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Abstract

We present an approach for generating face animations from large
image collections of the same person. Such collections, which we
call photobios, sample the appearance of a person over changes in
pose, facial expression, hairstyle, age, and other variations. By
optimizing the order in which images are displayed and cross-
dissolving between them, we control the motion through face space
and create compelling animations (e.g., render a smooth transition
from frowning to smiling). Used in this context, the cross dissolve
produces a very strong motion effect; a key contribution of the pa-
per is to explain this effect and analyze its operating range. The
approach operates by creating a graph with faces as nodes, and
similarities as edges, and solving for walks and shortest paths on
this graph. The processing pipeline involves face detection, locat-
ing fiducials (eyes/nose/mouth), solving for pose, warping to frontal
views, and image comparison based on Local Binary Patterns. We
demonstrate results on a variety of datasets including time-lapse
photography, personal photo collections, and images of celebrities
downloaded from the Internet. Our approach is the basis for the
Face Movies feature in Google’s Picasa.

CR Categories: I.3.7 [Computer Graphics]—;

Keywords: Face animation, photo collections, cross dissolve, Pi-
casa

Links: DL PDF WEB VIDEO

1 Introduction

People are photographed thousands of times over their lifetimes.
Taken together, the photos of each person form his or her visual
record. Such a visual record, which we call a photobio, samples
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the appearance space of that individual over time, capturing varia-
tions in expression, pose, hairstyle, and so forth. While acquiring
photobios used to be a tedious process, the advent of photo sharing
tools like Facebook coupled with face recognition technology and
image search are making it easier to amass huge numbers of photos
of friends, family, and celebrities. As this trend increases, we will
have access to increasingly complete photobios. The large volume
of such collections, however, makes them very difficult to manage,
and better tools are needed for browsing, exploring, and rendering
them.

If we could capture every expression that a person makes, from ev-
ery pose and viewing/lighting condition, and at every point in their
life, we could describe the complete appearance space of that in-
dividual. Given such a representation, we could render any view
of that person on demand, in a similar manner to how a light-
field [Levoy and Hanrahan 1996] enables visualizing a static scene.
However, key challenges are 1) the face appearance space is ex-
tremely high dimensional, 2) we generally have access to only a
sparse sampling of this space, and 3) the mapping of each image to
pose, expression, and other parameters is not generally known a pri-
ori. In this paper, we take a step towards addressing these problems
to create interactive, animated viewing experiences from a person’s
photobio. We focus on the specific problem of view interpolation,
i.e., rendering a seamless transition between two photos. As such,
we naturally generalize the view-interpolation capabilities of clas-
sic image-based rendering (IBR) methods, e.g., [Chen and Williams
1993; Seitz and Dyer 1996; Levoy and Hanrahan 1996] to handle
changes in expression, age, and other transformations. But while
IBR methods traditionally focus on synthesizing novel images, we
instead create transitions from images already in the database, and
instead seek to select the right set of in-betweens. This approach
is reminiscent of Snavely et al.’s work on finding paths through In-
ternet photo collections [Snavely et al. 2008], but applied to faces
instead of places. We note that faces present unique challenges be-
cause there is not a clear underlying parameterization of the photo
space, unlike the case of [Snavely et al. 2008] where it was possible
to construct a function mapping pose to image.

A key insight in our work is that cross dissolving well-aligned im-
ages produces a very strong motion sensation. While the cross-
dissolve (also known as cross-fade, or linear intensity blend) is
prevalent in morphing and image-based-rendering techniques, it is
usually used in tandem with a geometric warp, the latter requir-
ing accurate pixel correspondence (i.e., optical flow) between the
source images. Surprisingly, the cross dissolve by itself (without
correspondence/flow estimation) can produce a very strong sen-
sation of movement, particularly when the input images are well
aligned. We explain this effect and prove some remarkable prop-
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erties of the cross dissolve. In particular, given two images of a
scene with small motion between them, a cross dissolve produces a
sequence in which the edges move smoothly, with nonlinear ease-
in, ease-out dynamics. Furthermore, the cross dissolve can also
synthesize physical illumination changes, in which the light source
direction moves during the transition. We analyze these effects and
their operating ranges.

