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Abstract Low-rank approximation of image collections (e.gor Singular Value Decomposition (SVD). First exploited in
via PCA) is a popular tool in many areas of computer vi-early work on eigenfaces (Kirby and Sirovich (1990); Turk
sion. Yet, surprisingly little is known justifying the obse and Pentland (1991)), these rank-reduction methods have
vation that images of an object or scene tend to be low dibecome the basis for a broad range of successful applica-
mensional, beyond the special case of Lambertian scendsons in recognition (Pentland et al. (1994); Murase and Na-
This paper considers the question of how many basis imyar (1995)), tracking (Hager and Toyama (1996)), backgro-
ages are needed to span the space of images of a scene und modeling (Oliver et al. (2000)), image-based rendering
der real-world lighting and viewing conditions, allowingrf  (Wang et al. (2001)), BRDF modeling (Hertzmann and Seitz
general BRDFs. We establish new theoretical upper bound2003); Matusik et al. (2003)), compression and other do-
on the number of basis images necessary to represent a wid®ins.

variety of.s.cenes u_nder \_/ery_ general condit_ions, and per- In spite of the wide-spread use of rank-reduction on im-
form empirical studies to justify the.ass.umpuo.ns. We the ges, however, there is little theoretical justificatioat thp-
demonstrate a number of novel applications of linear mOdeIBearance space should be low-rank in general. An excep-

for scene appearance for Internet photo collections. Thescf'On is the case of Lambertian scenes, for which a number

applications include image reconstruction, occluderewean of elegant results exist. Shashua (1992) proved that three

and expanding field of view. Insert your abstract here. Inimages are sufficient to span the full range of images of a

clude keywords, PACS and mathematical subject CIassmca}_'ambertian scene rendered under distant lighting and a fixed

tion numbers as needed. viewpoint, neglecting shadows. Belhumeur and Kriegman

Keywords BRDF - Dimensionality (1998) considered the case of attached shadows, observing
that the valid images lie in a restricted range of 3D subspace
which they called théllumination cone Basri and Jacobs

1 Introduction (2003), and Ramamoorthi and Hanrahan (2001) indepen-
dently showed that the illumination cone is well approxi-

Real world scenes vary in appearance as a function of viewhated withd basis images. Ramamoorthi more recently (Ra-
point, lighting, weather and other effects. What is the =~ Mamoorthi (2002)) improved this bound¥omages, bring-
mensionalityof this appearance space? More specificallying the theory in line with empirical studies on the dimen-
suppose you stacked all photos taken of a particular scerféonality of face images (Epstein et al. (1995)).

as rows in a matrix — what is the rank of that mattix? Very little is known, however, about the dimensionality
It is well known that certain types of image collections of images ofreal-world scenescomposed of real shapes,
tend to be low-rank in practice, and can be spanned USiNBRDFs, and illumination conditions. Consider, for exam-
linear combination of a small number of basis views comple, the images of tourist sites on photo sharing webskes i
puted using tools like Principle Component Analysis (PCA)ilickr.com, which exhibit vast changes in appearance. While
it may seem difficult to prove strong results about such col-
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1 By dimensionality, we refer to linear dimensionality in this pap ~ be well-approximated by a low-rank linear basis (Matusik



et al. (2003)). Similar considerations apply for illumiiwet; 2.1 Four Factorizations of the Image Matrix

for example, studies have shown that the space of daylight

spectra is roughly two- or three-dimensional (Sunkavatie Suppose we are given a setwefpixel images of a scene,

(2008)). Based on these observations, this paper intreducé:, I2, . . ., I, taken under varying illumination conditions.

new theoretical upper bounds on the dimensionality of scen@onsider then xn matrix M obtained by stacking, I, .., I,

appearance (improving on previous results by Belhumeuas rows of the matrix. Each row & is an image, and each

and Kriegman (1998)). While we make a few limiting as- column describes the appearance of a single pixely sag-

sumptions (distant lighting, distant viewer, no cast shegjo der different illumination conditions, referred to as {ive-

interreflections or subsurface scattering), these rebriig  file of the pixel and denoted by, whereP . (i) = I;(x).

the theory to the point where it can capture much of the ex- Consider a factorization d# into the product of two

treme variability in these Internet photo collections.thar,  rank# matrices:

many of the results are still seen to hold empirically evermen — Cpyoi Do, 1)

when these assumptions are violated.
The highlights of this paper include a factorization frameSuch a factorization may be obtained by PCA or SVD, for

work for analyzing dimensionality questions, introduced i instance. We present four different interpretations ohsaic

section 2. Using this framework, we prove new upper boundgactorization, shown in Figure 1.

on the number of basis images, allowing for variable illumi-

nation direction and spectra, viewpoint, BRDFs, and con2.1.1 Basis Images

volution effects (e.g., blur). Importantly, all prior lovenk

results for Lambertian scenes (Shashua (1992); Belhumefnirst, the rows ofD can be interpreted as basis images, de-

and Kriegman (1998): Basri and Jacobs (2003); RamamooRoted byB’, and the rows ofC can be interpreted as co-

thi and Hanrahan (2001); Ramamoorthi (2002)) do not apefficients. This interpretation, shown in Figure 1(a), iseo

ply under variations in light spectrum (even if the imagesmonly used. For instance, in work on eigenfaces Kirby and

are grayscale). We introduce new results that allow the lighSirovich (1990), the eigenvectors obtained from PCA com-

spectrum to vary in certain ways (Section 2.3), greatly roa Prise the basis images (assuming mean subtracted date). Her

ening the scope of application (e.g., to outdoors). In 8acti each imagd; is a linear combination of basis images:

3, we perform experiments on BRDF databases to empiri- k

cally verify some of the assumptions made. Finally in Seci, = Z aia‘B? 2

tion 4, we demonstrate that low rank linear models can be  j=1

used to model the appearance of outdoor scenes in Internet

Photo Collections and conclude by showing a number of in2-1.2 Basis Profiles

teresting applications of low-rank linear models to praofse _ ) S
in computational photography (Section 4.4). Another way to interpret this factorization is that each-col

umn (profile)P; of M can be interpreted as a linear com-
_ bination of columns ofC, with coefficients determined by
2 Rank of the Image Matrix columns ofD, as shown in Figure 1(b). In this interpreta-

_ _ . ~ tion, the columns o€ form basis profiles, denoted B"":
In this section, we present our theoretical results. We first

introduce a new framework to analyze the factorization OtP‘ _ i b BF 3)
images (Section 2.1) which yields new insights and results i~ ’ et T

Section 2.2. Finally, we introduce wavelength (Sectior) 2.3

bringing the theory closer to the real world images capture@.1.3 The Lambertian Case

by cameras.

Throughout the paper, we assume that images are lit biyor Lambertian scenes, neglectiagy shadows, the rank of
distant light sources and observed from distant viewpointsM is 3 Shashua (1992) , and the basis profiles and the basis
We ignore indirect illumination effects like transparenta images assume a special meaning, shown in Figure IXc).
translucent materials, interreflections, cast shadowsabd is a3 x n matrix, where thegj*” column of D encodes the
surface scattering. Our theory does account for attachett shnormal times the albedo at th&" pixel in the sceneC is a
ows, however. Initially, we also make the assumption thain x 3 matrix where the'" row encodes the lighting direc-
images are taken from a fixed viewpoint, which we relax intion times the light intensity for th¢" image. Hence, the
Section 2.2.3. Similarly, we begin by considering grayscal basis images represent scene properties (normals and albe-
images captured at a constant illumination spectrum acrosts) and the basis profiles encode illumination properties.
images and talk about more complex and practical cases In particular, each basis profile contains the light intgnsi
Section 2.3. along a coordinate axis for each image.
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Fig. 1: Four interpretations of factorization of image magsicFirst, each image can be expressed as a linear combination affdasis images
(a). Alternatively, the profile of each pixel can be expressed linear combination of a set of basis profiles (b). In the caséd afiebertian scene,
the basis profiles and basis images assume special meaning (cy,Kd)ahows the reflectance map interpretation.

2.1.4 The Reflectance Map Interpretation factorization can also incorporate per pixel albedos if @e d
fine thek! column ofD asa*v,, wherea” is the albedo of

The reflectance map Horn (1986), is defined for an image ahe k" pixel.

a scene with a single BRDF as a functi@fn) that maps Now, observing thaD does not depend oh one can

scene normals to image intensify(in) can be encoded as \rite M = CD whereC contains the reflectance maRs's
an image of a sphere with the same BRDF as the scene agghcked as rows.

taken from the same viewpoint under identical illumination

conditions.
We can alternately defing; (1) using the rendering equa-
tion which under our assumptions, can be written as 2.2 Upper Bound on Rank aff
Li(z) = / o p* (W, w)Li(w) (= - 2") y dw’ (4)  Belhumeur and Kriegman Belhumeur and Kriegman (1998)
10}

proved that, given an arbitrary scene with a single material
and k,, distinct normals, the space of images of the scene
taken from a fixed, distant viewpoint with distant lighting
and no cast shadows éxactlyk,,-dimensional. This result

is the light arriving from direction.’ for imagel,, andi® justifies the use of linear models for real-world scenes. For

is the normal at. The + subscript on the dot product indi- instance, many man-made scenes consist of large planar re-

cates that it is clamped below tboto account for attached gions (such as walls and ground), and therefore contain only
shadows. a small number of distinct normals. Curved surfaces may

Given this, we can defin&; (i) as also be approximated by piecewise planar surfaces.

We first show how an upper bound bf, can be seen
to hold true for a scene with a single BRDF using the re-
flectance map interpretation of the factorization. Note tha
this upper bound is the same as that derived by Belhumeur
wherep” has been replaced by as R; represents a scene gnq Kriegman Belhumeur and Kriegman (1998). However,

with a single BRDF. . we later extend our result under a number of different and
Let us denote bR, the image of the sphere when taken more general settings.

under identical illumination conditions as in imafie Then
we can write

where the integral is over a hemisphere of inward direc
tions w’, w is the viewing direction for point;, p* is the
reflectance function at point (evaluated at’, w), L;(w’)

Ri(@) = | plo! (o) (~55) 5)

From the reflectance map interpretativh= CD, it is
easy to see that onlk,, rows of D will be non-zero when
the number of distinct normals in the scenekjs Hence,
rank(D) < k, , which gives us an upper bound &f,
onrank(M) as well. Belhumeur and Kriegman Belhumeur
and Kriegman (1998) derive the same result but via a differ-
1if A% = 1, @) ent route.

