joint j
and smin is a smooth and differentiable approximation to the min
function in the non-negative quadrant:

smin(a, b) =̇
(
a−10 + b−10)− 1

10 (19)

We estimate dj by first choosing a value for the muscle’s attach-
ment distance on each of the two limbs at joint j, dj,{1,2}, and then
combine these into a single scaling factor. To estimate dj,{1,2} we
note that the attachment arm is constrained both by the length and
the radius of each limb. We represent this by setting each limb’s
attachment arm to be a minimum of a proportion of the length and
radius of the respective limb:

dj,{1,2} = smin(0.2 l{1,2}, 1.5 r{2,1}) (20)

The most accurate way to combine dj,1 and dj,2 into a single scal-
ing factor would include the dependence on the angle of the joint’s
extension. We take a simplified approach and just derive the force-
to-torque conversion factor for when the limb is extended at a right
angle:

dj =
dj,1 dj,2√
d2
j,1 + d2

j,2

(21)

Having computed values for aj and dj we can now define Ef (i, j)
and Eσ(i, j) as used in equation 17. The definition of Ef (i, j) is
simple and merely computes the force exerted by the muscle at joint
j in frame i:

Ef (i, j) =
|tai,j |
dj

(22)

The definition of Eσ is moderately more involved. We begin by
estimating the magnitude of the force exerted upon the muscles
attached to joint j, |fmi,j |, which differs from Ef (i, j) in that it
accounts for forces due to both active and passive actuation:

|fmi,j | =
1

dj

(
|tai,j |+

∣∣∣tpi,j∣∣∣+ |tei,j |
)

(23)

In addition we include a third term, |tei,j |, in computing this force.
This prevents the optimization from allowing some limbs to become
very thin by keeping all forces parallel to the limb’s axis and elimi-
nating any torques at the adjacent joints. Due to inevitable errors in
a real animal’s motion such precise forces are impossible to actually
achieve. We thus assume that it is possible for any force through a
limb to actually be exerted slightly more off-axis than determined
by fi,j . We calculate the magnitude of the extra torque from this
displacement by |te|i,j = 0.05 |fi,j · vlimb| where vlimb is the
vector form one endpoint of the limb to the other.

We can now compute Eσ(i, j) as a scaled multiple of |fmi,j |:

Eσ(i, j) = h(σi,j) |fmi,j | (24)



The scaling factor, h(σi,j), is chosen so that this term starts to
dominate Ef (i, j) when the stress upon the muscles at joint j, σi,j ,
reaches some value, σmax. This stress is computed as the force
per cross-sectional muscle area: σi,j = |fmi,j | /aj . In our case
we use h(σ) =̇

√
3(σ/σmax)2 + 1 − 1, and choose a value of

σmax = 50 N
cm2 , which corresponds to the maximum muscle stress

exerted by endurance-trained human athletes [Häkkinen and Kesk-
inen 2006].

4 Gait Optimization

The optimization as described so far requires that the foot contacts
be specified in advance. This is a disadvantage in defining such op-
timizations, as it is not always obvious what the foot contact timings
should be for a given animal moving at a particular speed.

To represent a foot contact optimization we assume that each foot
touches the ground for only a single interval during a gait cycle.
We then represent a gait’s timing by introducing a single variable
controlling the overall period of the gait and add a pair of optimiza-
tion variables for each foot giving the start time and duration of
the foot’s contact interval, both measured as fractions of the gait’s
period.

In order to optimize over the foot contact timings it is necessary
to formulate the spacetime optimization so that they can be quickly
changed at runtime. Since we pre-generate code to calculate deriva-
tives we must first formulate a problem that includes ground reac-
tion forces for each foot in every frame, thus including all deriva-
tives that might be needed later for any possible contact timing. At
runtime we modify this optimization by removing the variables and
constraints corresponding to inactive foot contacts. The ground re-
action force variables can be removed by forcing them to be equal
to zero. The inactive constraints can be removed directly from the
optimization’s constraint vector and Jacobian. If automatic instead
of symbolic differentiation is used this step will probably not be
necessary.

Because the variables for the foot contact times and durations are
not differentiable, standard derivative-based constrained optimiza-
tion methods cannot be applied directly. Furthermore, this problem
contains many local minima which must be avoided in determining
a good gait. We address both of these difficulties with a hybrid op-
timization scheme combining derivative aware and derivative-free
techniques.

