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Abstract

Interactive video segmentation systems aim at producing
sub-pixel-level object boundaries for visual effect applica-
tions. Recent approaches mainly focus on using sparse user
input (i.e. scribbles) for efficient segmentation; however, the
quality of the final object boundaries is not satisfactory for
the following reasons: (1) the boundary on each frame is
often not accurate; (2) boundaries across adjacent frames
wiggle around inconsistently, causing temporal flickering;
and (3) there is a lack of direct user control for fine tuning.

We propose Coherent Parametric Contours, a novel
video segmentation propagation framework that addresses
all the above issues. Our approach directly models the
object boundary using a set of parametric curves, provid-
ing direct user controls for manual adjustment. A spatio-
temporal optimization algorithm is employed to produce
object boundaries that are spatially accurate and tempo-
rally stable. We show that existing evaluation datasets are
limited and demonstrate a new set to cover the common
cases in professional rotoscoping. A new metric for eval-
uating temporal consistency is proposed. Results show that
our approach generates higher quality, more coherent seg-
mentation results than previous methods.

1. Introduction

Interactive, or supervised video object segmentation
[17, 26, 4, 19] is an essential step in professional video
production, enabling numerous post-processing possibili-
ties such as background replacement. The standard indus-
trial approach for this task is rotoscoping, where boundaries
of the foreground objects are first annotated manually at
sparse keyframes, using parametric and controllable shapes
such as Bézier curves. These curves are then smoothly in-
terpolated for the in-between frames. Given the high pre-
cision and controllability of parametric curves, rotoscoping
can achieve highly accurate and temporally stable results by

artists; however it is an extremely labor-intensive process
and requires professional expertise.

Recently, interactive video object segmentation based on
sparse user input (i.e. foreground and background scrib-
bles) has gained considerable attention given its ability to
quickly generate reasonable segmentation results with a
small amount of user input [22, 4, 7, 28]. While these
scribble-based methods greatly improve the segmentation
efficiency, they often suffer from inaccurate and/or incon-
sistent segmentation boundaries that prevent them from real
production. Most of these approaches generate the segmen-
tation results from pixels in single frames through a global
optimization method such as graph cuts, which is easily af-
fected by background clutter, image noise and edge pixela-
tion. Furthermore, the factors affecting the global optimiza-
tion often change across frames; thus even for a rigid object,
there is no guarantee of the temporal shape consistency. Re-
sulting boundaries often wiggle around across frames, caus-
ing temporal boundary jitter as shown in Figure 1. Manip-
ulating the pixel-wise boundaries frame-by-frame in such
non-parametric systems is practically not possible.

In this project, we propose a new method called Co-
herent Parametric Contours (CPC), which explicitly mod-
els the object boundary as a set of evolving Bézier curves
for interactive video object segmentation. These curves
are initialized by the user on the first frame, and auto-
matically propagated to the following frames through a
spatio-temporal optimization algorithm that seeks both spa-
tial accuracy and temporal shape consistency. Since object
boundaries are represented as parametric curves, users have
the full access to local boundary shapes; manipulating the
curves is therefore straightforward.

Previously, the evaluation datasets proposed in [4, 19]
do not provide ground-truth labeling with professional-level
accuracy; they are not suitable for evaluating parametric
algorithms as well, due to the ambiguity in parameteriz-
ing shapes with complex topology. Besides, there is also a
lack of evaluation metric that focuses on temporal boundary
consistency. We analyze the requirements for professional



Figure 1. Temporal shape inconsistency is a common problem in scribble-
based video object segmentation systems. Left: for a simple example with
a rigid object, the user marks several scribbles on the first frame to indicate
the foreground (red) and background (yellow). Right: overlaying bound-
aries (in yellow) of multiple frames reveals the temporal boundary incon-
sistency. The contours wiggle around despite the rigidity of the object. The
video result for this example is shown at http://yao.lu/CPC.html

video object segmentation and construct a dataset contain-
ing various types of videos that commonly occur in real
production. We provide ground-truth parametric bound-
aries carefully labeled by professionals using an industrial
software package. A new metric is proposed to measure
the temporal shape consistency for video object segmenta-
tion. Experimental results show that our approach outper-
forms state-of-the-art scribble-based segmentation meth-
ods, as well as rigid shape tracking algorithms.

