
The Impact of Tutorials on Games of Varying Complexity

Erik Andersen, Eleanor O’Rourke, Yun-En Liu, Richard Snider, Jeff Lowdermilk, David Truong,
Seth Cooper, and Zoran Popović

Center for Game Science
Department of Computer Science & Engineering, University of Washington

{eland,eorourke,yunliu,mrsoviet,jeff,djtruong,scooper,zoran}@cs.washington.edu

ABSTRACT
One of the key challenges of video game design is teaching
new players how to play. Although game developers fre-
quently use tutorials to teach game mechanics, little is known
about how tutorials affect game learnability and player en-
gagement. Seeking to estimate this value, we implemented
eight tutorial designs in three video games of varying com-
plexity and evaluated their effects on player engagement and
retention. The results of our multivariate study of over 45,000
players show that the usefulness of tutorials depends greatly
on game complexity. Although tutorials increased play time
by as much as 29% in the most complex game, they did not
significantly improve player engagement in the two simpler
games. Our results suggest that investment in tutorials may
not be justified for games with mechanics that can be discov-
ered through experimentation.

Author Keywords
games; analytics; tutorials; multivariate testing

ACM Classification Keywords
H.5.0 Information interfaces and presentation: General

INTRODUCTION
Teaching new players how to play a game is challenging but
crucial for engaging and retaining players. As a result, game
designers frequently utilize tutorials to aid the learning pro-
cess. Since tutorials are typically the first part of a game that
new players encounter, effective tutorial design is important
for retaining new players. Although modern games employ
a wide varety of tutorial styles, including hints, help buttons,
manuals, and interactive training challenges, the relative ef-
fectiveness of these styles is not well understood. As a result,
designers must rely on intuition, personal experience, existing
examples, and extensive user testing when designing tutori-
als. A deeper understanding of how tutorial design decisions
impact player engagement and retention would help game de-
velopers create more learnable interfaces and spend valuable
resources more wisely.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Learnability is widely accepted as a central component of us-
ability, and it has been studied in the field of Human Com-
puter Interaction for decades [11, 20, 23]. In this paper,
we draw tutorial ideas from the HCI literature and present a
large-scale comparative study of their effectiveness in video
game tutorials. Although many factors influence tutorial de-
sign, we chose to focus on four specific tutorial characteris-
tics: the presence of tutorials, the context-sensitivity of tuto-
rial instructions, the freedom given to users during the tuto-
rial, and the availability of additional help on demand. We
examined the importance of these characteristics by conduct-
ing a multivariate experiment across three games that we de-
veloped: Refraction, Hello Worlds, and Foldit. These games
belong to different genres and vary in complexity.

We present results gathered from over 45,000 players show-
ing that the value of tutorials depends greatly on the com-
plexity of the game. In Foldit, the most complex and least
conventional game we studied, tutorials increased play time
by as much as 29% and player progress by as much as 75%.
However, we found that tutorials had a surprisingly negligible
effect on player engagement in Hello Worlds and Refraction,
which are less complex and more similar to other games in
their respective genres. Giving tutorial instructions as closely
as possible to when they were needed, rather than out of con-
text in an up-front manual, increased play time by 16% and
progress by 40% in Foldit but had no effect in the other two
games. We found no evidence to support the claim that re-
stricting player freedom in order to focus the player’s atten-
tion on a target concept improves learnability. Providing help
on-demand improved player engagement in Foldit, but had
no effect in Hello Worlds and even negative effects in Refrac-
tion. Our results suggest that investment in tutorials may not
be justified for games that can be learned through experimen-
tation, and that the players of these games, at least, seem to
learn more from experimentation than from reading text.

Tutorial presence
The first feature we considered was tutorial presence:
whether the game provides a tutorial to its players or not.
Although some successful games provide no instructions to
players, such as Tetris (Pajitnov 1984), Pac-Man (Namco
1980), and Super Mario Brothers (Nintendo 1985), the use
of tutorials has become very common. Therefore, we wanted
to examine the impact of tutorial presence.

Hypothesis 1: Games with tutorials will exhibit better player
engagement and retention than games without tutorials.

We examined this hypothesis by comparing versions of each
game with and without tutorials.

Context-sensitivity
Another feature we considered was the context-sensitivity of
tutorials. Existing tutorials can be divided into two cate-
gories: those that provide contextually relevant suggestions
from within the application interface and those that provide
documentation outside of the application context. HCI re-
searchers have studied both types of tutorials extensively;
however, the effect of context-sensitivity on tutorial success
is unclear, and the existing literature does not show a clear
preference for either type of information.

Historically, tutorials have been provided through primarily
textual documentation that is accessed outside the applica-
tion context. While paper manuals and online documentation
require minimal resources to generate, they present a number
of challenges for users, who struggle to keep track of instruc-
tions when switching between the tutorial and the application
[1, 15, 17]. As a result, many researchers have worked on
improving external software documentation by incorporating
screenshots, graphics, animations, and annotations into tex-
tual content [9, 12, 13, 21].

Despite these improvements, many researchers argue that
contextually relevant tutorials have greater potential for im-
proving application learnability [4, 14, 10]. This idea is sup-
ported by situated learning, a popular learning model in ed-
ucation based around teaching concepts in the same context
in which they will be applied [18]. Game expert James Gee
also highlights the importance of teaching new mechanics just
before the player needs to use them, rather than presenting
them out of context [7]. Tooltips, which provide brief textual
help when the user hovers over an interface component, are
one of the most successful forms of contextual help [6]. On
the other hand, context-sensitive help can be more frustrating
than helpful, as shown by Microsoft’s Office Assistant [24].

Commercial video games have used both context-sensitive
and context-insensitive tutorials successfully. Up-front man-
uals, which present game mechanics out-of-context at the
very beginning of a game, can be seen in the popular on-
line Flash games Cursed Treasure1 and Epic Battle Fantasy
32. Other games present instructions in-context, just as the
player needs to use them. This strategy can be seen in the
highly-rated Flash game In the Company of Myself3 and the
popular console game Portal (Valve Corporation). To learn
more about the value of context-sensitivity in game tutorials,
we included both styles of presentation.