4.1 Hybrid optimization

In order to solve the gait optimization problem we use a novel hy-
brid optimization technique which combines a spacetime optimiza-
tion as an inner loop to a sampling-based derivative-free optimiza-
tion method based on a variant of the covariance matrix adaptation
evolution strategy (CMA). This combines the efficiency in high di-
mensional spaces and ability to handle general constraints of space-
time optimization with the ability to handle non-differentiable vari-
ables and avoid many local minima. We will first describe the stan-
dard CMA algorithm briefly. For further details we refer readers to
[Hansen and Kern 2004].

We begin with a function to be minimized, f and an initial Gaus-
sian defined by a mean, m0, and a covariance matrix C0. We first
draw λ samples from this distribution and evaluate f at each. We
then select the µ samples with the lowest associated values of f .
These samples are termed the elites and we will denote them by
x1, . . . ,xµ where f(x1) ≤ · · · ≤ f(xµ). With each elite we also
associate a weight as defined by:

Figure 1: An illustration of a single iteration of basin-CMA. First λ
samples are chosen form the current distribution. Next each sample
is projected to a local constrained minimum. Finally the mean and
covariance are updated according to the elite samples.

wj =
ln(µ+ 1)− ln(j)

µ ln(µ+ 1)−
∑µ
k=1 ln(k)

(25)

These weights are chosen so as to favor those elites with the lowest
values of f , and other weighting schemes may also work, so long
as w1 > · · · > wµ > 0. Using these values for w and x we then
update the mean as:

mi+1 =

µ∑
j=1

wjxj (26)

and similarly update the covariance matrix as:

Ci+1 = (1−ccov)Ci+ccov

µ∑
j=1

wj(xj−mj)(xj −mj)
T (27)

As we iterate this method the multivariate Gaussian moves and
shrinks until it becomes a point at the function’s minimum or until
a preset maximum number of iterations is reached.

4.1.1 Basin-CMA

The CMA algorithm has a few disadvantages which make it un-
suitable for direct use in our optimization. Firstly it does not take
advantage of derivatives when they are available, and thus is some-
what inefficient on our largely differentiable problem. More im-
portantly, however, CMA is an entirely unconstrained optimization
approach so it is unable to handle kinematic and dynamical con-
straints in our problem.

The solution to both of these problems is to use a spacetime opti-
mization at each CMA sample point instead of evaluating the ob-
jective function directly. More formally, let f be our objective func-
tion and c1, . . . , cn be the constraint functions. Furthermore, let g
be a function such that if y = g(x|f, c1, . . . , cn) then y is a lo-
cal minimizer of f which satisfies the constraints c1, . . . , cn where
the minimization is started from the initial point x. Generally, g
can be thought of as projecting x to the nearest constrained local
minimum.

We then modify the CMA algorithm so that it searches over
f ◦ g(x|f, c1, . . . , cn) instead of f(x). As this search is es-
sentially over the function defined by the basins of attraction for
g(·|f, c1, . . . , cn), we term this optimization basin-CMA. This al-
lows basin-CMA to leverage the local optimization’s constraint
handling behavior to quickly adapt to the constraint manifold. An
illustration of this can be seen in figures 1 and 2.

In addition to changing the objective function over which we are
searching, we achieve significantly greater efficiency by harmo-
niously altering the update equations. Given our elite sample points



Figure 2: The progress of basin-CMA on finding the global opti-
mum of a constrained minimization problem. The constraints en-
force the solution to be on the unit circle, shown in black. The
means follow a path displayed in green while the covariance matri-
ces at each iteration are drawn in purple.

x1, . . . ,xµ, define yj = g(xj |f, c1, . . . , cn) for 1 ≤ j ≤ µ. We
then alter both the mean and covariance update equations (26, 27)
by replacing each use of xj with yj .

Although this change is very simple, the resulting optimization is,
in our experience, both surprisingly efficient and quite powerful.
We have tested this method against the problems from the 2006
Congress on Evolutionary Computation (CEC-06) real-parameter
constrained optimization competition. The problem set consists of
24 non-convex constrained optimization problems ranging from 2
to 24 dimensions, all of which exhibit local minima. We found
that basin-CMA was able to match the ability to find the global
constrained optimum of the best of the other entrants while running
faster than the competition’s best entrant for each problem by an
average factor of 51 times if derivative evaluations are as cheap as
function evaluations and 6.3 times if finite differences are used for
all derivatives. Full details of these tests are given in appendix A.

