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Figure 1: Catching controller: the character moves through space to catch two consecutive balls thrown from different directions. In addition to the current character state, the
controller has a three-dimensional input space that specifies the incoming position and speed of the ball to be caught.

Abstract
This paper describes an approach to building real-time highly-
controllable characters. A kinematic character controller is built
on-the-fly during a capture session, and updated after each new mo-
tion clip is acquired. Active learning is used to identify which mo-
tion sequence the user should perform next, in order to improve the
quality and responsiveness of the controller. Because motion clips
are selected adaptively, we avoid the difficulty of manually deter-
mining which ones to capture, and can build complex controllers
from scratch while significantly reducing the number of necessary
motion samples.
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1 Introduction
Human motion capture data provides an effective basis for creating
new animations. For example, by interpolating and concatenating
motions, realistic new animations can be generated in real-time in
response to user control and other inputs. In this paper, we consider
such an animation model that we refer to as a motion controller: a
controller generates animation in real-time, based on user-specified
tasks (e.g., a user might press forward on a game controller to spec-
ify the task “walk forward,”). Each task is parameterized by a con-
trol vector in a continuous space (e.g., “catch the ball flying from
a specific direction and velocity”). In this paper, a controller is es-
sentially a function from the combined space of states and tasks to
the space of motions. Our controllers are kinematic: they produce
the character’s motion by interpolating motion capture, rather than
producing motion dynamically through forces and torques.

Motion capture data is very time-consuming and expensive to
acquire, and thus it is desirable to capture as little as possible.
When building the simplest controllers, a designer can minimize

the amount of data captured by carefully planning the data samples
to be acquired. However, for non-trivial tasks, the space of possible
clips is vast, and manual selection of samples quickly becomes in-
tractable. For example, a controller for a human that can walk and
dodge projectiles must be parameterized by the direction and speed
of walking, the direction and speed of the projectiles. Because the
task can be changed at any point during the animation, the con-
troller also needs to be parameterized by all possible pose config-
urations of the character. For example, the controller must be able
to dodge any projectile that appears while the character is walking,
turning, or recovering from the previous dodge. Even this moderate
set of tasks leads to a huge set of initial configurations and control
vectors. Determining which motions to capture for this controller
— so that it can produce good motions in this huge space of possible
inputs — is a daunting task, and, in our experience, is too difficult to
do manually. Uniform sampling of the input space would be vastly
inefficient, requiring a huge number of samples to be captured and
then stored in memory. Because the space is structured — that is,
nearby motions in the space can often be interpolated to produce
valid new motions — selection of which motions to capture should
greatly reduce the number of samples needed. However, even in
a small controller space, nonlinearities in the space will mean that
careful sampling is required.

In this paper, we propose the use of active learning to address
these problems. In particular, we build the motion controller on-
the-fly during the data acquisition process. After each motion is
captured, the system automatically identifies specific tasks that the
controller performs poorly, based on a suite of error metrics. These
tasks are presented to the user as candidates for additional data sam-
ples. The user chooses one of the tasks to perform, and the con-
troller is updated with this new motion clip. In this way, the system
continues to refine the controller until it is capable of performing
any of the tasks from any state with any control vector, the time
available for capture has elapsed, or else the number of data sam-
ples has been reached a predefined maximum. This process yields
highly-controllable, real-time motion controllers with the realism of
motion capture data, while requiring only a small amount of motion
capture data. We demonstrate the feasibility of this approach by us-
ing our system to construct three example controllers. We validate
the active learning approach by comparing one of these controllers
to manually-constructed controllers.

We emphasize that, by design, our system does not automate
all decisions, but, rather, computes aspects of the controller that
would be difficult for a user to handle. The user is left with specific
decisions which are hard to quantitatively evaluate. Making these
decisions normally entails selecting from among a few alternatives
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presented by the system.
In this paper, we refer to a generic “user” that runs the system. In

practice, some roles may be performed by separate individuals. For
example, a human operator might run the active learning software,
but have an actor perform the actual motions; later, a separate non-
specialist user (e.g., a game player) may control the motions with
the learned controller.

