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Abstract

Visualizing changes to indoor scenes is important for many appli-
cations. When looking for a new place to live, we want to see how
the interior looks not with the current inhabitant’s belongings, but
with our own furniture. Before purchasing a new sofa, we want
to visualize how it would look in our living room. In this paper,
we present a system that takes an RGBD scan of an indoor scene
and produces a scene model of the empty room, including light
emitters, materials, and the geometry of the non-cluttered room.
Our system enables realistic rendering not only of the empty room
under the original lighting conditions, but also with various scene
edits, including adding furniture, changing the material properties
of the walls, and relighting. These types of scene edits enable
many mixed reality applications in areas such as real estate, fur-
niture retail, and interior design. Our system contains two novel
technical contributions: a 3D radiometric calibration process that
recovers the appearance of the scene in high dynamic range, and
a global-illumination-aware inverse rendering framework that si-
multaneously recovers reflectance properties of scene surfaces and
lighting properties for several light source types, including general-
ized point and line lights.

Keywords: lighting models, indoor reconstruction, diminished
reality, reflectance capture, inverse lighting, inverse rendering

Concepts: •Computing methodologies → Scene understanding;
Computer vision problems; Image manipulation; Mixed / aug-
mented reality; Virtual reality;

1 Introduction

When visiting a prospective house or apartment to buy or rent, the
spaces are often full of furniture and other clutter which makes it
difficult to imagine what it might look like empty or, better yet,
with our own belongings in place. We present a system that takes
a sequence of RGBD images, and delivers a visual facsimile of the
room devoid of all clutter. From the RGBD input we determine
the room’s geometric layout, the material properties of the outer
surfaces (walls, floor, ceiling), a few architectural elements such
as the baseboard and doors, and the light emitters. This is enough
to re-render the empty room, as well as to insert furniture models
and light them realistically. In the refurnished room, we can even
change the colors of the walls or floor, and add, remove, or modify
the lights.
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Figure 1: From an RGBD scan of an indoor scene (one RGB frame
shown top left), we produce a scene model of the empty room (top
right), including lighting and materials. We can visualize this empty
room from the original camera scan locations (middle left) or in situ
(middle right). Our scene model allows for realistic scene edits,
such as refurnishing the room (bottom row).

To achieve this goal, we use a commodity RGBD sensor and lever-
age auto-exposure to recover initial 3D models with high dynamic
range textures. HDR imaging is essential, as windows and directly
lit surfaces can be far brighter than many other surfaces, and our
analysis will require having all measurements in a single linear radi-
ance space. Auto-exposure provides a natural mechanism for adap-
tive sampling across exposures for HDR recovery. We then recon-
struct the walls, floor, and ceiling surfaces under a Manhattan-world
assumption. Noting that these surfaces are typically largely dif-
fuse, we solve for a constant reflectance for each using a non-linear
optimization that includes indirect illumination from all observed
surfaces in the scene, while simultaneously solving for unknown
lighting. Our light source models include point and line lights gen-
eralized to allow for angular variation, as well distant illumination
(e.g., through a window) and area lights. Our pipeline is automatic,
up to a small amount of user interaction for identifying some light
sources. Despite the approximations inherent in these steps, such
as diffuseness and the Manhattan-world assumptions, we are able
to demonstrate a variety of convincing reconstructions and edits vi-
sually consistent with the originally captured scenes.

Our primary contribution is an end-to-end system for scene model
recovery. This system contains two key technical contributions:

• A method to obtain globally optimal high-dynamic-range ra-
diances over the scene geometry, allowing us to model light
propagation in the scene in a radiometrically accurate way.
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• A framework for scene-scale inverse rendering that encom-
passes indirect illumination, occlusion, and other global light-
ing effects. This framework performs simultaneous recovery
of diffuse reflectances and properties of light emitters; these
emitters include area lights and distant illumination, as well
as general models of point and line lights.

Next, we describe related work (Section 2) and then provide a sys-
tem overview (Section 3) that outlines the remainder of the paper.

2 Background and Related Work

2.1 Simultaneous Localization and Mapping

Our system is heavily reliant on Simultaneous Localization and
Mapping (SLAM) methods to obtain camera poses and scene geom-
etry. Real-time volumetric fusion, introduced in [Newcombe et al.
2011], has been extended for use in larger scale scenes [Niessner
et al. 2013; Whelan et al. 2012], and combined with global consis-
tency methods [Whelan et al. 2015; Dai et al. 2016] to obtain high
quality geometry.

These SLAM systems perform very well for many kinds of scenes.
However, for indoor scenes, large textureless planar regions are
common, and the field of view of most common RGBD sensors is
not wide enough to capture these regions while still retaining track-
ing. Using specialized hardware, such as multiple cameras, wide
field-of-view cameras, and/or IMUs, helps address these problems.
[Kottas et al. 2013; Mourikis and Roumeliotis 2007] describe the
localization system used in Google’s Project Tango1 device, which
uses visual-inertial odometry with a wide field-of-view camera for
robust localization. We use the Project Tango device in this paper
for our results.

2.2 Indoor Scene Modelling

A number of works from Furukawa aim to model complete indoor
scene geometry from photographs [Cabral and Furukawa 2014;
Ikehata et al. 2015] and range data [Xiao and Furukawa 2014].
These methods generally involve Manhattan world assumptions and
model outer scene structures such as walls, floor, and ceiling. These
models are usually directly textured with photographs. We leverage
many of the insights from these works to create our floor plans. Col-
burn [2013] creates more photorealistic scenes by using high dy-
namic range view-dependent textures for rough user-specified pla-
nar proxies, and allows large-scale scene edits, such as removing
entire walls.

2.3 High Dynamic Range Capture

Operating in linear color space is important for many computer
graphics applications. Images captured from camera sensors must
be radiometrically calibrated to account for changes in exposure
and for camera response.

Recovering relative exposure values for a set of images has been
well studied for 2D problems such as panoramic photo stitching
[Goldman 2010] and undoing video autoexposure [Kim and Polle-
feys 2008; Grundmann et al. 2013]. Grossberg and Nayar [2002]
describe several ambiguities that arise when computing camera re-
sponses and unknown exposures simultaneously and how to resolve
them. These methods rely on point feature tracking and affine im-
age warping, which are unsuitable for 3D captures with significant
parallax. We extend these methods for 3D scenes by leveraging the

1https://www.google.com/atap/project-tango/

scene geometry and camera poses reconstructed during scanning,
enabling us to produce high dynamic range mesh textures.

Several recent works recover high-dynamic range textures for
meshes by extending realtime volumetric fusion frameworks [Meil-
land et al. 2013; Li et al. 2016], and estimating per frame exposures.
These results suffer from global consistency problems when return-
ing to previously scanned regions. Our work on radiometric cali-
bration is complementary to these works because we optimize for
a globally consistent texture, analogous to bundle adjustment pro-
cesses to handle loop closures.