4.1.2 Application to gait optimization

We use basin-CMA as the outer loop in our optimization and em-
ploy it in handling non-differentiable or poorly conditioned terms
such as the foot contact timings. In doing so, however, we must
define the local optimization function, g(xj |f, c1, . . . , cn) for 1 ≤
j ≤ µ, appropriately so that we do not pass the variables dictat-
ing the contact times to the spacetime optimization, which has no
means to handle them.

We define g by labeling each variable in the optimization with one
of three labels dictating its use as excluded from the local optimiza-
tion, included in both the CMA and local optimizations, or used in
the local optimization only. This labeling gives us flexibility both
in excluding variables from the local optimization which it cannot
handle properly, and in reducing the dimensionality of the problem
solved by the basin-CMA outer loop in the case that the local op-
timization can handle some variables well when given only their
default values. We typically only include the foot timings in CMA
while excluding the morphology, pose, passive element, and ground
force variables. This means that the outer loop normally only has to
optimize over three to ten dimensions. If needed, however, the pose
and morphology variables can be managed in the outer loop as well,
although the resulting basin-CMA optimization will generally have

several hundred dimensions and converge somewhat more slowly.

In order to initialize the optimization we choose a Gaussian distri-
bution wide enough so that it covers the entire allowed parameter
space of the CMA variables. In our case the mean is set to a default
in which all variables are zero except for the foot timings, which
are set to be evenly spaced within a one-second period gait, and the
torso height which is set so that the feet are level with the ground.
The covariance matrix is diagonal with each element being the max-
imum distance from the mean to one of the two bounds in the cor-
responding dimension (or 500 if the dimension is partially or fully
unbounded). In the local optimization the variables not dictated by
CMA (i.e. marked as “local optimization only”) are initialized to
their default values. So long as the initial CMA distribution is wide
enough to provide good coverage of the allowed parameter space
many other initialization schemes would give equivalent results.

5 Implementation

The definition of our spacetime optimization is implemented in
Python. Using an operator overloading scheme similar to that in
[Guenter 2007] we build a function composition graph for these
terms and compute its derivatives. We then automatically gener-
ate C++ code to calculate these terms. This approach yields rel-
atively high-speed results and allows us to analytically compute
the sparsity pattern of the Jacobian of an optimization’s constraints.
We then solve this spacetime optimization problem using the SQP
based nonlinear programming package SNOPT [Gill et al. 2005].

Running times for a single spacetime optimization run from around
a minute for very simple animals such as a simplified biped creature
to 10-20 minutes for more complicated ones such as a horse. In the
Basin-CMA computation these spacetime optimizations are run in
parallel on a cluster to speed up the time needed to evaluate the
samples in each iteration. We use the CMA parameters of λ = 96,
µ = 32, and ccov = 0.3 and find that the problem is generally
close enough to convergence for the solution to be useful at around
50 iterations.

6 Results

We have tested our methods on models for five different animals:
a monoped, simplified biped, velociraptor, horse, and a pentaped,
with 10, 16, 33, 29, and 32 DOFs respectively. All optimizations
are fully 3D and we use 30 frames to sample the gait cycle. When
optimizing for morphology we keep the torso, neck, and head size
of the animals fixed and allow the proportions of the other limbs to
vary. The morphological degrees of freedom are parametrized to
preserve left-right symmetry, but we do not enforce any symmetry
on the gait itself.

In all cases we have observed that our local spacetime optimization
can solve for a reasonable gait giving just a single static pose and
the foot contact times. Including the morphological DOFs some-
times causes the spacetime optimization to fail on more compli-
cated skeletons, but this is easily fixed when necessary in our ap-
proach by having Basin-CMA determine the morphological terms,
holding them fixed in each sampled spacetime optimization. We
have also observed that multiple runs of basin-CMA generally con-
verge to similar gaits, or to one of a set of reasonable gaits, for
instance running versus hopping.

We have further observed successful determination of foot contact
timings for our animals. This includes automatic determination of
a walk/run gait depending on the desired speed as, well as pick-
ing gaits which effectively balance the animal’s mass between the
feet of both the horse and pentaped animals. Examples of these



Figure 3: Examples of the foot contact timings resulting from our
method. From top to bottom: simplified biped at 0.7m

s
, simplified

biped at 3.0m
s

. horse at 1.0m
s

, horse at 10.0m
s

, and pentaped
at 4.0m

s
. The tic marks on the top and bottom are at one second

intervals.