Our photobios approach takes as input an unorganized collection of
photos of a person, and produces animations of the person moving
continuously. The method operates best when the photo collection
is very large (several hundred or thousand photos), but produces
reasonable results for smaller collections. As a special case of inter-
est, we first show results on time-lapse sequences, where the same
person is photographed every day or week over a period of years.
We then apply the technique to more standard image collections
of the same person taken over many years, and also to images of
celebrities downloaded from the Internet.

Our approach is based on representing the set of images in a pho-
tobio as nodes in a graph, solving for optimal paths, and rendering
a stabilized transition from the resulting image sequence. The key
issues therefore are 1) defining the edge weights in the graph, and
2) creating a compelling, stabilized output sequence. Our approach
leverages automatic face detection, pose estimation, and robust im-
age comparison techniques to both define the graph and create the
final transitions. The pipeline is almost entirely automatic—the
only step that requires manual assistance is to identify the subject of
interest when an image contains multiple people. Automating this
step is also likely possible using face recognition techniques [Berg
et al. 2004].

This graph-based formulation draws on prior work for creating
character animation from motion capture libraries [Kovar et al.
2002; Arikan and Forsyth 2002]. Closely related is the spacetime
faces work of Zhang et al. [Zhang et al. 2004] who created face
animations from a database of 3D face sequences captured in the
lab. Their keyframe animation approach provides the same kind of
functionality that we seek, and was also based on finding shortest
paths on a motion graph. Also related is Goldman et al.’s video
navigation approach [Goldman et al. 2008] which provides a di-
rect manipulation interface for controlling the pose of a person’s
face captured from video, Bregler et al.’s approach for re-ordering
frames in a video [Bregler et al. 1997] and Pighin et al.’s approach
for image based animation of facial expressions [Pighin et al. 1998]
by manually specifying a correspondence between features in sev-
eral photos of the person and features on the 3D head model. All
of these techniques depend critically on mocap or video data as in-
put, both 1) to enable solving the frame-to-frame correspondence
problem, and 2) to generate smooth transitions. Achieving similar
capabilities for unstructured photo collections is a much more dif-
ficult problem due to the irregular and sparse sampling and lack of
motion correspondence information.

An alternative approach is to attempt to model and parameterize
each face and its variability in 3D and over time, as done by Blanz
et al. [Blanz and Vetter 1999] with impressive results. However, the
challenge of such a model-based approach is that it must span the
full range of human shape, expression, and appearance, for all ages,
ethnicities, and so forth—a very tall order. We instead address the
more modest goal of rendering from photos already in the database,
with the advantage of broader applicability and more automation.

Our ability to operate on unstructured photo collections is a di-
rect result of the maturity of computer-vision based face analy-
sis techniques that are now in widespread use in digital cameras,
Google Streetview, Apple’s Iphoto, etc. In the research commu-
nity, we are inspired by Berg et al.’s pioneering work on Faces

in the News [Berg et al. 2004], which automatically labels peo-
ple in photographs by finding correspondences between captions
and faces in the associated news photographs. Their application
is complementary to ours, in that we require as input a set of pre-
classified images of the same person (the output of their approach).
Also related are Kemelmacher-Shlizerman et al.’s video puppeteer-
ing [Kemelmacher-Shlizerman et al. 2010], Kumar et al.’s face
search [Kumar et al. 2008] and Bitouk et al.’s swapping [Bitouk
et al. 2008] work, which operate robustly on large collections of
images downloaded from the Internet.

We acknowledge a large body of previous work on photo brows-
ing both in academia and industry. Indeed, face browsing and tag-
ging has become a sensation on Facebook, and face-recognition
is built-in to tools like Iphoto and Picasa. The HCI and com-
puter vision communities have long recognized the need for better
photo browsers, see for example, [Pentland et al. 1996; Rekimoto
1999; Bederson 2001; Graham et al. 2002; Huynh et al. 2005] and
have explored a number of techniques for organizing and intuitively
browsing photos by place, time, content, and other characteristics.
In particular, a number of authors, e.g., [Rekimoto 1999; Graham
et al. 2002] have explored historical collections akin to photobios.
While our work also fits into this general field, we focus on the
novel problem of rendering animated transitions from still photo
collections. The Face Movies feature of Picasa’s 3.8 [Picasa 2010]
release provides an implementation of our method.