0 otherwise Now consider the more general case where theré are

materials and:,, normals in the scene. In this case, we first
whereD(j, k) represent the value in thg" row andk™  define reflectance maps corresponding to every BRDF for
column ofD, rh; is the normal at thg*" pixel of R; andii*  each image, i.e.,

is the normal at th&'" pixel in the scene. The!" column

of D can be thought of asr@ormal indicator functiornvy,. K,
It often happens that the BRDF is same across the scerer _ Z R,”D, ®)

save for a scaling factor (the albedo). The reflectance map

" =R,"D (6)

whereD is defined as:

DG4 = {

=1



whereD; now encodes the distribution of normals corre-2.2.2 Low-dimensional BRDFs
sponding to thé** material, i.e.,
Certain BRDFs tend to bw-dimensional For example,
D;(j, k) = {Oék if i = 1h; andp® = p; (9) three basis images suffice to span the images of a Lam-
0 otherwise bertian scene captured under different lighting condgjon
. o in the absence of shadows. Formally, we call a BREF
HenceM=3}_,", C;D;, whichimplies thatank(M)<k,kgimensional if the rank of the matri obtained by stack-
More preciselymnk(M)gz;“;1 N(l) where N () is the ing reflectance maps obtained under arbitrary sampling of
number of orientations corresponding to matetigience illumination conditions is always at mo&t. In the presence
we have proven the following: of such materials, the upper bound on dimensionality may

. . . be reduced t@f;l K (i), whereK (i) is the rank of the*"
Theorem 1 Consider a scene with, different BRDFs and grpg. ’

ky distinct normals. Consider the imagég I, ... L, of - \ye ysed the CUReT database for estimating the dimen-
the scene obtained from a fixed distant viewpoint under difz

i 3 o Sionality of each material in the database and found that for
ferent distantilluminationg. s , Ly,,..., Ly,

- Assuming that 49 of the 61 material, the reconstruction error is less than
there are no cast shadows, the rank of the mafrixob- 10% using9 basis vectors (Section 3.1)

tained by stackind, I,..I,, as rows is at most,k,,.

It is also instructive to writdMl = 31, C,D; in the ~ 2.2.3 Varying Viewpoint
form M = CD so that basis images and basis profiles can_ .~ _ ) .
be explicitly defined. This can be done by stack{figside Given images taken from different viewpoints, itis trivial
by side, i.e.C = [C1|C|..|Cy,] and stackingd; one over egtgnd th.e upper boundigk,k, wherek, is the number of
another. Finally, we can remove all zero rows frinand ~ distinct viewpoints. However a much better boundipk,,
corresponding columns froi@ leaving at mosk:, k,, rows holds true if we know the pixel corresponding to a point

s ; . )
in D, which correspond to basis images, and basis profile§ N the scene in every image. This correspondence can be
are the remaining columns &. The columns oD are of found, for instance, if the camera parameters of each image
the formd,, = a*v, wherevy, is a0, 1 vector that can be and the 3D geometry of the scene are known. Using this cor-

thought of as mormal-material indicator function responder;ce, we can rearrange the pixels in each image so
RN :
The result may be modified to accommodate anisotropi1at thez"" pixel in every image corresponds to the same
BRDFs as well. For anisotropic materials, one needs to petrigeN€ Point. We assume that every scene point is seen by
by both theorientationand the normal. Hence, one can de-€VerYy image (We relax this assumption in Section 4.1). We

five the same bound whefe, now refers to the number of 29ain consider the rank of the matii obtained by stack-
distinct orientations times normals in the scene. ing these rearranged images. The argument for Theorem 1

In the following sections, we extend this result to a num-StIII holds, with R;; now defined as:
ber of common scenarios. R , , . ,
Rul®) = [ o' o) L) (-5 o (11)

2

2.2.1 Linear Families of BRDFs . L. . . . )
wherew; is the viewing direction for image
While the world is composed of diverse materials, it has
been argued Ramamoorthi and Hanrahan (2002); Matusi&.2.4 Filtered Images
et al. (2003) that the space of BRDFs is low dimensional. We
also verify this by conducting experiments on the CUReTMany real-world images are blurry due to camera shake, or

Dana et al. (1999) database of BRDFs (Section 3.2). have been otherwise fiItereq (e.g.,.software sharpening). W
ThUS, we now genera“ze to the case Whﬁnis con- extend the above result to filtered Images.
tained in the linear span ofp1, pa,...,pk,}, i.€., p* = Consider the family of images obtained by convolving
) 3 ) P ) 7

imagel(z, y) by an arbitraryk’ x K kernelF. Each resulting
image can be expressediasay (7, y) = iy Y1 F(i, j)I(z—
i,y — 7). Since the space of each of the shifted imakjes-
i,y — j) is at most rank:, k,,, it follows that the space of all
(10)  filtered images of the scene is at most ratikk .

An important special case is the family of radially sym-
Hence the upper bound &f,k,, still holds, i.e., the rank is metricfilters (e.qg., blur, sharpen). These filters can baspa
bounded by the dimensionality of BRDF family times the by a fewbasis filters(The basis filters are simply circles of
number of normals. varying radii.)

