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Abstract Low-rank approximation of image collections (e.g.,
via PCA) is a popular tool in many areas of computer vi-
sion. Yet, surprisingly little is known justifying the obser-
vation that images of an object or scene tend to be low di-
mensional, beyond the special case of Lambertian scenes.
This paper considers the question of how many basis im-
ages are needed to span the space of images of a scene un-
der real-world lighting and viewing conditions, allowing for
general BRDFs. We establish new theoretical upper bounds
on the number of basis images necessary to represent a wide
variety of scenes under very general conditions, and per-
form empirical studies to justify the assumptions. We then
demonstrate a number of novel applications of linear models
for scene appearance for Internet photo collections. These
applications include image reconstruction, occluder-removal,
and expanding field of view. Insert your abstract here. In-
clude keywords, PACS and mathematical subject classifica-
tion numbers as needed.

Keywords BRDF · Dimensionality

1 Introduction

Real world scenes vary in appearance as a function of view-
point, lighting, weather and other effects. What is thedi-
mensionalityof this appearance space? More specifically,
suppose you stacked all photos taken of a particular scene
as rows in a matrix – what is the rank of that matrix?1

It is well known that certain types of image collections
tend to be low-rank in practice, and can be spanned using
linear combination of a small number of basis views com-
puted using tools like Principle Component Analysis (PCA)
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1 By dimensionality, we refer to linear dimensionality in this paper.

or Singular Value Decomposition (SVD). First exploited in
early work on eigenfaces (Kirby and Sirovich (1990); Turk
and Pentland (1991)), these rank-reduction methods have
become the basis for a broad range of successful applica-
tions in recognition (Pentland et al. (1994); Murase and Na-
yar (1995)), tracking (Hager and Toyama (1996)), backgro-
und modeling (Oliver et al. (2000)), image-based rendering
(Wang et al. (2001)), BRDF modeling (Hertzmann and Seitz
(2003); Matusik et al. (2003)), compression and other do-
mains.

In spite of the wide-spread use of rank-reduction on im-
ages, however, there is little theoretical justification that ap-
pearance space should be low-rank in general. An excep-
tion is the case of Lambertian scenes, for which a number
of elegant results exist. Shashua (1992) proved that three
images are sufficient to span the full range of images of a
Lambertian scene rendered under distant lighting and a fixed
viewpoint, neglecting shadows. Belhumeur and Kriegman
(1998) considered the case of attached shadows, observing
that the valid images lie in a restricted range of 3D subspace
which they called theillumination cone. Basri and Jacobs
(2003), and Ramamoorthi and Hanrahan (2001) indepen-
dently showed that the illumination cone is well approxi-
mated with9 basis images. Ramamoorthi more recently (Ra-
mamoorthi (2002)) improved this bound to5 images, bring-
ing the theory in line with empirical studies on the dimen-
sionality of face images (Epstein et al. (1995)).

Very little is known, however, about the dimensionality
of images ofreal-world scenes, composed of real shapes,
BRDFs, and illumination conditions. Consider, for exam-
ple, the images of tourist sites on photo sharing websites like
flickr.com, which exhibit vast changes in appearance. While
it may seem difficult to prove strong results about such col-
lections, a key property of real-world scenes is that they
are not random. In particular, man-made scenes tend to be
dominated by a small number of surface orientations. And
while BRDFs can be very complex, many real BRDFs can
be well-approximated by a low-rank linear basis (Matusik
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et al. (2003)). Similar considerations apply for illumination;
for example, studies have shown that the space of daylight
spectra is roughly two- or three-dimensional (Sunkavalli et al.
(2008)). Based on these observations, this paper introduces
new theoretical upper bounds on the dimensionality of scene
appearance (improving on previous results by Belhumeur
and Kriegman (1998)). While we make a few limiting as-
sumptions (distant lighting, distant viewer, no cast shadows,
interreflections or subsurface scattering), these resultsbring
the theory to the point where it can capture much of the ex-
treme variability in these Internet photo collections. Further,
many of the results are still seen to hold empirically even
when these assumptions are violated.

The highlights of this paper include a factorization frame-
work for analyzing dimensionality questions, introduced in
section 2. Using this framework, we prove new upper bounds
on the number of basis images, allowing for variable illumi-
nation direction and spectra, viewpoint, BRDFs, and con-
volution effects (e.g., blur). Importantly, all prior low-rank
results for Lambertian scenes (Shashua (1992); Belhumeur
and Kriegman (1998); Basri and Jacobs (2003); Ramamoor-
thi and Hanrahan (2001); Ramamoorthi (2002)) do not ap-
ply under variations in light spectrum (even if the images
are grayscale). We introduce new results that allow the light
spectrum to vary in certain ways (Section 2.3), greatly broad-
ening the scope of application (e.g., to outdoors). In Section
3, we perform experiments on BRDF databases to empiri-
cally verify some of the assumptions made. Finally in Sec-
tion 4, we demonstrate that low rank linear models can be
used to model the appearance of outdoor scenes in Internet
Photo Collections and conclude by showing a number of in-
teresting applications of low-rank linear models to problems
in computational photography (Section 4.4).

2 Rank of the Image Matrix

In this section, we present our theoretical results. We first
introduce a new framework to analyze the factorization of
images (Section 2.1) which yields new insights and results in
Section 2.2. Finally, we introduce wavelength (Section 2.3)
bringing the theory closer to the real world images captured
by cameras.

Throughout the paper, we assume that images are lit by
distant light sources and observed from distant viewpoints.
We ignore indirect illumination effects like transparent and
translucent materials, interreflections, cast shadows andsub-
surface scattering. Our theory does account for attached shad-
ows, however. Initially, we also make the assumption that
images are taken from a fixed viewpoint, which we relax in
Section 2.2.3. Similarly, we begin by considering grayscale
images captured at a constant illumination spectrum across
images and talk about more complex and practical cases in
Section 2.3.

