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The organization of the material is as follows. In Section 1, some additional results of occluder
removal are shown. Some example reconstructions for Internet photo collections are shown in
Section 2. Experiments on BRDF databases are discussed in Section 3. The approach we took for
processing color images is described in Section 4.

1 Occluder Removal Results

Figures 1 and 2 show some additional results.

Figure 1: Occluder Removal Results
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Figure 2: Occluder Removal Results

2 Reconstruction of Internet Photo Collections

Some example reconstructions with varying number of basis images are shown in Figure 3.
Figure 4 shows the fall of relative RMS error vs the number of basis images (for the green

channel of images). The relative RMS error is measured as the RMS error divided by the RMS
value of all images in a dataset.

As was mentioned in the paper, there exists sufficient parallax in the images of Moon for Struc-
ture from motion to be able to register the photos. Figure 5 shows a video of the reconstruction.

3 Experiments on CUReT BRDF Database

We performed experiments on BRDF databases to ascertain the range of materials present in real
world images. We looked at two different databases of BRDFs – MERL BRDF database [2] which
has 100 different materials, and CUReT database [1], which has 61 different materials. CUReT
is more representative of real world materials (e.g., paper, grass, cloth, etc.) whereas MERL is
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Figure 3: Left: An image from the dataset. Right: Corresponding reconstructions using 1, 3, 5, 10
and 20 basis images
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Figure 4: Relative RMS Error vs number of basis images. Even though the reconstruction er-
ror is around 12% (due to noise, occluders, etc.) for most datasets even with 30 basis images,
reconstructions with only 10 basis images look visually similar.

(Loading Movie..)

Figure 5: A video showing point cloud corresponding to the reconstruction from the moon images.
Click to play. The video file is also provided separately in the directory if you have trouble playing.
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Figure 6: Reconstruction Error vs Number of basis images for HDR and LDR images rendered
using materials in the MERL database. A hundred 50×50 images of a sphere of each material were
rendered under different illumination conditions. Basis images were computed using this collection
of all 100× 100 images. The relative RMS error was measured as the ratio of the RMS error to the
RMS of rendered images. The LDR image curve is seen to be much lower, indicating that much of
the error in the HDR curve is due to sharp specularities.

restricted to machined and painted spheres. Since our goal is to understand the dimensionality of
real-world scenes, we chose to focus on CUReT.

Second, the prevalence of specularities in MERL in combination with high dynamic range
capture, makes approximating through linear models much more difficult, as the highlights alone
capture vast majority of image energy. We found, however, that converting the images to a standard
8-bit-per-channel dynamic range (and clamping highlights to 255) yields a reasonable fit (See Figure
6). Here, to convert HDR images to LDR images, we quantized the range of each image so that
90% of the pixels fall in the range [0, 255] and clamped the pixels outside this range to 255.

CUReT database is used for the results in the following sections.

3.1 Appearance Space of each Material

We first analyze how many basis images are required to span the appearance space of each material.
For every material, a hundred 50 × 50 images of a sphere were rendered. Each image was lit by
a distant directional white light whose direction was randomly chosen (uniformly distributed over
the front facing hemisphere). The rendered images were reduced to grayscale and SVD was used
to compute the basis images corresponding to each material. The green (middle) curve in Figure 7
shows the fall of relative RMS error as the number of basis images used to model the appearance
are increased. The curve is averaged over all 61 materials for CUReT. From the graph, we can see
that the error falls to less than 10% after only 6 basis images.
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Figure 7: The fall in relative RMS error vs number of basis vectors. Three curves are shown. First,
where a separate basis was computed for each material (The curve shown is averaged over all 61
materials) . Note that reconstruction error is less than 10% with only 6 basis images. Second, the
case where a universal basis was computed for all images of all materials. Note that this curve is
only slightly above the first curve indicating that the space of all materials can be spanned by a
small basis. The last curve corresponds to the case where every BRDF was treated as a vector and
basis BRDFs were computed. It is lower than the curve corresponding to universal basis as all the
specularities are at the same location for all BRDF vectors while the location of the specularities
in the rendered images depend on the scene geometry and position of the light sources.
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3.2 Appearance Space of all Materials

It was shown in Section 2.2.1 of the paper that the upper bound on the dimensionality is reduced in
case the BRDFs in a scene are contained in a low dimensional linear subspace. To gauge the range
of materials present in the CUReT database, we computed basis BRDFs (treating each BRDF as a
vector). The BRDFs corresponding to the three color channels were concatenated to form a single
large vector. The blue (bottom) curve in Figure 7 shows the reconstruction error vs number of
basis BRDFs.

We also run SVD over all sphere images rendered in the previous section to calculate universal

basis images and measure the reconstruction error versus the number of basis images (The pink
(top) curve in Figure 7). The curve is marginally above the curve obtained by calculating a
separate basis for each material indicating that the same basis can be shared across a large number
of materials.

Reconstruction accuracy of each material is shown in figure 8. The first six universal basis

images are shown in Figure 9, five of which are very similar to the basis images used by Ramamoorthi
[3] to span the appearance of a Lambertian sphere.

Some example reconstructions are shown in Figure 10.

3.3 BRDF across Color Channels

We also test the assumption made in Section 2.3.2 of the paper i.e BRDF of a material does not
depend on wavelength. For each material, we consider the 3 × N matrix obtained by stacking
the BRDFs of the 3 channels, where N is the number of samples in each BRDF for each channel.
The mean ratio of first singular value to the second singular value was found to be 49.61 with a
minimum of 4.55, indicating that for almost every material, the matrix is close to rank 1 and hence
the BRDFs can be approximated as being the same across color channels save for a scaling factor.