2. Related Work

Multiple approaches exist for interactive video object
segmentation. We discuss different types of systems be-
low categorized by the input and the boundary propagation
algorithm. (1) Rotoscoping tools such as Mocha [2] lever-
age simple shape interpolation methods to propagate para-
metric curves from keyframes to in-between frames, with-
out looking at the underlying image content. Rotoscop-
ing meets the quality requirement for production; consis-
tent results are obtained for unlimited types of video ob-
jects (rigid, non-rigid, occluded, etc.). However rotoscop-
ing is labor-intensive and requires much professional ex-
pertise for the users. To improve the efficiency, Agarwala
et al. [3] encode image features through a non-linear opti-
mization framework to interpolate for intermediate object
shapes between user-annotated keyframes. (2) Scribble-
based image and video segmentation systems take sparse
user input and efficiently generate non-parametric segmen-
tation results. Grabcut [20] segments the foreground object
within input bounding boxes. SnapCut [4] improves fore-
ground models using local classifiers. Most scribble-based
frameworks utilize graph cuts to determine the boundary,
hence potential solutions to enhance the fine boundary in-
clude using a prior to guide the graph cuts [25], and adjust-
ing the affinity between image regions [13]. However, due
to the nature of non-parametric curves, it is still tedious to
perform pixel- or subpixel-wise annotation for fine bound-

ary manipulation. Besides, such manipulation is needed for
every single frame, since results in these systems usually
contain temporal jitter. (3) Keypoint-based contour track-
ing approaches extract local image descriptors and com-
pute the homography between neighboring frames; the ob-
ject boundary is then propagated to later frames using the
homography. These systems provide efficient propagation
of parametric contours. However they are usually limited
to one planar surface; artifacts exist for objects with multi-
ple parts or non-rigid motions. The Rigid Mask Tracker in
Adobe After Effects [1] is a state-of-the-art implementation
of this approach.

To benefit from existing approaches as well as to avoid
their limitations, the following designs are made in our pro-
posed system. (1) We mimic the rotoscoping artists to pro-
duce high quality boundaries for unlimited types of objects.
However unlike rotoscoping, the users are only required to
annotate the first frame. Our system automatically prop-
agates the shapes to subsequent frames, which greatly re-
duces the workload. (2) We leverage parametric curves as
input to our system, since non-parametric object boundaries
produced by scribble-based methods are difficult for fine
adjustment. (3) Locally instead of globally rigid motion is
assumed to overcome the difficulty for handling non-rigid
objects in keypoint-based systems.

Our proposed parametric boundary propagation frame-
work is built upon active contours, a classic model for
non-parametric image segmentation. Several variations ex-
ist such as snakes [11], intelligent scissors [16], and level
sets [6]. Active contours has also been applied in sev-
eral video object segmentation and tracking frameworks
[10, 18, 21]. Unlike these approaches, our method models
the input in a Bézier curve representation, and we perform
spatio-temporal optimization upon these parametric bound-
aries to obtain accurate and smooth results.

Several datasets [4, 19, 28] exist to evaluate the effec-
tiveness of interactive video object segmentation. Zhong
et al. [28] provide a video set with binary masks for the
foreground objects. However the groundtruth boundaries
are not manually annotated and contain noticeable visual
artifacts. These non-parametric datasets are not suitable
for evaluating parametric algorithms due to the ambiguity
in representing complex topology. Further, no cross-frame
boundary correspondence is provided; evaluating the tem-
poral consistency is indirect in these datasets.

In this paper, we demonstrate a parametric video dataset
annotated by professional rotoscoping artists, with the goal
of evaluating both spatial accuracy and temporal consis-
tency for interactive video object segmentation. Automatic
key frame selection methods are proposed in [27, 24]; how-
ever our annotation is on equally sampled frames so as to
balance the difficulty between videos. For evaluation met-
rics, [12] to our best knowledge is the only work to eval-
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uate the temporal consistency for soft object masks pro-
duced by video matting algorithms. Their metric is feature-
dependent; label difference versus feature difference is cal-
culated as the consistency scores. Since our dataset pro-
vides groundtruth annotated by professional artists, there is
no need to further involve image features in the evaluation.
Hence, we propose a novel temporal consistency metric for
parametric curves in this paper. Our metric is defined purely
on boundary shapes, allowing efficient and precise measure-
ment without looking into image regions that sometimes be-
come unreliable.