1.1 Overview

We first describe our preprocessing pipeline that takes an unstruc-
tured collection of images, aligns them and estimates pose in Sec-
tion 2. Section 3 describes the construction of the face graph, and
our path finding approach. Section 4 presents our analysis of the
cross dissolve transformation. In Section 5 we describe our im-
plementation of the algorithm in Picasa 3.8 and present additional
results in Section 6.

2 Automatic alignment and pose estimation

This section describes the geometric alignment part of our method
(illustrated in Fig. 1). The aim here is to estimate the location of
the face and its pose in each picture of the image set, and enable
warping each image to a canonical pose.

Each photo is preprocessed automatically (similarly
to [Kemelmacher-Shlizerman et al. 2010]) by first running a
face detector [Bourdev and Brandt 2005] followed by a fiducial
points detector [Everingham et al. 2006] that finds the left and
right corners of each eye, the two nostrils, the tip of the nose, and
the left and right corners of the mouth. We ignore photos with low
detection confidence (less than 0.5 in face detection and less than
-3 in detection of the fiducial points). Throughout our experiments,
despite variations in lighting, pose, scale, facial expression and
identity, this combination of methods was extremely robust for
near-frontal faces with displacement errors gradually increasing as
the face turns to profile.

The next step is to detect pose, which is achieved by geometrically
aligning each detected face region to a 3D template model of a face.
We use a neutral face model from the publicly available spacetime
faces [Zhang et al. 2004] dataset for the template. We estimate a
linear transformation that transforms the located fiducial points to
pre-labeled fiducials on the template model, and use RQ decompo-
sition to find rotation and scale. We then estimate the yaw, pitch and
roll angles from the rotation matrix. Given the estimated pose we
transform the template shape to the orientation of the face in the im-
age and warp the image to a frontal pose using point-set z-buffering



Figure 1: Automatic alignment and pose estimation–we first apply
face detector followed by a fiducial point detector. Then a 3D tem-
plate model is used to estimate pose and to warp the image to a
frontal view for a more consistent computation of similarities.

[Katz et al. 2007] to account for occlusions.

3 The Face Graph

Once the images have been aligned and warped to a frontal pose, the
next step is to compute a face graph where each face is a node and
edges encode relative distances between two faces. To define face
distance, we use a combination of difference in pose, appearance,
and time (when timestamps are available). We first describe our
distance measure, then show how to build the face graph and walk
on this graph.

Distance between faces Face appearance varies drastically in
between photos in general photo collections due to non rigid mo-
tion of the face, color balance, lighting changes, pose, facial hair
etc. Local Binary Pattern (LBP) histograms have previously proven
effective for face recognition and expression identification tasks
[Ojala et al. 2002; Ahonen et al. 2006] and recently used for im-
age based retrieval of similar facial expressions [Kemelmacher-
Shlizerman et al. 2010]. LBP operate by diving an image to grid of
cells and converting each pixel in a cell into a code which encodes
the relative brightness patterns in a square neighborhood around
that pixel. In particular, each neighbor is assigned a 1 or 0 if it is
brighter or darker than the center pixel. This pattern of 1’s and 0’s
defines a per pixel binary code, and the per cell histogram of these
codes defines the descriptor for a cell. We calculate a separate set of
descriptors for the eyes, mouth and hair regions, where a descrip-
tor for a region is a concatenation of participating cells’ descriptors.
The regions and first four neighbors found based on comparing each
of the regions separately are shown in Figure 2. The binarization
quantization achieves robustness to lighting changes; robustness to
saddle motions is obtained by forming the histogram. The distance
between two face images i and j, denoted dij , is then defined by
χ2-distance between the corresponding descriptors, normalized us-
ing a robust logistic function L(d) = (1 + e−γ(d−µ)/σ)−1 such
that γ = ln(99). This function normalizes the distances to the
range [0, 1], such that d = µ maps to 0.5 and d = µ ± σ map to
0.99 and 0.01.