Contributions. A key contribution of this work is the use of an
active learning method for animation that produces compact con-
trollers for complex tasks. We also develop a framework that in-
cludes user input at key points of the process, including providing
motion capture samples, and in selecting which motions to capture
from a few automatically-determined options. We also develop a
cluster-based learning model for motion controllers.

2 Related Work
A common theme in computer animation research is to create new
motion from existing motion capture data. Most methods create
animation off-line, for example, by interpolating a similar set of
motions according to user-specified control parameters [Witkin and
Popović 1995; Kovar and Gleicher 2004; Mukai and Kuriyama
2005; Rose et al. 1998; Wiley and Hahn 1997], by optimizing
motion according to probabilistic time-series models [Brand and
Hertzmann 2000; Li et al. 2002], by concatenating and blending ex-
ample sequences [Arikan et al. 2003; Kovar et al. 2002; Torresani
et al. 2007], or by combining model- and data-driven techniques
[Yamane et al. 2004; Zordan et al. 2005; Liu and Popović 2002; Liu
et al. 2005]. These methods generate motion off-line, whereas we
consider the problem of real-time synthesis. It is worth noting that
many of these methods typically require large motion databases; the
need for such databases could be mitigated by our active learning
approach.

A number of real-time animation systems build on motion cap-
ture data as well. One approach is to directly play and transition
between clips from a motion database [Gleicher et al. 2003; Lee
et al. 2002; Lee et al. 2006]; precomputation can be used to allow
real-time planning of which clips to use [Lau and Kuffner 2006;
Lee and Lee 2006]. Reitsma and Pollard [2004] present a method
for evaluating the possible motions generated by such approaches.
A few authors have described methods that generate new poses in
response to real-time input. Our motion controller model is most
similar to methods that transition between interpolated sequences.
Park et al. [2004] and Kwon and Shin [2005] combine interpolation
of motions with a graph structure to generate new locomotion se-
quences. Shin and Oh [2006] perform interpolation on graph edges
for simple models of locomotion and other repetitive motions. In
previous work, it is assumed that a corpus of motion data is avail-
able in advance, or that a user will manually select which motions
to capture. In this paper, we show how the use of adaptive selec-
tion of motion sequences allows the creation of controllers with
greater complexity, while allowing fine-scale parameterized control
and capturing relatively few motions overall.

Data acquisition is difficult, expensive, and/or time-consuming
for problems in many disciplines. Consequently, automatic se-
lection of test cases has been extensively studied. In statistics,
optimal experimental design methods seek the most informative
test points to estimate unknown nonlinear functions [Atkinson and
Donev 1992; Santner et al. 2003]. The simplest methods determine
all test points in advance, e.g., via space-filling functions, or by op-
timizing an objective function. However, it is often not possible to
determine in advance which regions of input space will need the
most data. Active learning methods select test data sequentially:
after each data point is acquired, the next test point is chosen to
maximize an objective function [Cohn et al. 1994]. Active learn-
ing has been studied most extensively for classification problems

(e.g., [Lindenbaum et al. 2004]). In this paper, we present an active
learning algorithm for motion controllers. Our approach is distinct
from existing active learning methods in two ways: first, instead of
choosing the next sample to capture, our system identifies a set of
candidates, from which a user chooses a sample to improve; sec-
ond, we assume that a metric of correctness is provided by which
candidates may be chosen.

3 Motion Controllers
Before describing our active learning framework — which is the
main contribution of this paper — we will briefly discuss our model
for motion controllers.

In our framework, a kinematic controller C : S×T×U→M
generates a motion clip m ∈M that starts at character state s ∈ S
and performs task t∈T parameterized by the control vector u∈U.
S defines a set of all permissible character states, T is a discrete set
of controller tasks,U defines the operational range of the control in-
puts for task t, andM defines the space of output motions. A single
controller can learn and integrate several tasks, each specified by a
value of the argument t. For example, a catching controller consists
of two tasks: one that catches the ball coming at given speed and
direction, and the idle controller that is invoked when there is no
ball to be caught. We take advantage of the fact that the controller
produces continuous motion clips rather individual states, and solve
for the new motion m only when the task parameters u change or
when the current motion m finishes.