2.1 Four Factorizations of the Image Matrix

Suppose we are given a set ofn-pixel images of a scene,
I1, I2, . . . , Im taken under varying illumination conditions.
Consider them×n matrixM obtained by stackingI1, I2, .., Im

as rows of the matrix. Each row ofM is an image, and each
column describes the appearance of a single pixel, sayx, un-
der different illumination conditions, referred to as thepro-
file of the pixel and denoted byPx, wherePx(i) = Ii(x).

Consider a factorization ofM into the product of two
rank-k matrices:

Mm×n = Cm×kDk×n. (1)

Such a factorization may be obtained by PCA or SVD, for
instance. We present four different interpretations of such a
factorization, shown in Figure 1.

2.1.1 Basis Images

First, the rows ofD can be interpreted as basis images, de-
noted byBI , and the rows ofC can be interpreted as co-
efficients. This interpretation, shown in Figure 1(a), is com-
monly used. For instance, in work on eigenfaces Kirby and
Sirovich (1990), the eigenvectors obtained from PCA com-
prise the basis images (assuming mean subtracted data). Here
each imageIi is a linear combination of basis images:

Ii =

k
∑

j=1

aijB
I
j . (2)

2.1.2 Basis Profiles

Another way to interpret this factorization is that each col-
umn (profile)Pj of M can be interpreted as a linear com-
bination of columns ofC, with coefficients determined by
columns ofD, as shown in Figure 1(b). In this interpreta-
tion, the columns ofC form basis profiles, denoted byBP :

Pj =
k

∑

i=1

bjiB
P
i . (3)

2.1.3 The Lambertian Case

For Lambertian scenes, neglectinganyshadows, the rank of
M is 3 Shashua (1992) , and the basis profiles and the basis
images assume a special meaning, shown in Figure 1(c).D

is a3 × n matrix, where thejth column ofD encodes the
normal times the albedo at thejth pixel in the scene.C is a
m × 3 matrix where theith row encodes the lighting direc-
tion times the light intensity for theith image. Hence, the
basis images represent scene properties (normals and albe-
dos) and the basis profiles encode illumination properties.
In particular, each basis profile contains the light intensity
along a coordinate axis for each image.
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(a) (b) (c) (d)

Fig. 1: Four interpretations of factorization of image matrices. First, each image can be expressed as a linear combination of a setof basis images
(a). Alternatively, the profile of each pixel can be expressed as a linear combination of a set of basis profiles (b). In the case of aLambertian scene,
the basis profiles and basis images assume special meaning (c). Finally, (d) shows the reflectance map interpretation.

2.1.4 The Reflectance Map Interpretation

The reflectance map Horn (1986), is defined for an image of
a scene with a single BRDF as a functionR(n̂) that maps
scene normals to image intensity.R(n̂) can be encoded as
an image of a sphere with the same BRDF as the scene and
taken from the same viewpoint under identical illumination
conditions.

We can alternately defineRi(n̂) using the rendering equa-
tion which under our assumptions, can be written as

Ii(x) =

∫

Ω

αxρx(ω′, ω)Li(ω
′)(−ω̂′ · n̂

x
)+dω′ (4)

where the integral is over a hemisphere of inward direc-
tions ω′, ω is the viewing direction for pointx, ρx is the
reflectance function at pointx (evaluated atω′, ω), Li(ω

′)

is the light arriving from directionω′ for imageIi, andn̂
x

is the normal atx. The + subscript on the dot product indi-
cates that it is clamped below to0 to account for attached
shadows.

Given this, we can defineRi(n̂) as

Ri(n̂) =

∫

Ω

ρ(ω′, ω)Li(ω
′)(−ω̂′.n̂)+dω′ (5)

whereρx has been replaced byρ, asRi represents a scene
with a single BRDF.

Let us denote byRi the image of the sphere when taken
under identical illumination conditions as in imageIi. Then
we can write

Ii
T = Ri

T
D (6)

whereD is defined as:

D(j, k) =

{

1 if n̂
k = m̂j

0 otherwise
(7)

whereD(j, k) represent the value in thejth row andkth

column ofD, m̂j is the normal at thejth pixel ofRi andn̂k

is the normal at thekth pixel in the scene. Thekth column
of D can be thought of as anormal indicator functionvk.

It often happens that the BRDF is same across the scene
save for a scaling factor (the albedo). The reflectance map

factorization can also incorporate per pixel albedos if we de-
fine thekth column ofD asαk

vk whereαk is the albedo of
thekth pixel.

Now, observing thatD does not depend oni, one can
writeM = CD whereC contains the reflectance mapsRi’s
stacked as rows.

2.2 Upper Bound on Rank ofM

Belhumeur and Kriegman Belhumeur and Kriegman (1998)
proved that, given an arbitrary scene with a single material
andkn distinct normals, the space of images of the scene
taken from a fixed, distant viewpoint with distant lighting
and no cast shadows isexactlykn-dimensional. This result
justifies the use of linear models for real-world scenes. For
instance, many man-made scenes consist of large planar re-
gions (such as walls and ground), and therefore contain only
a small number of distinct normals. Curved surfaces may
also be approximated by piecewise planar surfaces.

We first show how an upper bound ofkn can be seen
to hold true for a scene with a single BRDF using the re-
flectance map interpretation of the factorization. Note that
this upper bound is the same as that derived by Belhumeur
and Kriegman Belhumeur and Kriegman (1998). However,
we later extend our result under a number of different and
more general settings.

