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Abstract

We trained and applied an encoder-decoder model to
semantically segment breast biopsy images into biologi-
cally meaningful tissue labels. Since conventional encoder-
decoder networks cannot be applied directly on large biopsy
images and the different sized structures in biopsies present
novel challenges, we propose four modifications: (1) an
input-aware encoding block to compensate for informa-
tion loss, (2) a new dense connection pattern between en-
coder and decoder, (3) dense and sparse decoders to com-
bine multi-level features, (4) a multi-resolution network that
fuses the results of encoder-decoders run on different reso-
lutions. Our model outperforms a feature-based approach
and conventional encoder-decoders from the literature. We
use semantic segmentations produced with our model in
an automated diagnosis task and obtain higher accuracies
than a baseline approach that employs an SVM for feature-
based segmentation, both using the same segmentation-
based diagnostic features.

1. Introduction
Breast cancer is traditionally diagnosed with histopatho-

logical interpretation of the biopsy samples on glass slides
by pathologists. Whole slide imaging (WSI) is a technol-
ogy that captures the contents of glass slides in a multi-
resolution image. With the developments in whole slide
imaging, it is now possible to develop computer-aided di-
agnostic tools that support the decision-making process of
medical experts. Until recently, the use of WSIs was limited
to non-clinical purposes such as research, education, obtain-
ing second opinions, and archiving, but they have been ap-
proved for diagnostic use in the US starting April 2017 [2].

Automated cancer detection from digital slides is a well-
studied task in the computer vision community [10] and
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Figure 1: The set of tissue labels used in semantic segmentation:
(top row) three example cases from the dataset and (bottom row)
the pixel labels provided by a pathologist. Best viewed in color.

several image datasets have been developed for malignant
tumors [3, 39, 4]; however, little work exists in differentiat-
ing the full spectrum of breast lesions from benign to pre-
invasive lesions, and to invasive cancer [11]. Pre-invasive
lesions presents a more difficult classification scenario than
the binary classification task of invasive cancer detection. It
requires careful analysis of epithelial structures in the breast
biopsy images. In this paper, we propose a state-of-the-art
semantic segmentation system to produce a tissue label im-
age (Figure 1) for the WSIs of breast biopsies that can lead
to an automated diagnosis system.

Our system builds on the encoder-decoder networks that
are the state-of-the-art approaches for semantic segmenta-
tion. However, conventional architectures are not directly
applicable to whole slide breast biopsy images with dimen-
sions in gigapixels. A sliding window approach to crop
fixed-sized images from WSIs is promising [22], but di-
viding the large structures limits the context available to
convolutional neural networks (CNNs) and affect the seg-
mentation performance. Unlike general image datasets (e.g.
[26, 14, 37]), breast biopsy images have objects of interest
in varied sizes. For some WSIs, the diagnosis is made while



looking at the whole image, while others require the detec-
tion of a small structure at high resolutions. Simply using a
sliding window with a constant size causes loss of informa-
tion available at different resolutions.

This paper proposes a new multi-resolution encoder-
decoder architecture that was specifically designed to han-
dle the challenges of the breast biopsy semantic segmenta-
tion problem. The architecture is described in detail, and a
rigorous set of experiments is applied to compare its seg-
mentation performance to multiple different other models.
Finally, the network is used in a set of diagnostic classifica-
tion experiments that further show its benefits.

2. Related Work
Following the success of CNNs in image classification

tasks [38, 36, 21], they have been extended for dense predic-
tion tasks such as semantic segmentation [35, 31, 6]. Unlike
object proposal-based methods [17, 18], fully convolutional
networks (FCN) have enabled end-to-end training and have
shown efficient feature learning. These methods are widely
used for segmenting both natural [35, 31, 6, 8] and medical
images [33, 15, 30, 42].

FCN-based networks generate coarse segmentation
masks and several techniques have been proposed to ad-
dress this limitation such as skip-connections [35, 33, 15],
atrous/dilated convolutions [8, 41], deconvolutional net-
works [31, 6, 15, 33, 7], and multiple input networks (e.g.
different scales [9, 43, 27] or streams [16]). These methods
process the input sources either independently [8, 9, 16, 25]
or recursively [32, 12]; thus exploit the features from mul-
tiple levels to refine the segmentation masks. Additionally,
conditional random fields (CRFs) have been used to further
refine the segmentation results [44, 8, 41].

