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Can we experience a scene virtually, such as the Colosseum in Rome, without ever having to visit

it? Such an experience should replicate the feeling of being physically present, in terms of being

able to visualize the scene from different viewpoints as well as quickly assimilating the highlights of

the scene. An Internet search can increasingly provide us with a complete photographic record for

the scene, but the challenge is in displaying such imagery in a coherent and informative way. In this

document, I propose an approach for this problem based on 3D reconstruction and path planning.

To make this approach feasible, we need to overcome three primary challenges. The first is in

scaling the reconstruction algorithms to process millions of 3D points and thousands of images in

an efficient manner. We design effective preconditioners to solve the non linear Bundle Adjust-

ment problem efficiently, to obtain significant reductions in execution time. The second challenge

involves improving the quality of the 3D reconstructions. Despite decades of research, state-of-the-

art stereo algorithms cannot produce quality reconstructions everywhere, due to their dependence

on the presence of texture. We complement stereo with monocular cues to overcome this challenge

to compute more accurate and complete reconstructions. Finally having computed the reconstruc-

tions, a third challenge is in creating compelling visual experiences to aid a user in effectively

navigating through the scene. We automatically compute movies, or photo tours, as paths through

the reconstruction that are coherent, informative and efficient, for famous sites all over the world.
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Chapter 1

INTRODUCTION

Can we experience a scene virtually, such as the Colosseum in Rome, without ever having to

visit it? Such an experience should replicate the feeling of being physically present, in terms of

being able to visualize the scene from different viewpoints, and quickly assimilating the highlights

of the scene. What makes this problem challenging? The challenge is not a lack of good imagery—

there’s plenty available via Internet search—but rather displaying such imagery in a coherent and

informative way. In this document I propose solutions for creating compelling visualizations for

scenes in a scalable and efficient manner. One immediate application is in creating virtual tours for

famous tourist sites. Indeed, our approach has been commercialized as the Photo Tours feature in

Google Maps to create tens of thousands of tours all over the world [3]. Figure 4.1 shows the world

scale deployment of our approach — each photo tour (shown as a red dot on the map) is a movie

which includes fluid 3D transitions between a sequence of photographs of the scene. To achieve

this, we crawled more than a million geo-tagged user photos, clustered them into thousands of

individual sites, reconstructed camera positions, scene geometry, and popular viewpoints, planned

optimal tours, and rendered fly-through movies of each site.

To create such a visual experience, we require hundreds or thousands of photographs. The spread

of the Internet and the growing amount of visual information online, provides us with a rich source

of data for this problem. For example, a query for the “colosseum” on Google or Flickr yields

millions of images taken from different viewpoints and at different times of the day. But displaying

this collection of images to users does not provide them with a full understanding of the scene,

primarily because it is difficult to tell how these individual images physically relate with each other.

Further, the sheer size and redundancy in these collections makes it difficult for a user to make sense

of them. Instead, what we seek is an experience that is coherent and informative. Coherent, so that

as users transition from one image to the next, they can maintain context. To achieve this we need to

know the position of where these images were taken in the scene, and as we transition, how the scene
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(b)(a) (c)

(d)

Figure 1.1: We have computed thousands of photo tours across the globe, shown as red dots (a). (b)
shows a closeup of Europe, and (c) a zoom-in to one neighborhood in Paris. (d) shows the sequence
of views in the photo tour for Sacre-Couer near Paris; the movie itself includes 3D transitions
between consecutive views.

looks from a virtual viewpoint. Informative, so that the user can quickly and efficiently assimilate

the highlights of a scene. To achieve this we need to identify paths through the scene that visit the

highlights in an efficient and smooth manner. Thus one approach to creating such experiences is

to compute the 3D geometry of the scene and the 3D location of the images to achieve coherence,

and then plan efficient and informative paths through the reconstruction. I use this path planning

approach of 3D reconstruction and visualization of scenes to create these experiences.

While this 3D reconstruction and path planning approach can in principal provide coherent and

informative experiences, we need to overcome three primary challenges to make this approach fea-

sible. The first challenge is in efficiently scaling the reconstructions. With the growing size of the

reconstructions in terms of both coverage and quality, we need algorithms that can process millions

of 3D points and thousands of images in an efficient manner. The second challenge involves im-

proving the quality of the 3D reconstructions. While this problem has been researched for decades,

state-of-the-art algorithms cannot produce quality reconstructions everywhere. In particular, these

reconstructions rely on the presence of texture in the scenes for feature matching across images. Ab-

sence of texture leads to holes or incorrect geometry in the reconstruction. Finally having computed

the reconstructions, a third challenge is in creating compelling visual experiences for the users to

aid them in effectively navigating through the scenes. Below, I discuss these three challenges and

propose improvements over the state-of-the-art for each to create compelling experiences.
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Figure 1.2: The figure (adapted from [92]) shows the reconstruction pipeline. Given a collection of
photographs shown in (a), features are detected and matched across pairs of images as shown in (b).
These features are then used to compute the 3D point cloud for the scene and the 3D location and
parameters of the cameras using bundle adjustment, shown in (c).