We represent a motion clip m ∈M as a sequence of poses. In
order to compare, blend, and visualize motions in a translation- and
rotation- invariant way, we decouple each pose from its translation
in the ground plane and the rotation of its hips about the up axis. We
represent changes in position and rotation relative to the previous
pose’s local frame. We represent the state s of the character as a
vector containing the poses in the next ten frames of the currently-
playing clip. The use of multiple frames for state facilitates finding
smooth motion blends. We determine the distance between two
states with a method inspired by Kovar et al. [2002], by evaluating
the distance between point clouds attached to each corresponding
pose.

We consider data-driven controllers which create a new clip
m by interpolating example motion capture clips {mi} associated
with task parameters {ui}. However, not all sampled clips can be
blended together in a meaningful way. Consider a tennis controller:
it would not make sense to blend forehand and backhand stroke
motion samples. For this reason, each controller consists of groups
of blendable clips which we refer to as “clusters.” Each cluster C j
contains a set of blendable motion samples {(mk, j,uk, j)} that share
a common start state s j, and a continuous blend map w = b j(u)
which produces motion blend weights w.

Given a state s, a task t, and a control vector u, applying a con-
troller entails two steps. First, we find the t-specific clusters with s j
closest to s; if there is more than one, we use the one which has a
uk, j closest to u. Second, the output motion is generated by comput-
ing the blend weights w = b j(u), and then interpolating with these
weights: the new clip is ∑k wkmk, j. Interpolation is performed in
a time-aligned, translation- and rotation-invariant manner similar
to [Kovar and Gleicher 2003]. The new motion is then blended in
with the currently-playing motion. However, if the current char-
acter state is very dissimilar to the beginning of m, then the new
controller motion is ignored, and the current motion continues until
the subsequent states s produce successful controller motion.

In our examples, we also use a modified version of the controller
that employs an inverse kinematics (IK) step to further satisfy end-
effector constraints (e.g., catching a ball with the right hand). An
IK controller CIK : S×T×U→M is defined in terms of the sim-
ple blend controller as CIK(s, t,u) = IK(C (s, t,u),u). The function
IK transforms the motion to satisfy kinematic constraints defined
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Figure 2: (a) Illustration of a catching controller for a single start state and a 2D controller space U. The space has been partitioned into two clusters, with each cross and circle
representing the control vector for an example motion. The motions in the left cluster correspond to catching in place, whereas the motions on the right correspond to taking a step
during the catch. The dashed line represents the boundary between clusters implicit in the nearest-neighbor assignment. (b) A motion controller consists of a collection of controllers,
each for a specific task and start state.

by u. The joint angles for the relevant end-effector (i.e., shoulder
and elbow for the hand) are first optimized to satisfy the kinematic
constraint in that time instant. The neighboring frames are linearly
blended to produce continuous motion. The use of IK enables the
controller to achieve a much greater variety of motions from a few
samples and thus enables the active learning to use significantly
fewer samples overall. In general, the more powerful the controller,
the fewer samples active learning requires for full coverage of the
controller.

A new clip m is usually played from the beginning. However, in
some cases, it may be useful for a motion clip to start in the middle.
In particular, this occurs when the new motion, if started from the
same state as the current motion, would be generated by the same
cluster. This implies that the new motion would be generated by
blending the same examples as the current motion. In this case, the
new motion can be started at the time corresponding to the current
time index of the current clip, since all motions belonging to the
same cluster can be blended at any portion of the clip. This process
is not appropriate for all tasks (e.g. , one cannot change trajectory
in midair) and whether or not to allow this is indicated on a per-task
basis.