2.4 Lighting Models

The incident light on an object is commonly approximated with the
distant-scene assumption: the intensity of any incident ray on the
object is dependent only on the direction of the ray, and not on the
location on the surface. Thus illumination can be represented as
a simple environment map, also known as Image-Based Lighting
(introduced in [Debevec 1998]). This assumption has been used
in most works that aim to insert synthetic objects into real scenes.
The distant-scene assumption is insufficient for scene-scale mixed
reality effects for two reasons: it does not capture spatial varia-
tion of lighting across the scene, and it does not allow the object
to affect the appearance of the rest of the scene or participate in
global illumination effects. Works such as [Unger et al. 2013]
capture spatially-varying environment maps, and in general light-
field capture methods such as [Wood et al. 2000] start to address
the spatially-varying lighting issue. Cossairt et al. [2008] solve
the object-scene interaction issue by computing light-field transfer
functions, but have specialized capture requirements and limited
scale. Several works use uniformly emitting point lights in addi-
tion to environment map or directional lighting [Takai et al. 2004;
Stauder 2000; Weber and Cipolla 2001], but again do not consider
global illumination.

2.5 Inverse Rendering

Physically accurate inverse rendering has a long history. However,
very few attempt to simultaneously recover lighting and reflectance
parameters [Patow and Pueyo 2003]. As mentioned above, most
approaches work on the scale of a single object of interest, and do
not consider scene-scale effects such as occlusion or global illu-
mination, or only do so in the local region of the object (such as
[Debevec 1998]). Shape-from-Shading (SfS) approaches, such as
[Wu et al. 2014; Zollhöfer et al. 2015], also involve inverse render-
ing problems; these methods use similar assumptions (distant illu-
mination with no occlusion or interreflection) but simultaneously
recover scene geometry as well as diffuse albedo and temporally-
varying lighting. Ramamoorthi and Hanrahan [2001] theoretically
analyze the recovery of distant lighting and reflectance using a sig-
nal processing approach, and show when this simultaneous recov-
ery is well-conditioned. Beyond distant illumination, several works
recover point and directional light source positions simultaneously
with reflectance parameters from multiple images of an object of
interest [Mercier et al. 2007; Xu and Wallace 2008].

A few inverse rendering works do operate on the scene-scale. Yu et
al. [1999] derive specular parameters and spatially-varying diffuse
reflectances in a global-illumination-aware fashion across an entire
scene, but assume known lighting. Kawai et al. [1993], using the
radiosity framework, perform a nonlinear optimization over diffuse
reflectance and light emitter intensity to minimize a perceptually-
based cost function; for this purpose they treat scene appearance as
a variable which can be eliminated, rather than optimizing to match
observed appearance across the scene. In his thesis, Colburn [2014]
computes light intensities and both specular and diffuse material



properties in indoor scenes represented with simplified planar prox-
ies and view-dependent high dynamic range textures; however, the
inaccurate geometry severely limits the accuracy of the solution. In
addition, his system requires substantial user interaction. Lombardi
and Nishino [2016a; 2016b] solve for a general BRDF and distant
illumination using statistical and information-theoretical priors on
a single object with known geometry. They later extend this work
[2016b] to work on a set of RGBD images of a scene with spatially
varying BRDFs; this is solved using an expensive gradient-based
optimization where gradients are computed via path tracing, allow-
ing for interreflections and occlusions. However, the assumption of
distant illumination limits the extent of the scenes that this method
can handle. Forsyth [2011] models incident illumination on an ob-
ject per point on the surface as coming from a single global di-
rection but with spatially varying intensity; while nonphysical, this
captures some of the effects of interreflection. Forsyth also incor-
porates a known shadow map to deal with occlusion.

Other recent works aim to compute scene models from single im-
ages [Boivin and Gagalowicz 2002; Karsch et al. 2011; Karsch
et al. 2014; Barron and Malik 2013]. While Boivin and Gagalow-
icz [2002] require known lighting, Karsch et al. [2014] recover full
scene models (including light emitters, diffuse albedo, and scene
geometry), automatically locating in-scene diffuse area lights, and
selecting out-of-scene illumination from beyond the field of view
of the image from a database of environment maps. Karsch et al.
use recent advances in intrinsic image decomposition to provide re-
flectances, and single image depth estimation to provide geometry.
Barron and Malik [2013] also take an intrinsic image decompo-
sition approach, recovering spatially-varying illumination, diffuse
albedo, and geometry from an RGBD image by using soft segmen-
tations of the input image; each illumination segment has an inde-
pendent environment map, providing spatially-varying lighting that
approximates occlusion and interreflection effects. These works
based on intrinsic image decomposition rely primarily on natu-
ral image and smoothness priors (e.g. [Barron and Malik 2015])
to compute albedo and thus do not give physically accurate re-
flectances; furthermore, they only create a scene model for a partic-
ular camera viewpoint and not an entire 3D scene.

3 System Overview

As input, our system takes a set of low dynamic range images of
unknown exposure, the camera poses for these images, and a tri-
angle mesh of the scene. A variety of devices and algorithms can
provide this data. We use a Project Tango tablet as a capture device.
Camera poses were computed by the Project Tango visual-inertial
tracking system, while meshes were generated by aligning the raw
depth data using the camera poses and then running Poisson Surface
Reconstruction [Kazhdan and Hoppe 2013].

Next, we compute linearized radiance maps from the low dynamic
range input images (Section 4). We project these radiance maps
onto the mesh in order to obtain the diffuse appearance of the scene.

Separately, we identify the major architectural features of the scene,
i.e. walls, floor, and ceiling, under a Manhattan World assumption
(Section 5). These architectural features are used to obtain clus-
ters of points that have the same reflectance properties and for final
rerendering of the room.

We then identify locations of light emitters in the scene in a semi-
automated fashion. With scene geometry, material clusters, light
source positions and types, and scene appearance, we can recover
lighting and diffuse reflectance parameters. This optimization pro-
cess is described in Section 6.

Finally, we automatically identify other architectural features of the

scene, namely doors and baseboards (Section 7). When combined
with the reflectance and lighting parameters, these details enable us
to rerender the scene as an empty room, to which we can then make
arbitrary edits. These edits include adding furniture, repainting the
walls, or changing the lighting conditions of the scene.

4 High Dynamic Range Meshes

We take a set of low dynamic range images, the associated camera
poses for these images, and a triangle mesh of the scene. Our first
step is to radiometrically align these images into a common linear
radiance space. The original images are taken with automatic cam-
era settings, which vary exposure as well as white balance.

4.1 Formulation

For radiometric calibration of exposure, we use similar methods to
those used in panoramic photo stitching, such as the one presented
by Goldman [2010]. These methods first put pixels of the original
images into correspondence; while these pixels may have differing
low dynamic range values, they should represent the same radiance
incident on the camera. In the panorama formulation, this assump-
tion holds because the camera centers are assumed to be coincident
and therefore corresponding pixels fall along the same ray from the
camera center. Then the camera exposures and the unknown scene
radiances are simultaneously recovered by minimizing the repro-
jection error in pixel space. This method can also recover global
camera parameters such as vignetting functions (as in [Goldman
2010]) and response functions (as in [Grossberg and Nayar 2003]).