3. Coherent Parametric Contours (CPC)
3.1. CPC in Single Images

Let I : [0, a] × [0, b] → R+ be an intensity image, and
let C(q) : [0, 1] → R2 be a parametric curve. Recall that
the energy for the active contour [11, 6] is defined as:

E(C) = α

∫ 1

0

|C ′(q)|2dq + β

∫ 1

0

|C ′′(q)|2dq

−λ
∫ 1

0

|∇I(C(q))|dq.
(1)

The first two terms penalize the first and second order dis-
continuities to ensure a smooth and continuous output, and
the last term fits the curve to image gradient ∇I . CPC on
single images has a similar energy formation. In particu-
lar, the curve C(q) is represented using a set of connected
Bézier curves:

C(q) = {B(pi)}, i = 1, ...,m, (2)

whereB(pi) depicts the i-th cubic Bézier curve with param-
eter pi = {pi0, pi1, pi2, pi3}, andm is the number of segments.
For simplicity we denote B(pi) = bi(s) : s ∈ [0, 1] →
[pi0, p

i
3]. Here bi(0) = pi0 and bi(1) = pi3 are the two ter-

minal control points of Bézier curve B(pi), and pi1, p
i
2 are

the two intermediate control points. Note that the Bézier
curves are connected, hence bi(1) = bi+1(0). We rewrite
the fitness term in Equation 1 as:∫ 1

0

|∇I(C(q))|dq =
m∑
i=1

∫ 1

0

|∇I(bi(s))|ds. (3)

Bézier curves are always continuous and smooth in-
side. To produce a reasonable CPC, the only requirement
is the smoothness near the joints where two adjacent Bézier
curves meet. Then the energy of CPC on a single frame can
be written as:

E(B) =

m∑
i=1

|bi(0)′′|2 − λ
m∑
i=1

∫ 1

0

|∇I(bi(s))|ds. (4)

3.2. CPC in Video

Given a video sequence V = (I1, ..., In), to achieve
spatio-temporal accuracy as well as consistency, we opti-
mize the total energy of CPCs on the video sequence:

min
Bt∈Bt,∀t

n∑
t=1

E(Bt) + γ

n−1∑
t=1

E(Bt, Bt+1), (5)

where the first term ensures the quality of CPC on each in-
dividual frame. Bt is the candidate boundary set for frame
t, from which we select an optimal boundary to construct
the global solution. We discuss constructing the candidate
set in Section §3.2.1.
E(Bt, Bt+1) is the temporal consistency cost that mea-

sures the pairwise consistency between CPCs in neighbor-
ing frames. It is define as:

E(Bt, Bt+1) = dist(Bt ⊕ ~f,Bt+1), (6)

where ~f is the locally rigid motion vector, and⊕ is a bound-
ary warping operation. We compare the warped boundary
Bt⊕~f in frame twith the candidate boundaryBt+1 in frame
t+1; their pixel-wise distance is calculated and minimized,
so that the resulting CPCs are consistent and deform pro-
gressively across frames according to the locally rigid mo-
tion. Note that ~f is only locally rigid; it can be non-rigid
globally. Details about estimating the locally rigid motion
and warping the contours are provided in Section §3.2.2.

A well established criteria [14, 5] is applied to measure
the distance between the boundary m and n in two frames.
It can be formulated as the percentage of pixels on m that
have correspondences to n:

dist(m,n) =
1

|m|
∑

1p∈m,∃q∈n,s.t.||p−q||≤th (7)

where th is a tolerance threshold indicating the distance be-
tween corresponding boundary pixels.

To optimize Equation 5, we apply dynamic program-
ming; the problem can then be solved withinO(mk2) time,
where k is the number of candidate boundaries for each
frame. To speed up the computation, distances between
candidate boundaries are calculated in parallel. Meanwhile,
a standard multi-scale approach is applied to narrow the
search space for k; we generate CPCs on a rough scale and
then refine them on a fine scale.

3.2.1 Generating Boundary Hypotheses

Under the Bézier curve representation, generating a bound-
ary hypothesis is equivalent to locating a set of control
points. A two-stage approach is utilized to propose the can-
didate boundary set Bt for frame t. We first generate the
terminal points; then the intermediate control points can be
determined by solving a least-squares fitting problem.



Figure 2. Illustration of our Bézier fitting scheme. Left: given p0 and p3
as the two terminal control points, project each nearby pixel (in the green
box) to p0p3 for parameterization. Right: we use the image gradient val-
ues as weights and perform least-squares Bézier fitting to estimate optimal
intermediate control points p1 and p2. Two box constraints are used to
stabilize the fitting.