The clustered motion-blend model used in our experiments was
motivated by similar models used in the game industry. In real game
controllers, specific clusters and the samples within each clusters
are all determined in an ad-hoc manual process. This manual pro-
cess invariably produces suboptimal controllers and multiple trips
to the motion capture lab. More importantly, the manual process
does not scale well for control problems with a large number of
input dimensions, such as those described in the results section.

We point out that the active learning framework introduced in
the following sections does not depend on the specific details of
the controller specification. In addition, the data samples need not
be captured; they can easily come from alternate sources, such as
animator-created motion clips.

4 Active Learning
We now describe how motion controllers are built interactively. Al-
though there are multiple steps to the process, the basic idea is sim-
ple: identify the regions of the control space that cannot be per-
formed well, and improve them. The process requires the user to
first define the control problem by enumerating the set of tasks {tk}
and to specify the operational range of each control vector u. Each
control vector must have a finite valid domain u ∈Uk (e.g., bounds
constraints) in order to limit the range of allowable tasks1. For ex-
ample, u might specify the desired walking speed, and Uk might
be the range of possible walking speeds. A key assumption of our

1The input space U for the controller is defined as a union of the task-
specific control spaces: U=

⋃
k
Uk.
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Figure 3: Flowchart of a motion capture session using active learning. Blue rectangles
are automatic processes and yellow rounded rectangles require user input.

approach is that the motion controller does not need to be able to
start from any initial state s, but only from states that might be gen-
erated by the controller. Hence, we only consider possible starting
poses that might arise from another clip generated by the controller.
In order to “seed” the active learning, the user provides some initial
state s.

The active learning process then proceeds in the following outer
loop:

1. The system identifies a set of controller inputs (si, ti,ui) that
the motion controller cannot handle well. The user selects one
to be improved.

2. The system generates an improved “pseudoexample” motion
for this task. If the pseudoexample is approved by the user,
the motion controller is updated. This step can often save the
user from having to perform the motion.

3. If the pseudoexample is rejected, the user performs the task,
and the new motion clip is used to update the motion con-
troller.

We have set up our system in a motion capture lab. The system’s
display is projected on the wall of the lab for the user to see. The
interface is mouse-based so the user can interact with the system
using a gyro mouse while capturing motions. We now describe
these steps in detail.

4.1 Selecting candidate tasks
The goal of this step is to identify control problems that the mo-
tion controller cannot handle well. A candidate problem is fully
specified by a start state s, a task t, and control vector u. Because
the evaluation of motions can be difficult to do purely numerically,
we do not have an explicit mathematical function that can precisely
identify which motions are most in need of improvement. Instead,
we find multiple candidates according to different motion metrics,
each of which provides a different way of evaluating the motion
generated by a controller, and we let the user determine the candi-
date to improve. We use the following metrics:
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• Task error. For each task, the user specifies one or more
metrics to measure how well a motion m performs task t with
inputs u. For example, if the task requires the character’s hand
to be at position u at a specific time, the metric might measure
the Euclidean distance between the character’s hand and u at
that time. Multiple error metrics may be provided for a task,
with the goal that they all should be satisfied. It is likely that
some regions of control space are simply harder to solve than
others, and direct application of this metric will oversample
these spaces. To address this, we compute the task error as
the difference of the task-performing metric when compared
to the nearest existing example.

• Sum of task errors. When more than one task metric is pro-
vided by the user, a weighted sum of these metrics is also used
as a separate metric.

• Transition error. In order to evaluate blending between clips,
we measure the distance between a current state and the start
state s of a motion m.

• Distance from previous examples. In order to encourage ex-
ploration of the control space, we use a metric that measures
the distance of a control vector from the nearest existing ex-
ample control vector.

To find the worst-performing regions of controller input space, we
need to sample the very large controller input space. We reduce the
amount of samples required by using different sampling processes
for different motion metrics.