In our 3D formulation, correspondences are obtained by project-
ing images onto the scene geometry, associating each vertex with
the set of pixels projected onto it. We assume that these pixels all
represent the same radiance incident on the camera by assuming
a diffuse world. While camera response and vignetting parame-
ters can be solved for as in [Grossberg and Nayar 2003; Goldman
2010], we focus on the exposure and radiance recovery and assume
pre-linearized images with no vignetting. The result is a nonlinear
optimization problem:

min
tj ,bi

∑

i,j

(tjbi −Xij)
2

(1)

where tj are the per-image exposures, bi are the vertex radiances,
and Xij is the observed pixel value of vertex i in image j.

With linear response, there is a scale ambiguity: given an optimal
(t, b), (ct, b/c) for some constant c yields the same value for the
cost function. Thus we fix the exposure in the first frame of the
input t0 = 1 to remove this ambiguity.

Camera white-balance is modelled as per-frame, per-channel scale
factors WR

j ,WG
j ,WB

j . Combined with exposure, the per-channel

scales are then (tRj t
G
j t

B
j ) = tj(W

R
j WG

j WB
j ). We solve Equa-

tion 1 for each color channel independently, giving us the final per-
frame, per-channel scale factors (tRj t

G
j t

B
j ) directly.

4.2 Implementation

We first perform an inverse gamma correction (γ = 2.2) on the in-
put images. We verified using a Colorchecker Chart that this was
sufficient to bring the images to be close to linear in the range of
lighting conditions we captured. Vignetting was not found to sig-
nificantly affect Project Tango images.



After linearizing the images, we then project them onto the scene
geometry: for every mesh vertex Vi, we trace a ray from each cam-

era center Cj . If ray
−−→
CjVi does not intersect the scene, and falls

within the field of view of the camera, we locate the pixel that the
ray intersects and add it to the list of pixels associated with Vi.

Errors in camera poses and scene geometry result in incorrectly pro-
jected pixels at depth discontinuities and texture edges. We ignore
projections of pixels that fall near strong gradients in the input im-
ages, which usually coincide with depth discontinuities and texture
edges.

For efficiency, we optimize over a random subset of the vertices
(N < 200, 000). For each associated pixel of each vertex, we add
a data term to the cost function. The minimization is performed
using Ceres Solver [Agarwal et al. ]. We found that results were
not highly dependent on initialization, so we arbitrarily initialized
radiances and exposures to 1.

The cost function closely resembles the one used in Structure from
Motion, where, instead of camera poses and 3D point locations, we
solve for camera exposures and scene point radiances. The similar
sparsity patterns let us take advantage of advances in sparse bundle
adjustment, as described in [Lourakis and Argyros 2009], for more
efficient minimization using Schur-based methods.

4.3 Radiance Reprojection

In this step, we associate radiance samples with mesh vertices. For
every image, we trace a ray from the camera center to each mesh
vertex. If this ray does not intersect any geometry and falls within
the bounds of the camera frustum, we add a radiance sample with

value
Xij

tj
to that vertex.

A radiance sample from camera j assigned to vertex i receives a
weight wij . We set this weight to be proportional to the projected
differential area of the mesh vertex onto the pixel, analogous to
the differential form factor between the camera pixel and the mesh
vertex [Cohen et al. 1993]. Let gij be this projected area, vij be the
vector from the center of camera j to vertex i, v̂ij =

vij
||vij || , oj be

the direction of the optical axis of camera j, and ni be the normal
at vertex i; then

gij =
(−v̂ij · ni)(v̂ij · oj)

||vij ||2
. (2)

Intuitively, the weight factor gij represents how much the pixel
value is affected by vertex i’s appearance: if a large mesh surface
area projects onto the same pixel, then each vertex in that area has
a correspondingly smaller impact on the value of that pixel. This
weight thus favors radiance samples that are taken from head-on
directions that are closer to the surface.

The total weight is also proportional to the confidence value c of the
radiance sample. This confidence value is based on the original 8-
bit input images; saturated and underexposed pixels are less likely
to be reliable. We use a hat function for the confidence value, as
suggested in [Debevec and Malik 1997], but slightly modified to
have nonzero confidence for a saturated pixel so that vertices only
having saturated projected pixels will not be black:

c(X) =

{

256−X
127

, X > 127
X
127

, X ≤ 127
. (3)

(a) Input Frame 2557 (b) Re-exposed Frame 2557

(c) Input Frame 2585 (d) Re-exposed Frame 2585

(e) Uncalibrated Mesh Texture (f) Calibrated Mesh Texture

(g) Calibrated Mesh, Low Exposure (h) Calibrated Mesh, High Exposure

Figure 2: Comparison of office mesh, before and after radiomet-
ric calibration. (a) and (c) are two of the original input frames
showing a similar area of the scene; note that (c) is significantly
darker in appearance than (a) due to autoexposing for the lights.
(b) and (d) are derived from (a) and (c), respectively, but rescaled
to have the same exposure level. (e) shows a naive texturing of the
scene geometry without any exposure correction; there are many
noticeable artifacts on the wall. (f) shows the texturing after radio-
metric calibration (linearly tonemapped and clipped). The artifacts
on the wall have been completely smoothed. (g) and (h) show an-
other view of the mesh with calibrated texture at differing exposure
values; notice how the lights are all brought within range.

If Xij is the original LDR pixel value, then the total weight is

wij = c(Xij)gij . (4)

For this work, we assume diffuse surfaces and assign each vertex a
single radiance value, which for robustness is computed as the per-
channel weighted median of the vertex’s radiance samples. Han-
dling specular surfaces by analyzing the full set of radiance samples
is an area for future work.

An example of the results of the radiometric calibration process is
shown in Figure 2.



4.4 Evaluation

We demonstrate the importance of our globally optimal exposure
estimation framework by comparing to two other methods: a frame-
to-frame method, and a frame-to-model method.

The frame-to-frame baseline method is based on video radiomet-
ric calibration pipelines such as [Kim and Pollefeys 2008; Grund-
mann et al. 2013], which typically only compute exposure ratios be-
tween consecutive frames. In our implementation of the frame-to-
frame method, dense correspondences between consecutive frames
of the input are obtained via optical flow, and the relative expo-
sure is estimated as the median ratio of corresponding pixel values.
This method does not have any notion of global consistency across
all frames, since it only evaluates exposures between consecutive
frames.

The frame-to-model method is based on the KinectFusion-like
methods proposed in [Meilland et al. 2013; Li et al. 2016]. In our
implementation of the frame-to-model method, we maintain an on-
line estimate of radiance for each vertex in the 3D model. For each
frame, we first estimate the exposure by projecting pixels onto the
3D model and taking the mean ratio of pixel value to current vertex
radiance. We then integrate the frame into the model by updat-
ing the average vertex radiances. As in basic KinectFusion, some
global consistency is maintained but the lack of explicit loop clo-
sure handling means that drift still occurs.

For these comparisons, we avoid the difficulties of simultaneous es-
timation of camera response in existing frame-to-frame methods,
and pose estimation in existing frame-to-model methods. Thus,
we use our camera poses and prelinearized images as input to our
reimplementations of the exposure estimation components of these
methods. This allows a qualitative comparison of these two meth-
ods to ours by reprojecting the estimated radiances onto the scene
geometry (see Section 4.3). The results are shown in Figure 3.