Our appearance distance function is then defined as:

Dappear(i, j) = 1− (1− λmdmij )(1− λedeij)(1− λhdhij) (1)

where dm,e,h are the LBP histogram distances restricted to the
mouth, eyes, and hair regions, respectively, and λm,e,h are the
corresponding weights for these regions. For example, assigning
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Figure 2: Appearance similarity is calculated separately for (a)
eyes, (b) mouth and (c) hair. For each region we show the query
image and its four nearest neighbors. Note how the region that is
being matched looks similar.

λm = 1 and λe = λh = 0 will result in only the mouth region
being considered in the comparison. In our experiments we used
λm = 0.8 and λe = λh = 0.1.

We add additional distance functions measuring L2 difference in
pose (separately for yaw and pitch), and time (when timestamps
are available). Each is normalized using a robust logistic function
L(d), yielding distances Dyaw, Dpitch, and Dtime.

The face graph The face graph is then defined as follows. The
nodes are the faces in the dataset and edge (i, j) has weightD(i, j)
defined as

D(i, j) =
[
1−Πs∈{app,yaw,pitch,time}(1−Ds(i, j))

]α
. (2)

The exponent α is used to nonlinearly scale the distances, and pro-
vides additional control of step size in the path planning process.

By constructing this face graph we can now traverse paths on the
graph and find smooth, continuous transitions from the still images
contained in a photo collection. We do that by either look for short-
est paths or by greedy walks on the face graph.

Give any two images, we can find the smoothest path between them
by solving for the shortest path in the face graph. We are inter-
ested in finding a path with the minimal cost (sum of distances),
which is readily solved using Dijkstra’s algorithm. The number of
in-between images is controlled via the α parameter.

Given any starting point, we can also produce a smooth path of arbi-
trary length by taking walks on the graph. Stepping to an adjacent
node with minimal edge distance generally results in continuous
transitions. There are a number of possible ways to avoid repe-
titions, e.g., by injecting randomness. We obtained good results
simply by deleting previously visited nodes from the graph (and all
of their incident edges). For collections with time/date information,
we encourage chronological transitions by preferentially choosing
steps that go forward in time.

4 The Cross Dissolve

Having produced a sequence of images, we would like to render
compelling transitions from one photo to the next. Morphing tech-
niques can produce excellent transitions, but require accurate corre-
spondence between pixels in the images, which is difficult to obtain.
A simpler alternative is to use a cross dissolve. The cross dissolve



Figure 3: Cross dissolve synthesizes motion. Notice how the edges
of the nose and mouth move realistically, as does the lighting (more
clearly seen in accompanying video).

or cross fade transitions between two images (or image sequences)
by simultaneously fading one out while fading the other in over a
short time interval. Mathematically, the cross dissolve is defined as

Iout(t) = (1− t)Iin1 + tIin2 , (3)

where Iin1 and Iin2 are the input images and Iout(t) is the output
sequence. This effect is often combined with geometric warps in
morphing [Seitz and Dyer 1996; Beier and Neely 1992], and image-
based rendering methods [Levoy and Hanrahan 1996], to synthesize
motion between photos. More surprisingly, the cross dissolve by
itself (without correspondence/flow estimation) can produce a very
strong sensation of movement, particularly when the input images
are well aligned. For example, Figure 3 shows a cross dissolve
between two photos of a person’s face, in which both the lighting
and features appear to move realistically (much better seen in the
accompanying video). While it makes sense that warping an image
produces a motion sensation, why would motion arise from a simple
intensity blend? We explain this effect and prove some remarkable
properties of the cross dissolve in this section.

We show that the cross dissolve produces not just the illusion of mo-
tion, but true motion; given two images of a scene with small mo-
tion between them, a cross dissolve produces a sequence in which
the edges move smoothly, with nonlinear ease-in, ease-out dynam-
ics. Furthermore, the cross dissolve can also synthesize physical
illumination changes, in which the light source direction moves dur-
ing the transition. We now describe the mathematical basis for these
effects and define their operating range.

4.1 Edge Motion

Rapid spatial changes in irradiance produce image edges. Real im-
age edge profiles tend to be smooth rather than discontinuous, due
to the optical blurring effects of the imaging process [Marr and Hil-
dreth 1980; Nalwa and Binford 1986]. Indeed, the convolution of
a step-edge with a Gaussian blurring kernel1 is the erf function:

erf(x) =
x∫
0

e−t
2

dt. This function is very closely approximated as

a segment of a sine curve, as shown in Figure 4. We therefore use
this sine edge model for the remainder of this section.