To generate candidates using each task error metric, we search
for motions that perform their tasks poorly. For each cluster start
state, random control vectors u are generated for its task by uni-
form random sampling in Uk. We keep the u’s which give the
worst result for each motion metric. Each of these points is refined
by Nelder-Mead search [1965], maximizing the badness of their
respective metrics. Distance metric candidates are generated simi-
larly, replacing task error with nearest-neighbor distance inUk. We
use the optimized u, along with the t and s which generated them,
as candidates.

To generate candidates using transition error, we search for states
that will blend poorly with existing clusters. The average motion
clip is generated for each cluster by averaging the examples in that
cluster. We then find the state s in this motion that is the furthest
from any existing cluster’s start state. We use these states2, along
with t and u set to the center of the domainUk, as candidates.

Once all candidates have been generated, the user is then shown
the candidates for each metric, sorted by score, along with infor-
mation about them, such as their error and corresponding u. The
user then chooses one of the candidates to be improved. Providing
the user with several options has several important purposes. First,
the user is able to qualitatively judge which sample would be best
to improve. This would be very difficult to do with the purely au-
tomatic evaluation metrics. Second, the user is able to have some
control over the order samples are collected in. For example, it
can be more convenient for the user to collect several consecutive
samples from the same start state. Third, viewing the candidates
gives the user a good sense of the performance of the controller. As
more samples are provided, the quality of the candidates improves.
Once all of the candidates are considered acceptable, the user has
some confidence that the controller is finished. However, there is
no formal guarantee as to how the controller will perform in new
tasks. In our experience, although many candidates are generated,
the user usually finds one worth refining after watching only a few
examples.

2We also consider the “seed” start state, as well as the ending states of
clusters which are distant enough from any start state.

Figure 4: The interactive setup. The user is preparing to perform a walking motion.
The projection display shows the desired task and initial state.

4.2 Determining weights
Before proceeding, we will discuss the details of our implementa-
tion of the per-cluster blend function, b.

We implement blend functions using a scheme similar to Radial
Basis Functions (RBFs), based on the method proposed by Rose et
al. [1998; 2001]. We use a different form of linear basis, and replace
their residual bases R j with bases that are non-uniform along each
dimension:

R j(u) = ∏
`

h

(
|u`−u′j,`|

α j,`

)
(1)

where ` indexes over the elements of a control vector, and h is
a cubic profile curve3, and the α’s are scale factors. We believe
that other non-isotropic representations could perform equally well.
The blend function is then

bi(u) = ai + cT
i u+

N

∑
j=1

r j,iR j(u) (2)

After weights are produced by this function, they are clamped to
the range [0,1] and then normalized to sum to 1.

Each time a new example data point (u j,w j) is provided, we
solve for the linear weights ai and ci using least squares. We then
initialize all elements of α j to the distance to the nearest neighbor
of u j, and solve for r as in Rose et al. We then update each α j by
performing a small optimization across each dimension `. We place
a number of evaluation samples along dimension ` in the neighbor-
hood of u j. Then, for regularly sampled values in the range [1..3],
we scale α j,`, solve for r, and evaluate the sum of the task error
metrics at the evaluation samples; the best scale is kept. We then
update α j by these scales and solve for r one last time.

4.3 Generating a pseudoexample
The system first attempts to improve performance at the selected
task by generating a new motion called a “pseudoexample” [Sloan
et al. 2001]. A pseudoexample is a new training motion defined as a
linear combination of existing motions. It is capable of reshaping b
without requiring an additional motion sample. A pseudoexample
can be represented directly in terms of the weights w used to gen-
erate the motion. These weights are chosen to minimize the sum of
the task error metrics for this task. To get an initial guess for the
correct cluster and weights for the pseudoexample, we iterate over
all clusters that start at the given s, and all the motions in the cluster
as well as the currently predicted motion at u. Of all these motions,
the one which performs best on the task error metric is selected as

3Specifically, h(x) = (1− x)3 + 3x(1− x)2 for 0 ≤ x ≤ 1 and h(x) = 0
otherwise.
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Figure 5: Dodging controller: the character maintains a walking direction while avoiding two consecutive projectiles. In addition to the current character state, the controller has a
four-dimensional input space that specifies the incoming position and speed of the ball to be dodged and angle to turn while walking.

providing the cluster and weights for the pseudoexample. We then
optimize the weights within the cluster according to the sum of task
errors metric using Nelder-Mead [1965]. The resulting weights, to-
gether with the control vector, constitute the pseudoexample (u,w).