4 Processing Color Images for Internet Photo Collections

A naive method to process color images is to treat every channel independently. However, this does
not perform well for photo collections as even the handpicked set of clean images contains outliers
(e.g. cast shadows) that can produce artifacts (Figure 11).

First, assume that the assumptions made in Section 2.3.2 and 2.3.3 of the paper hold and
hence the profile of a pixel x corresponding to, say the red channel, P

red
x can be written as P

red
x =

f red(x)Pgreen
x where f red(x) depends on kred(x) and kgreen(x) defined by Equation 18 in the paper.

However, Internet photos are not captured by identical cameras and the spectrum of light is also
different for different photos (Spectrum in the evening is very different from the spectrum during
the day). Intuitively, the combined effect of these two factors can be thought of as individual scaling
applied to the channels of a particular image, i.e., P

red
x (i) = gred(i)f red(x)Pgreen

x (i) where gred(i)
is the scaling applied to the red channel of the ith image. f red(x) can be thought of as a measure
of the red color of the pixel (The measurements are relative to the green channel of the image).

Now, if we can recover gred for all images and f red for all pixels, then by calculating the basis
for just the green channel, we can also recover the red channel. We found that the following simple
method works well in practice. We assume that there exists a dominant value in gred(i), say gred

dom.
Note that gred(i) depends on the interaction of the camera sensor and the illumination. So, this
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Figure 8: Reconstruction accuracy achieved for each material in the CUReT database using
1, 2, 3, 6, 10, 20 and 30 basis images respectively. The basis was computed using the set of all
images of all materials (universal basis). Best seen in color.

8



Figure 9: The top row shows the first six universal basis images computed by performing a SVD over
all sphere images rendered using materials in the CUReT database. Five of the six are remarkably
similar to the 5 basis images used by Ramamoorthi [3] to span the appearance space of a Lambertian
sphere (bottom row), i.e., the Lambertian basis augmented with one additional basis is sufficient to
give a reconstruction accuracy of about 85% on average for the materials in the CUReT database

assumption translates to saying that a large number of photos are taken by similar cameras under
lighting conditions with similar spectra (This is plausible as the spectrum of the light remains the
same for the larger part of the day). Hence, we can recover f red(x) by

f red(x)gred
dom = mediani

(

P
red
x (i)

P
green
x (i)

)

(1)

where the median is being taken over i, i.e, along the profile. Once, we have recovered f red(x), one
can also recover gred(i) by

gred(i)

gred
dom

= medianx

(

I
red
i (x)

f red(x)gred
domI

green
i (x)

)

(2)

where now the median is taken over x i.e. an image. The blue channel can also be processed
similarly.

Figure 4 shows the relative RMS error in three color channels for the Notre Dame and Arc De
Triomphe datasets. The curves corresponding to the red and blue channels are seen to be only
marginally above the green channel curve.

Let us now formally see under what physical conditions is the above intuition correct. We still
make the assumption that in a particular image, the spectrum of light is same for all light sources
which allows us to write Lfi

(ω′, λ) as Ki(λ)L′

fi
(ω′). Even though illumination in outdoor scenes is

often modeled using two distinct light sources – sunlight and skylight which have different spectra,
one can assume that one of them dominates, i.e. the intensity of one is much stronger than the
other. For e.g., sunlight will dominate on a clear sunny day while skylight will dominate on an
overcast day. Repeating the analysis of Section 2.3.2 (where we now have Ki(λ) instead of K(λ)),
it can be seen that P

c1

x (i)/kc1(x, i) = P
c2

x /kc2(x, i). where

kcl
(x, i) =

∫

scl
(λ)Ki(λ)αx(λ)dλ (3)
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Figure 10: Some samples from the CURET BRDF database and corresponding reconstructions
using 1, 3, 5, 10, 20 and 30 basis images. A single basis was learnt from images of all the materials.
The reconstructions look visually similar (except for smoothing of highlight in some cases) indicating
that the same basis may be shared across multiple materials.
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Figure 11: The image on the left is the original image. The middle image shows the reconstruction
obtained using 5 basis images when processing the color channels independently. Notice the false

color in regions of shadow or incorrect geometry. The figure on the right is the reconstruction
obtained by the described approach.
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Figure 12: Relative RMS error in red, blue and green channels for the Notre Dame and Arc De
Triomphe datasets. The blue and red curves are only marginally above the green curve indicating
that the accuracy achieved in the reconstruction of the red and blue channel by the described
approach is similar to the accuracy in the green channel (via SVD).
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Figure 13: The first figure shows the original image. The second shows the result of robust pro-
jection. It does not work well as the number of outlier pixels is large. The third figure shows the
precomputed outliers (in red). The last figure shows the result of robust projection with precom-
puted outliers.

i.e., kcl
depends on i as well unlike Equation 18. We want to be able to write the above integral

in the form f cl(x)gcl(i). One assumption under which this holds true is when the albedos remain
constant over the range of λ over which the support of spectral responses varies and hence can
be taken out of the integral. This essentially translates to saying that the support of the spectral
response of, say the red sensor, stays in a small neighborhood of a particular wavelength across
different cameras where the albedo can be expected to remain constant.

4.1 Precomputing Outliers

The above approach can also be used to precompute outliers when projecting new images onto a
basis. Assuming we have f red(x) computed for the scene (from the set of images used to compute
the basis), given a new image, we can compute gred(i) using Equation 2. With this information,
one can mark pixels where |Iredi (x)− f red(x)gred(i)Igreen

i (x)| (and a similar expression for the blue
channel) is beyond a certain threshold as outliers. Figure 13 shows an example.
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