Several CNN-based methods have been applied for seg-
menting medical images (e.g. EM [33], brain [15], gland
[7], and 3D MR [42] images). Yet, segmenting breast
biopsy images, with a full range of diagnosis from benign
to invasive, still remains a challenge. Our approach applies
previous work on encoder-decoders (e.g. [6, 15]) and im-
proves upon them with carefully designed components that
address their limitations on WSI applications.

3. Breast Biopsy Dataset
Our dataset contains 240 breast biopsies selected from

the Breast Cancer Surveillance Consortium [1] affiliated
archives in New Hampshire and Vermont. The cases span a
wide range of diagnoses that mapped to four diagnostic cat-
egories: benign, atypia, ductal carcinoma in-situ (DCIS),
and invasive cancer. The original H&E (heamatoxylin and
eosin) stained glass slides were scanned using an iScan
CoreoAu R© in 40× magnification. A technician and an ex-
perienced breast pathologist reviewed each digital image,
rescanning as needed to obtain the highest quality. The av-
erage image size for the 240 WSIs was 90, 000 × 70, 000

Diagnostic #ROI #ROI #ROI Avg. size
Category (training) (test) (total) (pixels)

Benign 4 5 9 9K × 9K
Atypia 11 11 22 6K × 7K
DCIS 12 10 22 8K × 10K

Invasive 3 2 5 38K × 44K

Total 30 28 58 10K × 12K

Table 1: Distribution of diagnostic categories and average image
sizes from the segmentation subset.

pixels.
All 240 digital slides were interpreted by an expert panel

of three pathologists to produce an expert consensus diag-
nosis for each case. Experts also provided one or more re-
gions of interest (ROIs) supporting the expert consensus di-
agnosis on each WSI. Since some cases had more than one
ROI per WSI, the final set includes 102 benign, 128 atypia,
162 DCIS and 36 invasive ROIs.

To describe the structural changes that lead to cancer in
the breast tissue, we produced a set of eight tissue labels in
collaboration with an expert pathologist: (1) benign epithe-
lium: the epithelial cells in the benign and atypia categories,
(2) malignant epithelium: the bigger and more irregular ep-
ithelial cells from the DCIS and invasive cancer categories,
(3) normal stroma: the connective tissue between the regu-
lar ductal structures in the breast, (4) desmoplastic stroma:
proliferated stromal cells associated with tumor, (5) secre-
tion: benign substance secreted from the ducts, (6) necrosis
the dead cells at the center of the ducts in the DCIS and in-
vasive cases, (7) blood: the blood cells, which are rare but
have a very distinct appearance, and (8) background: the
pixels that do not contain any tissue.

Although some labels are not critical for diagnosis, our
tissue label set was intended to cover all the pixels in the
images. Due to the expertise needed for labeling and the
size of the biopsy images, we randomly selected a subset of
40 cases (58 ROIs) to be annotated by a pathologist. Table 1
summarizes the distribution of four diagnostic categories in
training and test sets as well as average image sizes. Figure
1 shows three example images along with their pixel-wise
labels provided by the pathologist.

4. Background
Encoder-decoder networks are state-of-the-art networks

for segmenting 2D (e.g. [33, 15]) as well as 3D (e.g.
[30, 42]) medical images. In a conventional encoder, the
transition between two subsequent encoding blocks, lth and
(l+1)th, can be formulated as [26, 36]: xl+1

e = Fe(x
l
e). In

a class of encoder networks, called residual networks, the
input and output of the lth block are combined to improve
the gradient flow [21]:

xl+1
e = Fe(x

l
e) + xl

e (1)
where Fe(x

l
e) is a function comprising two 3 × 3 convolu-

tion operations. This block is referred as a Residual Convo-



lutional Unit (RCU) (Figure 2a).
In a conventional decoder (Figure 3a), the transition be-

tween two subsequent decoding blocks, lth and (l + 1)th,
can be formulated as [35, 8, 31, 6]: xl

d = Fd(x
l+1
d ). To

improve the gradient flow between the encoder and the de-
coder, the output of the lth encoding block and the corre-
sponding decoding block can be combined as [15, 33]:

x̆l
d = xl

e + Fd(x
l+1
d ) (2)

where Fd(x
l
d) is a decoding function that performs a 3× 3

deconvolution operation. Such an encoder-decoder net-
work with skip-connections between encoding and decod-
ing blocks is called a residual encoder-decoder (Figure 3b).
The deconvolution operation: (1) up-samples the feature
maps, and (2) reduces the dimensionality of the feature
maps. Note that the deconvolutional filters are capable of
learning the non-linear up-sampling operations [35].