The properties of displaced sine curves have been well-studied in
the perception literature. In particular, displaying slightly displaced
sine curves or other patterns in rapid succession produces a strong
apparent motion sensation [Wertheimer 1912; Kenkel 1913; Adel-
son and Movshon 1982; Lu and Sperling 2002]. Freeman et al.
[Freeman et al. 1991] leverage this effect to produce motion with-
out movement by displaying an image followed by a filtered version.

1We note that the Gaussian is an imperfect PSF model [Joshi et al. 2008],
but still useful as a first-order approximation.
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Figure 4: A Gaussian-convolved step edge (erf) is well-
approximated by a sine curve.

While related, we note that these perception effects are fundamen-
tally different than the cross dissolve; in the former case, our brains
are doing the interpolation—in the latter, the computer does the in-
terpolation. In the case of the cross dissolve, we can mathematically
analyze and prove properties of the underlying motion (a topic not
covered in the perception literature). We note that local edge mod-
els are also used in the optical flow literature to link between image
intensity changes and motion [Lucas and Kanade 1981], although
both the models (linear rather than sinusoid) and the applications
(flow computation rather than synthesis) are quite different.

Consider two sine waves (each represents a different image) where
one is a translated (and optionally amplitude-scaled) version of the
other. Specifically we consider α sin(mx) and sin(mx+d) so that
d is the phase shift (spatial translation) and α is the amplitude scale.
Cross dissolving these two sine waves produces a sequence of sine
waves given as follows:

(1− t)α sin(mx) + t sin(mx+ d) = c sin(mx+ k) (4)

where t ∈ [0, 1] and

k = arctan
t sin d

(1− t)α+ t cos d
(5)

c2 = α2(1− t)2 + t2 + 2(1− t)αt cos d. (6)

Therefore, cross dissolving two sines with different phases pro-
duces a motion, where the phase k is smoothly interpolated. This
simple analysis gives rise to a number of remarkable observations:

• The speed of the motion is determined by the phase k. Note
that k is not linear, but resembles the ease-in, ease-out curves
long favored by animators [Lasseter 1987]. This type of curve
is known to have a major role in producing more believable
animations; it is remarkable that it arises naturally in the cross
dissolve. Furthermore, different edges move at different rates,
and with different ease-in/ease-out parameters, depending on
their phase offsets. In particular, large displacements give rise
to more exaggerated ease-in/ease-outs (see Fig. 6 (a)).

• The perceived motion is strictly less than a half-period.
Hence, low-frequency edges (lower m) can move relatively
large distances, whereas high frequency edges can move only
slightly. When the phase offset reaches π (a half period), the
edge disappears entirely at the center frame, and becomes a
constant function. This phenomenon, in which image content
fades away during a transition, is known as ghosting [Szeliski
and Shum 1997].

• There is a gradual decrease in image contrast towards the mid-
point of the transition, due to the drop in amplitude of the
sine, according to c in Eq. (6). This is illustrated in Fig. 6
(b). For example, the highlights get darker, and the shadows
get lighter. This reduction in dynamic range is subtle (except
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Figure 5: Cross dissolve of sine and phased-shifted sine, with small (0.3π), medium (0.6π), and large (0.9π) shifts. We show film strips
of the cross-dissolve, with rows corresponding to times t = 0 (input frame), .25, .5, .75, and 1 (input frame). The location of the edge is
marked in red and the location corresponding to a linear motion is marked in blue. The displacement of the red and blue lines for larger
shifts demonstrate the nonlinear ease-in, ease-out speed curves (better seen in the supplemental video). Also note the decrease in contrast
for larger shifts. To better visualize the (nonlinear) edge motion (for a 0.9π shift), we remove the contrast change (far right) by scaling the
image by the inverse of c.
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(a) Speed curve (b) Change in contrast

Figure 6: (a) Motion speed k(t) and (b) change in contrast c(t),
while cross dissolving sin(x) and sin(x + d). t is time (frame)
of the transition and d defines the shift (phase offset) of the second
curve relative to the first. Observe how the speed curve k(t) resem-
bles the ease-in ease-out curves used in traditional animation. The
gradual decrease in contrast c(t) towards the mid point visually
hides artifacts.

in the most extreme cases), yet serves to hide visual artifacts
like ghosting [Szeliski and Shum 1997] in the frames in which
they are most likely to appear.

