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Abstract

In this paper, we propose a simple, novel plane sweep
technique for refocusing plenoptic images. Rays are pro-
jected directly from the raw plenoptic image captured on
the sensor into the output image plane, without computing
intermediate representations such as subaperture views or
epipolar images. Interpolation is performed in the output
image plane using splatting. The splat kernel for each ray
is adjusted adaptively, based on the refocus depth and an
estimate of the depth at which that ray intersects the scene.
This adaptive interpolation method antialiases out-of-focus
regions, while keeping in-focus regions sharp. We test the
proposed method on images from a Lytro camera and com-
pare our results with those from the Lytro SDK. Addition-
ally, we provide a thorough discussion of our calibration
and preprocessing pipeline for this camera.

1. Introduction
Light field imaging has seen growing interest in recent

years, from both the artistic and scientific communities.
Compact plenoptic cameras of the type described by Adel-
son and Wang [2], such as Lytro [17], allow computation
of a smoothly-varying focal stack from a single exposure.
Artistic applications of digital refocusing include providing
a sense of depth on a 2D display and correcting errors in fo-
cus in photography [17, 22]. Recent scientific applications
of digital refocusing include microscopy [14] and seafloor
mapping [26].

Because plenoptic cameras work by trading off spatial
resolution for angular resolution [10], plenoptic images suf-
fer from reduced spatial resolution and also spatial alias-
ing [3, 31]. A specific kind of spatial aliasing occurs when
the scene contains objects at different depths. When the
image is digitally refocused on the background, images in
the foreground may appear ghosted. Therefore, antialias-
ing is an important part of any digital refocusing algorithm.
However, care should be taken when antialiasing to keep
the in-focus regions sharp. This problem can be challeng-
ing for several reasons. First, light field aliasing artifacts

Figure 1. Plenoptic image with text in the background and colored
strings in the foreground, rendered so that the text is in focus. The
desired properties of the rendering are to have the foreground ob-
ject antialiased and the text legible. Top: rendering with a large
splat kernel. Middle: rendering with a small splat kernel. Bottom:
rendering with an adaptive splat kernel.

are depth-dependent [3]. Also, some applications place ad-
ditional constraints on refocusing methods. For example,
rendered animated focal sweeps should appear temporally
coherent (that is, smooth when transitioning from one plane
of focus to the next). This paper presents a simple refocus-
ing technique that addresses these kinds of image quality
tradeoffs.

1.1. Related Work

Many varied light field rendering techniques have been
proposed. A large body of work on image-based rendering
addresses the problem of rendering the scene from [super-
resolved] novel views [11, 12, 13, 19, 25, 27, 29, 31, 32].
Other related work considers the problem of digital refo-
cusing [16, 21, 22, 23]. Almost all of these rendering tech-
niques share a common preprocessing step: converting the
raw plenoptic image captured on the sensor into an inter-
mediate 4D representation L(x, y, u, v), a parameterization
described by Adelson and Bergen [1] and further explored
in works such as The Lumigraph [11] and Light field render-
ing [13]. Depending on how this representation is sliced, it
can be viewed as a set of either subaperture views or epipo-
lar images [6]. This intermediate L(x, y, u, v) representa-



tion is usually sampled uniformly in the (x, y) and (u, v) co-
ordinates. However, because the actual rays captured on the
sensor represent only a sparse sampling of the (x, y, u, v)
rayspace, the intermediate representation contains many in-
terpolated values. The next stage in the typical refocusing
pipeline integrates over the u and v dimensions of these
intermediate representations, either in the spatial [16, 23]
or frequency [21] domain. Integrating over these interpo-
lated values is necessary to correctly antialias the output,
but leads to a blurry refocused image [13]. In contrast to
the standard pipeline, a method that makes no attempt at
antialiasing is presented in [15]; this method rearranges the
subimages under each microlens like a puzzle, and severe
spatial aliasing artifacts are obvious.