(a) No exposure correction (b) Frame-to-frame

(c) Frame-to-model (d) Ours

Figure 3: Qualitative comparison of exposure estimation methods
on Bedroom 1 dataset.

The frame-to-frame method smooths some of the exposure varia-
tion (e.g. along the bottom of the wall to the right of the bed), but
shows extensive banding and discontinuities across loop closures.
The frame-to-model method is a significant improvement, but still
shows some artifacts due to its lack of explicit loop closure han-
dling. Our method gives results that, while not perfect, are smooth
almost everywhere.

5 Floor Plan Estimation

We assume that walls, floor, and ceiling obey the Manhattan-world
assumption, and furthermore that the floor and ceiling are each a
single plane. While these are restrictive assumptions, they suffice
for many indoor scenes. We refer to the mesh resolution, approxi-
mated by the mean edge length, as r.

5.1 Manhattan-World Coordinate System

We first determine a coordinate system that aligns the y axis with
the world up vector (with the floor plane at y = 0) and the x, z
axes with the Manhattan-world coordinate system for the walls. We
do this by histogramming mesh vertex normals and then extracting
quasi-perpendicular axis vectors, as in [Furukawa et al. 2009].

5.2 Floor and Ceiling

We determine the floor plane by histogramming the y coordinate of
all vertices with approximately vertical normals, where the width of
a histogram bin is set to r. The first local maximum is classified as
the floor plane. The ceiling plane is determined in the same manner.

5.3 Walls

Our floor plan determination process is similar to Cabral and Fu-
rukawa’s [2014] graph-based formulation. We first project all ver-
tices onto the floor plane and discretize into a grid. The width of
a grid cell is r. A wall likelihood score s is computed for each
grid cell Gp at coordinates p = (xp, zp) and each of the four axis-
aligned normal directions n ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}, by
examining the vertices V (with coordinates (xV , yV , zV ) and nor-
mal nV ) that project into the cell:

s(Gp, n) =
∑

V ∈Gp

log(1 + yV )(nV · n). (5)

This score counts vertices with normals aligned with the axis in
question, weighted by the degree to which the normal aligns with
the axis as well as by the height of the vertex. Since walls are ver-
tical, a uniformly sampled mesh of the scene should project many
vertices onto the same cell. Note that the dot product term penalizes
any points with normals facing away from the axis. The height-
weighting is inspired by [Xiao and Furukawa 2014], which makes
the observation that, while walls may be occluded at lower heights,
they tend to be unoccluded near the ceiling.

We also observe that walls tend to be local bounding planes of
the scene (if not globally bounding), which is not directly lever-
aged in prior floor plan work. If cell Gp were a wall, then we
would expect not only that ||Gp|| is large, but also that the cells
behind the wall (i.e. adjacent cells in the negative normal direc-
tion) are empty, and thus any points projecting into those cells are
due to noise. Assume a Gaussian noise distribution on vertex co-
ordinates, with σ = r

2
. Due to discretization, it is possible that

the directly adjacent cell Gp−n also has a large count (the worst
case being a wall at p − n

2
). However, in this worst case no more

than ||Gp||
1−erf(

√
2)

2
≈ 0.023||Gp|| vertices should fall in the next

cell Gp−2n (two cells away from the original Gp). Thus, we set
s(Gp, n) = 0 if ||Gp−2n|| > 0.023||Gp||.

We trace scanlines of the grid, looking for contiguous sets of cells
with s(Gp, n) > N to extract candidate wall segments, where N
is the expected minimum weight of a wall cell. If the height of
the room is h, then we would expect a perfect wall to have weight
∑h/r

i=0 log(1 + ir); assuming that for any vertical section of wall,



at least half of it is unoccluded, then we set N =
∑h/r

i=0
log(1+ir)

2
.

In practice, if the wallfinding fails we decrease N and repeat. The
candidate wall segments are pruned using non-maximum suppres-
sion. We seek a cyclic, ordered list of these wall segment candi-
dates. This is performed via a graph-based approach, where the
endpoints of wall segment candidates are the nodes in a graph. A
single endpoint of a segment can only be connected to one of the
endpoints of a perpendicular segment, since the normals of the two
segments must be consistently oriented. The weight of each edge
is simply the Manhattan distance between the two endpoints it con-
nects. There is an edge between the two endpoints of a wall segment
candidate, which has weight α = 1 to penalize model complexity
(favoring models with fewer edges), as in [Cabral and Furukawa
2014]. We assume the longest candidate line segment will be part
of the floor plan, and find the minimum cost path between its end-
points using Djikstra’s algorithm.

5.4 Vertex Labelling and Material Clusters

After determining walls, floor, and ceiling, we assign each vertex of
the mesh a label. A vertex is classified as a wall, floor, or ceiling if
its vertex normal approximately matches the plane normal and it is
no farther than r from the plane; the vertices that do not fall in these
categories are labelled as “other”. We morphologically dilate and
erode to close small holes in the labelled surfaces. These labelled
surfaces form material clusters; all vertices with the same label are
assumed to have the same material parameters.

6 Inverse Rendering

We now have scene geometry, diffuse appearance of the scene, and
several clusters of points with the same material properties. We
proceed to model the light emitters in the scene, and recover phys-
ically consistent values for the light emitter intensities and diffuse
reflectances. We do this by analyzing the incident direct and indi-
rect light on vertices in the mesh using methods similar to radiosity-
based formulations of inverse lighting [Yu et al. 1999; Boivin and
Gagalowicz 2002].

6.1 Formulation

Consider a single, non-emitting vertex V . We start with the render-
ing equation over surfaces in the scene [Kajiya 1986]:

L(V → x′) =

∫

S

fr(x → V → x′)G(V, x)L(x → V )dA (6)

where L(a → b) is the radiance along the ray from a point a to
a point b, fr(x → V → x′) is the bidirectional reflectance dis-
tribution function (BRDF) at point V giving what proportion of
light coming from the ray from x to V is reflected towards x′, and
G(V, x) is the geometric visibility term between V and x including
occlusion and projected area.

For a diffuse world, each vertex has a reflectance ρV where fr(x →
V → x′) = ρV

π
, and L(V → x′) = LV is independent of the

viewing direction:

LV =

∫

S

ρV
π

G(V, x)L(x → V )dA. (7)

We then decompose the integral into indirect and direct lighting
components, where L is the set of light emitting surfaces and each

l ∈ L is one of these emitting surfaces:

LV =
ρV
π

∫

S/∈SL

G(V, x)L(x → V )dA

+
ρV
π

∑

l∈L

∫

S∈Sl

G(V, x)L(x → V )dA
. (8)

For brevity we refer to the incident indirect lighting term as

LV,indirect =

∫

S/∈SL

G(V, x)L(x → V )dA. (9)

For the incident direct lighting, we parameterize each light emitter
by a set of intensities Il = (Il0, ...Iln)

T such that the incident direct
light on a vertex V due to a light l is a linear combination of these
intensities. In other words, each light emitter is composed of a set
of basis lights. Thus,