• This motion effect only works for edges with (approximately)
the same frequency. Interpolating sines with different fre-
quencies produces multi-model curves that do not resemble
edges (another form of ghosting).

Figure 5 illustrates these effects for sine gratings with different rela-
tive phase shifts. The contrast reduction and the speed nonlinearity
are imperceptible when the shift is small, and becomes more no-
ticeable for larger shifts. The speed nonlinearity is visible as the
gap between the red and blue lines (better seen in the video).

To better visualize the speed changes, Fig. 5 (far right column) also
shows an intensity-compensated transition, where each image is
scaled by 1/c (c is given in Eq. (6), to remove the loss in contrast.
These effects are also demonstrated in the supplemental video.

4.1.1 Non-periodic edges

Note that our analysis so far is based on a periodic function (sine);
however, most edges are not periodic. Periodicity is not neces-
sary, however, as the analysis applies locally. I.e., consider any
local window of pixels; if the pixels in that window are well-
approximated by a sine in both images, then all of the above conclu-
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Figure 8: The model works for the light regions (A,C,E), but ghost-
ing appears in the gray regions (B,D).

sions apply. In particularly, consider two rising edges (modeled as
erf: step edges convolved with a Gaussian blur kernel), where the
second edge has been shifted a small amount relative to the first.
As seen in Fig. 8, in the intervals where the two edges are both ris-
ing (area C), the sine approximation holds, and the cross-dissolve
produces a translation. The cross-dissolve also works correctly in
the intervals (A and E) in which both curves are flat. However, the
intervals where one curve is rising and the other is flat (B and D)
do not translate–they simply fade out. Hence, the translation effect
is less pronounced for larger shifts (where the interval spanned by
C is small compared to B and D). Figure 7 illustrates the effects of
cross dissolving erf-edges (see video as well).

4.1.2 Generalizing to 2D

So far we analyzed 1D edges, however our analysis naturally gener-
alizes to translations of 2D image edges. In case of 2D edge trans-
lation, we simply define our edge profiles in the direction normal to
the edge, thus reducing to the 1D case.

We have also observed that cross dissolving two edges with differ-
ent orientations also produces a compelling apparent rotation per-
ception (see video for examples), particularly when the orientation
change is small. We can explain this effect as follows. A cross
dissolve of a sine and its rotated version is defined as

(1− t) sin(mx) + t sin(mx cos θ −my sin θ) (7)

where θ is the angle of rotation. For, two edges with angle of ro-
tation θ between them, we can also say that one of them has been
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Figure 7: Cross fade of a rising edge and its shifted version with small (0.4π), medium (0.8π) and large (1.2π) shifts. An edge is approxi-
mated with the erf(3x) function. See description of the plots in Fig. 5. The edge appears to move during the cross dissolve, but also distorts
away from the center, for larger motions (see text for a explanation).

rotated by θ
2

and the other by −θ
2

giving us,

(1− t) sin(mx cos
θ

2
+my sin

θ

2
) + t sin(mx cos

θ

2
−my sin

θ

2
)

(8)
This is equivalent to cross dissolving two crossfaded sines with fre-
quency m cos θ

2
and phase difference 2my sin θ

2
and our analysis

of translation case applies, i.e., the movement is linear and the edge
appears to rotate if 2my sin θ

2
is small. It holds for low frequency

edges, small rotation angles and at relatively small distances from
the center of rotation, with more distortion as you move out.

4.2 Interpolation of light sources

In addition to edge motion, cross dissolves can also produce very
convincing illumination changes in which the light source direc-
tion appears to move realistically during the transition. Indeed,
we now describe conditions under which a cross-dissolve produces
physically-correct illumination changes.