5. Proposed Encoder-Decoder Network
We propose a new encoder-decoder architecture to ad-

dress the challenges that semantic segmentation of breast

(a) RCU [21] (b) Our Input-Aware RCU
Figure 2: Different type of encoding blocks: (a) residual con-
volutional unit (RCU) and (b) the proposed input-aware residual
convolutional unit (IA-RCU).
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Figure 3: (a, b) Conventional and (c) ours densely connected
encoder-decoder networks with L encoding and decoding blocks.
These networks take an input x and generates an output y. Here,
99K and→ represents residual and dense links between the
encoder and the decoder.

biopsies presents. Our network incorporates four new fea-
tures: (1) input-aware encoding blocks (IA-RCU) that re-
inforces the input inside the encoder to compensate the
loss of information due to down-sampling operations, (2) a
densely connected decoding network and (3) an additional
sparsely connected decoding network to efficiently combine
the multi-level features aggregated by the encoder, and (4) a
multi-resolution network for context-aware learning, which
combines the output of different resolutions using a densely
connected fusion block. Our network makes use of long-
range skip-connections with identity and projection map-
pings in the encoder, the decoder, and fusion block to effi-
ciently back-propagate the information to the input source
and prevent the vanishing gradients; thereby helps train our
network efficiently end-to-end. An overview of our network
is illustrated in Figure 4 with details below.

5.1. Input-aware encoding blocks (IA-RCU)
The down-sampling operations in the encoder result in

a loss of spatial information. To compensate the loss of
spatial information, we introduce an input-aware encoding
block (IA-RCU) that reinforces the input image at differ-
ent levels of the encoder for better encoding of the spatial
relationships and learned features. The IA-RCU, sketched
in Figure 2b, introduces an additional path which can be
viewed as a different connectivity pattern that establishes
a direct link between an input image and any encoding
stage, making each encoding block aware of the input im-
age; thereby allowing gradients to flow back directly to the
input paths. Additionally, the IA-RCU allows the encod-
ing blocks to learn the features relevant to the input. The
IA-RCU can be mathematically defined as:

x̂l+1
e = xl+1

e + FIA(x) (3)
where FIA(x) represents an input-aware mapping to be
learned. FIA is a composite function comprising a 3 × 3
average pooling operation that sub-samples the input image
x to the same size as the encoding block xl+1

e , followed by
1×1 and 3×3 convolution operations that first projects the
sub-sampled image to the same vector space as the encoding
block xl+1

e (Eq. 1) and then computes the dense features.

5.2. Densely Connected Decoding Blocks
Unlike a plain encoder-decoder network (Figure 3a), the

skip-connections in the residual encoder-decoder network
(Figure 3b) establishes a direct link between the encoding
block and corresponding decoding block, which helps to
improve the information flow. To further improve the in-
formation flow, we introduce direct connections between a
decoding block and all encoding blocks that are at the same
or lower level (Figure 3c). The lth decoding block receives
the output feature maps from encoding blocks 1 to l. Dense
connections can be defined as a modification to Eq. 2:

x̂l
dd = Fd(x

l+1
d ) +

l∑
i=1

FD(x̂i
e) (4)



Figure 4: Our multi-resolution encoder-decoder network that incorporates input-aware encoding blocks, sparse and densely connected
decoding networks, and densely connected fusion block. Different components in our architecture makes use of identity and projection
mappings; thereby helping in back-propagating the information directly to the input paths efficiently. → and 99K links denotes the
identity and projection links. The number of channels at different levels of encoder, densely connected decoder, and sparse decoder follow
the following sequences: 64→ 64→ 128→ 256→ 512, 256→ 128→ 64→ 64→ C, and C → C → C → C. Best viewed in color.

FD(x̂i
e) is the dense connection mapping to be learned. FD

consists of a 1×1 convolution operation, which projects the
feature maps of the ith encoding block x̂i

e to the same vector
space as xl

d.