Several methods have been proposed to try to reconcile
resolution gains with antialiasing. Cho et al. [8] compute a
central view that is superresolved using neighboring views.
The resulting rendering contains aliasing artifacts, which
are corrected in a post-processing step using a learned dic-
tionary. However, there are several drawbacks to using dic-
tionary methods for interpolation. Such methods require
training on the right kinds of images to get the desired re-
sults. Also, some dictionary methods may not be appro-
priate for certain scientific applications. Furthermore, cor-
recting aliasing artifacts as a post-processing step may pro-
duce attractive results on still images, but the results may
not be coherent from plane-to-plane. Therefore, video ap-
plications such as animated plane sweeps may not appear
temporally coherent. Bishop et al. [3, 4] propose an itera-
tive algorithm using depth estimates for antialiasing. Their
algorithm repeatedly rearranges light field samples between
subimages (the arrangement captured on the sensor) and
subaperture views, performing depth map estimation on the
views and depth-adaptive filtering on the subimages.

1.2. Our Approach

Our approach is theoretically similar to the method of
Bishop et al. [3, 4]. However, we avoid the repeated re-
arrangement of samples, which would require many inter-
polation steps for a Lytro camera. Instead, we project rays
directly from the raw plenoptic image captured on the sen-
sor into the output plane of focus, without computing any
intermediate representations such as subaperture views or
epipolar images. We perform interpolation in the output
space using splatting. Splatting [33] is a simple and well-
known rendering technique that has been used before for
image based rendering [11, 18]. It is highly parallelizable,
and GPU implementations are available [7, 20, 34]. Vary-
ing the splat kernel allows us to explore the tradeoff be-
tween producing a result that is sharp at in-focus regions,
versus antialiased at out-of-focus regions. At one extreme,
making the splat kernel large enough to adequately antialias
the image will produce output that is also blurry at in-focus

regions. At the other extreme, using a splat kernel with a
support of one pixel produces a refocused rendering that es-
sentially rearranges the pixels of the input raw image. If we
refocus with such a narrow splat kernel at depth d, objects
in focus at depth d will be rendered correctly and sharp.
However, regions of the image containing texture that is in
focus at other depths will create aliasing artifacts, which
may show up as lines or other patterns, depending on the
depth. See Figure 1. As Ng observed [22], these kinds of
artifacts are especially distracting in animations.

To reconcile the two extremes, we first estimate the depth
at which each ray intersects the scene, using a measure of
photoconsistency. In this plane sweep, a large splat kernel
is used for every ray. To render the final output image, the
size of the splat kernel for each ray is adjusted adaptively
based on the output plane and the depth at which the ray is
in focus. This adaptive interpolation method allows us to
compute output that is antialiased in out-of-focus regions,
but still sharp at in-focus regions.

We test our method on images from a Lytro camera, and
compare our results with those from the Lytro SDK. Sec-
tion 2 describes methods used to preprocess the raw Lytro
image. Section 3 describes our splatting-based method
for refocusing, and Section 4 describes our methods for
refocusing and depth map estimation. Figure 4 shows a
flowchart of our algorithm.

2. Preprocessing
Our preprocessing pipeline has two steps: (1) microlens

pattern estimation and (2) flat fielding. The goal of mi-
crolens pattern estimation is to model the location of each
microlens center. The goal of flat fielding is to correct
for the complex vignetting pattern induced by the optics of
the camera. Much of this vignetting is caused by the mi-
crolenses, as shown in Figure 2. Accurate flat fielding is
especially important for our method, because we directly
compare the color values of raw sensor pixels as a measure
of photoconsistency when computing depth maps.

The vignetting pattern of the camera can be measured
by imaging a uniform, diffuse white scene. Lytro cameras
come loaded with many white images taken with different
camera settings. Previous methods, including Dansereau et
al. [9] and Cho et al. [8], use such white images in their
preprocessing pipelines for the Lytro camera. We use the
method described by [9] to extract a raw light field image
from an LFP file, match it with a white image taken with
the same camera, and demosaic both raw images. After de-
mosaicing, we have the light field image containing content,
Ic, and the white calibration image Iw. Our preprocessing
pipeline is similar to those of [9] and [8], but with a few key
differences.

First, our method for microlens pattern estimation works
on almost any image Ic with a sufficient signal-to-noise ra-



Figure 2. Microlens pattern estimation in the preprocessing pipeline. A. content image. B. content image after vignetting enhancement.
C. frequency spectrum of the enhanced vignetting pattern, with peak locations marked. One peak is highlighted. If the microlens array
were not rotated with respect to the sensor, the peak location would be near the green marker. The estimated local peak is marked in blue.
The predicted peak location after solving for A is marked in red. D. Microlens pattern offset estimated in the spatial domain. Locations of
centers are marked in red, and locations of vignetted points are marked in cyan. E. flat-fielded image.