Proposing Candidate Terminal Points. The criteria to
generate candidate terminal points are two-fold. First, their
displacement across frames should be consistent with the
estimated local object motion. Second, they should snap to
strong image edges. Hence, the candidates {bti(0)}mi=1 on
frame t should minimize the following energy:

min{bti(0)}

m∑
i=1

|bti(0)− bt−1i (0)− ~f t−1i | − α|∇It(bti(0))|,

(8)
where ~f t−1i is the locally rigid motion of point i’s neighbor-
hood within the object from frame t− 1 to t, which will be
described in Section §3.2.2.

To solve Equation 8, computing and sorting the ener-
gies on a permutation set is a potential solution. However,
moving candidate terminal points one or two pixels around
yields a large permutation set with low variety; the com-
putational complexity for Equation 5 is therefore high. We
thus leverage a random sampling approach to obtain a small
candidate set with large variety, similar in spirit to other
sampling approaches applied in different applications such
as matting [9, 23].

The possibility of a pixel x being a terminal point in
frame t can be formulated as:

P t
i (x) ∝ ∇It(x) ·N(bt−1i (0) + ~f t−1i , σ) (9)

where N(, ) is a 2D normal distribution centered at the
terminal point projected using the locally rigidy motion.
Therefore, terminal points for different segments of the
Bézier curves are generated independently and randomly
according to P t

i (x), so that P (Bt) =
∏m

i=1 P
t
i (x). We

obtain k sets of terminal points for each frame. In our ex-
periments k is typically chosen to be 300, and σ is set to be
5 pixels.

Least-Squares Bézier Fitting. Given the two terminal
points p0 and p3 belonging to Bézier curve b, we perform
constrained weighted least-squares fitting to infer the opti-

Figure 3. Estimating locally rigid motion for control points. Left: frame
1 with parametric annotation B in pink. Terminal points are shown in
rectangles. Right: frame 2 with warped contour B ⊕ ~f . Small circles
represent the keypoints, and short lines indicate their displacement from
frame 1. For estimating the motion of the terminal point pointed to by the
yellow arrow, we look into a local region within a radius r. Keypoints
nearby are used to calculate the homography. Terminal points pointed to
by red arrows do not have sufficient nearby keypoints, thus their motions
are propagated from neighboring terminal points to keep shape rigidity.

mal locations for p1 and p2:

minp1,p2

∑
y∈C

∇I(y) · [y − b(l(y))]2,

s.t. 0 ≤ l(y) ≤ 1,

r1lu ≤ p1 ≤ r1rb,
r2lu ≤ p2 ≤ r2rb.

(10)

where b(s) is the cubic Bézier curve: b(s) = (1− s)3 · p0+
3(1−s)2s ·p1+3(1−s)s2 ·p2+s3 ·p3, s ∈ [0, 1]. Figure 2
demonstrates an example of the Bézier fitting.

Let C be the set of possible pixel locations for Bézier
curve b. In practise, so as to reduce the search space, C
is set to be the pixels within the bounding box to contain
p0 and p3 plus a constant margin (the green box in Fig-
ure 2). l(y) = ||yp−p0||

||p3−p0|| parameterizes an arbitrary point y,
and yp is its projection on p0p3. The image gradient ∇I is
used to weight the Bézier curves, so that they fit to strong
edges. We apply additional constraints on the intermedi-
ate control points. Two box constraints r1 = [r1lu, r

1
rb] and

r2 = [r2lu, r
2
rb] are used; their positions are bilinearly inter-

polated and projected from the previous frame using the lo-
cally rigid motion vector. We force the intermediate control
points to locate within the box constraints so as to stabilize
the fitting result. Equation 10 is solved using the Levenberg-
Marquardt method [15] with RANSAC [8]; a subset of pix-
els in C is selected in a sample-and-test manner to best fit
the Bézier curve.

3.2.2 Locally Rigid Motion Estimation

Previous keypoint tracking methods treat the object as a
single plane and calculate a global homography between
frames. This is sub-optimal for segmenting non-rigid, or
rigid but non-planar video objects. In this work, we instead
emphasize the local rigidity of objects and leverage local
affinities to estimate the motion for the terminal points. Fig-
ure 3 is an example of the estimation process.



The local homography Hx for point x on the object
boundary is calculated using the keypoints within a radius r
centered at x; keypoints outside of the object boundary are
not considered. RANSAC [8] is applied in calculating the
homography to eliminate outliers. Hence the locally rigid
motion vector is denoted as ~f = H · x− x.