An image of a Lambertian object, ignoring shadows, specularities,
and inter-reflections, is determined by I = ρlTn where ρ is the
albedo, l is the lighting direction vector and n is the surface normal
vector. Cross dissolving two such images: (1− t)I1 + tI2, has the
effect of interpolating the lighting directions ρ((1− t)l1 + tl2)Tn.
In particular, we can rewrite the image formation equation as I =
ρ|l| cosφ where φ is the angle between the surface normal at each
point on the surface and lighting direction.

A cross dissolve of two images can be then formulated as

(1− t)ρ|l1| cosφ+ tρ|l2| cos(φ+ d) = cl cos(φ+ kl). (9)

with d being the difference between the surface normal and the two
lighting direction angles. Hence, the interpolated pixel is the sum
of two shifted cosines, which is also a cosine. In this case, however,
the cosine is not in the image plane, but rather defines the variation
of the pixel intensity as a function of lighting. Denote by a =
(1 − t)ρ|l1| and b = tρ|l2|. The amplitude (contrast change) is
then c2l = a2 + b2 + 2ab cos d, and the motion speed is kl =
arctan b sin d

a+b cos d
. Note that in that case the change in amplitude

and speed depends on the surface normal and the lighting intensity
|l1|, |l2| in addition to the shift d and time t.

The amplitude change results in an effective dimming of the light
during the transition, with minimum contrast occurring at the mid-
point. We experimented with ways to compensate for this contrast
change, e.g., by estimating the contrast reduction and rescaling the
image intensities. Surprisingly, we found that even a perfect com-
pensation produces visually inferior results to the uncompensated

cross dissolve. The reason is that this dimming effect serves to
hide artifacts due to shadows, specular highlights, and other non-
Lambertian effects that are not modeled by Eq. (9), whereas the
compensation only magnifies these artifacts. The cross dissolve
thereby hides artifacts in the frames in which they are most likely
to appear—a remarkable property!

While we are presenting the specific light trajectory of the cross
dissolve (two-image) case for the first time, we emphasize that the
basic result that image interpolations produce new directional il-
luminations of Lambertian objects is well-known in the computer
vision community, going back to the work of Shashua [Shashua
1992].

5 Face Movies in Picasa

The Face Movies feature of Picasa’s 3.8 release [Picasa 2010], pro-
vides an implementation of photobios, targeted to personal photos.
This feature leverages Picasa’s built-in face recognition capabili-
ties, and enables creating a face movie of a person with minimal
effort (in as little as a single click).

Deploying the approach at scale (with photo collections numbering
in the tens of thousands) required a number of modifications and
improvements to the basic algorithm. Moreover, the Picasa version
employs a different rendering style. We briefly describe the most
important modifications below.

5.1 Real-time performance

An important requirement for the feature was that it should be real-
time, i.e., the face movie should start playing almost immediately
when the feature is selected. We achieved this goal through a num-
ber of optimizations.

First, the mouth is highly correlated with the eyes and other regions
of the face in forming expressions. Hence, we found it sufficient
to match only the mouth region. More surprisingly, we found that
head orientation is also well correlated with the appearance of the
mouth region (producing mouth foreshortening and rotation), elimi-
nating the need to compute pose explicitly. Similarly, we found that
using 2D affine image alignment rather than 3D warping produces
satisfactory results at lower cost. These optimizations, as well as
the use of HOG (Histogram of Oriented Gradients) features [Dalal
and Triggs 2005] in place of LBP, significantly reduced matching
costs.

By default, face movies creates and renders a greedy walk rather
than an optimized path, as the former is faster to compute. We
accomplish this using a multi-threaded approach where one thread



Figure 9: In Picasa, the images are aligned and displayed by stack-
ing them over one another.

computes the image graph on the fly and selects the next image to
step to, while the other thread renders the transition between the
previous two images. For computing the greedy sequence we first
sort all the images by time, start at the oldest image and then con-
sider the next 100 images in the sequence, chronologically. We
choose the one with the closest similarity as the next image to step
to. This procedure repeats until the time window overlaps the most
recent photo, at which point we reverse direction, i.e., select photos
going monotonically back in time. We then continue to oscillate
forward and back until all images have been shown. We give pref-
erence to starred photos by reducing their edge weights so that they
are more likely to be shown toward the beginning of the face movie.