Figure 3. Flat fielding. Left: small sections of a plenoptic image,
with a horizontal scanline (shown in yellow). Right: RGB profile
of the horizontal scanline. Top to bottom: white image, content
image, flat image (no alignment or gamma correction), flat image
(alignment only), flat image (alignment and gamma correction).
Before alignment, the flat image appears biased (the top part of
the microlenses is lighter than the bottom part). Gamma correc-
tion removes most of the variation across microlenses due to the
periodic microlens vignetting pattern.

tio, including those with complex scene content. The meth-
ods proposed by [9] and [8] are designed to work only on
Iw, because they look for the local maximum of each mi-
crolens. In these previous methods, microlens patterns are
estimated on Iw, and assumed to be the same for the match-
ing Ic. In comparison, we are able to separately estimate

the microlens pattern of both Ic and Iw, and then compute
a transformation to align the images. We empirically ob-
serve slight misalignment between most (Iw, Ic) pairs, and
our alignment step improves flat fielding results (Figure 2).
Dansereau et al. perform flat fielding by dividing Ic by a
low-pass filtered version of Iw [9], while Cho et al. [8] do
not perform flat fielding. Our method precisely aligns Iw to
Ic, and then divides Ic by a gamma-corrected version of Iw.
We compute an optimal gamma for each image pair to mini-
mize variation in the flat-fielded result. This gamma correc-
tion step helps compensate for nonlinearity of the camera’s
response curve and differing exposure levels between Iw
and Ic.

2.1. Microlens Pattern Estimation

We model the locations of the microlens centers as a reg-
ular integer lattice Z2 to which an affine transformation T
has been applied:

(1)T =

[A]2×2 tx
ty

0 0 1


The parameters of this transformation are unknown, pri-

marily because the microlens array is rotated and translated
a small amount with respect to the sensor. However, other
issues, such as nonsquare pixels, could also affect this trans-
formation. We estimate the 2 × 2 transformation matrix A
in the frequency domain, and the offset t = [tx ty]

T in the
spatial domain.

The microlens vignetting pattern is a strong periodic sig-
nal, with peaks in the frequency domain located at A−TZ2.
We use this property to solve for A. We first enhance the
periodic signal of the microlens vignetting in the spatial do-
main. We convert the image to grayscale, apply a 13 ×
13 minimum filter, and then threshold the result, using the
80th percentile gray level as an adaptive threshold. The re-
sult is a binary image where most of the content inside the
microlenses has been set to zero, and the heavily vignetted



points are set to one (Figure 3:B). In the frequency domain,
the peaks of this vignetting-enhanced image are easy to ex-
tract (Figure 3:C).

We are given that the Lytro camera microlens array has
a hexagonal pattern, which is an integer lattice with basis
vectors [1, 0]T and [ 12 ,

√
3
2 ]T . We also assume that we know

the lens pitch l, the physical distance between the microlens
centers, and the pixel pitch p, the physical distance between
pixels. For the Lytro camera, this information is provided
in the metadata of an LFP file. We can therefore initialize

(2)A0 =
l

p

[
1 1

2

0
√
3
2

]
.

We look for local peaks in the frequency domain, within
a radius R of the DC component, that fall near a sample of
A−T0 Z2 (Figure 3:B). For each peak, we fit a local quadratic
to estimate the peak location with subpixel precision. If we
store each peak location in the matrix P , we then have

(3)A−TZ2 = P

and can solve forA. This procedure is similar to the method
Cho et al. [8] used to estimate the rotation of the microlens
array with respect to the sensor. However, unlike Cho et al.,
we wish to avoid resampling the original image, so we do
not perform a rotation.