For terminal points without enough neighboring key-
points, their motion vectors are propagated from nearby ter-
minal points to keep shape rigidity, so that ~f = (d− · ~f+ +

d+ · ~f−)/(d++d−), in which ~f+ (~f−) is the motion of the
next (previous) terminal point on the boundary (assuming
the terminal points are annotated clockwise), and d+ (d−)
is the distance on the object boundary to that point.

Constructing warped contours. Given the parametric
Bézier curve B and the locally rigid motion vector ~f , com-
puting the warped contour B ⊕ ~f is therefore straightfor-
ward. For terminal control points, ~f is applied directly; for
intermediate control points, we apply motion vectors that
are bilinear interpolated from the two neighboring terminal
control points. Discrete pixels on the boundary are gener-
ated using these Bézier parameters.

4. Experiments
4.1. Dataset

Motivation. Currently, datasets used to evaluate
scribble-based frameworks [28, 4, 19] emphasize the over-
all correctness of video segmentation, while the sub-pixel-
level boundary quality is weighted less. Furthermore, the
existing datasets are not designed for evaluating paramet-
ric methods due to the ambiguity in the parametric contour
representation. Temporal consistency cannot be measured
either, since no cross-frame correspondence is provided. In
this paper, we propose a video set for evaluating paramet-
ric video object segmentation algorithms with emphasis on
both spatial and temporal boundary qualities. We consider
the following issues in the dataset construction.

1. Complex topology. Modeling objects with complex
and changing topology using a single parametric curve is
an ill-defined problem, not feasible even for professional
rotoscoping artists. The standard solution in video produc-
tion is to divide complex objects into overlapping parts with
simple shapes, while each part can still be deformable, and
rough boundaries are put between parts. Figure 4a shows an
example of this process. To mostly follow the production
practise, videos with partial boundary (PB) and occlusion
(OC) should be included in our dataset (Figure 4b).

2. Furry boundaries. For objects with furry boundaries,
rotoscoping artists will first generate consistent outlines for
the whole object, and then apply soft matting locally to the
furry part. For the binary segmentation step, we also cate-
gorize this case as partial boundary (PB).

3. Occlusion. Occluded objects pose extra challenges for

(a) (b)
Figure 4. (a) Production practise for high quality interactive video object
segmentation. Complex topology is decomposed into parts for segmenta-
tion. (b) A dataset is proposed to cover several common cases in produc-
tion. In this case non-rigid motion (NR), partial boundary (PB) and motion
blur (MB) exist.

Sequence Init size Len Anno Motion MB OC PB
Boy 190x300 60 30 NR

√

Drop 80x100 84 28 NR
Minion 420x570 102 34 NR

√ √

Car 80x60 111 37 R
√

ToyMonkey 210x190 120 40 R
√

ToyHorse 320x290 120 40 R
√

Plane 800x810 93 31 R
Sunset 310x90 128 32 R

√

Tower 220x600 60 30 R

Table 1. Overview of our proposed dataset. Len: original length of
frames. Anno: number of annotated keyframes. Init size: rough object
size (in pixel) on the first frame. R: rigid motion. NR: non-rigid motion.
MB: motion blur. OC: occlusion. PB: partially annotated boundaries.

videos containing dynamic scenes. The segment boundaries
should be consistent with the occlusion boundaries (OC).

4. Motion blur (MB) is a common artifact for videos
containing intensive motions. It causes blurry object bound-
aries that are difficult for segmentation. Further, when there
is severe motion blur, even humans cannot see the bound-
aries clearly. To handle such cases in production, a standard
practice is to estimate temporally smooth boundaries and
sacrifice spatial accuracy.

5. Rigidity. Rigid (R) and non-rigid (NR) objects are
equally important for video segmentation, while previous
systems overlook the boundary stability of rigid objects.

Dataset construction. We construct a dataset with 9
video sequences ranging from 60 to 128 frames in length
(15-100fps), where each video contains a single shot for
the rotoscoping process. We ask a professional rotoscop-
ing artist to carefully label the boundary of a basic unit for
each video, using the Bézier Pen tool in Mocha [2]. The
annotation is later verified and refined by another rotoscop-
ing artist. To reduce the cost for annotation and to bal-
ance the difficulties of different videos, we sample 28 to 40
frames from each video sequence with fixed intervals. Fi-
nally precise groundtruth in parametric curves is obtained.
We demonstrate the dataset in Figure 4b and Figure 5, and
Table 1 summarizes the videos properties.