The user can control the length of the movie by specifying the num-
ber of photos in the face movie and we find the optimal sequence
of desired length via dynamic programming. To achieve reasonable
performance (a delay of a few seconds, even for collections of tens
of thousands of images), we employed additional optimizations,
such as breaking the sequence into separately-optimized chunks of
1000 images, and sparsifying the graph by considering only 100
neighbors for each image.

5.2 Visual Appearance

The Picasa feature introduces two improvements to the rendering
style. First, we found that people prefer seeing more of the photos
beyond just the cropped faces, as the wider field of view provides
more context. Second, instead of showing photos one at a time,
we layer the aligned photos over one another as shown in Figure 9.
This layering process produces interesting effects where the head
from one photo is superimposed with the body from another. The
user interface also provides the ability to output the movie, upload
to the web, or add audio, captions, and customize appearance in
several other ways.

6 Results

We experimented with datasets downloaded from the Internet, and
with personal photo collections. Hundreds of face movies can also
be found on YouTube, created by users of Picasa.

Most of our results are best viewed in the supplemental video; we
present a few example paths in Figure 10, and compare to showing
aligned images without path optimization in Figure 11.

We first show results on time-lapse photo collections, in which a
single person is photographed every week/day over a period of

years, and usually include large variations in facial expression, hair,
etc. We demonstrate results on two such collections. The ”Daily Ja-
son” dataset (http://www.supyo.com/jason/) contains 1598 pictures
taken almost every day during 5 years. Figure 10 (a) shows an opti-
mized path—the end points (marked in red) are chosen by the user
in our interface and the intermediate sequence is computed by our
method. Note the smooth transitions in mouth expression and eyes.
The second dataset shows photos of “Pearl” photographed weekly
from birth until she was eight years old (519 pictures). In Figure 11
(a) we show a path that was computed by our method and in (b) a
sequence of images that was produced by uniformly sampling each
time frame. Our method was able to produce a path in which the
girl ages, while producing smooth changes in facial expression. In
the uniformly sampled sequence we can see highly non-coherent
transitions, e.g, the face or mouth is occluded by hands, eyes close
and open, large jumps in the mouth expression.

We have also experimented with personal photo collections: 1) 584
pictures over 5 years of Amit 2) 1300 pictures of Ariel over 20
years, and 3) 530 photos of George W. Bush taken from the Labeled
Faces in the Wild [Huang et al. 2007] collection. In contrast to the
time-lapse datasets, the pictures in these three datasets were taken
in arbitrary events, locations, with various illumination, resolution,
cameras etc., and are therefore more challenging. Figs. 10 (b,c) and
11 (c,d) show the results. Note how in all sequences, in addition to
smooth transition in facial expression, the pose changes smoothly.

Examples of Face Movies created by people can be found on
YouTube, here are links to three of our favorites: Lily’s photos, To
the future, The Many Faces of Miley Cyrus.

7 Conclusions

We presented a new technique for creating animations of real peo-
ple through time, pose, and expression, from large unstructured
photo collections. The approach leverages computer vision tech-
niques to compare, align, and order face images to create pleas-
ing paths, and operates completely automatically. The popular
photo browsing tool Picasa has an implementation of this approach,
known as “Face Movies”, which has seen widespread deployment.
Key to the success of this method is the use of the cross dissolve,
which produces a strong physical motion and illumination change
sensation when used to blend well-aligned images. We analyzed
this effect and its operating range, and showed that, surprisingly,
cross dissolves do indeed synthesize true edge motion and lighting
changes under certain conditions.

Future work in this area may leverage better recognition, alignment,
and correspondence algorithms to yield even better transitions and
with smaller photo collections (the current approach works best
with image collections numbering in the hundreds or thousands).
It would also be interesting to explore other ways to navigate per-
sonal photo collections, considering both individuals and groups of
people that are photographed together.
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(b) personal photo collection of Ariel over 20 years (1300 photos) and (c) George W. Bush photo collection (530 photos). The end points
(marked in red) were chosen by the user and all the intermediate pictures were selected automatically by our method. Note the smooth
transition in facial expression as well as pose.
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Figure 11: Comparison between uniform sampling in time (no path optimization) and our result. When just sampling, highly non-coherent
transitions occur, e.g, the face or mouth is occluded by hands, eyes close and open, large jumps in the mouth expression, etc.
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