∫

S∈Sl

G(v, x)L(x → v)dA = Fl(V ) · Il (10)

where Fl(V ) = (Fl0(V ), ...Fln(V ))T , and Fli(V ) is the transfer
coefficient of light l’s ith basis light’s radiance incident on vertex V
(i.e. if basis light i had unit intensity, Fli(V ) would be the incident
radiance on vertex V due to that basis light). We also include direct
lighting due to infinitesimal light sources such as point and line
emitters; although they do not have areas and thus are not included
in S, the incident lighting can still be represented as Fl(V ) · Il.
Substituting Equations 9 and 10 into Equation 8, we obtain

LV =
ρV
π

(

LV,indirect +
∑

l

Fl(V ) · Il

)

. (11)

We calculate the coefficients of basis lights Fl(V ) using the scene
geometry, given the locations of the light emitters (described in
more detail in Section 6.3). We compute the incident indirect light
directly from the final scene appearance. Using the hemicube algo-
rithm [Cohen et al. 1993], we rasterize the mesh onto the faces of
a 500 by 500 pixel cube centered at V with the per-vertex median
radiance values computed in Section 4.3. We compute the the to-
tal indirect irradiance at V as the sum of the pixel values weighted
by the hemicube form factors2. Note that Monte Carlo sampling
methods could also be used to compute indirect illumination; given
our diffuse assumption, the rasterization approach provides similar
accuracy but is significantly more performant.

We have an estimate of the outgoing radiance at vertex V as L̄V , the
weighted median of projected radiances described in Section 4.3.
Thus, the unknowns are the ρV , Il. To solve for these, we formulate
a constrained nonlinear optimization

arg min
ρV ,Il

∑

V

d

(

L̄V −
ρV
π

(

LV,indirect +
∑

l

Fl(V ) · Il

))

(12)
subject to 0 ≤ ρV < 1 (where d(·) is a loss function). We perform
this optimization simultaneously over several sets of vertices that

2Note that using the hemicube form factors given in [Cohen et al. 1993]

actually results in an extra 1
π

factor in the irradiance. For clarity, we use the

standard hemicube weights multiplied by π.



share diffuse reflectances ρ for robustness. Additional regulariza-
tion terms for different light types are described in Section 6.3.

We use Ceres Solver [Agarwal et al. ] to perform this optimization
using the Huber norm as a robust loss function. This norm helps
handle outlier objects such as posters, rugs, and doors that are ge-
ometrically indistinguishable from the surfaces we classified, but
have differing reflectance parameters.

6.2 Lighting Ambiguity

Inverse rendering problems that do not consider indirect illumina-
tion have a scale ambiguity between diffuse reflectance and light
intensity; if an optimal solution were (I, ρ) then (kI, ρ/k) would
also be an equivalent solution because the final appearance is LV =
ρ
π
Fl(V ) · Il =

ρ
π
LV,direct.

Once indirect lighting and occlusion is taken into account, this am-
biguity disappears: LV = ρ

π
(LV,indirect + LV,direct), and LV,indirect

is a known computed quantity.

However, if LV,direct is much greater than LV,indirect, the ambiguity
comes back into play. This is not uncommon in real world scenes;
for example, many lights throw most of their light upwards, where
it bounces off the ceiling and then lights the room indirectly. For
points on the ceiling near the light, the amount of incident indirect
light is negligible compared to the amount of incident direct light.
This results in an unstable solution.

To deal with this problem, we reweight the optimization to favor
data terms for vertices that have nonnegligible amounts of incident
indirect light. Some of these vertices will likely be in the same
material cluster as the vertices that receive too much direct light,
but prevent the diffuse reflectance estimate from varying too much.

The reweighting term we use is based on the ratio between the ver-
tex exitant radiance and the incident indirect light on the vertex. If

this ratio is R = L̄V
LV,indirect

, then the reweighting term is for some

constant c (we use c = 10)

w =

{

1, R ≤ 1

exp(c(1−R)), R > 1
. (13)

6.3 Light Source Models

In this work, we group lights into one of the following categories:
distant environment lights, diffuse area lights, generalized point
lights, and generalized line lights.

As described in Section 6.1, each of these lights is parameterized
as a linear combination of basis lights, rather than parametric mod-
els (such as the Phong-like spotlight). This simplifies the structure
of the problem (since now a single light can be treated as a set of
independent lights) and keeps the cost function well-behaved (lin-
ear for fixed reflectances). In our system, the user must specify the
number of lights and their types, although line and area lights may
be suggested by our system.

In this subsection, we describe the direct lighting computation at
a vertex V for each light type. This includes describing how each
light is decomposed into basis lights, computing the coefficients
Fli(V ) for each basis light, and specifying the geometric proper-
ties of each light type (these properties are not explicitly optimized
for). For conciseness, for any vector v, the normalized vector is
represented as v̂ = v

||v|| .

6.3.1 Diffuse Area Lights

Diffuse area lights are assumed to emit a constant radiance in every
direction in the hemisphere and are thus simply parameterized by a
single intensity (i.e. only one basis light).

To identify diffuse area lights, we threshold the vertex radiances
on the mesh using a user-specified value, and find connected com-
ponents of vertices with LV above this threshold. The vertices in
each component of more than 50 vertices are labelled as belonging
to the same area light. Some minor user interaction allows us to
prune these candidate lights. Diffuse area lights are useful to model
ceiling panel lights that are often found in office scenes.

To compute Fl(V ) for area light l, we simply render the hemicube
using the per-vertex light labels as vertex colors, and then take the
sum of the hemicube form factors that correspond to light l.

6.3.2 Distant Environment Lights

Distant environment lights come from an infinitely large sphere sur-
rounding the scene. Rays which do not intersect the scene con-
tribute direct illumination from the distant environment to the ver-
tex, with a dependence only on the ray direction (and not the posi-
tion of the vertex). These lights are used to represent outdoor illu-
mination coming from a window, and approximates window illumi-
nation well assuming that no objects out the window are too near.
In practice, windows are hole-filled during the Poisson Surface Re-
construction of the scene geometry. Because of this, windows are
identified concurrently with area lights during the thresholding pro-
cess described above. Our system suggests that an area light is in
fact a window if it lies near a wall and approximately forms a rect-
angular shape.

As a spherical function, distant illumination can be represented in
many ways. We implemented two bases: a five-band spherical har-
monic basis (with 25 light components), and a cubemapped envi-
ronment map (piecewise constant basis). For the cubemap basis,
we used 4× 4 cubemaps, for a total of 96 component lights (i.e. 96
parameters I). While most distant illumination works use spheri-
cal harmonic bases, we found that for our application the piecewise
constant basis was more suitable. This is primarily because the
spherical harmonic lights are ill-behaved at viewpoints that were
not observed in the optimization (e.g. sharp upward angles out the
window); the piecewise basis makes enforcing nonnegativity and
smoothness at glancing angles much simpler. We omit further dis-
cussion of the spherical harmonic basis for brevity.

To compute the set of Fli(V ) for distant illumination, we again
use the hemicube. For hemicube pixels that correspond to distant
illumination rays, we compute the orientation of the ray through the
center of the pixel, determine which cubemap cell j that direction
corresponds to, and then increment Flj(V ) by the hemicube pixel
form factor.