Figure 4: Some examples showing varying morphologies. From top
to bottom: same contact times but different speeds, same speed but
different contact times, and a user constraint setting the minimum
height of the head.

foot timings are shown in figure 3. We have also observed success-
ful adaptation of morphology to tasks such as moving at different
speeds, maintaining different gaits, and keeping the head above a
certain height. Some examples of results of our approach are shown
in figure 4.

Our approach does not yet fully capture all the details exhibited in
animal motions, and we were not able to obtain, for example, a gal-
lop gait for the horse – getting instead a four-beat phase shifted trot.
We suspect that this is due to our incomplete modeling of biome-
chanical elements such as an animal’s preference for using some
muscles over others, robustness, and complexity of control. Nev-
ertheless our method can easily be used to optimize over a reduced
subspace of all possible foot timings, so an artist can design some
aspects of a gait they desire and our method can search within this
for an optimal gait. We have also found that for low-energy motions
the gaits for the horse sometimes exhibit limp-like asymmetries.
We suspect that this is a result of a flatter energy landscape with
many different motions that result in very similar energies, and it is

worth noting that such low-energy problems have been a consistent
trouble for spacetime constraint approaches.

7 Conclusion

We have shown a method for generating optimal gaits and mor-
phologies for an animal without requiring a starting motion or foot
contact timings. This allows us to automatically animate real crea-
tures as well as those which are extinct or entirely imaginary. We
achieved this through an efficient hybridization of a spacetime con-
straints optimization with a variation of the derivative-free opti-
mization technique of covariance matrix adaptation. The gaits and
morphologies produced are lifelike and exhibit many qualitative
traits seen real animals.

We feel that future variations of our method could benefit from a
more accurate biomechanical model. In particular, some constants
and functions in the optimization determining the weighting be-
tween various factors were set by hand. A particularly interesting
possibility for determining these tradeoffs would be to employ in-
verse optimization techniques such as those used to find the values
for passive elements by [Liu et al. 2005]. Modeling muscles explic-
itly and optimizing over their properties could also serve to increase
the biomechanical realism of the results.

Another entirely different avenue for future work would lie in de-
signing tools to allow artist interaction with our method. Although
the fully automatic nature of our method is desirable in some cir-
cumstances, it would also be useful to allow an artist to specify
some aspects of a gait or form and then refine these while comput-
ing the terms which were not specified.

Ideally we would like to be able to automatically reproduce all of
the the many motions seen in nature given only simple information
about the physical structure of the an animal. Part of this could even
involve determining probable forms and motions for variations on
this animal depending on the particulars of the environments they
inhabit. Although this full vision remains some distance off, we
hope our approach provides a valuable step towards it.
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A CEC-2006 problem results

This table summarizes the results of our method when applied to the
CEC-06 constrained real parameter optimization competition. The
efficiency of our method in finding each problem’s global minimum
is measured by the ratio of the number of function evaluations of
the top scoring CEC contestant over that required by basin-CMA.
Thus a ratio of 10 means that our method required ten times fewer
function evaluations. Note that we select the best CEC contestant
on a per problem basis, so no single algorithm in the competition
would rate as well against ours and the table indicates. Since we use
derivatives in our approach we provide two efficiency ratios. fevals
ratio1 gives a best case ratio where derivative solutions only count
for addition evaluation. fevals ratio2 gives a worst-case ratio when
finite differences is used.

# dimension opt? fevals ratio1 fevals ratio2

1 13 yes 105.970464 7.569319
2 20 yes 10.735468 0.511213
3 10 yes 20.546281 1.867844
4 5 yes 29.500000 4.916667
5 4 yes 59.019391 11.803878
6 2 yes 24.537736 8.179245
7 10 yes 89.488215 8.135292
8 2 yes 0.269050 0.089683
9 7 yes 6.083616 0.760452
10 8 yes 11.086012 1.231779
11 2 yes 12.345679 4.115226
12 3 yes 16.769231 4.192308
13 5 yes 29.487110 4.914518
14 10 yes 39.905063 3.627733
15 3 yes 40.223077 10.055769
16 5 yes 4.163090 0.693848
17 6 no 40.748068 5.821153
18 9 yes 109.538760 10.953876
19 15 yes 19.098863 1.193679
20 24 no – –
21 7 yes 26.338387 3.292298
22 22 no – –
23 9 yes 442.150171 44.215017
24 2 yes 2.457534 0.819178