The clip generated by these weights and its evaluated task error is
then shown to the user. If the user approves the pseudoexample, it is
permanently added to this cluster’s RBF; otherwise, it is discarded.

4.4 Performing a new motion

The user is presented with the appropriate starting state and a task-
specific visualization (e.g., showing the trajectory and initial posi-
tion of a ball to be caught). Since the motion is determined rel-
ative to the character, the visualizations translate and rotate with
the user’s movement prior to beginning the capture. The user starts
moving and eventually gets to (or near) the starting state. Our sys-
tem automatically determines when the initial state conditions are
met, and records the rest of the captured motion. This aspect of the
interface significantly simplifies the task of performing the required
motion sample. Once captured, the user can review the motion and
its task error. If the motion is not satisfactory, the user must repeat
the motion. In our experiments, the vast majority of tasks could
be performed in three or fewer trials. We found that difficult to
perform tasks typically required only a few more trials, usually no
more than seven in total, although a few rare cases required up to
twelve in total.

To determine where the desired motion sample ends, we seek lo-
cal minima of state distance in the captured clip, comparing against
the beginnings and ends of the existing clusters, as well as con-
sidering the actual end of the recorded motion. We sort these by
their distance, and let the user select the appropriate ending. This
typically involves nothing more than the user confirming the first
choice.

The system now needs to determine the appropriate cluster for
the new motion. The motion is timewarped to all clusters with sim-
ilar start and end states, and the alignment results are shown to the
user, sorted in increasing order of alignment error. The user can
then select which cluster to assign the clip to. In our experiments,
the first choice is frequently correct. If the user decides that no
cluster is appropriate, a new cluster is created. This approach re-
moves the need for manually determining the clusters at any point
during controller synthesis. Clusters are created only when the user-
supplied samples are sufficiently different from all existing clusters.

The cluster is then updated with the new clip, and a new (u,w)
for that clip is added to the cluster’s RBF. The active learning pro-
cess is repeated by selecting a new candidate tasks. The active
learning process can have many termination criteria, including the
time spent in the lab, number of samples allotted to the controller,
as well as the overall controller quality and controllability. The user
can estimate the measure the quality and controllability of the cur-
rent controller by evaluating the quality of the candidate tasks: if all
“poor-performing” candidates appear to be of high-quality, the con-
troller has probably reached the point where no additional samples
can significantly improve the quality and controller coverage.

5 Results
We have constructed three examples to demonstrate our framework.
The controllers are demonstrated in the accompanying video. Each
of these controllers was constructed interactively in a short time
in the motion capture lab. We capture and synthesize motions at
between 20 and 25 frames per second.

The computation time required is negligible: each active learn-
ing step took between 5 and 30 seconds, depending on the size of
the controller involved. The majority of the time was spent in cap-
ture, especially since it normally takes two or three tries to perform
a motion with the correct start state that matches the task.

Our first example is a parameterized walk. The control space
U is three-dimensional, controlling stride length (the distance be-
tween the heels at maximum spacing, ranging from 0.2− 0.9 me-
ters), speed (ranging from 15−25 centimeters per frame), and turn-
ing angle (change in horizontal orientation per stride, ranging from
−π/4 to π/4 radians). There is one task error metric for each of
these features (e.g., stride length), measured as the the squared dis-
tance between the desired feature and the maximum feature in the
motion. In order to determine strides, the metric assumes that a
sample contains a complete walk cycle beginning with the right
foot forward. This task allows motions to start from the middle.

The controller for this task produced only 1 cluster, using 12
examples totaling 843 frames, and 10 pseudoexamples. We limited
lab time to roughly half an hour, including all active learning and
user interaction. This controller achieved 89% coverage (discussed
in section 6).