For piecewise constant basis distant illumination, we constrain light
intensities to be nonnegative. We also add a weak smoothness
term between adjacent cells of the cubemap. In particular, cube-
map cells that are not incident on any vertices in the optimiza-
tion will still have reasonable values. This is important because
these directions may be sampled when rerendering the scene. If
A = {(i, j)|i, j are adjacent cubemap cells}, then we add a set of
regularization terms to the cost function (λsmooth = 1× 10−5):

λsmooth

∑

(i,j)∈A

(Ili − Ilj)
2.

An example of our solved distant lighting is shown in Figure 4.



(a) Input Frame (b) Synthetic Empty Room Image

(c) Environment Map

(d) Wall, floor, and ceiling reflectance

Figure 4: Recovered distant illumination parameters. (a) is an in-
put image from the capture sequence. (b) shows a rerendered ver-
sion with our distant lighting model. (c) shows a (θ, φ) parameteri-
zation of the recovered cubemap; note that the central region corre-
sponds to the directions out the window. While this approximation
does not appear representative of the actual appearance out the
window and only imprecisely matches shadow boundaries, it cap-
tures most of the illumination effects that affect the indoor scene. (d)
shows the recovered wall, floor, and ceiling reflectances.In the ac-
tual scene, the wall and ceiling have identical properties; the solved
reflectances are very similar even though we did not constrain them
to be the same in our system.

6.3.3 Generalized Point Lights

Many light manufacturers describe the intensity distribution of their
lights using an IES (Illumination Engineering Society) lighting pro-
file, as specified in [Subcommittee on Photometry of the IESNA
Computer Committee 2002]. Light intensity emitted from a point
source I(φ, θ) is a spherical function, and the IES format specifies
the values of this function at a discrete set of exitant angles (much
like our piecewise constant representation of distant lighting). The
IES format also builds in strong symmetry assumptions, most com-
monly assuming radially symmetric light distributions. These pro-
files are used to specify many types of lights found in residential
indoor scenes, such as lamps with shades, standing lights, recessed
ceiling lights, and general spotlights, and are commonly used in ar-
chitectural visualization. Thus we follow the example of the IES
and model point lights as radially symmetric emitters.

Such point lights have two geometric parameters: a 3D location
P , and an axis of symmetry v̂. We default to a vertical axis of
symmetry v̂ = (0, 1, 0), since this is how most radially symmetric
lights in IES formats are used. The positions of point lights must
be manually specified in our system.

This radially symmetric distribution means the spherical function
I(φ, θ) (centered around v̂) is independent of φ, the azimuthal an-
gle. To represent this 1D function in a linear basis, we can use either
the Fourier basis or a discretized basis (analogously to environment
maps). In this work, we use a 32-bin discretization of angle θ, the
inclination angle.

As these point lights are infinitesimal, their contribution to the di-
rect lighting cannot be determined using the hemicube. Therefore
we separately compute the incident direct lighting on every vertex
due to these point lights. The incident lighting basis coefficient due

(a) Input Frame (b) Synthetic Empty Room Image

(c) Point Light Distribution

(d) Wall, floor, and ceiling reflectance

Figure 5: Recovered point light parameters. (a) is an input image
from the capture sequence. (b) shows a rerendered version with our
point light model. (c) shows a goniometric diagram of the recov-
ered point light distribution using a piecewise constant basis. In
rendered images, the distribution is interpolated using a Catmull-
Rom spline. (d) shows the recovered wall, floor, and ceiling re-
flectances. In the actual scene, the wall and ceiling have identical
properties; the solved reflectances are very similar even though we
did not constrain them to be the same in our system. Note that this
scene is also illuminated by a window.

to a point light using the piecewise constant parameterization is

Fli(V ) = G(V, P )
(â · nV )

||a||2
(14)

where a = P − V , nV is the surface normal at V , and G(V, P ) is
a visibility term. The visibility term is computed by checking if a
ray between V and P intersects the scene geometry. i corresponds
to the angle subdivision cell for direction θ = cos−1(â · v̂) (and
Flj(V ) = 0 if j 6= i).

Constraints and regularization for point lights are analogous to dis-
tant lighting (nonnegativity and smoothness). However, we found
that adding the additional constraint of monochromaticity created
better results. To achieve this, we give each point light a three-
component color, and let the intensity of this color vary around the
light with the (now single-channel) basis light intensities,

(

IRl (θ), IGl (θ), IBl (θ)
)

= (rl, gl, bl) Il(θ),

giving the light three additional parameters rl, gl, bl. We then add
a term strongly (λmonochrome = 1× 108) enforcing the color to have
unit norm:

λmonochrome(r
2
l + g2l + b2l − 1).

The monochromaticity constraint couples the color channels, so our
optimization actually minimizes data terms for all three channels
simultaneously when monochromatic lights are included.

An example of our solved point lighting is shown in Figure 5.
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Figure 6: Side view of line light, perpendicular to axis d of light.
Inset shows view along the axis d of the light

6.3.4 Generalized Line Lights

Fluorescent tube lights are commonly encountered in non-
residential indoor scenes. While uniformly emitting line lights have
been analyzed in the literature, they are unsuitable for modelling
these tube lights. These lights often have baffles that change the
directional variation of light intensity.

Figure 6 illustrates how we parameterize line lights. Geometrically,
generalized linear lights have the following properties: an endpoint
P , a direction vector d (so that the line extends from P to P + d),

and a perpendicular vector d̂⊥. The light distribution of the line
light varies around the light with θ, but does not vary in the direction
parallel to d.

Analogously to environment maps and point lights, line lights can
use the Fourier basis or a constant basis based on discretized θ as
component lights. In this work, as for distant and point illumina-
tion, we use the piecewise constant local basis, uniformly dividing
the circle of directions into 32 subdivisions.

The equation for the incident lighting basis coefficient at a vertex
V due to a line light is given by integrating over the length of the
light; each differential line segment is treated similarly to a point
light, except with an extra term accounting for the projected length
of the segment onto V :

Fli(V ) =

∫ ||d||

0

G(V, P + xd̂)
nV · â

||a||2
(â · â⊥)dx (15)

where a = (P + xd̂) − V , the vector from V to the differential

line segment dx, a⊥ = a − (a · d̂)d̂ is the component of a per-

pendicular to the light, and G(V, P + xd̂) is the visibility term as
described for point lights. The (â · â⊥)dx = cos(φ)dx term repre-
sents the projected length of the segment. Figure 6 visually shows
these quantities relative to the light and V .

While φ varies along the length of the light, θ is constant for a
particular vertex V relative to any point along the light. Since we
use a piecewise constant basis, each vertex will thus only have
one of the basis light directions incident on it, so only one of
the Fli will be nonzero. We compute which i this is by finding

θ = cos−1(â⊥ · d̂⊥). Note that this expression for θ conveniently

enforces symmetry around d̂⊥, which is common for real world line

(a) Input Frame (b) Synthetic Empty Room Image

(c) Line Light Distribution

(d) Wall, floor, and ceiling reflectance

Figure 7: Recovered line light parameters. (a) is an input image
from the capture sequence. (b) shows a rerendered version with our
line light model. (c) shows a goniometric diagram of the recovered
line light distribution using a piecewise constant basis. In rendered
images, the distribution is interpolated using a Catmull-Rom spline.
(d) shows the recovered wall, floor, and ceiling reflectances.

lights (where d̂⊥ is the world up vector). However, for full gener-
ality, θ would range from 0 to 2π.