Hypothesis 2: Tutorials that present instructions in context
will be more effective than tutorials that present information
out of context.

1http://www.kongregate.com/games/IriySoft/
cursed-treasure-dont-touch-my-gems
2http://www.kongregate.com/games/kupo707/
epic-battle-fantasy-3
3http://www.kongregate.com/games/2DArray/
the-company-of-myself

In this study, we compare tutorials that present information
out of context in an up-front manual and tutorials that present
information in context just before the player needs to use a
particular concept.

Freedom
We also considered tutorial freedom, or the degree to which
tutorials force users to perform the mechanics being de-
scribed. While requiring users to practice specific game me-
chanics could improve tutorial effectiveness, it could also
frustrate players. As a result, it is not clear if and when re-
ducing player freedom improves engagement.

Game designers have often cited the importance of allow-
ing users to experiment while learning new concepts [7, 22].
James Gee argues that such experimentation is most effective
when it occurs in a safe environment where functionality is
reduced and mistakes are not punished [7]. Software learn-
ability researchers Kelleher and Pausch argue that restrict-
ing user freedom improves tutorial performance. They found
that an interactive tutorial for the Alice computer program-
ming environment that restricts user freedom, called Stencils,
helped users finish the tutorial sequence more quickly and
with fewer errors than a paper-based tutorial with the same
content [14]. How different types of interfaces are affected
by reduced player freedom, however, is currently unknown.

Many video games provide players with complete freedom
during the tutorial. Braid (Number None 2008), for instance,
provides the player with background suggestions for keys to
press during gameplay, but does not force the player to per-
form the suggested action. At the same time, the use of
more restrictive stenciling strategies is also popular, and can
be found in PopCap’s tower defense game Plants vs. Zom-
bies (PopCap 2009), the simulation game SimCity 4 (Maxis
2003), and Facebook game Cityville (Zynga 2010). We in-
cluded tutorials of both types in order to determine the value
of restricting player freedom.

Hypothesis 3: Tutorials that restrict player freedom improve
engagement and retention.

In this study, we compare tutorials that restrict player free-
dom using the stenciling technique proposed by Kelleher and
Pausch [14] and those that give players complete freedom to
ignore the tutorial content.

Availability of help
Finally, we considered the availability of help. Many appli-
cations provide access to documentation on-demand through
help buttons, but it is unclear whether this type of informa-
tion has a strong effect on interface learnability. Although it
seems likely that providing access to on-demand help would
positively impact learnability, it is not known how much users
take advantage of on-demand information when it is avail-
able.

James Gee argues that manuals are most effective when they
are accessed on-demand, after the user has become familiar
with the basic interface elements and has developed specific
questions [7]. Commercial software applications rely heav-
ily on the availability of on-demand documentation, and help

http://www.kongregate.com/games/IriySoft/cursed-treasure-dont-touch-my-gems
http://www.kongregate.com/games/IriySoft/cursed-treasure-dont-touch-my-gems
http://www.kongregate.com/games/kupo707/epic-battle-fantasy-3
http://www.kongregate.com/games/kupo707/epic-battle-fantasy-3
http://www.kongregate.com/games/2DArray/the-company-of-myself
http://www.kongregate.com/games/2DArray/the-company-of-myself

buttons can be found in many ubiquitous products such as Mi-
crosoft Word (Microsoft Inc. 2010) and iTunes (Apple Inc.
2001). On-demand tutorials are also common in games. For
example, help buttons are available in the Flash game Epic
Battle Fantasy 3 and the real time strategy game Starcraft 2
(Blizzard 2010). To determine the impact of on-demand help
in games, we included tutorials with and without this feature.

Hypothesis 4: Having on-demand access to help improves
player retention.

In this study, we compare games that provide access to tu-
torial manuals on-demand through a help button with games
that do not, both with and without other types of tutorial in-
structions.

STUDY METHODOLOGY
Over the past decade, researchers have begun to use the Inter-
net to collect large quantities of data on player behavior. This
has given rise to a data-driven evaluation methodology that
has been widely used by companies like Amazon, Microsoft,
and Google to support interface design decisions [16][19][8].
Such evaluation models frequently use simple A/B testing, in
which a baseline sample is compared to a variety of single-
variable test samples. This methodology has been used to
evaluate games as well; Andersen et al. used A/B testing to
show that gameplay affects average play time more than an-
imations and audio [2], and that secondary game objectives
are most effective when they support the primary objectives
[3].

In this study, however, we wanted to compare a large vari-
ety of tutorial designs defined by multiple variables. We also
had a limited understanding of which combinations of tuto-
rial characteristics would be most effective. As a result, we
chose to perform a multivariate experiment considering four
independent variables and a total of eight conditions, rather
than using a simple A/B test.

Our games
We performed tutorial experiments on three games developed
by our research group: Refraction, Hello Worlds, and Foldit.
All three games contain puzzle elements, but otherwise dif-
fer greatly in their format, complexity, and player bases. We
consider two of the games, Refraction and Hello Worlds, to
be “casual” games. We define “casual” games as those that
rely on familiar game mechanics, take only a few hours to
complete, and do not require a download.

Refraction, which involves solving spacial puzzles by split-
ting lasers into fractional amounts, was originally designed
as a math-learning game. Each level is played on a grid that
contains laser sources, target spaceships, and asteroids, as
shown in Figure 1. Each target spaceship requires a fractional
amount of laser power, indicated by a yellow number on the
ship. The player can satisfy the targets by placing pieces that
change the laser direction and pieces that split the laser into
two or three equal parts. All targets must be correctly satisfied
at the same time to win.

Figure 1. A level of Refraction. The goal is to use the pieces on the
right to split lasers into fractional pieces and redirect them to satisfy the
target spaceships. The user can pick up and put down pieces by clicking
on them. The pieces are designed to be as intuitive as possible. The grid
interface, pipe-flow game mechanics, and spatial reasoning puzzles are
similar to many other puzzle games.