Our second example combines a parameterized walk with pro-
jectile dodging. This example has two tasks. When there is noth-
ing to dodge, the control space is one-dimensional, controlling
turning angle. When walking and dodging, the control space is
four-dimensional, controlling turning angle as well as the incoming
height, incoming angle, and distance in front of the character of the
incoming projectile.

The walk turning parameter as a ratio of radians per meter trav-
eled, ranging from −π/3 to π/3. The task metric measures the
absolute value of the difference between this ratio and a the target
value. The walk task allows motions to start from the middle.

The parameters of the incoming projectile are specified relative
to the character’s local coordinate system. They are the incoming
height, from 0.25−2.0 meters, the distance in front of the character
to be aimed at, from 0.25− 1.0 meters, and the incoming angle,
from −π/2 to π/2 radians. These parameters specify a trajectory
for the projectile. The error metric is the inverse of the distance
between the projectile and any point on the character. The dodge
task also includes the same turning control parameter as used for
walking, with the same error metric as well.

The synthesized controller contains 10 clusters, using total of
30 examples totaling 1121 frames, and 19 pseudoexamples. We
limited lab time to roughly an hour, and achieved 76% coverage of
the dodge task.

Our third example is catching a ball. This example has two tasks.
When not catching, there is a zero-dimensional stand task. When
catching, the control space is three-dimensional, controlling the in-
coming position on the plane in front of the character as well as
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speed.
The parameters of the incoming ball are specified relative to the

character’s local coordinate system. They are the incoming height,
from 0.5 to 2.0 meters, the distance to the right of the character,
from -2.0 to 2.0 meters, and the incoming speed, from 0.1 to 0.2
meters per frame. These parameters specify a trajectory for the
ball. The task error metric is the squared distance between the ball
and the character’s right hand.

For this example, we removed rotation invariance from all quan-
tities, in order to build a model in which the character is always
facing a specific direction while waiting for the next ball. We have
also allowed the user to load in several motions of diving to the side
in place of performing these motions.

Also, in this example, we use the IK controller so that we have
can have greater reachability of the resulting motion. The result-
ing controller used 12 clusters, using 33 examples totaling 1826
frames, and 23 pseudoexamples. The data, not including the div-
ing motions4, was captured in the lab session limited to roughly an
hour. We achieved 57% coverage of the catch task, normalized by
the manual controllers discussed in section 6.

It is worth noting that we also tried creating the controller with
a simpler cluster model that did not include IK, and found that the
performance was significantly poorer, due to the nonlinearity of the
underlying control space. In general, the more powerful the con-
troller model, the more active learning can take advantage of it and
require less samples to produce an effective controller.

6 Evaluation
We have performed a numerical evaluation of the active learning
method proposed using the catching controller. We compare the ac-
tive learning approach with manual sample selection. We have had
four animation researchers (two associated with this project and two
not) plan a motion capture session for a catching controller like the
one in our results. They were asked to define the blend-space clus-
ters, and determine a compact number of samples to best cover the
controller space. All manual designs required more samples than
the learned controller, but produced controllers that, visually and
quantitatively, were significantly inferior to our learned controller.
In Table 1, we show the number of samples and the percentage of
input space coverage of each controller. For this comparison, we
only consider the catch task, ignoring the stand task.

The coverage is defined as the percentage of inputs for which
the controller successfully matches the start state and completes the
task (for catching the ball, this means the hand is within a small
distance of the ball). The percentage is computed by randomly
sampling state and task, similar to the scheme in Section 4.1. For
this comparison, we look at the percentage of samples controllable
by a given controller out of the samples controllable by any of the
controllers, to remove samples physically impossible to catch. The
manual controller with roughly 80% more samples produced signif-
icantly less coverage, while the controller with 20% more samples
covers roughly half the space of learned controller. The total mo-
cap studio time was roughly the same. Of course, coverage is not
a perfect measure of a controller, since it does not measure realism
of the motion.