The integral in Equation 15 could be analytically solved in the ab-
sence of occlusion; however the visibility term makes this consid-
erably more difficult. We discretize the line light into N segments
for the purposes of computing occlusion, so this becomes

Fli(V ) =

N
∑

k=1

G(V, P + (k − 0.5)d̂)
nV · â

||a||2
(â · â⊥)

||d||

N
. (16)

Generally RGBD scans of fluorescent tube lights will pick up the
surface of the light (or at least its housing and reflectors). Thus,
we can identify line lights by looking for long, thin mesh compo-
nents that are located near the ceiling. We do this by examining
the eigenvectors and eigenvalues of the matrix of coordinates of the
component’s vertices. If the second and third eigenvalues are small
relative to the first, then the component is likely to be a line light,
for which the largest eigenvector provides d

||d|| . We determine the

extent of the line light by transforming the vertex coordinates into
the basis formed by the eigenvectors and finding the maximum and
minimum coefficients for the principal eigenvector. The perpendic-

ular vector d̂⊥ is set to be the world up vector (more precisely, the
component of the up vector perpendicular to d). Other non-axis
aligned line lights must be added manually.

Regularization for line lights is analogous to the regularization on
point lights: nonnegativity and smoothness between adjacent cells
in the constant basis, and monochromaticity across the light.

An example of our solved line lighting is shown in Figure 7.



6.4 Missing Data

In the formulation above, we assume that the hemicube provides an
accurate measurement of the direct and indirect lighting at a point.
However, in real world captures, many vertices or regions of the
mesh will be missing data – they will have no radiance estimates.
For example, it is impossible to scan the top of a tall shelf or a light
fixture.

We first determine what proportion of the hemicube consists of un-
observed incident radiance values. We then assume that, on aver-
age, the incident indirect light coming from unobserved rays will be
the same as the average indirect incident light from the rest of the
scene. Thus, if p0 is the proportion of the hemisphere consisting of
unobserved radiances, and pi is the proportion of the hemisphere
consisting of indirect illumination, we rescale the indirect illumina-
tion as

L′
indirect = Lindirect

p0 + pi
pi

. (17)

7 Architectural Features

We identified doors and baseboard as common elements of scenes
that are easy to identify automatically, simple to model, and impor-
tant for the perception of the scene.

7.1 Manhattan-World Analysis

Most architectural features, not only baseboards and doors but also
windows, light switches, and outlets, are located on walls (possi-
bly recessed or protruding), and are axis-aligned and rectangular.
Due to inaccuracies in camera poses and geometry, finding rect-
angles in reprojected mesh space is difficult. Instead, we locate
axis-aligned edges in individual input images and then analyze the
edge responses in 3D mesh space.

First, we transform the camera poses into the axis-aligned coordi-
nate system described in Section 5, and then compute the coordi-
nates of the three vanishing points for each image. We then run the
oriented edge filter used in [Furukawa et al. 2009] to obtain oriented
edge images for each camera viewpoint. We use the wall, floor, and
ceiling labels to identify pixels that project onto walls (rather than
occluders) and only consider edge responses for these pixels.

7.2 Baseboards

Baseboards are primarily parameterized by a height, although they
may also have a depth (i.e. they may protrude from the wall). We
locate a baseboard by assuming that there should be a horizontal
edge on all observed walls at the same height.

We first discretize each wall in the room into a 2D grid of cells,
and then project the masked oriented edge images onto these grids.
Each cell will record how many pixels project onto it N(x, y), as
well as the total horizontal edge response of pixels projecting onto it
F (x, y). We then define a function B(y) to measure the likelihood
of the baseboard height being at y

B(y) =
1

∑

x nonzero(N(x, y))

∑

x

F (x, y)

N(x, y)

where nonzero(x) = 1 if x > 0 and 0 otherwise. Note that when
N(x, y) = 0, that grid cell is occluded for all views. We take the
first local maximum for B as the baseboard height.

The motivation for this function is as follows:
F (x,y)
N(x,y)

is the aver-

age horizontal edge weight in a cell. The 1∑
x nonzero(N(x,y))

term

accounts for occlusions:
∑

x nonzero(N(x, y)) is a count of how
many wall cells at height y were observed. If only a few cells at
a particular height were visible, but they all had strong edge re-
sponses, it is still likely to be a baseboard candidate and that height
should not be unfairly penalized.

7.3 Doors

We assume doors to be axis-aligned rectangles on walls that extend
from the floor to a height above 1.5 meters. They are parameterized
by: the index of the wall they are on i, the height h, the position of
the center of the door p, and the width w.

Similarly to the baseboard case, we project the masked oriented
edge image into the discretized walls. We then trace scanlines of
the grid of responses to extract candidate line segments and prune
the candidates using non-maximum suppression. Note that when
tracing line segments, we allow line segments to extend into unob-
served cells to account for occlusion.

For each wall, we iterate through all pairs of vertical line segments
on that wall. If both segments start near the ground and end near the
same height greater than 1.5 meters, and there exists a horizontal
line segment at approximately that height that covers at least the
extent of the door, then that defines a candidate door. If several
candidate doors overlap, we take the widest candidate to be the true
door.

7.4 Appearance of Minor Architectural Features

For each feature, we also compute a diffuse reflectance and texture.
This is done analogously to the process described in Section 6.1,
except that we fix the lighting parameters to the values we obtained
from the first optimization. This amounts to finding the (robustified)
average reflectance across all vertices in the feature.

8 Results and Discussion

We demonstrate our full inverse rendering system on four scenes
with varying lighting conditions, including three different types of
emitters: distant illumination, generalized point lights, and gener-
alized line lights. We show results from these scenes, including
the relit empty room as well as virtually refurnished rooms, in Fig-
ures 1 and 8. All renderings are performed with PBRT [Pharr and
Humphreys 2004] for physically accurate global illumination ef-
fects. For scenes with distant illumination through windows, we
render the scene using the recovered environment map as a light
source. For the final image, we composite in the environment
map derived from the original input images to render what is seen
through the window.

The unoptimized runtimes of various components in our system
running on a 3.4GHz Intel i7 processor are as follows: ray-traced
image reprojection, which is used in several places in our pipeline,
takes approximately 5 minutes for 1000-1200 images at 640× 360
resolution and a mesh of approximately 200,000 vertices. The op-
timization process for radiometric calibration takes approximately
15 minutes for these images. Floor plan recovery takes about 5 sec-
onds. The inverse lighting optimization process ranges from 15 to
30 minutes depending on the light types present in the scene.

As mentioned in Section 6.3, our system requires some user assis-
tance to specify light source positions. For point lights in Bedroom
2 and Play Room, light coordinates were manually specified. The
axis of symmetry was left as the default world up vector. In the
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Figure 8: Results from our system in four scenes. The first row is an unadjusted frame from the original input. The second row shows a
synthetic rendering of the empty room from the same camera viewpoint and the same exposure. The third row inserts some synthetic objects
into the scene. The fourth and fifth rows show wider views of the entire relit mesh with baked global illumination at a suitable global exposure.