Although Refraction was originally designed to teach math
concepts, the game has found success with an adult audi-
ence on the popular Flash website Kongregate, where it has
been played over 480,000 times since its release in Septem-
ber 2010. The use of fractions as a game mechanic is rela-
tively uncommon, but similar spacial reasoning puzzles and
pipe flow mechanics appear in many other games on Kongre-
gate and elsewhere. The artwork for the laser sources, target
spaceships, asteroids, and laser manipulators was designed to
utilize affordances to make the functionality of each piece as
clear as possible. Refraction is freely available and can be
played by anyone with a web browser.

Figure 2. A level of Hello Worlds, a puzzle-platformer game. The game
interface is similar to thousands of other games in the platformer genre,
except that the player exists in multiple worlds at the same time. As a
result, the basic game mechanics for navigating using keyboard input
may be familiar to players. The player advances through each level by
opening and closing doors, a common goal mechanic.

Hello Worlds is a puzzle game that offers a simple twist on
the standard platformer genre. Platformers typically involve
navigating a character through a two-dimensional world by
running, jumping, and avoiding obstacles. In Hello Worlds,

the character exists in multiple worlds at the same time, and
interacts with the obstacles in each world simultaneously, as
shown in Figure 2. The player must find a path through the
worlds to reach various doors that open and close worlds or
complete the level. While the puzzle element of Hello Worlds
is uncommon, the basic game mechanics for navigating using
keyboard input are used in many existing platformers. Hello
Worlds is available for free on the Flash game website Kon-
gregate, and has been played over 1,300,000 times since its
release in May 2010.

Figure 3. A puzzle in Foldit, a game in which players manipulate pro-
tein models and try to pack the shape as tightly as possible. The game
is complex, has an interface with many tools and buttons, and offers a
gameplay experience that is very different from other games. Therefore,
players cannot rely on prior knowledge of other games very much when
trying to learn how to play Foldit.

Foldit is a multiplayer, online game in which players com-
pete and collaborate to fold protein structures efficiently [5].
Players can manipulate 3D protein structures, shown in Fig-
ure 3, by pulling on them, freezing pieces to prevent them
from moving, and launching optimizations that will compu-
tationally improve the protein. Each folded protein is given
a score which is used to rank solutions. Foldit has a set of
offline tutorial puzzles designed to prepare players for online
competitions, which we used for this study.

Foldit differs from Refraction and Hello Worlds in several key
ways. First, players must download and install Foldit from a
website in order to play, and must create an account to partic-
ipate in online competitions. Second, the gameplay mechan-
ics required to fold proteins are unique to this game, and as
a result it is unlikely that players can benefit from past gam-
ing experience when playing Foldit. Finally, it is much more
complex than the two “casual” games and requires an under-
standing of some unconventional mechanics, such as placing
rubber bands to hold the protein together, or running a wide
variety of optimizations. Since Foldit players are working to
solve complex, open scientific problems through gameplay,
we do not consider this a “casual” game.

Metrics
Collecting data on player behavior through large-scale anony-
mous experiments has strengths and weaknesses. One key

advantage is that, in contrast to laboratory user studies, our
experiments are conducted “in the wild” where players do not
know that they are being observed. As a result, participants
are playing under their own motivation, and our findings re-
flect their natural behavior. However, one important limita-
tion is that we have no interaction with our participants, and
we cannot know what they are thinking or feeling. Therefore,
we must infer the effects of tutorials on player engagement
by measuring their behavior.

We measure player engagement in three ways. First we count
the number of unique levels each player completes. Sec-
ond, we calculate the total length of time that they played
the game. Since players occasionally idle for long periods,
we aggregated moves the player made in 30-second intervals,
removing periods of two or more consecutive idle intervals
from the total play time. Finally, we measured the return rate,
defined as the number of times players loaded the game page
in Refraction and Hello Worlds, and as the number of times
the game was restarted in Foldit. While these metrics are not
precisely the same as “engagement” or “learnability,” we ar-
gue that they are closely related, given that players are free
to leave at any time and cannot advance in a game without
learning its associated rules and strategies. If the purpose of
tutorials is to teach game mechanics to the player, the ability
to complete levels should be the ultimate test of whether the
player has learned those mechanics.

We modified each of the games to randomly assign new play-
ers to one of the eight experimental conditions. We focused
solely on new players for this experiment; veteran players
who were already familiar with the games were not included
in our analysis. In Refraction and Hello Worlds, we tracked
players using the approach described in [2], storing progress
and experimental condition through the Flash cache. One
drawback of this method is that if players changed computers
or deleted their Flash cache, they were treated as new players.
However, since the Flash cache is inconvenient to clear and
this action deletes all progress in the game, we considered
this risk to be small. For Foldit, we tracked players using
their Foldit account and stored the condition number locally
on their machine. Players who logged in on multiple ma-
chines were tracked by their account and discarded to prevent
the inclusion of players who played multiple tutorial versions.

STUDY DESIGN
We performed a multivariate experiment with four variables:
presence, context-sensitivity, freedom, and availability of on-
demand help. We picked these variables to capture the most
salient differences in tutorial implementations seen in suc-
cessful games. We included a total of eight experimental con-
ditions, shown in Table 2, each representing a combination of
values for the four variables. Table 1 shows a breakdown of
the concepts that each game introduces and the order in which
they are introduced. The following sections explain how the
four variables are implemented in each game.