Zlk:"lcl(m)pl. In this case]; can be represented as a sum
of matrix products];” = Zfﬁl R; " D,, where

a®c(z) if A% = my
0 otherwise

Dy(j, k) = {



Suppose that the family of filters we are concerned with (13)
can be spanned by; basis filters. Consider convolving each . _ . . _
of the k,k,, basis images with each of tlg basis filters to Again, we can writdVl = >°,* , 5,7, C Dy, by stacking
yield k¢k,k, images. Any filtered image can then be ex-UP theRi,'s,. Itfollows thatrank(M) < kpknka.

pressed as a linear combination of these filtered basis im- More generally, the albedos in a scene (as a function of
ages. Hence, the bound reduces té, k... wavelength) may be spanned by basis albedos. It can be

Note that it also takes into account images of differenﬁhown in a fashion similar to Section 2.2.1 that the bound of

sizes. To see this, one can assume that all different sizeh<nka €xtends to this case as well.

images of the scene have been obtained by subsampling an

appropriately blurred high resolution image of some fixed2.3.2 Light Sources with Constant Spectra

resolution. Even though we are applying different blur ker-

nels to these images, the blurred images lie on a linear sulBelhumeur and Kriegman Belhumeur and Kriegman (1998)

space. Subsampling them to some common lower resolutigshowed thatimages of a Lambertian scene lit by light sources

will also result in a linear subspace. of identical spectra can be spanned by three basis images in
the absence of shadows. We do a similar analysis in a more

) general setting.
2.3 Light Spectra Assume that (1) BRDFs do not depend br{save for

. a scale factor, the albedo), (2) all light sources within and
Up until now, we assumed that all measurements are dorf

el | h of liah d that th cross images have the same spectra (but with varying in-
at a particular wavelength of light, and that the spectrum o ensity and direction), and (3) all images are captured by

light is constant over all imageg. We now consider the CaSyentical sensors with spectral responsa). Under these
when the camera sensors and light spectra vary between 'rgésumptions, the bound bfk,, can be seen to hold true.

ages. Surprisingly, in general, the appearance spacerof a si Under assumption (2), we can write(«, \) ask (\) L (o)
ple Lambertian scene with a single infinite plane can hav%nd hence ’ ’ !
unbounded dimension, even for grayscale images. That IS '
because albedos, which were before treated as fixed scalars
for every pixel, are now functions of wavelength, allowing " o L n aT ,
the scene to have arbitrary appearance for different wavdi (% A) = K(}) /Q a®(A)p* (' w)Li(w) (~w' A ) dw
lengths. In the general case, using a linear response model, (14)
we have that

We can writel; (z, \) = K(\) Y., a,,(i)B, (x, \) by
Li(x) = /51‘()‘)11'(% A)dA (12) invoking the basis<imag)]e repgeigtjéﬁiojn f(o)r th]g (expr)es'ssion
the integral (Theorem 1), where the number of basis images
B§,€’s is at mostk,k,,. Note that the coefficients do not de-
gend on\ as wavelength dependent albedos are encoded in
Re basis images. Substituting into Eq. (12), we get

wheres; () is the spectral response of the serisondl; (x, \)
is the intensity of light of wavelength arriving at the sen-
sor. We begin by analyzing the general case, then discu
results for some common special cases.

2.3.1 The General Case Li(z) = Zkajk(i)/S(A)K()‘)B;k(x’ A)dA (15)

Consider the matrid obtained by stacking imagés, Io, . ..
captured by arbitrary sensors. We claim that the ranklof
is bounded byt k. k., wherek,, is the number of distinct

albedqs In the scene. . _ can also be spanned by at mégk,, basis images.
This result can again be derived from the reflectance map : . : -
At first, these assumptions might appear too restrictive.

interpretation. We define a reflectance map corresponding \R/ . .
. . ) .2 We tested assumption (a) using the CUReT database and
every pair of albedo and BRDF in the scene, with the inci- P (@) g

: . . found strong support for it (Section 3.3). If albedos and-cam
dence of normals encoded in tRematrix. More precisely, .
T k k T . . era spectral responses are unconstrained, the scene neay hav
L' =522, R}, Dn whereR;;, is the image of a

! . an unbounded rank. However, if the camera responses are
sphere with BRDFp; and albeday;, captured under iden- . . . . esp
S S . similar, assumption (c) is a reasonable approximationeOth
tical illumination conditions and by the same sensoias

and assumptions may be relaxed by extending the result. For in-
stance, consider the case where a scene is litpyight

. 1if A% = 1, anda” = a;, andp® = p; sources, each with its own spectrum that stays constargscro

Du(j: k) = {0 otherwise all images. This can model outdoor illumination, which is

Lhich implies thatl,(z) = 2., a;(i)B'., (x) where the
new basis images are obtained by integrating oveie.,
B’§k,(az) = [s(A\)K (MBI, (z,\)d\. Hence, these images



often approximated as a combination of sunlight and skyhow filtered images can be handled in our theory. Finally,

light, each with its own spectrum Sunkavalli et al. (2008).we introduced wavelength in Section 2.3. While in the most

Here, the bound can be seen tokhé,, &, by writing the il-  general case, the theoretical bound can shown fg bgk..,

lumination in thei*” image in the fomEf;l K;(\)Lj;(w', M), the bound ofk,k,, holds under certain assumptions.
Similarly, consider the case whéfi(\) varies from im-

age to image but lies in a linear subspace of dimensjon

For illumination in outdoor scenes, the spectra is well ap3 Experiments on BRDF Databases

proximated by a two or three-dimensional subspace Surlkaval

et al. (2008). The bound can be shown tokh&, k., in this  To empirically validate the assumptions introduced in Sec-

case, by writingi;(\) = Zf;l () Ki(N). tion 2, we performed experiments on BRDF databases to as-
certain the range of materials present in real world images.
2.3.3 RGB Images We looked at two different databases of BRDFs —the MERL