From the reflectance map interpretationM = CD, it is
easy to see that onlykn rows ofD will be non-zero when
the number of distinct normals in the scene iskn. Hence,
rank(D) ≤ kn , which gives us an upper bound ofkn

on rank(M) as well. Belhumeur and Kriegman Belhumeur
and Kriegman (1998) derive the same result but via a differ-
ent route.

Now consider the more general case where there arekρ

materials andkn normals in the scene. In this case, we first
define reflectance maps corresponding to every BRDF for
each image, i.e.,

Ii
T =

kρ
∑

l=1

Ril
T
Dl (8)
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whereDl now encodes the distribution of normals corre-
sponding to thelth material, i.e.,

Dl(j, k) =

{

αk if n̂
k = m̂j andρk = ρl

0 otherwise
(9)

Hence,M=
∑kρ

l=1
ClDl, which implies thatrank(M)≤kρkn.

More preciselyrank(M)≤
∑kρ

l=1
N(l) whereN(l) is the

number of orientations corresponding to materiall. Hence
we have proven the following:

Theorem 1 Consider a scene withkρ different BRDFs and
kn distinct normals. Consider the imagesI1, I2, . . . , Im of
the scene obtained from a fixed distant viewpoint under dif-
ferent distant illuminationsLf1

, Lf2
, . . . , Lfm

. Assuming that
there are no cast shadows, the rank of the matrixM ob-
tained by stackingI1, I2..Im as rows is at mostkρkn.

It is also instructive to writeM =
∑kρ

l=1
ClDl in the

form M = CD so that basis images and basis profiles can
be explicitly defined. This can be done by stackingCl side
by side, i.e.,C = [C1|C2|..|Ckρ

] and stackingDl one over
another. Finally, we can remove all zero rows fromD and
corresponding columns fromC leaving at mostkρkn rows
in D, which correspond to basis images, and basis profiles
are the remaining columns ofC. The columns ofD are of
the formdk = αk

vk wherevk is a0, 1 vector that can be
thought of as anormal-material indicator function.

The result may be modified to accommodate anisotropic
BRDFs as well. For anisotropic materials, one needs to parametrize
by both theorientationand the normal. Hence, one can de-
rive the same bound wherekn now refers to the number of
distinct orientations times normals in the scene.

In the following sections, we extend this result to a num-
ber of common scenarios.

2.2.1 Linear Families of BRDFs

While the world is composed of diverse materials, it has
been argued Ramamoorthi and Hanrahan (2002); Matusik
et al. (2003) that the space of BRDFs is low dimensional. We
also verify this by conducting experiments on the CUReT
Dana et al. (1999) database of BRDFs (Section 3.2).

Thus, we now generalize to the case whenρx is con-
tained in the linear span of{ρ1, ρ2, . . . , ρkρ

}, i.e., ρx =

Σ
kρ

l=1
cl(x)ρl. In this case,Ii can be represented as a sum

of matrix products,Ii
T =

∑kρ

l=1
Ril

T
Dl, where

Dl(j, k) =

{

αxcl(x) if n̂
k = m̂j

0 otherwise
(10)

Hence the upper bound ofkρkn still holds, i.e., the rank is
bounded by the dimensionality of BRDF family times the
number of normals.

2.2.2 Low-dimensional BRDFs

Certain BRDFs tend to below-dimensional. For example,
three basis images suffice to span the images of a Lam-
bertian scene captured under different lighting conditions,
in the absence of shadows. Formally, we call a BRDFK-
dimensional if the rank of the matrixC obtained by stack-
ing reflectance maps obtained under arbitrary sampling of
illumination conditions is always at mostK. In the presence
of such materials, the upper bound on dimensionality may
be reduced to

∑kρ

i=1
K(i), whereK(i) is the rank of theith

BRDF.
We used the CUReT database for estimating the dimen-

sionality of each material in the database and found that for
49 of the 61 material, the reconstruction error is less than
10% using9 basis vectors (Section 3.1).

2.2.3 Varying Viewpoint

Given images taken from different viewpoints, it is trivialto
extend the upper bound tokvkρkn wherekv is the number of
distinct viewpoints. However a much better bound ofkρkn

holds true if we know the pixel corresponding to a point
x′ in the scene in every image. This correspondence can be
found, for instance, if the camera parameters of each image
and the 3D geometry of the scene are known. Using this cor-
respondence, we can rearrange the pixels in each image so
that thexth pixel in every image corresponds to the same
scene point. We assume that every scene point is seen by
every image (We relax this assumption in Section 4.1). We
again consider the rank of the matrixM obtained by stack-
ing these rearranged images. The argument for Theorem 1
still holds, withRil now defined as:

Ril(n̂) =

∫

Ω

ρl(ω
′, ωi)Li(ω

′)(−ω̂′.n̂)+dω′. (11)

whereωi is the viewing direction for imagei.

2.2.4 Filtered Images

Many real-world images are blurry due to camera shake, or
have been otherwise filtered (e.g., software sharpening). We
extend the above result to filtered images.

Consider the family of images obtained by convolving
imageI(x, y) by an arbitraryK×K kernelF. Each resulting
image can be expressed asIconv(x, y) =

∑K
i=1

∑K
j=1

F(i, j)I(x−

i, y−j). Since the space of each of the shifted imagesI(x−

i, y − j) is at most rankkρkn, it follows that the space of all
filtered images of the scene is at most rankK2kρkn.

An important special case is the family of radially sym-
metric filters (e.g., blur, sharpen). These filters can be spanned
by a fewbasis filters(The basis filters are simply circles of
varying radii.)
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Suppose that the family of filters we are concerned with
can be spanned bykf basis filters. Consider convolving each
of thekρkn basis images with each of thekf basis filters to
yield kfkρkn images. Any filtered image can then be ex-
pressed as a linear combination of these filtered basis im-
ages. Hence, the bound reduces tokfkρkn.