Tutorial presence
We wanted to examine how the addition of tutorials affected
player behavior. Therefore, the first variable in our experi-

Hello Worlds Refraction Foldit
Concept Level Page

Character Movement (S) 1 1
Collecting Coins 1 2
Using Doors (S) 1 1

Red Doors 1 3
Overworld Doors O 5

Star Types O 6
Multiple Worlds 2 1
Combo View (S) 2 4

Rewind (S) 3 4
Green Doors 6 3
Blue Doors 10 3

Concept Level Page
Powering Ships 1 1

Benders (S) 1 1
Multiple Benders 3 -

Ship Input Direction 3 4
Asteroids 4 1

Coins 5 3
Splitters (S) 6 5

Fractional Ships (S) 6 4
Magnifying Glass (S) 7 6

Combiners (S) 33 7
Expanders (S) 37 8

Multiple Input Ships (S) 43 9
Multiple Denominators 44 9

Concept Level Page
Clashes 1 1

Pulling Sidechains 1 1
Rotating the Camera 2 2

Score 2 2
Shake (S) 3 3

Pulling the Backbone (S) 4 4,5
Undo 4 8
Voids 5 6
Reset 5 8

Wiggle (S) 6 7
Hydrogen Bonds 7 9
Wiggle Again (S) 7 7
Rubber Bands (S) 8 10

Translating the Camera 9 2
Rubber Bands Again (S) 9 10

Freeze (S) 10 11
Backbone Color 11 12

Rebuild (S) 11 12
Hydrophobics 12 13

Exposeds 12 -
Tweak Rotate (S) 13 14
Tweak Shift (S) 14 15

Tweak Rotate Again (S) 15 14
Secondary Structure Mode (S) 16 16

Table 1. A breakdown of concepts taught in each game. The concepts are listed by the order in which they were taught in the context-sensitive condition.
Concepts were either taught in a specific level as part of a context-sensitive tutorial or in the manual used by the context-insensitive tutorial and the
on-demand help. Concepts marked with an “(S)” were stenciled during the blocking conditions. Foldit is more complex than the other two games and
required many more tutorials.

Condition Presence Context Freedom Help
Insensitive+Help Present Insensitive Nonblocking On-demand

Insensitive Present Insensitive Nonblocking None
Sensitive+Help Present Sensitive Nonblocking On-demand

Sensitive Present Sensitive Nonblocking None
Blocking+Help Present Sensitive Blocking On-demand

Blocking Present Sensitive Blocking None
Help Only None N/A N/A On-demand

No Tutorials None N/A N/A None

Table 2. The eight tutorial conditions that we implemented for our mul-
tivariate experiment, based on four independent variables: presence,
context-sensitivity, freedom, and availability of help. These conditions
were designed to represent a wide range of existing tutorial designs and
evaluate multiple hypotheses simultaneously.

ment was presence, resulting in two conditions: tutorials and
no tutorials. For conditions in which there were no tutori-
als, the game explained nothing on its own and players were
forced to either experiment or seek help outside the game.
The conditions with tutorials are further broken into more
categories in the following sections.

Context-sensitivity
To evaluate the effect of tutorial context-sensitivity on en-
gagement and player retention, we introduced an additional
variable, context-sensitivity. For conditions in which tutorials
were present, we organized the tutorials from each game into
two versions: context-sensitive and context-insensitive.

For the context-sensitive version, we tried to introduce each
concept as closely as possible to when the player needed to
use it. Therefore, for each of the concepts in Table 1, we
added a short message explaining that concept to the first level
in the game requiring knowledge of it. Some tutorials also
contained contextual images to reinforce the text. Each mes-
sage was controlled for size so that it could be easily ignored.
Additionally, the player could dismiss any tutorial message.

In Refraction, as shown in Figure 4(a), the instructions ap-
peared in a notification bar at the top of the main grid. Re-
fraction also contained “just-in-time” messages that would
activate when the player tried to do something that was not
allowed. For example, when a player powered a target space-
ship with less than the required amount, a message saying
“too little power” appeared over the spaceship. Each of these
messages appeared every time the spaceship was underpow-
ered, but player could click “don’t show again,” which would
cause that particular message to stop appearing.

Foldit tutorial messages appeared in pop-up boxes as shown
in Figure 4(b). In Refraction and Foldit, longer context-
sensitive messages were sometimes displayed across multiple
pages, which the user could advance by clicking on the “next”
or “Tell me more...” button.

In Hello Worlds, shown in Figure 4(c), help icons were scat-
tered throughout the game to give the player information
when appropriate. These help icons were activated whenever
the player stood over them, as shown in 4(c). When activated,
the text relating to that help icon would appear in the space
above the icon, allowing the user to easily read or ignore it.
If the player’s avatar then moved off of the help icon, the
text would immediately disappear. If the player moved their
avatar back over the help icon, the text would reappear.

For the context-insensitive version, we grouped the concepts
of each game into multi-page manuals by topic and order
of introduction. Since each game requires a different num-
ber of concepts, the length of the context-insensitive manu-
als varied across the games: 9 pages for Refraction, 16 for
Foldit, and 6 for Hello Worlds. The manuals for Refraction,
Foldit, and Hello Worlds are shown in Figures 5(a), 5(b), and
5(c), respectively. The manual consisted of a brief textual
description of each of the game’s concepts accompanied by

(a) (b) (c)

Figure 4. Screenshots of the context-sensitive tutorials. For Refraction, shown in Figure 4(a), a window appeared at the top of the screen containing
text, pictures, an OK button to continue, and a back button to return to a previous message. Foldit’s tutorial, shown in Figure 4(b), included a small box
containing tutorial text, which related to the protein at hand, and a “Tell me more...” button to go onto the next message. For Hello Worlds, shown in
Figure 4(c), blue help icons could be found throughout the game. Tutorial text appeared above an icon whenever the player’s avatar overlapped with it.

(a) (b) (c)

Figure 5. Screenshots of the context-insensitive tutorials. All three games featured a large window containing text, pictures, page numbers, “Next” and
“Previous” buttons, and a “Close” button to help the player navigate and understand the concepts of the game. The layout of this window varied from
game to game. Figure 5(a) shows the layout for Refraction, Figure 5(b) shows the layout for Foldit, and Figure 5(c) shows the layout for Hello Worlds.

relevant pictures associated with that concept. These manu-
als appeared before the player could interact with any levels,
forcing them to interact with the manual in some way before
playing the game. The player could navigate between pages
with the “next” and “back” buttons and gauge their progress
using page numbers present on each page. The player could
also close the manual at any time by clicking the “close” but-
ton.