5.3. Multiple Decoding Paths
For a given input image x, we aim to efficiently combine

the low- and mid-level features of the encoding network
with high-level features to generate a pixel-level seman-
tic segmentation mask. To do so, we must invert the loss
of resolution from down-sampling. Using previous work
[31, 6, 33, 15], we augment the encoder network with the
bottom-up refinement approach. We introduce two decod-

ing networks, densely connected and sparse, that decode the
encoded input into a C-dimensional output, where C repre-
sents the number of classes in the dataset. Figure 4 shows
our network with multiple decoding paths.

The densely connected decoder stacks the densely con-
nected decoding blocks, defined in Eq. 4, to decode the en-
coded feature maps into C-dimensional space. Because of
the dense connections between the encoder and the decoder,
we call this decoder a densely connected decoder. The
sparse decoder projects the high-dimensional feature maps
of each encoding block into C-dimensional vector spaces,
which are then combined using a bottom-up approach. A



sparse decoding function FS can be formulated as:
x̂l
ds = FS({x̂l

e, x̂
l+1
e }) (5)

FS({x̂l
e, x̂

l+1
e }) is a function consisting of 1 × 1 decon-

volutional and convolutional operations that projects high-
dimensional encoder feature maps to C-dimensional vector
space. Additionally, deconvolution operation up-samples
the feature maps of x̂l+1

e to the same size as x̂l
e. Because of

the 1× 1 convolution/deconvolutional operations involved,
we call this decoder a sparse decoder.

5.4. Multiple Resolution Input
A sliding-window approach is promising for segmenting

large biopsy images, however, the size of the patch deter-
mines the context available to the CNN model. Such an
approach divides the bigger structures into smaller patches
and may hurt the performance of the CNN method, es-
pecially at the border of the patch. To make the CNN
model aware of the surrounding information, we introduce
a multi-resolution network, which consists of the composi-
tion of P instances of the encoder-decoder network (Figure
4). The pth instance takes the input patch xp and generates
the C-dimensional output yp. The spatial dimensions of
each instance are different. A cropping function FCr(yp)
takes the output of the pth instance and centrally crops it
to produce the output ŷp, which has the same dimensions
as yP . After cropping, a multi-resolution fusion function
FMr({ŷ1, · · · , ŷP−1,yP }) is applied to fuse the output of
these P network instances to produce the output ypred.

The multi-resolution fusion function FMr, visualized in
Figure 4, first combines the P instances using an element-
wise sum operation and then extracts the dense features us-
ing a stack of 3× 3 dilated or atrous convolution operations
with different dilation rates r. A traditional context module
[41] may suffer from degradation problem and impede the
information flow. Following Huang et al.[23], we introduce
direct identity mappings from any layer to its subsequent
layers to improve the information flow in the fusion block.
We combine the output of any layer with the preceding lay-
ers using an element-wise sum operation.

6. Experiments and Results
To evaluate each proposed mechanism, we trained and

tested eight encoder-decoder networks as summarized in
Table 2. We compared our model to two conventional mod-
els: a plain encoder-decoder network [6] (Figure 3a) and
a residual encoder-decoder [15] (Figure 3b). Then, we ran
ablation studies by removing IA-RCU blocks (A1), multi-
ple decoders (A2), and both IA-RCU blocks and multiple
decoders (A3). We ran all models with a single encoder-
decoder network using single resolution input and with
multiple encoder decoders using multiple resolution inputs.
Finally, to compare with our fusion approach for multi-
resolution inputs, we implemented two alternative fusion
methods (Figure 5): Fusion-A, with a standard stack of

convolutional blocks, and Fusion-B, with a spatial pyramid
pooling method using atrous or dilated convolutions [8]. We
used two resolutions in multi-resolution models but our net-
work can be easily extended to many resolutions.

Superpixel and SVM-based Baseline: For purpose of
comparison, we also implemented a traditional feature-
based segmentation method as a baseline. We refer to this
method as SP-SVM. We used the SLIC algorithm [5] to
segment H&E images into superpixels of size 3,000 pix-
els. From each superpixel, we extracted color histograms
on L*a*b* channels and LBP texture histograms [19] on the
H&E channels. We used the color deconvolution algorithm
[34] to separate the H&E channels. A superpixel size of
3,000 pixels was selected to have approximately one or two
epithelial cells in one superpixel in order to capture detailed
duct structures. To improve the classification, we included
two circular neighborhoods around each superpixel in fea-
ture extraction. The color and texture histograms calcu-
lated from the superpixels and circular neighborhoods were
concatenated to produce one feature vector for each super-
pixel. Figure 6 illustrates the two circular neighborhoods
from which the same features were extracted and appended
to the superpixel feature vector.