4.2. Metrics

Evaluating the spatial accuracy. We follow the edge
comparison strategy [14, 5] mentioned in Section §3.2 to



Boy Drop Minion Car ToyHead ToyHorse Plane Sunset Tower

Figure 5. Different types of videos in our dataset. First row: frame 1. Second row: frame 25. The images are cropped for better visualization. The first
three video sequences contain objects with non-rigid motion, and the rest contain objects with rigid motion. Groundtruth boundaries are shown in green.

evaluate the spatial accuracy for video object segmenta-
tion. Given the segmentation boundary sb and groundtruth
boundary gt in discrete pixel format, the segmentation ac-
curacy for a single frame is dist(gt, sb).

Evaluating the temporal consistency. We propose a
novel metric to measure the temporal consistency for para-
metric video object segmentation. Given the segmentation
boundaries sb1 and sb2, and groundtruth boundaries gt1 and
gt2 for a pair of consecutive frames, let p (q) be the closest
pixels on sb1 (sb2) to the groundtruth gt1 (gt2), the consis-
tency is therefore defined as:

consist(sb1, sb2) =
1

|gt|
·
∑
i

1||(gti1−pi)−(gti2−qi)||≤th

(11)
The basic idea is to calculate percentage of pixels on gt1

and gt2 that have coherent correspondences to sb1 and sb2.
At this point, pixels on gt1 and gt2 should be registered so
as to perform the per-pixel matching. Since our groundtruth
boundaries are generated from Bézier parameters, we know
the exact correspondence between gt1 and gt2. Hence cal-
culating Equation 11 is straightforward; we demonstrate the
process in Figure 6.

4.3. Evaluations

We compare our proposed approach with several exist-
ing techniques as well as one variant of our framework.
(1) Global plane tracking (GP) is a standard technique for
video object segmentation. We compare with the Rigid
Mask Tracker within Adobe After Effects [1], which is a
state-of-the-art implementation of boundary tracking based
on keypoints. We choose a perspective transform for the
tracker. (2) We generate warped contours without the
spatio-temporal optimization to see the effectiveness of the
locally rigid motion (LR). (3) Finally, we compare with the
state-of-the-art scribble-based (SB) approach SnapCut [4].

Since the videos are different in length, we divide each
of them into multiple overlapping clips with a 5-frame off-
set between the clips. For each video clip, we evaluate the
performances for len = 2, 6, 11 and th = 1, 2, 4 upon the

Figure 6. Demonstration of our temporal consistency metric. We calculate
signed distances for each pair of corresponding pixles on the groundtruth
boundaries (in blue) to the result boundaries (in green). The percentage
of pixels in consensus between the two distances (in white cells) under a
tolerance threshold th is calculated as the consistency score. Note that in
this example we only demonstrate sparse correspondences.

annotated frames. Note that we find the results of previ-
ous tools often deteriorate quickly (e.g. across less than 10
frames); if the result is already not acceptable after prop-
agating 11 frames, propagating more is not a meaningful
comparison. The same first-frame annotations are fed to dif-
ferent methods as initialization; we then calculate accuracy
per frame and consistency per consecutive two frames. Fi-
nally the average performances are reported on all the clips
in each video.

We report the quantitative evaluations in Table 2 for the
accuracy and consistency with th = 1. Under this tight
setting the resulting boundaries should be within one pixel
from the groundtruth. We have several observations from
this comparison. (1) Global plane tracking (GP) works well
on objects with rigid motion (R) in terms of both accuracy
and consistency. It handles partially annotated boundaries
(PB) but cannot cope with occlusion (OC). In contrast our
approach achieves comparable performances on rigid track-
ing and finds the correct occlusion boundary in a better way.
(2) As expected, global plane tracking does not work on ob-
jects with non-rigid (NR) motion. In contrast our frame-
work handles non-rigid motion well, since we assume lo-
cally instead of globally rigid motion. (3) The scribble-
based method (SB) is not comparable to our approach; the
output boundaries are rough and temporally inconsistent.
SB is good at detecting occlusion boundaries but does not



Setting Boy Drop Minion Car Plane Sunset Tower Monkey Horse Avg R NR MB OC PB
SA & SB 0.643 0.395 0.756 0.538 0.816 0.736 0.621 0.653 0.531 0.632 0.649 0.598 0.647 0.695 0.644

TC GP 0.857 0.514 0.819 0.940 0.984 0.891 1.000 0.997 0.999 0.889 0.969 0.730 0.880 0.944 0.892
len LR 0.758 0.354 0.732 0.800 0.780 0.771 0.929 0.893 0.917 0.771 0.848 0.614 0.766 0.832 0.803