Due to their length, we broke the Refraction and Foldit tu-
torials into logical “chapters.” As the player advanced, new
chapters became available. At each new stage, the context-
insensitive tutorial reappeared showing the first page in the
new chapter, and the player could navigate to previous chap-
ters if desired. Refraction had three chapters, displayed at the
beginnings of worlds one, five and six respectively. Foldit had
four chapters, displayed every four levels.

Freedom
To evaluate the effect of tutorial freedom, we divided the
context-sensitive condition described above into two condi-
tions: blocking and nonblocking. To create the blocking con-
dition, we identified several concepts from each game that
involved using a new tool, a new interface object, or a new
keyboard key. We then added a “stencil” for each of these

concepts that forced the player to use the new tool, blocking
forward progress in the game until the player performed the
desired action. After completing the stencil, freedom to inter-
act with the full user interface was restored. We implemented
stencils slightly differently in each game due to their different
interaction styles.

In Refraction, when the player encountered a stencil, the
game drew the player’s attention to the target interface object
by making the entire window gray except for that object, dis-
playing the instructions on a notification bar at the top of the
screen, adding an animated yellow arrow that pointed to the
object, and ignoring all user input directed at anything other
than the object. This implementation is shown in Figure 6(a).
If a level had both context-sensitive tutorial messages and a
stencil, then the game forced the player to click somewhere
on the screen to advance each tutorial message before forcing
the player to complete the stencil instructions.

In Foldit, the game displayed a message telling the player
what to do, as shown in Figure 6(b). The screen was not
grayed out, and the user could still manipulate the camera
and interact with game’s user interface controls. However,
the game prevented the player from manipulating the protein
in any other way until they performed the desired action. In

(a) (b) (c)

Figure 6. Screenshots of the blocking tutorials. A blocking tutorial prevented the player from continuing until they completed a specified action. For
Refraction, shown in Figure 6(a), the tutorial grayed out the interface except for a window containing tutorial text, an object for the player to interact
with, and an arrow pointing at that object. Foldit, shown in Figure 6(b), used a small text box to tell the player what action they needed to perform.
Hello Worlds, shown in Figure 6(c), grayed out the screen except for character, the tutorial text, and the interface buttons whenever the blocking tutorial
was active.

some levels the player needed to advance through preceding
context-sensitive tutorial messages to reach the stencil.

In Hello Worlds, as in Refraction, a gray window was drawn
over the entire game except for the player’s avatar, the mes-
sage text, and the user interface buttons. Since the user pri-
marily interacts with Hello Worlds through the keyboard, the
displayed message associated with each stencil told the user
what key(s) to press to continue, as shown in Figure 6(c). All
other keys were ignored until the user pressed one of the valid
keys. The user was allowed to interact with the interface but-
tons, such as “quit,” but could not make any progress on the
level until completing the instructions in the stenciled mes-
sage.

Availability of help
To evaluate whether players would look for help when they
needed it, and to measure the effect of tutorial availability on
player engagement, we added another variable, availability
of help, with two possibilities: on-demand help, and no help.
We created a version of the game with on-demand help for
each of the previously described conditions.

There are many ways to give tutorial information on-demand.
For this experiment, we added a help button to the main tool-
bar of each game. Since Foldit’s main toolbar can be closed,
another floating help button was added near the score dis-
play. Clicking on this help button opened the same manual
used in the context-insensitive tutorial condition described
previously. The manual included only the concepts which the
player could have encountered up to that point. If later lev-
els introduced new concepts, the help manual did not include
those concepts until the user reached that level. In order to
make the help provided as context-sensitive as possible, the
manual automatically opened to the page that most closely re-
lated to the level the user is currently playing. If desired, the
player could view all of the pages of the help screen with the
“next” and “back” buttons. The player could close the help
screen and return to the current level by clicking on a “close”
button. When activated, the help screen covered the main in-
teraction area for each game and restricted gameplay until the
player closed the tutorial.

DATA ANALYSIS AND RESULTS
We collected data from Refraction and Foldit for approxi-
mately two weeks, accumulating 13,158 Refraction players
and 9,743 Foldit players. During this period, Kongregate
added a new badge to Refraction, pushing the game to the
top of the “new badges list” and attracting many new players.
Kongregate also featured Hello Worlds on the front page of
its website as a “badge of the day,” allowing us to collect data
from 22,417 Hello Worlds players over a two-day period.

Table 3 shows the results of our experiment. Our mea-
surements of levels completed and time played were not
normally distributed, so we used on a non-parametric test,
the Wilcoxon/Kruskal-Wallis 2-sample test, to analyze lev-
els completed and time played for large-scale effects. The
Z-value reported for this test is a standard normal random
variable, a scaled version of the distribution of relative rank-
ings of the lower-ranked condition. For return rate, we used
Pearson χ2 analyses to compare the percentages. The vari-
ance in our measures was very high, so a great deal of data
was necessary to show statistical significance at the p = 0.05
level.

Tutorials were only justified in the most complex game
To evaluate whether tutorials improved player engagement,
we compared the version of the game with no tutorials
to the versions with context-sensitive tutorials and context-
insensitive tutorials. The “presence” section of Table 3 shows
the results for these comparisons.

We expected to find that including tutorials, either in-context
or out-of-context, would lead to higher engagement than pro-
viding no instruction at all. In Foldit, this was the case. Foldit
players with context-sensitive tutorials played 75% more lev-
els and 29% longer than those with no tutorials. Players with
context-insensitive tutorials played 25% more levels and 12%
longer than with no tutorials. We found no significant effects
for return rate.