BRDF database Matusik et al. (2003) which h&se differ-
Images captured by conventional cameras contain three colent materials, and the CUReT database Dana et al. (1999),
channels. Consider RGB imagés I, . ..,1,,, where we which has61 different materials. CUReT is more represen-
concatenate the channels together. Assume that each chéaative of real world materials (e.g., paper, grass, clott) e
nel is captured by a separate sensor that is identical acroghereas MERL is restricted to machined and painted spheres.

all images, Since our goal is to understand the dimensionality of real-
world scenes, we chose to focus on CUReT. Also, the preva-
I§(z) = /SC(A)Ii (2, \)dA (16) lence of specularities in MERL in combination with high dy-

namic range (HDR) capture, makes approximating through
Consider the matri®¢ obtained by stacking channelf  linear models much more difficult, as the highlights alone
allimages. Under the assumptions of Section 2.3.2, we kno@apture the vast majority of image energy. We found, how-
that the rank of this matrix is bounded byk,, and it can be ~ever, that converting the images to a standabit-per-channel

written asM¢ = CD* (the coefficients are embedded in the dynamic range (LDR) (and clamping highlightsXgh) yields
matrix C while the basis imag$'§k are stacked up ilD).  a reasonable fit for MERL database (See Figure 2). We use
BecauseC does not depend on (From Eq. (15), we can the relative RMS error (here, and in all the subsequent re-
see thats.()\) is encoded in the basis images, iB%), the  sults) to gauge the accuracy of the fit, and is measured as
rank of the matrixM obtained by concatenating the chan-RMS value of the error divided by the RMS value of the
nels and stacking them is also boundediby,, (we can original data. Here, to convert HDR images to LDR images,
write [M'|M?|M?] = C[D!|D?|D3)). we quantized the range of each image so @8t of the

In fact, we can go further and show that profiles cor-pixels fall in the range0, 255] and clamped the pixels out-
responding to a particular pixel are identical across charside this range t@55. These results imply that even for this
nels save for a scaling factor, i.e., there exists:) for each dataset, linear models work reasonably well for real world
channel such thaP¢ /k.(z) is same for allke. This can be LDRimages. CUReT database is used for the results in the
seen by substituting fdF;(z, A) from Eq. (14) in Eq. (16) following sections.
and writing:

PE(i) = k.(z) /Q PP W) Li(W)(—' 2 ) de’  (17) 3.1 Appearance Space of each Material

where We first analyze how many basis images are required to span
the appearance space of each material. For every material, a
hundred50 x 50 images of a sphere of that material were
ke(x) = /SC(A)K()\)aI(A)dA (18)  rendered. Each image was lit by a distant directional white
light whose direction was randomly chosen (uniformly dis-
tributed over the front facing hemisphere). The rendered im
2.4 Summary ages were reduced to grayscale and SVD was used to com-
pute the basis images corresponding to each material. The
We started by proving an upper boundigf,, in Theorem  green (middle) curve in Figure 3 shows the fallrefative
1 and then showed that the same bound holds for imagd3MS erroras the number of basis images used to model the
taken from different viewpoints and for linear families of appearance are increased. The curve is averaged owr all
BRDFs. In Section 2.2.2, we showed that certain BRDFs almaterials for CUReT. From the graph, we can see that the
low the bound to be lowered. In Section 2.2.4, it was showrerror falls to less thaih0% after only6 basis images.
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—#— MERL (LDR)

0.9

Fig. 5: The top row shows the first simiversal basismages computed

by performing a SVD over all sphere images rendered using material
in the CUReT database. Five of the six are remarkably similar to the
5 basis images used by Ramamoorthi Ramamoorthi (2002) to span the
appearance space of a Lambertian sphere (bottom row).

Relative RMS Reconstruction Error

error refers to the error in reconstructing the original BRD
0 s 10 15 20 25 0 and not the rendered images.
Number of Basis Vectors We also run SVD oveall 6100 sphere imagesendered
in the previous section6{ materials,100 images per ma-
Fig. 2: Reconstruction Error vs Number of basis images for HDR and[erial) to calculateuniversal basis imageand measure the

LDR images rendered using materials in the MERL database. A hun- . .
dreds0 x 50 images of a sphere of each material were rendered undd€construction error versus the number of basis images (The

different illumination conditions. Basis images were computsiigr ~ Pink (top) curve in Figure 3). The curve is marginally above
this collection of all10,000 images {00 materials, 100 images per the curve obtained by calculating a separate basis for each

material). material indicating that the same basis can be shared across
a large number of materials.
1 Reconstruction accuracy of each material is shown in
| ‘ _ ‘ Figure 4 (Materials are sorted according to the reconstruc-
0.9 —%— Separate basis for each material . . . . . ..
tion accuracy using six basis images). The firstigikver-
08r —©— Universal basis for all materials | sal basisimages are shown in the top row of Figure 5, five
0.71 —+— Basis BRDFs ; of which are very similar to the basis images used by Ra-

mamoorthi Ramamoorthi (2002) to span the appearance of
a Lambertian sphere. These results show that the Lambertian
basis augmented with one additional basis gives an average
reconstruction accuracy &% for the CUReT database.
Some example reconstructions are shown in Figure 6. This
result is remarkable as it suggests that the non-Lambertian
component is relatively insignificant for a wide range ofirea
world materials.