Next, we estimate the offset of the microlens sampling
pattern t in the spatial domain. Dansereau et al. [9] and
Cho et al. [8] find the spatial location of microlens cen-
ters by looking for peak brightness within the microlenses.
While this method works for white images, it is not de-
signed to work on images with scene content. Instead,
we look for the dark, highly vignetted points between mi-
crolenses, which exist regardless of scene content. These
dark points occur in a hexagonal pattern around the mi-
crolenses (Figure 3:D). Given t, the microlens centers C
are located at C(t) = AZ2 + t. Heavily vignetted points
occur above the microlens centers at V1(t) = C(t) +

A
[
1
3 ,−

2
3

]T
and below the microlens centers at V2(t) =

C(t) + A
[
− 1

3 ,
2
3

]T
. We can find an optimal value of t by

interpolating the image at samples of V1 ∪ V2:

(4)t = argmin
t′

∑
x∈V1(t′)∪V2(t′)

I(x)2

This algorithm works well for all white images, as well
as most content images. However, the algorithm fails oc-
casionally on content images that contain certain kinds of
patterns or nonuniform illumination. In order to improve
the algorithm’s performance on all images, including these
difficult cases, we insert one extra step into the algorithm
for estimating the microlens pattern of Ic. We know that
the microlens pattern of Ic is close to that of the matching

Iw. Therefore, we first estimate the microlens pattern of
Iw, and then just before the FFT, we set Ic to zero near the
microlens centers of Iw. This step removes the distracting
scene content, allowing the algorithm to find the correct A
for Ic.

2.2. Flat Fielding

After separately estimating the microlens pattern trans-
formations Tc for the content image Ic and Tw for the white
image Iw, we can align Iw to Ic for flat fielding. We com-
pute the transformation

(5)T = TcT
−1
w

and transform the white image, which we denote as T (Iw).
We resample with a high-quality interpolator (we use bicu-
bic interpolation). If we calculate the flat-fielded image as
I = Ic

T (Iw) , we notice that the vignetting is reduced only
partially. Because the camera response is nonlinear, it is
highly likely that Ic and Iw received different amounts of
exposure. Applying a gamma correction to Iw before flat
fielding works as a sort of pseudo-linearization and im-
proves the flat fielding results (Figure 2). Thus, we com-
pute:

(6)Iγ =
Ic

T (Iw)γ
.

We find an acceptable gamma through optimization. Our
approach is to interpolate scanlines S from I that pass
through rows of microlenses, and then examine the domi-
nant frequencies in these scanlines. If flat fielding were to
work perfectly, we would see very little of the vignetting
frequency fv in these scanlines. Therefore, we find the
gamma that minimizes the ratio of fv to the DC component
in the scanlines.

(7)γ = argmin
γ′

∑
s∈S

(∫∞
−∞ Iγ′(s, x)e

−2πixfvdx∫∞
−∞ Iγ′(s, x)dx

)2

In practice, we use an FFT to compute the Fourier trans-
form.

3. Splatting Method for Digital Refocusing
Given a 4D light field optically focused at F ,

LF (x, y, u, v), the refocused image at a virtual focal plane
αF is:

(8)
Eα(x, y) =

1

α2F 2

∫ ∫
LF

(
u

(
1− 1

α

)
+
x

α
,

v

(
1− 1

α

)
+
y

α
, u, v

)
du dv



Figure 4. Flowchart of the proposed algorithm.

Figure 5. Splatting.

As explained by Ng [22], the scale factor 1/(α2F 2) can be
ignored.

Because only some rays are actually sampled by the sen-
sor, the usual approach to implementing this integral is to
first interpolate LF (x, y, u, v) with some regular sampling
pattern, and then integrate over the many interpolated val-
ues. Our method implements the integral using a forward
warp rather than an inverse warp. From the integral, we no-
tice that the ray i with value LF (xi, yi, ui, vi) contributes
some energy to the output image Eα at location

sα,i =

[
α

(
xi − ui

(
1− 1

α

))
, α

(
yi − vi

(
1− 1

α

))]
(9)

We use sα,i as the splat location for ray i in output image
Eα. Simplifying further, we see that α only serves as a dila-
tion factor for the output image, so if we want output images
of a fixed size, we can safely ignore it. This simplification
is also described by Ng [22]. If we let

(10)Dα =

(
1− 1

α

)
where Dα is the disparity level for focal plane αF , then

(11)sα,i = (xi − uiDα, yi − viDα) .

Figure 5 illustrates finding the splat location for a pixel. Our
approach is to consider only rays LF (x, y, u, v) that were
recorded on the sensor, and splat the color of these rays into
the output image Eα at location (x− uDα, y − vDα).