2 Ours 0.906 0.460 0.893 0.933 0.910 0.923 0.990 0.990 0.996 0.889 0.957 0.753 0.913 0.956 0.932
SA SB 0.614 0.274 0.719 0.444 0.784 0.721 0.535 0.640 0.519 0.583 0.607 0.536 0.582 0.680 0.618
len GP 0.602 0.325 0.613 0.843 0.869 0.548 1.000 0.949 0.965 0.746 0.862 0.513 0.880 0.748 0.727

6 LR 0.587 0.233 0.645 0.666 0.628 0.653 0.925 0.793 0.831 0.662 0.749 0.488 0.766 0.723 0.688
Ours 0.741 0.323 0.791 0.841 0.766 0.855 0.990 0.940 0.970 0.802 0.894 0.618 0.913 0.897 0.834

SA SB 0.569 0.204 0.707 0.393 0.733 0.734 0.518 0.625 0.500 0.554 0.584 0.493 0.550 0.679 0.592
len GP 0.433 0.250 0.511 0.766 0.722 0.372 0.999 0.864 0.880 0.644 0.767 0.398 0.638 0.618 0.608
11 LR 0.487 0.204 0.588 0.568 0.482 0.628 0.913 0.685 0.747 0.589 0.671 0.426 0.578 0.723 0.607

Ours 0.631 0.281 0.736 0.721 0.607 0.817 0.990 0.853 0.905 0.727 0.816 0.549 0.729 0.835 0.757
TC SB 0.655 0.273 0.718 0.484 0.768 0.727 0.618 0.724 0.616 0.620 0.656 0.549 0.601 0.725 0.663
len GP 0.663 0.345 0.665 0.845 0.904 0.675 1.000 0.958 0.975 0.781 0.893 0.558 0.755 0.817 0.768

6 LR 0.673 0.250 0.683 0.739 0.697 0.710 0.982 0.887 0.918 0.726 0.822 0.535 0.766 0.798 0.758
Ours 0.813 0.341 0.809 0.850 0.819 0.863 0.997 0.962 0.977 0.826 0.911 0.654 0.830 0.913 0.866

TC SB 0.609 0.194 0.708 0.425 0.726 0.741 0.616 0.723 0.611 0.595 0.640 0.504 0.566 0.732 0.643
len GP 0.531 0.287 0.597 0.789 0.833 0.566 1.000 0.911 0.930 0.716 0.838 0.472 0.693 0.738 0.686
11 LR 0.596 0.216 0.641 0.657 0.601 0.706 0.988 0.835 0.872 0.679 0.777 0.484 0.649 0.770 0.703

Ours 0.742 0.311 0.769 0.782 0.734 0.843 0.998 0.922 0.942 0.783 0.870 0.607 0.775 0.883 0.818

Table 2. Quantitative evaluation and comparison with a tight tolerance threshold th = 1 and different video length len = 2, 6, 11. SA: spatial accuracy.
TC: temporal consistency. We compare our method with a scribble-based method (SB) [4], global plane tracking (GP) [1], and locally rigid motions (LR).
Note that for len = 2 the accuracy and consistency are the same. Our approach outperforms state-of-the-art methods in both accuracy and consistency.

th = 1 th = 2 th = 4

Figure 7. Quantitative evaluation for different video length (x-axis) and
tolerance threshold (th = 1, 2, 4). First row: accuracy. Second row:
consistency. Our method performs the best.

handle partial boundaries (PB). (4) Tracking with locally
rigid motion (LR) works reasonably well, but its perfor-
mance is significantly worse than the full system, indicat-
ing the importance of the spatio-temporal optimization in
our system. (5) Looking at the results for individual video
sequences, we notice that (i) GP requires adequate texture
for tracking; it fails in textureless regions (ToyHorse); (ii)
SB works poorly on objects with long skinny structures
(Tower); (iii) motion blur (MB) is a common obstacle to
video object segmentation; our spatio-temporal smoothing
scheme still generates consistent object boundaries.

We illustrate the overall performance with different
thresholds th in Figure 7. Average performances over
all video sequences and clips are reported. Our proposed
framework behaves similarly well and is the best in both
accuracy and consistency under different tolerance settings.