Relative RMS Reconstruction Error

0 5 10 15 20 25 30
Number of Basis Vectors

3.3 BRDF across Color Channels

Fig. 3: The fall in relative RMS error vs number of basis vectors
CUReT database. We also test the assumption made in Section 2.3.2, i.e., the

BRDF of a material does not depend on wavelength. For

each material, we consider ti3ex N matrix obtained by
3.2 Appearance Space of all Materials stacking the BRDFs of th& channels, wheré' is the num-

ber of samples in each BRDF for each channel. The mean
In Section 2.2.1, we showed that the upper bound on the dratio of first singular value to the second singular value was
mensionality is reduced in case the BRDFs in a scene afeund to be49.61 with a minimum of4.55, indicating that
contained in a low dimensional linear subspace. To gaug®r almost every material, the matrix is close to ran&nd
the range of materials present in the CUReT database, weence the BRDFs can be approximated as being the same
computedbasis BRDFdtreating each BRDF as a vector). across color channels save for a scaling factor.
The BRDFs corresponding to the three color channels were It is true that the CUReT database contains samples of
concatenated to form a single large vector. The blue (botreal world materials and it does not have many specular
tom) curve in Figure 3 shows the reconstruction error vsnaterials. With specular BRDFs, it is often the case that
number of basis BRDFs. Note that here the reconstructiothe Lambertian part of the BRDF is responsible for the the
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Fig. 4: Reconstruction accuracy achieved for each materiglerCUReT database using2, 3, 6, 10,20 and 30 basis images respectively. The
basis was computed using the set of all images of all materialsgisaivbasis). The first six basis images can be seen in Figure 5. Theafsater
have been sorted according to the reconstruction accuraqy sigibasis images. Best seen in color.

color of the object while the specular lobe has a much wide# Linear Modeling of Internet Photo Collections

spread across different wavelengths. However, the theory

can still explain it by treating the BRDF as a linear com- ) ) )

bination of a specular and a Lambertian BRDF and they ar&N€ results in Section 2 show that linear models well ap-

then allowed to scale independently with wavelength. proximate a broad range of real world images. Much of the
previous application of linear models has been to images

captured in the lab under controlled conditions. Here, we
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was learnt from images of all the materials. The reconstructmmisvisually similar (except for smoothing of highlight in some cgsadicating
that the same basis may be shared across multiple materials.

apply linear models to the more challenging case of photoEinally in Section 4.4, we demonstrate a couple of novel ap-
of popular locations downloaded from photo sharing web+plications of these linear models.

sites. The difficulties here stem from the wide variation in
the scene appearance. Moreover, the images are captured HS]:

ing many different cameras and viewpoints. Basis Computation

Because the input photos are taken from different viewggint
The organization of this section is as follows. In Sec-we first find pixel correspondences. We use the Structure
tion 4.1, we give an overview of how we compute the lin-from Motion (SfM) system of Snavely et al. Snavely et al.
ear model and what representation we use. In Section 4.22006) to recover the camera parameters. The 3D recon-
we describe in detail how we process the three channels struction uses the multi view stereo method of Goesele et
color images and what assumptions we make. In Section 4.3). Goesele et al. (2007). The 3D models are simplified us-
we give quantitative and qualitative evaluation of the lissu ing gslim Garland and Heckbert (1997) to a mesh with



channel, Pz can be written aPred = fred(g)pgreen
where

k'green (.13)
k'r‘ed (.’E)

With kycq(x) andkg,.., (x) defined by Eq. 18. However, In-
ternet photos are not captured by identical cameras and the
spectrum of light is also different for different photosr(fo
Fig. 7: The image on the left is the original image. The middle im-j,qtance, the spectrum of sunlight in the evening is very dif
age shows the reconstruction obtained usitgsis images when pro- . .
cessing the color channels independently. Notice the false gote-  [€rént from the spectrum at noon). We give a more rigorous
gions of shadow or incorrect geometry (for instance, the domistee ~ argument later, but intuitively, the combined effect ofgbe
columns above the rose window). The figure on the right is therrec  two factors (camera and light spectra) can be thought of as
struction obtained by the described approach. individual scaling applied to the entire channels of an imjag
i.e., Pred(;) = gred(q) fred(z)Pereen (i) whereg e?(i) is

300,000 faces. We use a simple representation where wi€ Scaling applied to the red channel of teimage and
associate a color corresponding to each mesh vertex. Infi€Pends upon the camera Sensor and the light spectrum of
ages in this representation (which can be thought of as 1t particular imagef”“(z) can be thought of as a mea-
texture map), can be treated in a fashion similar to image§ure of th(_e red color of the pixel (relative to the green chan-
taken from a fixed viewpoint with mesh vertices assuming'®! ©f the image).

X R K H red H red
the role of pixels. However, a single image covers only apart  NOW. if we can recovey” for all images andf"* for
of the scene, i.e., there is missing data in each texture maf!! PXels, then we can recover the red channel of any image

To compute basis vectors with missing data, we use the EMIVEN the reconstruction of the green channel. We found that
based method of Srebro and Jaakkola Srebro and Jaakkd fO_IIOWL':g smpl: dmethod works well in practice for re-
(2003) to compute SVD. However, the algorithm was found*©V€"Ngg"" anf!{ “¢. We assume that theerde exists a dom-
to be sensitive to initialization when the amount of missing"ant value ofg () across images, sayg, . Note that
data is large. We use the method of Roweis Roweis (199 ed(j) depends on the interaction of the camera sensor and
which fills the missing data using EM based sensible pcath€ illumination. So, this assumption translates to sajfiag
to initialize. a large number of photos are taken by similar cameras under
Internet photo collections are often dominated by peopld9hting conditions with similar spectra. This is plaugitzis
and other occluders who block the background scene. As o€ SPectrum of natural illumination for a given scene re-
focus is modeling the scene and not the people, we start Hpalns largely constant for a large part of the day. A|S(?, one
manually identifying clean occluder-free images from viahic can safely assume that a large number of cameras will have
we compute a clean basis. We will show later how to handi§iMilar response curve. Hence, we can recqvef () by
occlusions in other images using this basis in Section 4.4.2

fred(a) = (19)