To illustrate the differences between the inverse warp and
forward warp approaches, consider the subaperture image
method for refocusing. This method chooses a set of (u, v)
coordinate pairs (each coordinate pair defining one subaper-
ture view), and interpolates (x, y) at each (u, v). Next, the
subaperture images are shifted by (uDα, vDα) and accu-
mulated. In short, this method can be described as: (1)
interpolate, (2) shift, (3) accumulate. Our splatting-based
method essentially swaps the order of the shift step and the
interpolate step. First, the shift is performed on each ray
individually by calculating its splat location sα,i. Interpo-
lation and accumulation are performed in the output space
using splatting. Splatting can be viewed as a form of scat-
tered data interpolation using radial basis functions.

We now discuss our implementation of this splatting ap-
proach. We model each pixel on the sensor as recording
one ray L(x, y, u, v), where x and y are the absolute coor-
dinates of the pixel, and u and v are the coordinates of the
pixel relative to the center of the microlens C. Because the
pixel grid is slightly rotated with respect to the microlens
array, u and v are not exactly horizontal and vertical pixel
displacements. We use the flat-fielded image I = Iγ as our
estimate of ray colors.

(12)LF (x, y, u, v) ∼= I(x, y, x− C, y − C)

If a ray i located at xi = [xi yi] has a displacement
ri = [ui vi] from the microlens center, the ray is splatted
to si = xi − Dαri. Each ray i is associated with a splat
kernel kα,i(r) at disparity level Dα. Additionally, we use
c = T (Iw)

2 as a confidence weighting for each ray. We
are more confident in the color values of the pixels near the
center of the microlens, because they have a higher signal-
to-noise ratio than the heavily vignetted pixels. We set the
resolution of the refocused images to be equal to the sen-
sor resolution, which for the Lytro camera is 3280 × 3280
pixels. We compute the refocused image as

(13)Eα (x) =
1

Wα (x)

∑
i

I(xi)kα,i (|x−xi−Dαri|) ci



Figure 6. Per-ray disparity map for the image in Figure 9, with
detail highlighted. A darker value indicates that the ray is in focus
at a closer depth.

where

(14)Wα (x) =
∑
i

kα,i (|x− xi −Dαri|) ci

The definition of the splat kernel may be changed to
shape the appearance of the output refocused image, and
may vary based on α and i. Kernel selection for scattered
data modeling is a well-studied problem [24]. For the re-
sults shown in this paper, we use a radially symmetric linear
kernel with a scaling parameter bα,i

(15)kα,i(r) = max

(
1− r

bα,i
, 0

)
.

In the next section, we describe how we initially fix bα,i
to be a large value when computing a depth map, and then
adapt bα,i based on depth to compute a refocused image that
is both antialiased and sharp in in-focus regions.

4. Plane Sweep and Depth Estimation
In this section, we describe our plane sweep algorithm

for digital refocusing and depth map estimation. First, we
estimate the depth at which each ray intersects the scene; we
find the disparityDαi with the highest photoconsistency for
each ray i. We use a measure of photoconsistency based on
variance. For each disparity level Dα, we calculate a mean
(refocused) imageEα, and then calculate the SSD color dif-
ference (photoconsistency measure) between each ray and
the mean image for that depth. Refocusing is performed us-
ing the method described in Section 3, using a splat kernel
of a large, fixed size. The splat kernel must be large enough
that aliasing artifacts are not visible in the refocused image,
as such artifacts can interfere with the depth map computa-
tion step. We use bα,i = l, where l is the microlens pitch.
Splatting with this large kernel produces a refocused image
that is antialiased, but also blurry at in-focus regions.

Figure 7. Out-of-focus plane exhibiting artifacts. Top: jitter not
applied. Bottom: artifact corrected with jitter.

Next, we construct a disparity space image (DSI). We
again project each ray into the scene according to Equa-
tion 11. However, instead of splatting the ray color, we in-
terpolate Eα(si), the color of the mean image at the splat
location. We then compute the SSD color difference (dis-
parity cost) between the ray color and the mean image color:

(16)SSDα,i = ‖I(xi)− Eα(sα,i)‖22 .

We splat this color difference into DSIα at sα,i using the
same large splat kernel with bα,i = l.

Finally, we find the α with the lowest disparity cost for
each ray in the input light field. We project each ray i into
the scene and interpolate DSIα(sα,i) for the ray at each
value of α. We set

(17)αi = argmin
α
DSIα(sα,i)

Figure 6 shows the per-ray disparity map for a small section
of a plenoptic image.