Training Details: We split 58 images (regions of interest
marked and annotated by the experts) into training (N=30)

(a) Fusion-A (b) Fusion-B
Figure 5: Different fusion strategies for multi-resolution network.

(a) superpixel segmentation (b) neighborhoods

Figure 6: Initial superpixel segmentation and the circular neigh-
borhoods used to increase the superpixel classification accuracy
for supervised segmentation. Best viewed in color.



and test (N=28) sets. For the single-resolution networks,
we cropped patches of size 256× 256 with an overlap of 56
pixels at different WSI resolutions (5× and 10×). For the
multi-resolution networks, for each 256×256 patch, we cre-
ated another patch by including a 64-pixel border area (see
Figure 4). When necessary, we used symmetric padding to
complete the patches. We obtained 5, 312 patches from the
training set (N=30). To augment the data, we used standard
augmentation strategies, such as random rotations, horizon-
tal flips, and cropping, resulting in a total of 25,992 patches.
We used a 90:10 ratio for splitting these patches into train-
ing and validation sets.

We trained all of our models end-to-end using stochastic
gradient descent with a fixed learning rate of 0.0005, mo-
mentum of 0.9, weight decay of 0.0005, and a batch size of
10 on a single NVIDIA GTX-1080 GPU. We initialized en-
coder weight with ResNet-18 [21] trained on the ImageNet
dataset [26]. We choose ResNet-18, because it: (1) is fast
at inference, (2) requires less memory per image, and (3)
learns less parameters while delivering accuracy similar to
VGG [36] on the ImageNet. We initialized decoder weights
as suggested in [20]. We did not use dropout, following
the practice of [24, 21]. We used an inverse class proba-
bility weighting scheme to deal with the class imbalance.
Motivated by He et al.[21], we applied batch normalization
[24] and ReLU [20] operations after every convolution or
deconvolution or atrous/dilated convolution operation, with
the exception of RCU and IA-RCU blocks where second
ReLU is performed after the element-wise sum operation.

For the superpixel and SVM-based baseline, we concate-
nated color and texture histograms to train an SVM that
classifies super-pixels into eight tissue labels. To address
the non-uniform distribution of the tissue labels and ROI
size variation, we sampled 2,000 superpixels for each of
the eight labels (if possible) from each image. We used the
same training and test sets to evaluate the SP-SVM method.
6.1. Segmentation Results

We evaluated our results using three metrics commonly
used for semantic segmentation [7, 35, 6]: (1) F1-score
(F1), (2) mean region Intersection over Union (mIOU), and
(3) global pixel accuracy (PA). Table 2 summarizes the per-

formance of different encoder-decoder models and feature-
based baseline. The impact of each of our modifications
along with a comparison with the feature-based segmenta-
tion method are discussed below.

Residual vs Dense Connections: The residual encoder-
decoder has a 0.5% higher pixel accuracy (PA) than the
plain encoder-decoder, and our model with dense connec-
tions (A3) has a 2% higher PA than plain encoder-decoder
under both single and multiple resolution settings. On an
average, dense connections improve the accuracy (across
different metrics) by at least 1% without significantly in-
creasing the number of parameters of the network.

RCU vs IA-RCU: Replacing the IA-RCU with conven-
tional RCUs (A1) in our model reduces accuracy (both F1
and PA) by about 4% under single resolution and 7% un-
der multiple resolutions. Furthermore, A2 with IA-RCU
has 2% higher accuracy than A3 with RCUs under multiple
resolution setting. Figure 7 visualizes the activation maps
of different encoding blocks at different spatial resolutions
in which RCUs lose information about small structures in
lower spatial dimensions, while the IA-RCUs help in re-
taining this information.

RGB RCU IA-RCU

Size→ 64× 64 32× 32 64× 64 32× 32

Figure 7: Visualization of activation maps of different encoding
blocks at different spatial resolutions. IA-RCU compensates the
loss of spatial information due to down-sampling operations and
helps in learning features that are relevant with respect to input.
For visualization, we have scaled the activation maps to the same
spatial dimensions. Best viewed in color.