Pred -
redogish = median: ( 5eons (20)
4.2 Processing Color Images o _ _
where the median is taken ovigi.e, along the profile. Once,

We cannot directly apply the ideas in Section 2.3.3 to thes&e have recovered™(x) (up to the factog:%,), one can
color images as the assumption of identical spectra and idef!SO recovey” (i) by
tical sensors does not hold for Internet photo collections.
One option is to process each color channel independentlé/md(i) _ 1red ()
and compute a separate basis for each channel. The selected.;— = median, ( —— — —eveem ) (21)
. ; dom f (x)gdomIi ()

clean set still has some outliers (e.g. cast shadows) and pro
cessing the three channels independently prodwgebow  where now the median is taken ovegri.e., over the pixels of
artifacts shown in Figure 7 due to inconsistent fits betweeimage:. The blue channel can also be processed similarly.
color channels. Instead, we make some simplifying assump- Figure 8 shows the relative RMS error in reconstructions
tions that allow us to reconstruct the other channels giveof the three color channels for the Notre Dame and Arc De
the reconstruction of one. Hence, we choose to process onfiriomphe datasets where the basis was only computed for
the green channel of these images. the green channel and the other channels were reconstructed

First, under the assumptions made in Section 2.3.2 andsing the method outlined above. The curves corresponding
2.3.3, the profile of a pixet corresponding to, say the red to the red and blue channels are seen to be only marginally




11

Reconstruction Error in color channels for Notre Dame Reconstruction Error in color channels for Arc De Triomphe
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Fig. 8: Relative RMS error in red, blue and green channelghf@Notre Dame and Arc De Triomphe datasets. The blue and redscamsenly
marginally above the green curve indicating that the acgusahieved in the reconstruction of the red and blue channtiéoglescribed approach
is similar to the accuracy in the green channel (via SVD).

above the green channel curve, supporting the case of o@athedral 228 images), and the Moor2§9 images). An im-
approximation. age from each of these datasets is shown in the first column
Let us now formally see under what physical conditionsof Figure 9. The Moon presents an interesting case due to
the above intuition is correct. We still make the assumptiorits retro-reflective BRDF. We are able to register the Moon
that in aparticular image, the spectrum of light is the same images using SfM (There exists sufficient parallax for SfM
for all light sources, which allows us to write;(w’, \) as  to work Kaula and Baxa (1973)) and then fit a sphere to the
K*(\)L.(w") (the illumination can still vary across images). 3D points obtained.
Even though illumination in outdoor scenes is often mod-  All images were gamma corrected assuming= 2.2.
eled using two distinct light sources — sunlight and skyligh As was mentioned in Section 4.1, we use a manually se-
which have different spectra, one can assume that one &dcted clean set of images for computing the basis. Also, as
them dominates, i.e., the intensity of one is much strongedescribed in Section 4.2, we only need to compute the basis
than the other. E.g., sunlight will dominate on a clear sunnyor a single color channel and rest of the color channels can
day while skylight will dominate on an overcast day. Repeatbe reconstructed from that. We used the green channel of
ing the analysis of Section 2.3.2 (where we now h&V¢)\)  the images to compute a basis for each dataset. We observed

instead of K())), it can be seen thd$ (i)/k., (x,i) =  that the reconstructions look reasonably good visuallyeve

PS$2(i)/ke, (z,4), where with three or four basis vectors. With ten basis vectors,esom
of the finer details such as specularities and self shadowing

ke, (,1) = /Scz (MK (N)a®(N)dX (22) are also modeled well (we use a basis of size ten to gener-

ate results in Section 4.4). There is little visual improegm
i.e., k., depends oni as well, unlike in Equation (18). We in the reconstructions aftel) bases though the numerical

want to be able to write the above integral in the fgftn(z)g< (;§TOr continues to fall, but the numerical error stay$2#%

An assumption under which this holds true is when the albe€ven for30 basis vectors. Figure 11 shows the fall of rela-
dos remain constant over the range\afver which the sup- tive RMS error vs the number of basis images (for the green
port of spectral responses varies and hence can be taken &f@nnel of images). This error can be explained by the fact
of the integral. This essentially translates to saying that that even thecleanset of images have a lot of noise. E.g.,
support of the spectral response of, say the red sensas, stdyalf Dome’s view is almost always partially occluded by

in a small neighborhood of a particular wavelength acros§€es.
different cameras. Figure 9 shows an example image from these datasets

and the corresponding reconstruction 108, 5, 10 and 20

basis vectors respectively. The top row (Notre Dame), shows
4.3 Evaluation that it becomes possible to model the appearance of night

scenes using a larger basis. While such scenes violate our
We present results ghdatasets: Notre Dame CathedilZ  assumptions of distant lighting, as the night-time illuayin
images), Statue of Liberty3{8 images), Arc De Triomphe tion consists of light sources placed close to the scene, the
(268 images), Half Dome, Yosemite9q images) Orvieto configuration of light sources is fixed across all night im-
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Input Image 1 Basis 3 Bases 5 Bases 10 Bases 20 Bases