Note that it also takes into account images of different
sizes. To see this, one can assume that all different sized
images of the scene have been obtained by subsampling an
appropriately blurred high resolution image of some fixed
resolution. Even though we are applying different blur ker-
nels to these images, the blurred images lie on a linear sub-
space. Subsampling them to some common lower resolution
will also result in a linear subspace.

2.3 Light Spectra

Up until now, we assumed that all measurements are done
at a particular wavelength of light, and that the spectrum of
light is constant over all images. We now consider the case
when the camera sensors and light spectra vary between im-
ages. Surprisingly, in general, the appearance space of a sim-
ple Lambertian scene with a single infinite plane can have
unbounded dimension, even for grayscale images. That is
because albedos, which were before treated as fixed scalars
for every pixel, are now functions of wavelength, allowing
the scene to have arbitrary appearance for different wave-
lengths. In the general case, using a linear response model,
we have that

Ii(x) =

∫

si(λ)Ii(x, λ)dλ (12)

wheresi(λ) is the spectral response of the sensori andIi(x, λ)
is the intensity of light of wavelengthλ arriving at the sen-
sor. We begin by analyzing the general case, then discuss
results for some common special cases.

2.3.1 The General Case

Consider the matrixM obtained by stacking imagesI1, I2, . . . , Im

captured by arbitrary sensors. We claim that the rank ofM

is bounded bykρknkα, wherekα is the number of distinct
albedos in the scene.

This result can again be derived from the reflectance map
interpretation. We define a reflectance map corresponding to
every pair of albedo and BRDF in the scene, with the inci-
dence of normals encoded in theD matrix. More precisely,
Ii

T =
∑kα

h=1

∑kρ

l=1
R

T
ihlDhl whereRihl is the image of a

sphere with BRDFρl and albedoαh captured under iden-
tical illumination conditions and by the same sensor asIi,
and

Dhl(j, k) =

{

1 if n̂
k = m̂j andαx = αh andρx = ρl

0 otherwise

(13)

Again, we can writeM =
∑kα

h=1

∑kρ

l=1
ChlDhl by stacking

up theRihl’s,. It follows thatrank(M) ≤ kρknkα.
More generally, the albedos in a scene (as a function of

wavelength) may be spanned bykα basis albedos. It can be
shown in a fashion similar to Section 2.2.1 that the bound of
kρknkα extends to this case as well.

2.3.2 Light Sources with Constant Spectra

Belhumeur and Kriegman Belhumeur and Kriegman (1998)
showed that images of a Lambertian scene lit by light sources
of identical spectra can be spanned by three basis images in
the absence of shadows. We do a similar analysis in a more
general setting.

Assume that (1) BRDFs do not depend onλ (save for
a scale factor, the albedo), (2) all light sources within and
across images have the same spectra (but with varying in-
tensity and direction), and (3) all images are captured by
identical sensors with spectral responses(λ). Under these
assumptions, the bound ofkρkn can be seen to hold true.

Under assumption (2), we can writeLi(ω
′, λ) asK(λ)L′

i(ω
′)

and hence,

Ii(x, λ) = K(λ)

∫

Ω

αx(λ)ρx(ω′, ω)L′

i(ω
′)(−ω̂′.n̂

x
)+dω′

(14)

We can writeIi(x, λ) = K(λ)
∑

j,k ajk(i)BI
jk(x, λ) by

invoking the basis image representation for the expressionin
the integral (Theorem 1), where the number of basis images
B

I
jk ’s is at mostkρkn. Note that the coefficients do not de-

pend onλ as wavelength dependent albedos are encoded in
the basis images. Substituting into Eq. (12), we get

Ii(x) =
∑

j,k

ajk(i)

∫

s(λ)K(λ)BI
jk(x, λ)dλ (15)

which implies thatIi(x) =
∑

jk ajk(i)B′I
jk(x) where the

new basis images are obtained by integrating overλ, i.e.,
B

′I
jk(x) =

∫

s(λ)K(λ)BI
jk(x, λ)dλ. Hence, these images

can also be spanned by at mostkρkn basis images.
At first, these assumptions might appear too restrictive.

We tested assumption (a) using the CUReT database and
found strong support for it (Section 3.3). If albedos and cam-
era spectral responses are unconstrained, the scene may have
an unbounded rank. However, if the camera responses are
similar, assumption (c) is a reasonable approximation. Other
assumptions may be relaxed by extending the result. For in-
stance, consider the case where a scene is lit bykL light
sources, each with its own spectrum that stays constant across
all images. This can model outdoor illumination, which is
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often approximated as a combination of sunlight and sky-
light, each with its own spectrum Sunkavalli et al. (2008).
Here, the bound can be seen to bekρknkL by writing the il-
lumination in theith image in the form

∑kl

l=1
Kl(λ)Lli(ω

′, λ).
Similarly, consider the case whenK(λ) varies from im-

age to image but lies in a linear subspace of dimensionks.
For illumination in outdoor scenes, the spectra is well ap-
proximated by a two or three-dimensional subspace Sunkavalli
et al. (2008). The bound can be shown to bekρknks in this
case, by writingKi(λ) =

∑ks

l=1
cl(i)Kl(λ).