Dense Multi- IA- Single resolution Multiple resolution
Conn. Dec. RCU # Params F1 mIOU PA # Params F1 mIOU PA

Plain Enc-Dec [6] 12.80 M 0.507 0.376 0.575 25.61 M 0.513 0.381 0.593
Residual Enc-Dec [15] 12.80 M 0.510 0.381 0.586 25.61 M 0.517 0.386 0.597

Our Model X X X 13.00 M 0.554 0.418 0.642 26.03 M 0.588 0.442 0.700

A1 X X 12.93 M 0.517 0.385 0.608 25.85 M 0.529 0.390 0.631
A2 X X 12.99 M 0.517 0.387 0.601 25.98 M 0.540 0.407 0.633
A3 X 12.92 M 0.519 0.390 0.607 25.84 M 0.524 0.392 0.611

Ours + Fusion-A X X X NA NA NA NA 26.03 M 0.535 0.402 0.631
Ours + Fusion-B X X X NA NA NA NA 26.00 M 0.554 0.419 0.658

SP-SVM NA NA 0.365 0.258 0.485 NA NA NA NA

Table 2: Quantitative comparison of different methods on the Breast Biopsy dataset.



Single vs Multiple Decoders: Replacing multiple de-
coders with a single decoder in A2 reduces the pixel accu-
racy of our full model by 4% with single resolution and 7%
with multiple resolutions. Furthermore, A1 has 2% higher
pixel accuracy than A3 under multiple resolution setting.
The pixel accuracy does not change from A3 to A1 under
the single resolution setting.

Single vs Multiple Resolutions: For all models, multi-
resolution inputs improve the performance up to 6% in pixel
accuracy. All metrics increase from single resolution to
multi-resolution for all models. Although the improvement
in accuracy is small, multi-resolution input leads to better
segmentation results (see Figure 8 and Figure 9).

Different Fusion Methods: The overall F1-score of our
model with our fusion scheme (Figure 4) is about 6% and
4% higher than Fusion-A and Fusion-B (Figure 5), respec-
tively.

Inference Time and Number of Parameters: The im-
pact on inference time and number of parameters learned
by both single and multi-resolution networks is reported in
Figure 10. Multi-resolution network utilize the hardware re-
sources efficiently by executing multiple encoder-decoder
networks simultaneously and therefore, the impact on in-
ference time is not drastic. The multi-resolution networks

RGB Ground Plain Model Plain Model
Patch Truth (single) (multi)

Figure 8: Patch-wise predictions of Plain Encoder-Decoder net-
work with single and multiple resolution input. Multi-resolution
input helps in improving the predictions, especially at the patch
borders. Best viewed in color.

RGB Ground SVM Our Model Our Model
Truth (single) (multi)

Figure 9: ROI-wise predictions: first row depicts an invasive case
while the second row depicts a benign case. Best viewed in color.

Figure 10: Impact on inference time and number of parameters
learned at different resolutions. Number of parameters are in mil-
lion and are listed next to the corresponding data point. Inference
time is measured on NVIDIA GTX-1080 GPU and is an average
across 3 trials for 20 samples of size 384× 384. Here, FPS refers
to frames (or patches) processed per second. Best viewed in color.

are merely 0.2× slower than the single resolution network
while learning almost 2× more parameters.

Comparison with Feature-Based Baseline: Since the
SP-SVM method used only single resolution images, we
compared it to our model’s performance with single reso-
lution input. Our model outperformed the SP-SVM method
across all metrics.

6.2. Diagnostic Classification
Semantic segmentation provides a powerful abstraction

for diagnostic classification. We designed a set of experi-
ments to show the descriptive power of the tissue label seg-
mentation in automated diagnosis. To this end, we used
the full set of ROIs (N=428) to predict the consensus diag-
nosis assigned by the expert panel. We trained and tested
two types of classifiers, an SVM and a multi-layer percep-
tron (MLP), for four classification tasks: (1) 4-class (benign
vs. atypia vs. DCIS vs. invasive); (2) invasive vs. non-
invasive (benign, atypia and DCIS); (3) benign vs. non-
benign (atypia and DCIS); and (4) atypia vs. DCIS. The
last three tasks were designed to imitate the diagnostic de-
cision making process of pathologists while the first one is
the naive approach.

We applied our model with single and multiple-
resolutions and SP-SVM-based baseline to all the images
in our dataset (N=428) to get tissue label segmentations.
For diagnostic features, we calculated the frequency and co-
occurrence histograms of superpixel tissue labels, using the
majority pixel label for the CNN approach that labels pix-
els. We trained SVMs and MLPs for the four classification
tasks in a 10-fold cross-validation setting and repeated the
experiments 10 times. During training, we sub-sampled the
data to have a uniform distribution of diagnostic classes.