The difference in the quality of controllers is also apparent in the
accompanying video: with the manual controllers, the balls are of-
ten caught in very strange and unrealistic ways. Of course, the eval-
uation depends on the skill level of people who chose the motions,

4The dive catch required significant motion cleanup and was also painful
to perform. In order to facilitate prototyping and testing, we captured sev-
eral representative dives in advance. Then, when the active learning system
requested a dive, one of these pre-captured motions was provided (if ap-
propriate) instead of performing a new dive. However, this meant that the
controller is limited to the dives in this example set, and cannot, e.g., dive
while running, since this was not included in the examples.

Method Samples Coverage
Active Learning 30 57%

Manual 1 36 38%
Manual 2 44 56%
Manual 3 54 48%
Manual 4 41 48%

Table 1: Comparison of active learning and manual methods of sample selection. Ac-
tive learning captured less samples during a one-hour period, but achieved better cov-
erage of the control space than manually-planned motions.
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Figure 6: This graph shows the percentage of inputs controllable as motion samples are
added to the controller during a capture session. Coverage may decrease when a new
cluster is introduced, because at that point, the controller may choose to use this new
cluster because its start state is a better match than an existing one. Coverage decreases
temporarily until additional samples in the new cluster improve the input coverage.

but we believe that it is nonetheless indicative of the difficulty of the
problem and the attractiveness of the active learning approach. We
also show a chart demonstrating the improvement of the controller
as each sample is added in Figure 6. We use the same measure of
coverage as above.

7 Discussion and Future Work
We have introduced an active learning framework for creating real-
time motion controllers. By adaptively determining which motions
to add to the model, the system creates finely-controllable motion
models with a reduced number of data clips and little time spent
in the motion capture studio. In addition, by always presenting the
worst-performing state samples, the user has a continuous gauge
of the quality of the resulting controller. The active learning frame-
work both automatically determines the parameters of each individ-
ual cluster and determines the necessary number and relationship
between different clusters, dynamically determining the controller
structure as more samples appear.

Although our system focuses on one specific model for motion
synthesis, we believe that the general approach of adaptive model-
building will be useful for many types of animation models — any
situation in which minimizing the number of motion samples is im-
portant can potentially benefit from active learning. We have de-
signed the system to be fast and flexible, so that relatively little
time is spent waiting for the next candidate to be selected. Hence,
we employed a number of heuristic, incremental learning steps, and
our models are not generally “optimal” in a global sense.

Our system does not make formal guarantees of being able to
perform every task from every start state. Some of these tasks may
be impossible (e.g., starting a new task from midair); others may
not have been captured in the limited time available in a motion
capture session. The failure modes of the controller during synthe-
sis include not having a cluster with the appropriate start state, not
determining the best cluster to use, and not determining the best
weights within a cluster. There is a tradeoff between lab time, num-
ber of samples, and coverage that the user must evaluate. In our
examples we show that it is possible to get a high amount of cover-
age with a low number of samples and short lab time.

Some difficulties arise during the capture process. It is necessary
for the user to look at the screen as well as mentally project their
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motion onto the on-screen visualization. We believe that these diffi-
culties can be overcome through the use of an augmented or virtual
reality system.

We have no guarantee of scalability, but we believe that this sys-
tem will scale well to handle many different tasks performed se-
quentially, creating highly flexible characters. However, our con-
troller examples do not fully test the effectiveness of our approach
in very high dimensions, and this work certainly does not solve the
fundamental problem of “curse of dimensionality” for data-driven
controllers. We believe that active learning will generalize to con-
trollers with higher dimensions. However, for controllers with 10 or
more task inputs together with 37 DOF characters state space, even
though active learning will drastically reduce the number of sam-
ples, the number of required samples would still be impractical. In
very high dimensions, it becomes an imperative to use sophisticated
motion models that accurately represent nonlinear dynamics, since
the expressive power of such models greatly reduces the number of
required samples.
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