However, tutorials were not as effective in the other two
games. We found no significant effects for either compari-
son in Refraction. In Hello Worlds, we found no significant

Experimental variable Game Condition Player Count Time Played Levels Completed Return Rate

Presence

Foldit

Context sensitive 1242 660s p < 0.001 7 p < 0.001 19.16% p = 0.408

No Tutorials 1210 510s Z = −5.070 4 Z = −10.982 20.50% χ2 = 0.686

Context insensitive 1147 570s p = 0.010 5 p < 0.001 19.62% p = 0.594

No Tutorials 1210 510s Z = −2.592 4 Z = 4.353 20.50% χ2 = 0.284

Refraction

Context sensitive 1634 990s p = 0.437 15 p = 0.294 28.46% p = 0.925

No Tutorials 1678 1050s Z = −0.778 16 Z = −1.049 28.61% χ2 = 0.009

Context insensitive 1687 1020s p = 0.483 15 p = 0.272 28.45% p = 0.922

No Tutorials 1678 1050s Z = 0.702 16 Z = 1.099 28.61% χ2 = 0.010

Hello Worlds

Context sensitive 2817 750s p = 0.697 10 p = 0.537 17.96% p < 0.001

No Tutorials 2815 720s Z = −0.389 10 Z = −0.618 21.60% χ2 = 11.733

Context insensitive 2754 690s p = 0.572 10 p = 0.770 20.59% p = 0.356

No Tutorials 2815 720s Z = −0.565 10 Z = 0.292 21.60% χ2 = 0.854

Context sensitivity

Foldit Context sensitive 1242 660s p = 0.014 7 p < 0.001 19.16% p = 0.779

Context insensitive 1147 570s Z = −2.470 5 Z = −7.727 19.62% χ2 = 0.079

Refraction Context sensitive 1634 990s p = 0.901 15 p = 0.994 28.46% p = 0.998

Context insensitive 1687 1020s Z = −0.124 15 Z = 0.008 28.45% χ2 = 0.000

Hello Worlds Context sensitive 2817 750s p = 0.348 10 p = 0.736 17.96% p = 0.013

Context insensitive 2754 690s Z = −0.938 10 Z = −0.337 20.59% χ2 = 6.175

Freedom

Foldit Blocking 1210 630s p = 0.454 7 p = 0.007 18.93% p = 0.881

Non-blocking 1242 660s Z = −0.749 7 Z = 2.697 19.16% χ2 = 0.022

Refraction Blocking 1634 930s p = 0.142 14 p = 0.139 26.37% p = 0.187

Non-blocking 1551 990s Z = −1.467 15 Z = −1.477 28.46% χ2 = 1.743

Hello Worlds Blocking 2729 723s p = 0.740 9 p = 0.376 18.94% p = 0.346

Non-blocking 2817 750s Z = −0.332 10 Z = −0.886 17.96% χ2 = 0.889

Availability of help

Foldit

Help (aggreg.) 4939 600s p = 0.536 5 p = 0.208 18.34% p = 0.130

No help (aggreg.) 4809 600s Z = −0.619 5 Z = −1.258 19.55% χ2 = 2.297

Help Only 1238 570s p = 0.036 4 p = 0.001 18.98% p = 0.347

No Tutorials 1210 510s Z = −2.101 4 Z = −3.197 20.50% χ2 = 0.885

Refraction

Help (aggreg.) 6608 960s p = 0.806 15 p = 0.515 28.50% p = 0.528

No help (aggreg.) 6550 990s Z = 0.245 15 Z = 0.651 28.00% χ2 = 0.399

Help Only 1678 900s p = 0.031 14 p = 0.013 27.43% p = 0.451

No Tutorials 1655 1050s Z = −2.161 16 Z = −2.496 28.61% χ2 = 0.569

Hello Worlds

Help (aggreg.) 11302 720s p = 0.626 10 p = 0.972 18.56% p = 0.021

No help (aggreg.) 11115 720s Z = 0.487 10 Z = 0.035 19.78% χ2 = 5.314

Help Only 2864 754s p = 0.434 11 p = 0.190 18.44% p = 0.003

No Tutorials 2815 720s Z = −0.782 10 Z = −1.310 21.60% χ2 = 8.875

Table 3. Summary of data gathered during the experiment, organized around our four experimental variables of presence, context-sensitivity, freedom,
and availability of help on-demand. Statistically significant results are shown in blue italics. Our results show that tutorials only had positive effects
on player behavior in Foldit, that context-sensitive tutorials outperformed context-insensitive tutorials in Foldit, that restricting player freedom did
not improve engagement in any game, and that providing access to help on-demand was beneficial in Foldit, ineffective in Hello Worlds, and actually
harmful in Refraction.

effects for levels completed and time played, and we found
that 3.5% fewer players returned with context-sensitive tuto-
rials than with no tutorials.

In contrast to our expectations, our results show that tutori-
als are only useful for improving player engagement in some
games. It may be the case that tutorial value depends on
game complexity. Refraction and Hello Worlds are typical
of their genres and have intuitive interfaces. Foldit, on the
other hand, is unconventional, complex, and requires deep
strategy and spatial insight. Another possible explanation is
that Foldit players are more patient. Since the barrier to play
a downloadable game like Foldit is higher than for online ca-
sual games like Refraction and Hello Worlds, players who
are willing to overcome this barrier may be willing to devote
more time reading the tutorials. Further work is necessary
to know the exact reasons for this effect. Regardless, our re-
sults show that tutorials may only be worthwhile for complex
games, such as Foldit, and may not be worth the investment
of time and resources in games with mechanics that are more
easily discovered through experimentation, such as Refrac-
tion and Hello Worlds.

Context-sensitivity can improve engagement
We next evaluated the importance of presenting tutorial in-
formation in context. We expected that presenting informa-
tion as closely as possible to when the player needed it would
be better than presenting information out of context. The
results for the comparison of context-sensitive and context-
insensitive tutorials are shown in the “context-sensitivity”
section of Table 3.

Context-sensitivity improved player engagement in Foldit.
Foldit players played 40% more levels and 16% longer
with context-sensitive tutorials than context-insensitive tuto-
rials. However, we did not find positive effects for context-
sensitivity in the other two games. We found no significant
effects for Refraction. In Hello Worlds, we found that the
return rate was about 2% less with context-sensitive tutorials
than with context-insensitive tutorials.