Results: The accuracies for four diagnostic classification
tasks are given in Table 3. The features calculated from seg-
mentation masks produced by our model outperforms the



Diagnostic Classifier: SVM Diagnostic Classifier: MLP
SP-SVM Our Model (single) Our Model (multi) SP-SVM Our Model (single) Our Model (multi)

all no all no all no all no all no all no
labels stroma labels stroma labels stroma labels stroma labels stroma labels stroma

4-class 35.5% 32.1% 44.5% 36.3% 45.9% 36.3% 45.0% 38.6% 54.5% 46.4% 54.2% 45.2%
invasive 64.7% 44.6% 78.4% 58.4% 90.7% 63.4% 69.0% 57.8 % 69.0% 64.1% 76.0% 68.7%
benign 55.0% 67.7% 44.7% 65.3% 40.0% 61.0% 61.1% 60.3% 66.5% 66.2% 65.8% 64.2%

atypia-DCIS 66.34% 59.2% 84.69% 85.1% 84.07% 82.8% 74.28% 68.5% 85.03% 87.7% 82.07% 81.3%

Table 3: Diagnostic classification accuracies for different classification methods

SP-SVM method with both classifiers, with the exception
of classification of benign cases with SVM. In particular,
multi-resolution input improves the segmentation of desmo-
plastic stroma label significantly (Figure 11), which is eas-
ily identifiable in lower-resolutions and an important tissue
type for diagnosing breast cancer [28]. Incorporating in-
put from larger surrounding tissue helps the model identify
tumor-associated desmoplastic stroma, in turn, it improves
the classification of invasive cases (90.7% with the multi-
resolution model and SVM classifier).

7. Discussion
Diagnostic classification with the full range of breast

diagnoses is a difficult problem. In a previous study, a
group of pathologists interpreted the same digital slides
of breast biopsies [13] and achieved accuracies of 70%,
98%, 81% and 80% for the tasks of 4-class, invasive vs.
(benign-atypia-DCIS), (atypia-DCIS) vs. benign, and DCIS
vs. atypia respectively. Semantic segmentation provides a
powerful abstraction so that simple features with diagnostic
classifiers, like SVM and multi-layer perceptron, perform
well in comparison to pathologists.

Multi-resolution input increases the context of the model
and improve the segmentation of the labels pathologists
identify in lower resolutions; such as desmoplastic stroma.
Furthermore, our fusion block outperforms the alternative
fusion blocks, most likely due to its high effective recep-
tive field. The effective receptive field of our block (Figure
4) is 65 × 65 while the effective receptive fields of the fu-
sion blocks in Figure 5a and 5b are 7 × 7 and 37 × 37.
In addition to quantitative evaluation, our model results in
smoother borders for the segmented regions while the SP-
SVM method is limited to color similarity for initial seg-

Figure 11: Segmentation accuracy for different labels. Best
viewed in color.

mentation and has much smaller context than networks.

An automated diagnosis system should operate on whole
slide images. Since the whole-slide-level annotations were
not available on our data, we validated our model on regions
of interest that were identified, diagnosed, and annotated by
the experts. Our method can easily be applied to WSIs for
segmentation or can be used in combination with a region of
interest identifier for classification [29]. Our future work in-
volves developing a system for simultaneous ROI localiza-
tion, segmentation, and diagnostic classification on WSIs.

8. Conclusions
Our model outperforms traditional encoder-decoders and

the SP-SVM-baseline both qualitatively and quantitatively
(see Figure 9). It also improves the F1-score and mIOU of
conventional networks by at least 7% and the global pixel
accuracy by 11% for multiple resolution settings. This im-
provement is mainly due to the long-range direct connec-
tions that are established between input and output either
using identity or projection mappings. These long-range
connections helps in back-propagating the information di-
rectly to the input paths efficiently and therefore, improves
the flow of information inside the network and eases the op-
timization.

We showed that our semantic segmentation provides
powerful features for diagnosis. With hand-crafted or
learned features for diagnosis, our model is promising for a
computer-aided system for breast cancer diagnosis. Though
we study breast biopsy images in this paper, our system can
be easily extended to other types of cancer.
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