2.3.3 RGB Images

Images captured by conventional cameras contain three color
channels. Consider RGB imagesI1, I2, . . . , Im, where we
concatenate the channels together. Assume that each chan-
nel is captured by a separate sensor that is identical across
all images,

I
c
i (x) =

∫

sc(λ)Ii(x, λ)dλ (16)

Consider the matrixMc obtained by stacking channelc of
all images. Under the assumptions of Section 2.3.2, we know
that the rank of this matrix is bounded bykρkn and it can be
written asMc = CD

c (the coefficients are embedded in the
matrixC while the basis imagesB′I

jk are stacked up inD).
BecauseC does not depend onc (From Eq. (15), we can
see thatsc(λ) is encoded in the basis images, i.e.,D

c), the
rank of the matrixM obtained by concatenating the chan-
nels and stacking them is also bounded bykρkn (we can
write [M1|M2|M3] = C[D1|D2|D3]).

In fact, we can go further and show that profiles cor-
responding to a particular pixel are identical across chan-
nels save for a scaling factor, i.e., there existskc(x) for each
channel such thatPc

x/kc(x) is same for allc. This can be
seen by substituting forIi(x, λ) from Eq. (14) in Eq. (16)
and writing:

P
c
x(i) = kc(x)

∫

Ω

ρx(ω′, ω)L′

i(ω
′)(−ω̂′.n̂

x
)+dω′ (17)

where

kc(x) =

∫

sc(λ)K(λ)αx(λ)dλ (18)

2.4 Summary

We started by proving an upper bound ofkρkn in Theorem
1 and then showed that the same bound holds for images
taken from different viewpoints and for linear families of
BRDFs. In Section 2.2.2, we showed that certain BRDFs al-
low the bound to be lowered. In Section 2.2.4, it was shown

how filtered images can be handled in our theory. Finally,
we introduced wavelength in Section 2.3. While in the most
general case, the theoretical bound can shown to bekρknkα,
the bound ofkρkn holds under certain assumptions.

3 Experiments on BRDF Databases

To empirically validate the assumptions introduced in Sec-
tion 2, we performed experiments on BRDF databases to as-
certain the range of materials present in real world images.
We looked at two different databases of BRDFs – the MERL
BRDF database Matusik et al. (2003) which has100 differ-
ent materials, and the CUReT database Dana et al. (1999),
which has61 different materials. CUReT is more represen-
tative of real world materials (e.g., paper, grass, cloth, etc.)
whereas MERL is restricted to machined and painted spheres.
Since our goal is to understand the dimensionality of real-
world scenes, we chose to focus on CUReT. Also, the preva-
lence of specularities in MERL in combination with high dy-
namic range (HDR) capture, makes approximating through
linear models much more difficult, as the highlights alone
capture the vast majority of image energy. We found, how-
ever, that converting the images to a standard8-bit-per-channel
dynamic range (LDR) (and clamping highlights to255) yields
a reasonable fit for MERL database (See Figure 2). We use
the relative RMS error (here, and in all the subsequent re-
sults) to gauge the accuracy of the fit, and is measured as
RMS value of the error divided by the RMS value of the
original data. Here, to convert HDR images to LDR images,
we quantized the range of each image so that90% of the
pixels fall in the range[0, 255] and clamped the pixels out-
side this range to255. These results imply that even for this
dataset, linear models work reasonably well for real world
LDR images. CUReT database is used for the results in the
following sections.

3.1 Appearance Space of each Material

We first analyze how many basis images are required to span
the appearance space of each material. For every material, a
hundred50 × 50 images of a sphere of that material were
rendered. Each image was lit by a distant directional white
light whose direction was randomly chosen (uniformly dis-
tributed over the front facing hemisphere). The rendered im-
ages were reduced to grayscale and SVD was used to com-
pute the basis images corresponding to each material. The
green (middle) curve in Figure 3 shows the fall ofrelative
RMS erroras the number of basis images used to model the
appearance are increased. The curve is averaged over all61

materials for CUReT. From the graph, we can see that the
error falls to less than10% after only6 basis images.



7

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Basis Vectors

R
el

at
iv

e 
R

M
S

 R
ec

on
st

ru
ct

io
n 

E
rr

or

MERL (HDR)
MERL (LDR)
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dred50× 50 images of a sphere of each material were rendered under
different illumination conditions. Basis images were computed using
this collection of all10, 000 images (100 materials,100 images per
material).
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Fig. 3: The fall in relative RMS error vs number of basis vectorsfor
CUReT database.

3.2 Appearance Space of all Materials

In Section 2.2.1, we showed that the upper bound on the di-
mensionality is reduced in case the BRDFs in a scene are
contained in a low dimensional linear subspace. To gauge
the range of materials present in the CUReT database, we
computedbasis BRDFs(treating each BRDF as a vector).
The BRDFs corresponding to the three color channels were
concatenated to form a single large vector. The blue (bot-
tom) curve in Figure 3 shows the reconstruction error vs
number of basis BRDFs. Note that here the reconstruction

Fig. 5: The top row shows the first sixuniversal basisimages computed
by performing a SVD over all sphere images rendered using materials
in the CUReT database. Five of the six are remarkably similar to the
5 basis images used by Ramamoorthi Ramamoorthi (2002) to span the
appearance space of a Lambertian sphere (bottom row).

error refers to the error in reconstructing the original BRDFs,
and not the rendered images.

We also run SVD overall 6100 sphere imagesrendered
in the previous section (61 materials,100 images per ma-
terial) to calculateuniversal basis imagesand measure the
reconstruction error versus the number of basis images (The
pink (top) curve in Figure 3). The curve is marginally above
the curve obtained by calculating a separate basis for each
material indicating that the same basis can be shared across
a large number of materials.