Fig. 9: Internet datasets and reconstructions. The first colunmsssan image from the dataset. The following columns show cornekpg
reconstructions using, 3, 5, 10 and20 basis images
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¥
Basis 1 Basis 2 Basis 3 Basis 4 Basis 5

Fig. 10: First 5 basis images for Orvieto. Basis 1 resembles the Baaes 2 and 3 model shading, and Bases 4 and 5 specularities.

ages and hence can be modeled by a single additional bas Relative RMS Ettar vs Number of Basis Vectors
. . . 04r

The results in the second and third rows (Statue of Libert ' e Molre Dame
and Arc De Triomphe) demonstrate that it is possible to ap 0351 —*—#re De Triomphe

roximate cast shadows using a larger basis even though t ¥ Statue of ety
p i g g . g 03k —H— Half Dome
shadow boundaries appear blurry in the reconstruction. Th —+— Orviet Cathedral
linear model does not work well for the Half Dome dataset '

(the fourth row), as there are drastic appearance chang
(such as seasonal snow). An image of Orvieto Cathedra
whose facade is highly specular, is approximated in the fiftt
row. Figure 10 shows the fir§tbasis images. While the first
basis image simply looks like the mean image, the secon
and the third model diffuse shading. The fourth and fifth
bases seem to model view dependent effects (highlights 0 . ‘ .
Note that the facade of the cathedral is planar and under tt ’ ’ " ot et e *
assumptions of distant viewer and distant lighting, thecspe
ular highlight should ideally cover the whole facade. Therig. 11: Relative RMS Error vs number of basis images for differe
presence of specular highlights only on a portion of the fadatasets with a clean set of manually selected images. Even thueigh t
cade implies that the viewer is close to the scene which j&construction error is aroun2% (due to noise, occluders, etc.) for

. . . . . most datasets even witld basis images, reconstructions with omty
a V|olat|orj of.our assumption of.dlstant viewer. But as Was,aqis images look visually similar.
the case in night scenes, a particular configuration of near-
viewpoint and the lighting direction can be modeled by a
single additional basis image. For the Moon in the last row,
the appearance is modeled well using the first basis, while
subsequent bases explain the shadows antkittere at the
terminatorKoenderink and Pont (2002).

Relative RMS Error

4.4 Applications

We no how a few novel and interesting apolications o ig. 12: View Expansion: The left image in each pair shows thetinp
W show W nov I stng applicatons image with limited viewing area. The right image shows the recon-

linear scene appearance modeling. For all the results showgucted image with an expanded field of view.
in the paper, we empirically chose a basis of dige

der similar illumination conditions. The results of thigwi

4.4.1 View Expansion expansion approach are shown in Figure 12.

As was mentioned in section 4.1, a single image might cover

only a part of the scene. However, since the basis comput.4.2 Occluder Removal

tation method can interpolate missing data, the derived ba-

sis images (and hence the reconstructions) cover the entif&@iven a basis, we can solve for the coefficients given a new
scene allowing us to hallucinate how the parts of the scenémage. We choose a projection approach that is robust to out-
not visible in the original image, would have appeared uniiers in the image. This allows us to handle occluders. More
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Fig. 13: Occluder removal, where the occluder is removed aaddtene behind is rendered under the same illumination corslitypmobustly
solving for basis image coefficients. In each pair, the left imaghe input image while the right image shows the correspondicmnstruction
with the occluder removed.
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spectrum (even if images are grayscale). Hence prior re-
sults are applicable under very controlled conditions.

These results bring the theory much closer to the point
where it applies to uncontrolled, real-world scenes. We als
verified the assumptions and results empirically using the
CUReT BRDF database. Further, we demonstrated the ap-
Fig. 14: (a) shows the input image. (b) shows the result of robust pr Plication of low-dimensional models to several large photo
jection. It does not work well as the number of outlier pixeddarge.  collections from the Internet, and showed compelling tssul
(c) shows the precomputed outliers (in red). (d) shows the reult for image reconstruction, view expansion, and occluder re-
robust projection with precomputed outliers. moval.

While linear models can represent appearance space of
precisely, in order to project a new image oitbasis im-  scenes under a number of different conditions, we would
ages, we use a RANSAC approach whengixels are sam- like to explore how efficient they are in representing the ap-
pled randomly and coefficients are computed. The number pearance. For example, linear models do not model specu-
of pixels that lie within a threshold of the original pixellva larities very efficiently (a large number of basis images is
ues in the reconstruction obtained using theseefficients  required) and linear models augmented with more complex
are counted asliers. Finally, the sample with the largest non linear models may perform better. It would also be in-
number of inliers is chosen and the estimate of coefficientgeresting to explore other applications of basis texturpsna
is refined using all the inliers. Again, we first reconstructLinear combination of basis texture maps provides us with
the green channel, and then reconstruct red and blue chasparameterized representation of the scene appearance and
nels from it (as explained in Section 4.2). The reconstrucene can try to map these parameters onto more interesting
tion constructed from the basis using these robustly comphysical parameters like the time of the day, cloudiness, et
puted coefficients will be free of occluders. Some results ar
shown in Figure 13. Acknowledgements We wish to thank Ryan Kaminsky for his invalu-

Using the color information, we can also compute out-able help with this project. This work was supported in partNa¢
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