Therefore, the importance of context-sensitivity in a partic-
ular game depends on whether tutorials positively impact
player engagement in that game. For complex games where
tutorials are beneficial, such as Foldit, presenting the infor-
mation in context seems beneficial. However, for games in

which tutorial presence does not have an impact, it does not
matter whether or not the information is presented in context.

Tutorial freedom did not affect player behavior
To evaluate whether restricting player freedom would im-
prove tutorial effectiveness, we compared the versions with
context-sensitive blocking tutorials to those with context-
sensitive nonblocking tutorials. The results of this compar-
ison are shown in the “freedom” section of Table 3.

We expected that blocking tutorials would focus player atten-
tion and improve learning. In Foldit, we found a significant
effect for levels completed, but the median number of levels
completed remained constant at 7 levels. We found no signif-
icant effects for Refraction and Hello Worlds.

Therefore, we found no evidence supporting the practice of
restricting player freedom in order to focus player attention
on target interface objects. This result may further reinforce
our conclusion that players learn how to use the interface pri-
marily through experimentation, and that forcing the player to
perform a series of actions may not be effective. It may also
be the case that players do not like having their freedom re-
stricted and that this cancels out any positive effects on learn-
ing. Further examination is necessary to understand whether
restricting player freedom improves player engagement and
learning in some cases.

On-demand help harmed and helped player retention
We next evaluated whether player engagement would be im-
proved by providing additional help that players could access
when needed. We expected that providing additional help in
this way would be beneficial. The results for the following
comparisons are shown in the “availability of help” section
of Table 3.

To look for large-scale effects of providing on-demand help
in general, we first aggregated the four conditions with a help
button and the four conditions without a help button and com-
pared them against each other. We found only one significant
effect across all three games, which was a 1.2% increase in
return rate for Hello Worlds.

We then assumed that the effect of providing help on-demand
would be strongest when no other instructions were given.
Therefore, we compared the version with a help button and
no other tutorials with the version with no help button and
no tutorials. In Foldit, providing a help button in this case
increased engagement. Players played about 12% longer with
a help button than without. We found a significant effect on
the number of levels completed but this effect did not change
the median. However, we found negative effects in the other
two games. In Hello Worlds, players returned about 3% less
frequently with on-demand help than without. In Refraction,
we found that players with on-demand help completed 12%
fewer levels than those without access to help, and played for
15% less time.

The negative impact of the help button, particularly in Re-
fraction, is difficult to explain. Only 31% of players that had

access to the help button in Refraction ever used it. One pos-
sible explanation is that the knowledge that there is help avail-
able discourages players from putting as much effort into the
game. It is also possible that players will only click “help” if
they are already frustrated, and will quit even sooner if they
are unable to find the help they need. We can only specu-
late at this point, however, since multivariate testing does not
tell us what players are thinking. Future studies are needed
to reproduce and understand this effect. Nevertheless, it is
clear that players can respond unpredictably to tutorial im-
plementations, and that tutorials can harm player retention
unexpectedly. This points to the importance of testing tuto-
rial implementations to avoid unexpected negative effects.

CONCLUSION
Our examination of tutorials in three games of varying com-
plexity showed that tutorial effectiveness depends on the
complexity of the game. Tutorials had the greatest value
in the most unconventional and complex game, Foldit, in-
creasing play time by as much as 29%. However, tutorials
had surprisingly little impact on player behavior in Refrac-
tion and Hello Worlds, which are less complex, more similar
to other games, and easier to learn through experimentation.
Our results suggest that tutorials may not be effective for such
games, and that designers should consider the complexity and
discoverability of game mechanics when deciding whether to
invest resources in tutorials. It is unlikely that a single ap-
proach will work for tutorial design in all games.

Since players seem to learn more from exploring than from
reading text, we believe that it is important to design early
levels in a way that maximizes a player’s ability to exper-
iment and discover game mechanics. A key question that
arises is how to facilitate this experimentation while ensur-
ing that the player learns how to play and does not become
frustrated. We found little evidence to suggest that restrict-
ing player freedom to focus attention on a particular interface
object or game mechanic is beneficial. Although it may be
tempting to provide help on-demand, we found that adding a
help button was only effective in Foldit, and actually reduced
player progress by 12% and play time by 15% in Refrac-
tion. Future work is needed to understand how to break down
a complex game into smaller “chunks” that can be learned
through exploration, how to detect when a player is confused
or frustrated, and how to intervene, if necessary, in a way that
causes learning without negatively impacting engagement.

One of the drawbacks of our methodology is that we do not
know demographic information about our players. It is likely
that each game attracted different kinds of players and that
self-selection contributed to the differences in player behavior
that we observed. However, we believe that it is most useful
to tailor tutorials for the players who do self-select to play
each game because they are the players who are likely to play
the most.

Since we only tested tutorials in Refraction, Hello Worlds,
and Foldit, we cannot know for sure how these results gener-
alize to other games and genres. In particular, our games are
not representative of commercial games, and as a result we
can draw no conclusions about the effectiveness of tutorials

in games that players must purchase. Further research with a
wider variety of games is required to determine whether our
results will apply to commercial games and games of differ-
ent genres.

Furthermore, future work is necessary to understand how tu-
torial presentation affects player behavior. There are many
ways to design tutorials, and we only experimented with ba-
sic designs. Although video game tutorials frequently include
audio, animations, and videos, we only examined tutorials
containing pictures and text. Another question is whether de-
signers should integrate tutorials into the main game progres-
sion or provide them in a separate “tutorial mode” that can
be avoided entirely, as suggested by [1] and utilized in highly
successful games such as Deus Ex (Ion Storm Inc. 2000). Fu-
ture experiments with a greater variety of tutorial styles will
improve our understanding of how to design effective tutori-
als.