To compute the final refocused image, we use a splat
width bα,i of a variable size. How bα,i changes with α and i
can be varied based on the desired depth-of-field effect. For
the results shown in this paper, we use

(18)bα,i = bmin + l |Dα −Dαi |
n
+ w (α)

where bmin and n are constants (we use bmin = 2 and n =
3.5) andw (α) is used to increase the size of the splat kernel
as α approaches the edge of the refocusable range of the
camera. We use a sigmoidal function

(19)w (α) =
p0

1 + e−
(Dα−p2)

p1



Figure 8. Left: refocusing results. Top: ours. Middle: ours, sharpened. Bottom: Lytro. Right: highlighted detail from our sharpened result
(top) and Lytro result (bottom).

with parameters p0 = 15, p1 = 20, and p2 = 100.
At some depths, especially nearing the edge of the re-

focusable range of the camera, lines or patterns appear as
artifacts in the refocused result. In order to break up the
artifact, we jitter the splat location of the rays:

(20)sα,i = sα,i + [jx, jy]

where jx and jy are random variables drawn from

Uniform
(
−w(α)

2 , w(α)
2

)
. The resulting image is free of

the patterning artifact, but can appear noisy or mottled for
large w(α). To smooth out the result, rays can be splat-
ted multiple times at different jittered locations. See Fig-
ure 7. In order to preserve coherency from plane-to-plane,
the same jitter offsets should be used for each ray for each
α.

5. Results
Figures 7 and 8 demonstrate refocusing an image at two

planes of focus. Figures 9 and 10 demonstrate refocusing
a second image at three planes. The images shown are
cropped regions of interest of larger Lytro images. In Fig-
ures 8, 9, and 10, we compare the results of our method to
those produced by the Lytro SDK. Our results are rendered
at 3280 × 3280 pixels, while the Lytro images are rendered
at 1080 × 1080 pixels. For this detail comparison, we have

upsampled the Lytro result using bicubic interpolation. We
apply a manual color correction to match the appearance
of the Lytro results. The Lytro results appear sharper, but
also noisier, than our results. The Lytro results also contain
aliasing artifacts at depth discontinuities (Figures 8 and 9),
patterning artifacts (Figure 10), and ringing artifacts from
a sharpening filter. In Figure 8, we sharpen our result and
compare with Lytro. For additional results, please see our
supplemental material.

6. Limitations and Discussion

Our method has two major limitations. The first limita-
tion arises from the design of the plenoptic camera itself.
Plenoptic images can only be refocused through a certain
range. Also, as described by Bishop et al. [5, 3], a specific
plane of focus exists where the camera has very low spatial
resolution. Near this plane and the edges of the refocus-
able range, the size of the splat kernel must be increased.
For some applications, the best solution may be to skip over
these planes completely when performing a plane sweep.
The second limitation arises from the method used to esti-
mate depth. In this paper, we use photoconsistency based
on variance. We assume a scene that is mostly Lambertian,
and depth is only estimated accurately in regions that con-
tain texture. Any method for depth estimation may be used,



Figure 9. Refocusing on two nearby planes, with highlighted de-
tail. Left: refocused on background (text). Right: refocused closer
(on green string). Aliasing artifacts appear in the Lytro result when
the green string is in focus. Our method does not display these ar-
tifacts, and varies smoothly from plane-to-plane.

and each will have its own strengths and limitations. When
errors occur in the depth map, in-focus objects will be ren-
dered less sharp than if the depth error had not occurred.
In low texture regions, the size of the splat kernel does not
noticeably affect the rendered result, so accurate depth in-
formation is not needed.

7. Conclusions and Future Work

In this paper, we have presented a simple method for
refocusing plenoptic images that produces sharp and an-
tialiased results. We have also presented a detailed de-
scription of our preprocessing and calibration pipeline for
the Lytro camera. Our refocusing algorithm does not re-
quire computing or storing intermediate 4D light field rep-

Figure 10. Refocusing on orange string, with highlighted detail.

resentations, such as subaperture views or epipolar images.
For rendering, our algorithm utilizes splatting, which can
be implemented efficiently on the GPU. Animated focal
sweeps computed using our method are smooth and tempo-
rally coherent. We plan to construct a GPU implementation
in future work. We also plan to combine our calibration
and refocusing algorithms with other methods for process-
ing plenoptic images, such as improved demosaicing [35],
distortion correction [9], alternative depth estimation meth-
ods [28, 30], and image-based rendering techniques.
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