Reconstruction accuracy of each material is shown in
Figure 4 (Materials are sorted according to the reconstruc-
tion accuracy using six basis images). The first sixuniver-
sal basisimages are shown in the top row of Figure 5, five
of which are very similar to the basis images used by Ra-
mamoorthi Ramamoorthi (2002) to span the appearance of
a Lambertian sphere. These results show that the Lambertian
basis augmented with one additional basis gives an average
reconstruction accuracy of85% for the CUReT database.
Some example reconstructions are shown in Figure 6. This
result is remarkable as it suggests that the non-Lambertian
component is relatively insignificant for a wide range of real
world materials.

3.3 BRDF across Color Channels

We also test the assumption made in Section 2.3.2, i.e., the
BRDF of a material does not depend on wavelength. For
each material, we consider the3 × N matrix obtained by
stacking the BRDFs of the3 channels, whereN is the num-
ber of samples in each BRDF for each channel. The mean
ratio of first singular value to the second singular value was
found to be49.61 with a minimum of4.55, indicating that
for almost every material, the matrix is close to rank1 and
hence the BRDFs can be approximated as being the same
across color channels save for a scaling factor.

It is true that the CUReT database contains samples of
real world materials and it does not have many specular
materials. With specular BRDFs, it is often the case that
the Lambertian part of the BRDF is responsible for the the
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Reconstruction Accuracy

Fig. 4: Reconstruction accuracy achieved for each material inthe CUReT database using1, 2, 3, 6, 10, 20 and30 basis images respectively. The
basis was computed using the set of all images of all materials (universal basis). The first six basis images can be seen in Figure 5. The materials
have been sorted according to the reconstruction accuracy using six basis images. Best seen in color.

color of the object while the specular lobe has a much wider
spread across different wavelengths. However, the theory
can still explain it by treating the BRDF as a linear com-
bination of a specular and a Lambertian BRDF and they are
then allowed to scale independently with wavelength.

4 Linear Modeling of Internet Photo Collections

The results in Section 2 show that linear models well ap-
proximate a broad range of real world images. Much of the
previous application of linear models has been to images
captured in the lab under controlled conditions. Here, we
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Fig. 6: Some samples from the CURET BRDF database and corresponding reconstructions using1, 3, 5, 10, 20 and30 basis images. A single basis
was learnt from images of all the materials. The reconstructionslook visually similar (except for smoothing of highlight in some cases) indicating
that the same basis may be shared across multiple materials.

apply linear models to the more challenging case of photos
of popular locations downloaded from photo sharing web-
sites. The difficulties here stem from the wide variation in
the scene appearance. Moreover, the images are captured us-
ing many different cameras and viewpoints.

The organization of this section is as follows. In Sec-
tion 4.1, we give an overview of how we compute the lin-
ear model and what representation we use. In Section 4.2,
we describe in detail how we process the three channels of
color images and what assumptions we make. In Section 4.3,
we give quantitative and qualitative evaluation of the results.

Finally in Section 4.4, we demonstrate a couple of novel ap-
plications of these linear models.

4.1 Basis Computation

Because the input photos are taken from different viewpoints,
we first find pixel correspondences. We use the Structure
from Motion (SfM) system of Snavely et al. Snavely et al.
(2006) to recover the camera parameters. The 3D recon-
struction uses the multi view stereo method of Goesele et
al. Goesele et al. (2007). The 3D models are simplified us-
ing qslim Garland and Heckbert (1997) to a mesh with∼
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Fig. 7: The image on the left is the original image. The middle im-
age shows the reconstruction obtained using5 basis images when pro-
cessing the color channels independently. Notice the false color in re-
gions of shadow or incorrect geometry (for instance, the doors and the
columns above the rose window). The figure on the right is the recon-
struction obtained by the described approach.

300, 000 faces. We use a simple representation where we
associate a color corresponding to each mesh vertex. Im-
ages in this representation (which can be thought of as a
texture map), can be treated in a fashion similar to images
taken from a fixed viewpoint with mesh vertices assuming
the role of pixels. However, a single image covers only a part
of the scene, i.e., there is missing data in each texture map.
To compute basis vectors with missing data, we use the EM
based method of Srebro and Jaakkola Srebro and Jaakkola
(2003) to compute SVD. However, the algorithm was found
to be sensitive to initialization when the amount of missing
data is large. We use the method of Roweis Roweis (1998)
which fills the missing data using EM based sensible PCA,
to initialize.

Internet photo collections are often dominated by people
and other occluders who block the background scene. As our
focus is modeling the scene and not the people, we start by
manually identifying clean occluder-free images from which
we compute a clean basis. We will show later how to handle
occlusions in other images using this basis in Section 4.4.2.

4.2 Processing Color Images

We cannot directly apply the ideas in Section 2.3.3 to these
color images as the assumption of identical spectra and iden-
tical sensors does not hold for Internet photo collections.
One option is to process each color channel independently
and compute a separate basis for each channel. The selected
clean set still has some outliers (e.g. cast shadows) and pro-
cessing the three channels independently producesrainbow
artifacts shown in Figure 7 due to inconsistent fits between
color channels. Instead, we make some simplifying assump-
tions that allow us to reconstruct the other channels given
the reconstruction of one. Hence, we choose to process only
the green channel of these images.

First, under the assumptions made in Section 2.3.2 and
2.3.3, the profile of a pixelx corresponding to, say the red

channel,Pred
x can be written asPred

x = fred(x)Pgreen
x

where

fred(x) =
kgreen(x)

kred(x)
(19)

with kred(x) andkgreen(x) defined by Eq. 18. However, In-
ternet photos are not captured by identical cameras and the
spectrum of light is also different for different photos (for
instance, the spectrum of sunlight in the evening is very dif-
ferent from the spectrum at noon). We give a more rigorous
argument later, but intuitively, the combined effect of these
two factors (camera and light spectra) can be thought of as
individual scaling applied to the entire channels of an image,
i.e., Pred

x (i) = gred(i)fred(x)Pgreen
x (i) wheregred(i) is

the scaling applied to the red channel of theith image and
depends upon the camera sensor and the light spectrum of
that particular image.fred(x) can be thought of as a mea-
sure of the red color of the pixel (relative to the green chan-
nel of the image).