Our results point to the importance of analytics and large-
scale analysis of player behavior because these effects would
be difficult to discover without large amounts of data. We
believe that this methodology will continue to provide valu-
able insights that improve our understanding of good game
design. Such experiments are important because player be-
havior is often counterintuitive; each of our four hypotheses
turned out to be either incorrect or incomplete. Furthermore,
we believe that the ability of games to attract large numbers of
participants, allowing researchers to perform tests with many
experimental variables, will make them an important mecha-
nism for future HCI research.

ACKNOWLEDGMENTS
We would like to acknowledge the members of the Refrac-
tion, Hello Worlds, and Foldit teams for developing the games
and making this work possible. We also thank Anthony
Pecorella and August Brown of Kongregate for promoting
our games and helping us gather data. This work was sup-
ported by the University of Washington Center for Game Sci-
ence, DARPA grant FA8750-11-2-0102, the Bill and Melinda
Gates Foundation, NSF grant IIS0811902, two NSF Graduate
Fellowships, Adobe, and Intel.

REFERENCES
1. E. Adams. The designer’s notebook: Eight ways to make a bad tutorial.

Gamasutra, 2011.
2. E. Andersen, Y.-E. Liu, R. Snider, R. Szeto, S. Cooper, and Z. Popović.

On the harmfulness of secondary game objectives. In FDG ’11:
Proceedings of the Sixth International Conference on the Foundations
of Digital Games, New York, NY, USA, 2011. ACM.

3. E. Andersen, Y.-E. Liu, R. Snider, R. Szeto, and Z. Popović. Placing a
value on aesthetics in online casual games. In CHI ’11: Proceedings of
the SIGCHI conference on Human factors in computing systems, New
York, NY, USA, 2011. ACM.

4. L. Bergman, V. Castelli, T. Lau, and D. Oblinger. Docwizards: A
system for authoring follow-me documentation wizards. In UIST ’05
Proceedings of the 18th annual ACM symposium on User interface
software and technology, New York, NY, USA, 2005. ACM.

5. S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen,
A. Leaver-Fay, D. Baker, Z. Popović, and F. Players. Predicting protein

structures with a multiplayer online game. Nature, 466(7307):756–760,
August 2010.

6. D. K. Farkas. The role of balloon help. ACM SIGDOC Asterisk Journal
of Computer Documentation, 17, 1993.

7. J. P. Gee. Learning by design: Games as learning machines. Interactive
Educational Multimedia, 8:15–23, 2004.

8. Google Website Optimizer. http://www.google.com/websiteoptimizer/.

9. F. Grabler, M. Agrawala, W. Li, M. Dontcheva, and T. Igarashi.
Generating photo manipulation tutorials by demonstration. In ACM
SIGGRAPH 2009, New York, NY, USA, 2009. ACM.

10. T. Grossman and G. Fitzmaurice. Toolclips: An investigation of
contextual video assistance for functionality understanding. In CHI ’10
Proceedings of the 28th international conference on Human factors in
computing systems, New York, NY, USA, 2010. ACM.

11. T. Grossman, G. Fitzmaurice, and R. Attar. A survey of software
learnability: Metrics, methodologies and guidelines. In CHI ’09:
Proceedings of the 27th international conference on Human factors in
computing systems, New York, NY, USA, 2009. ACM.

12. S. M. Harrison. A comparison of still, animated, or nonillustrated
on-line help with written or spoken instructions in a graphical user
interface. In CHI ’95 Proceedings of the SIGCHI conference on Human
factors in computing systems, New York, NY, USA, 1995. ACM.

13. J. Huang and M. B. Twidale. Graphstract: Minimal graphical help for
computers. In UIST ’07 Proceedings of the 20th annual ACM
symposium on User interface software and technology, New York, NY,
USA, 2007. ACM.

14. C. Kelleher and R. Pausch. Stencils-based tutorials: Design and
evaluation. In CHI ’05 Proceedings of the SIGCHI conference on
Human factors in computing systems, New York, NY, USA, 2005.
ACM.

15. K. Knabe. Apple guide: A case study in user-aided design of online
help. In CHI ’95 Conference companion on Human factors in
computing systems, New York, NY, USA, 1995. ACM.

16. R. Kohavi, R. M. Henne, and D. Sommerfield. Practical guide to
controlled experiments on the web: listen to your customers not to the
hippo. In KDD ’07: Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 959–967, New York, NY, USA, 2007. ACM.

17. T. Lau, L. Bergman, V. Castelli, and D. Oblinger. Sheepdog: Learning
procedures for technical support. In IUI ’04 Proceedings of the 9th
international conference on Intelligent user interfaces, New York, NY,
USA, 2004. ACM.

18. J. Lave and E. Wenger. Situated learning: Legitimate peripheral
participation. Cambridge University Press, Cambridge, England, 1991.

19. G. Linden. Early Amazon: Shopping cart recommendations, 2006.
http://glinden.blogspot.com/2006/04/early-amazon-shopping-cart.html.

20. J. Nielsen. Usability Engineering. Morgan Kaufmann, San Francisco,
CA, USA, 1993.

21. S. Palmiter and J. Elkerton. An evaluations of demonstrations for
learning computer-based tasks. In CHI ’91 Proceedings of the SIGCHI
conference on Human factors in computing systems: Reaching through
technology, New York, NY, USA, 1991. ACM.

22. S. G. Ray. Tutorials: Learning to play. Gamasutra, 2010.

23. B. Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1986.

24. J. Xiao, R. Catrambone, and J. Stasko. Be quiet? evaluating proactive
and reactive user interface assistants. Technical report, Georgia Institute
of Technology, Atlanta, GA, USA, 2003.

	Introduction
	Tutorial presence
	Context-sensitivity
	Freedom
	Availability of help

	Study Methodology
	Our games
	Metrics

	Study Design
	Tutorial presence
	Context-sensitivity
	Freedom
	Availability of help

	Data Analysis and Results
	Tutorials were only justified in the most complex game
	Context-sensitivity can improve engagement
	Tutorial freedom did not affect player behavior
	On-demand help harmed and helped player retention

	Conclusion
	Acknowledgments
	REFERENCES