Discussion on ∇I . In the case of strong shadow or mo-
tion blur, the object boundary could become vague, or even
disappear completely, as shown in Figure 8. We have tried

(a) (b) (c) (d)
Figure 8. Demonstration of three hard cases with vague or missing boundaries.
(a,b) Object boundaries can be easily affected by shadow, motion blur or background
cluttering. (c) Probabilistic foreground mask G obtained using SnapCut [4]. In
these hard cases, G and ∇G provide no meaningful improvement. (d) Our pro-
posed framework keeps the local shape rigidity to mimic rotoscoping artists. Please
refer to Figure 3 for the explanation.

using∇G, the gradient of the probabilistic foreground mask
produced by SnapCut [4], to replace the image gradient∇I ,
but there is no meaningful improvement as the foreground
mask itself is often erroneous in such cases (Figure 8c). In
our system, weak edges and control points are regularized
by their local as well as neighboring affinities. Once a con-
trol point or a Bézier curve is incorrectly snapped to a strong
background edge, the resulting boundary shape will be con-
strained by Equation 6.

Qualitative Evaluation. Figure 9 shows visual compar-
isons of segmented boundaries in four video sequences. For
GP, we can easily notice the boundary errors when there
is occlusion (Sunset), or the object is deforming (Minion).
SB produces zigzag and temporal inconsistency boundaries
(ToyHorse and Car). Our method finds false object bound-



Frame 1 Frame 3 Frame 6 Frame 9 Frame 1 Frame 3 Frame 6 Frame 9

Figure 9. Qualitative evaluation and comparison. First and third row: our results. Second row: Rigid Mask Tracker [1]. Last row: SnapCut [4]. All methods start from the
same annotation on the first frame. Images are cropped to suitable regions for visualization. In comparison, global shape tracking cannot handle non-rigid deformation (Minion)
and occlusion (Sunset). Video SnapCut has lower quality for boundary smoothness and temporal consistency. Our method produces more accurate and consistent results.

Seq 1 Minion (sec) Seq 2 Tower (sec)
SnapCut Mocha Ours SnapCut Mocha Ours

User 1 147 1357 115 201 184 75
User 2 172 1223 135 326 311 84
User 3 255 1729 144 177 197 75

Table 3. User study on the efficiency of different video segmentation sys-
tems. Our system clearly outperforms the SnapCut [4] and the Mocha [2].

aries in some cases (Minion), but overall achieves higher
quality and temporally consistent results.

Further video results and comparisons are shown in the
project website. 1

4.4. Evaluating the User Interactions

We show in Figure 10 that our approach is convenient
in precise boundary manipulation. The advantages are two-
fold: (1) Spatial adjustment. Users can directly move the
control points of Bézier curves to adjust the segmentation
boundary. In contrast, scribble-based approaches require
several rounds of interaction. Multiple scribbles need to be
added near the true object boundary for further refinement.
(2) Temporal propagation. Since scribble-based systems do
not pose strong constraints on temporal shape stability, the
same refinement is needed on multiple adjacent frames. On
the contrary, our proposed framework produces more reli-
able results; once a refinement is done for one frame, the
modified object shape can stay much longer.

Table 3 demonstrates a user study showing the efficiency
of different video segmentation systems. We ask three users
to segment two video clips, each with 20 frames in length

1http://yao.lu/CPC.html

Figure 10. Our system allows direct boundary editing for segmentation error cor-
rection (left). In contrast, scribble-based systems require scribbles drawn near the
object boundary (middle), however the result may still be unsatisfactory (right).

and initial contours not given. The users have the expe-
rience for more than ten hours in SnapCut and Mocha. We
show them the groundtruth and ask them to achieve both ac-
curacy and consistency. Results indicate that: (1) for Snap-
Cut [4], although a rough foreground mask can be drawn ef-
ficiently, users spend most of the time refining the temporal
boundary consistency, and (2) for segmenting the Minion
clip with non-rigid motion, annotation is needed frequently
in Mocha. Although our system requires more user input
on the first frame, it produces better boundary curves with a
greater degree of temporal stability, thus requiring less user
intervention in the propagation process. Our method clearly
outperforms SnapCut and Mocha in usability and efficiency.

5. Conclusion
We describe Coherent Parametric Contours, a bound-

ary propagation framework for interactive video object seg-
mentation, aiming to produce high quality object bound-
aries suitable for real video production. Compared with tra-
ditional scribble-based methods, it generates accurate and
temporal coherent boundaries and supports direct and natu-
ral boundary editing. We also provide a new dataset and a
new metric to measure the temporal boundary consistency.

http://yao.lu/CPC.html
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