Now, if we can recovergred for all images andfred for
all pixels, then we can recover the red channel of any image
given the reconstruction of the green channel. We found that
the following simple method works well in practice for re-
coveringgred andfred. We assume that there exists a dom-
inant value ofgred(i) across images, saygred

dom. Note that
gred(i) depends on the interaction of the camera sensor and
the illumination. So, this assumption translates to sayingthat
a large number of photos are taken by similar cameras under
lighting conditions with similar spectra. This is plausible as
the spectrum of natural illumination for a given scene re-
mains largely constant for a large part of the day. Also, one
can safely assume that a large number of cameras will have
similar response curve. Hence, we can recoverfred(x) by

fred(x)gred
dom = mediani

(

P
red
x (i)

P
green
x (i)

)

(20)

where the median is taken overi, i.e, along the profile. Once,
we have recoveredfred(x) (up to the factorgred

dom), one can
also recovergred(i) by

gred(i)

gred
dom

= medianx

(

I
red
i (x)

fred(x)gred
domI

green
i (x)

)

(21)

where now the median is taken overx, i.e., over the pixels of
imagei. The blue channel can also be processed similarly.

Figure 8 shows the relative RMS error in reconstructions
of the three color channels for the Notre Dame and Arc De
Triomphe datasets where the basis was only computed for
the green channel and the other channels were reconstructed
using the method outlined above. The curves corresponding
to the red and blue channels are seen to be only marginally
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Fig. 8: Relative RMS error in red, blue and green channels forthe Notre Dame and Arc De Triomphe datasets. The blue and red curves are only
marginally above the green curve indicating that the accuracy achieved in the reconstruction of the red and blue channel bythe described approach
is similar to the accuracy in the green channel (via SVD).

above the green channel curve, supporting the case of our
approximation.

Let us now formally see under what physical conditions
the above intuition is correct. We still make the assumption
that in aparticular image, the spectrum of light is the same
for all light sources, which allows us to writeLi(ω

′, λ) as
Ki(λ)L′

i(ω
′) (the illumination can still vary across images).

Even though illumination in outdoor scenes is often mod-
eled using two distinct light sources – sunlight and skylight
which have different spectra, one can assume that one of
them dominates, i.e., the intensity of one is much stronger
than the other. E.g., sunlight will dominate on a clear sunny
day while skylight will dominate on an overcast day. Repeat-
ing the analysis of Section 2.3.2 (where we now haveKi(λ)
instead ofK(λ)), it can be seen thatPc1

x (i)/kc1
(x, i) =

P
c2

x (i)/kc2
(x, i), where

kcl
(x, i) =

∫

scl
(λ)Ki(λ)αx(λ)dλ (22)

i.e., kcl
depends oni as well, unlike in Equation (18). We

want to be able to write the above integral in the formfcl(x)gcl(i).
An assumption under which this holds true is when the albe-
dos remain constant over the range ofλ over which the sup-
port of spectral responses varies and hence can be taken out
of the integral. This essentially translates to saying thatthe
support of the spectral response of, say the red sensor, stays
in a small neighborhood of a particular wavelength across
different cameras.

4.3 Evaluation

We present results on6 datasets: Notre Dame Cathedral (212

images), Statue of Liberty (318 images), Arc De Triomphe
(268 images), Half Dome, Yosemite (95 images) Orvieto

Cathedral (228 images), and the Moon (259 images). An im-
age from each of these datasets is shown in the first column
of Figure 9. The Moon presents an interesting case due to
its retro-reflective BRDF. We are able to register the Moon
images using SfM (There exists sufficient parallax for SfM
to work Kaula and Baxa (1973)) and then fit a sphere to the
3D points obtained.

All images were gamma corrected assumingγ = 2.2.
As was mentioned in Section 4.1, we use a manually se-
lected clean set of images for computing the basis. Also, as
described in Section 4.2, we only need to compute the basis
for a single color channel and rest of the color channels can
be reconstructed from that. We used the green channel of
the images to compute a basis for each dataset. We observed
that the reconstructions look reasonably good visually even
with three or four basis vectors. With ten basis vectors, some
of the finer details such as specularities and self shadowing
are also modeled well (we use a basis of size ten to gener-
ate results in Section 4.4). There is little visual improvement
in the reconstructions after10 bases though the numerical
error continues to fall, but the numerical error stays at12%
even for30 basis vectors. Figure 11 shows the fall of rela-
tive RMS error vs the number of basis images (for the green
channel of images). This error can be explained by the fact
that even thecleanset of images have a lot of noise. E.g.,
Half Dome’s view is almost always partially occluded by
trees.