Bedroom 1 scene, regions of high specularity on the desk that re-
flected the window light were labelled as light emitters based on
the threshold. These were manually pruned. Similarly, in Bedroom
2, bright regions near the point light were pruned from being light
sources. The Study Room’s line light was automatically detected
and modelled. The geometry of the corner windows in the Play
Room was not captured by the sensor and subsequent Poisson Sur-
face Reconstruction. We manually adjusted the geometry of these
windows. Automating these steps is an area for future work.

In addition to adding virtual objects to a scene, we also demon-
strate performing other edits using our recovered, decluttered scene
model. These edits include changing the illumination conditions in
the scene and changing the material properties of surfaces in the
scene (Figure 9).

Our system enables interactive mixed reality applications, where
we can actually walk through the scene and visualize our edits in
situ (Figure 1). Carrying the Tango tablet in the scene, we can local-
ize its position and orientation. We then simply render the view of
the empty room or room filled with new furniture as it would look
like from that vantage point. These are rendered as static meshes
with baked global illumination computed using PBRT, while the
Project Tango software ensures that the camera pose is correct rel-
ative to the original scene.

8.1 Limitations

Our results show that our system handles a number of scenes and
leads to convincing rerendered results. However, our work has sev-
eral limitations that suggest future directions for research. Firstly,
our framework assumes diffuse surfaces. It is fairly straightforward,
albeit computationally intensive, to extend our framework into non-
diffuse surfaces by rendering incident light hemicubes using view-
dependent texture mapping, and optimizing over each observation
of each vertex rather than over the per-vertex weighted median.
However, preliminary experiments suggest that significantly more
complete data captures, with views of surfaces from many angles,
are necessary for this optimization to accurately recover specular
properties. In addition to specular surfaces, our system also does
not currently handle spatially varying reflectances; we plan to ex-
tend our system to synthesize floor or wall textures.

Having an accurate estimate of the indirect light in a scene is im-
portant to our inverse rendering framework. Incomplete scans re-
duce the accuracy of our estimate. To determine the importance of
having complete scans, we conducted an experiment where we ar-
tificially removed sections of one of our datasets and examined the
effects on the resulting reflectance estimates.

We deleted random connected regions of the mesh, each compris-
ing 5% of the total triangle count, by selecting a random triangle



Figure 9: This figure shows how our scene model enables edits to the lighting and materials of the scene. These edits are shown in increments;
the first column shows the input frame, while the second shows the refurnished room. The third column shows the walls repainted a different
color. The fourth column changes the lighting conditions: in (d), we change the time of day to sunset, while in (h) we change the position of
the point light in the room.

Figure 10: Reflectance estimates in the Bedroom 1 dataset as a
function of mesh incompleteness, with 95% confidence intervals.

and deleting adjacent triangles in a breadth-first fashion. For each
increment of mesh incompleteness between 0% and 90%, we gen-
erated 10 meshes randomly ablated in this fashion. We then ran our
inverse rendering pipeline on each mesh, and plotted the resulting
reflectance estimates in Figure 10. We can see that the variance
in reflectance estimates rises dramatically after about 20% of the
mesh is deleted. There also appears to be a slight bias toward lower
reflectances as mesh incompleteness increases; this bias is likely to
be scene-dependent as a result of our averaging scheme to fill in
missing data (see Section 6.4).

In this paper we do not show results of directly editing the origi-
nal room contents. We explicitly recover reflectances of only wall,
floor, and ceiling vertices simultaneously with lighting. While we
can directly recover per-vertex reflectances on the original mesh
(Equation 12) using the solved lighting parameters (shown in Fig-
ure 11), the resulting reflectances are often inconsistent or nonphys-
ical (ρV > 1). This is primarily due to the relatively low resolu-
tion and accuracy of the input mesh and camera poses, resulting in
incorrect occlusion boundaries, incorrect normals, and subsequent
incorrect calculations of incident lighting, as shown in Figure 11.
Modest mesh quality and inaccurate poses also create artifacts in
the HDR diffuse scene appearance. Furthermore, the low resolution
of the input data results in unconvincing rerenderings. Combining
existing SLAM algorithms with better hardware to handle typical
indoor scenes more robustly will greatly benefit our system.

Our floorplan estimation algorithm is designed for single closed
rooms. On more complex scenes, such as extending the “Playroom”
dataset into the adjacent hallway and bedroom (see Figure 12), we
see difficulties in reconstructing thin walls and doorways. How-

Figure 11: We compute a “reflectance mesh” by taking the radi-
ances from the input mesh (inset) and the solved lighting, and com-
pute a per-vertex reflectance as radiance divided by incident light.
We expect that the walls will have a uniform reflectance, but some
artifacts are visible. The red circles show regions where the inaccu-
rate wall geometry results in inaccurate normals. The blue circles
show regions where the inaccurate scene geometry results in incor-
rectly projected scene radiance. The yellow circles show regions
where the inaccurate scene geometry results in incorrect occlusion
boundaries. The green circles show artifacts from the low resolu-
tion of the lighting. The large white spot on the desk (circled in
purple) is due to the specularity of the desk; the radiance given by
the input mesh is an overestimate of the diffuse appearance of the
desk, and thus the computed reflectance is also too high. Although
not an issue in this case, this specularity can also cause an over-
estimate in the the incident indirect illumination on other points in
the scene.

ever, with some manual adjustment, we obtain a reasonable floor
plan. As our inverse lighting component is independent of the re-
constructed floorplan, we still obtain plausible results.

While our recovered lighting matches the original appearance of
the scene, it may not represent the true emitters in the scene ac-
curately. However, [Karsch et al. 2011; Ramanarayanan et al.
2007] present evidence that a range of lighting conditions are vi-



(a) Input data

(b) Floorplan with default parameters (c) Floorplan with increased N

(d) Floorplan with tweaked geometry (e) Both rooms, no doorways

(f) Original input image (g) Rerendered empty room image

Figure 12: Results of a multiroom dataset. (a) shows a top view of
the input scan. (b) shows the reconstructed floorplan with default
parameters, which only includes one room. (c) adjusts parameters
such that doorways do not get detected as walls, but the thin wall on
the side of the circled region of (a) still does not get reconstructed.
With some manual adjustment of the circled region, we arrive at a
reasonable floorplan (d). Although this floorplan does not include
the doorways, it still gives reasonable results when rerendered in
(e) and (g); some incorrect shadow boundaries can be seen near
the doorway in (g) due to the missing wall around the doorframe.

sually similar to humans, suggesting that rough lighting estimates
are enough for many applications. Furthermore, Ramamoorthi and
Hanrahan [2001] determine that it is impossible to recover true
high-frequency lighting from diffuse object appearance.

Automatically determining the locations and classification of light
sources is perhaps the most interesting problem. It is difficult to di-
rectly optimize for light source positions because occlusion bound-
aries cause discontinuities in the solution space. It is especially
challenging to compute the properties of unobserved light sources,
or to identify e.g. that the reflection of an unseen light source in a
mirror is not itself an emitter. We believe that using machine learn-
ing methods for light source identification and classification will be
an important addition to these inverse rendering problems.
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