Figure 9 shows an example image from these datasets
and the corresponding reconstruction for1, 3, 5, 10 and20

basis vectors respectively. The top row (Notre Dame), shows
that it becomes possible to model the appearance of night
scenes using a larger basis. While such scenes violate our
assumptions of distant lighting, as the night-time illumina-
tion consists of light sources placed close to the scene, the
configuration of light sources is fixed across all night im-
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Input Image 1 Basis 3 Bases 5 Bases 10 Bases 20 Bases

Fig. 9: Internet datasets and reconstructions. The first columns shows an image from the dataset. The following columns show corresponding
reconstructions using1, 3, 5, 10 and20 basis images
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Basis 1 Basis 2 Basis 3 Basis 4 Basis 5

Fig. 10: First 5 basis images for Orvieto. Basis 1 resembles the mean.Bases 2 and 3 model shading, and Bases 4 and 5 specularities.

ages and hence can be modeled by a single additional basis.
The results in the second and third rows (Statue of Liberty
and Arc De Triomphe) demonstrate that it is possible to ap-
proximate cast shadows using a larger basis even though the
shadow boundaries appear blurry in the reconstruction. The
linear model does not work well for the Half Dome dataset
(the fourth row), as there are drastic appearance changes
(such as seasonal snow). An image of Orvieto Cathedral,
whose facade is highly specular, is approximated in the fifth
row. Figure 10 shows the first5 basis images. While the first
basis image simply looks like the mean image, the second
and the third model diffuse shading. The fourth and fifth
bases seem to model view dependent effects (highlights).
Note that the facade of the cathedral is planar and under the
assumptions of distant viewer and distant lighting, the spec-
ular highlight should ideally cover the whole facade. The
presence of specular highlights only on a portion of the fa-
cade implies that the viewer is close to the scene which is
a violation of our assumption of distant viewer. But as was
the case in night scenes, a particular configuration of near-
viewpoint and the lighting direction can be modeled by a
single additional basis image. For the Moon in the last row,
the appearance is modeled well using the first basis, while
subsequent bases explain the shadows and thetexture at the
terminatorKoenderink and Pont (2002).

4.4 Applications

We now show a few novel and interesting applications of
linear scene appearance modeling. For all the results shown
in the paper, we empirically chose a basis of size10.

4.4.1 View Expansion

As was mentioned in section 4.1, a single image might cover
only a part of the scene. However, since the basis compu-
tation method can interpolate missing data, the derived ba-
sis images (and hence the reconstructions) cover the entire
scene allowing us to hallucinate how the parts of the scene,
not visible in the original image, would have appeared un-

Fig. 11: Relative RMS Error vs number of basis images for different
datasets with a clean set of manually selected images. Even though the
reconstruction error is around12% (due to noise, occluders, etc.) for
most datasets even with30 basis images, reconstructions with only10

basis images look visually similar.

Fig. 12: View Expansion: The left image in each pair shows the input
image with limited viewing area. The right image shows the recon-
structed image with an expanded field of view.

der similar illumination conditions. The results of this view
expansion approach are shown in Figure 12.

4.4.2 Occluder Removal

Given a basis, we can solve for the coefficients given a new
image. We choose a projection approach that is robust to out-
liers in the image. This allows us to handle occluders. More
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Fig. 13: Occluder removal, where the occluder is removed and the scene behind is rendered under the same illumination conditions by robustly
solving for basis image coefficients. In each pair, the left image is the input image while the right image shows the corresponding reconstruction
with the occluder removed.
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(a) (b) (c) (d)

Fig. 14: (a) shows the input image. (b) shows the result of robust pro-
jection. It does not work well as the number of outlier pixels is large.
(c) shows the precomputed outliers (in red). (d) shows the resultof
robust projection with precomputed outliers.

precisely, in order to project a new image ontok basis im-
ages, we use a RANSAC approach wherek pixels are sam-
pled randomly andk coefficients are computed. The number
of pixels that lie within a threshold of the original pixel val-
ues in the reconstruction obtained using thesek coefficients
are counted asinliers. Finally, the sample with the largest
number of inliers is chosen and the estimate of coefficients
is refined using all the inliers. Again, we first reconstruct
the green channel, and then reconstruct red and blue chan-
nels from it (as explained in Section 4.2). The reconstruc-
tion constructed from the basis using these robustly com-
puted coefficients will be free of occluders. Some results are
shown in Figure 13.

Using the color information, we can also compute out-
liers. Assuming we havefred(x) computed for the scene
(from the set of images used to compute the basis), given
a new image, we can computegred(i) using Equation 21.
With this information, one can mark pixels where|Iredi (x)−
fred(x)gred(i)Igreeni (x)| (and a similar expression for the
blue channel) is beyond a certain threshold as outliers. Fig-
ure 14 shows an example.

5 Conclusion

In this paper, we made the following theoretical contribu-
tions.

– A simple factorization framework for analyzing dimen-
sionality of image collections.

– New upper bounds on the number of basis images, al-
lowing for variable illumination direction and spectra,
viewpoint, BRDFs, and convolution effects (e.g., blur).
As in prior work, we assume distant viewers, distant il-
lumination and ignore cast shadows. The results are mo-
tivated by models of shape (particularly for man-made
scenes), BRDFs, and light spectra that approximate real
world scenes.

– Bounds that take into account the illumination spectrum.
Prior low-rank results for Lambertian scenes Shashua
(1992); Belhumeur and Kriegman (1998); Basri and Ja-
cobs (2003); Ramamoorthi and Hanrahan (2001); Ra-
mamoorthi (2002) do not apply under variations in light

spectrum (even if images are grayscale). Hence prior re-
sults are applicable under very controlled conditions.

These results bring the theory much closer to the point
where it applies to uncontrolled, real-world scenes. We also
verified the assumptions and results empirically using the
CUReT BRDF database. Further, we demonstrated the ap-
plication of low-dimensional models to several large photo
collections from the Internet, and showed compelling results
for image reconstruction, view expansion, and occluder re-
moval.

While linear models can represent appearance space of
scenes under a number of different conditions, we would
like to explore how efficient they are in representing the ap-
pearance. For example, linear models do not model specu-
larities very efficiently (a large number of basis images is
required) and linear models augmented with more complex
non linear models may perform better. It would also be in-
teresting to explore other applications of basis texture maps.
Linear combination of basis texture maps provides us with
a parameterized representation of the scene appearance and
one can try to map these parameters onto more interesting
physical parameters like the time of the day, cloudiness, etc.
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