1.1 Scalability of the Reconstructions

With the growing size of the reconstructions, we constantly require faster algorithms to deal with

the large amounts of data. Given a collection of images, reconstruction approaches first compute

discriminating features in the images [69]. These features provide invariance to scale, rotation

and lighting changes across different images. These features are then matched robustly across im-

ages [6, 90] to generate correspondences between images. Given the feature matches, the bottleneck

in the reconstruction system is the problem of bundle adjustment – the joint non-linear refinement of

camera parameters and the 3D scene to minimize the reprojection error [101]. This reconstruction

pipeline is shown in Figure 1.2. What makes this problem challenging is the non linear objective

function which is difficult to optimize, especially with the increasing dimensionality of the prob-

lem. We introduce a novel technique for solving this problem by constructing efficient, high quality

preconditioners. These preconditioners when coupled with an inexact Levenberg-Marquardt algo-

rithm [106], give a 3− 5 times reduction in execution time over the state-of-the-art methods.

With a few exceptions [22, 100], most of the successful bundle adjustment methods formulate

the bundle adjustment problem as a non-linear least squares problem and use some variant of the

Levenberg-Marquardt algorithm to solve it [77]. Levenberg-Marquardt operates by repeatedly lin-

earizing the objective function into a linear least squares problem and solving its normal equations.

Thus, reducing the cost of bundle adjustment comes down to reducing the number of times the
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normal equations are solved, and reducing the cost of each individual solve. Traditionally, bun-

dle adjustment algorithms have exploited the primary sparsity structure of the bundle adjustment

problem (also known as the Schur complement trick) and a sparse or dense Cholesky factorization

of the resulting Schur complement matrix [68, 101], but the huge memory requirements of factor-

ization based methods have made them infeasible for large problems. Instead, interest has shifted

to Conjugate Gradient (CG) based methods [5, 13, 49, 50, 107], and in particular in designing ef-

fective preconditioners for them [81]. Preconditioning is a technique for improving the condition

number of a linear system, by considering easy to factorize approximations of the system. Agarwal

et al. [5] look at constructing such preconditioners by considering the block diagonal structure of

the matrix. However these preconditioners do not take into account the coupling between pairs of

cameras, and thus are not a good approximations of the original matrix. Based on the idea that the

number of 3D points visible to a pair of cameras is an indicator of the strength of their coupling,

we compute better approximations for the system in our work titled Visibility Based Precondition-

ing [59]. In chapter 2, I describe the bundle adjustment problem in detail and our technique to solve

this problem efficiently.

1.2 Quality of the Reconstructions

A second challenge in creating effective visualizations is the quality of reconstructions — poor

3D reconstructions lead to hallucination or ghosting artifacts when the scene is visualized from

a novel view point. The problem of computing the 3D structure from 2D images (or stereo) is

one of the oldest problems in computer vision, and has been studied across different domains such

as robotics, medical imaging, artificial intelligence and machine learning. Indeed, state-of-the-art

stereo algorithms can reconstruct complex objects up to sub-millimeter precision [85]. Yet, despite

decades of research on stereo algorithms [11, 27, 84, 85, 97, 110], stereo methods fail on poorly

textured, piece-wise planar scenes such as houses and room interiors [32]. Ironically, such scenes

are composed of the simplest possible shapes: large planes, axis-aligned boxes, etc.

Instead, we seek to obtain reconstructions, that exhibit the same metric, highly accurate results

we’ve come to expect from stereo algorithms, together with the ability to accurately represent large

planar, textureless surfaces. Our approach is motivated in part by the human vision system which
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Figure 1.3: The figure shows for two scenes, (a) one input image part of a stereo pair, (b) the
orientation map computed using the monocular cues (the colors R, G, B correspond to the three
primary orthogonal directions), (c) the reconstructed range map using DoubleBP [111], a state-
of-the-art stereo method on the Middelbury datasets [84] and (d) the reconstructed range map by
integrating monocular cues with stereo using our linear relaxation.

interprets depths using both binocular cues as well as monocular cues such as linear perspective,

texture gradient, shading etc. [55] and has no difficulty in interpreting the geometry for feature

less environments. Our solution combines monocular cues (those readily obtained for architectural

scenes, shown in Figure 3.1(b)) with binocular cues, to obtain reconstructions that outperform the

state-of-the-art stereo algorithms, as shown in Figure 3.1(d). While stereo algorithms are typically

non linear and operate in a discrete solution space, our approach computes a linear relaxation in a

continuous solution space, thus reducing the time complexity as well as modelling the non fronto

parallel surfaces in architectural scenes without aliasing and metric errors.

Significant progress has been made in recent years in modeling architectural structures using

single-view techniques[23, 25, 46, 62, 83]. However, a limitation of these SVR methods is that only

a coarse approximation of the scene is reconstructible, owing to the strong assumptions needed to

make the problem tractable. Further, most of these techniques, both automatic [25, 62] as well as
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interactive techniques [23, 96] are often restricted to a specific class of scenes called Manhattan

scenes, which contain planes along 3 mutually orthogonal directions. By combining stereo with

these cues, we can overcome the ill-posed nature of SVR methods. We also generalize these ap-

proaches to a new class of Piecewise swept surfaces [60], thereby capturing a broader range of

architectural scenes.

1.3 Visualizing the Reconstructions

Having constructed the 3D models, a third challenge is creating useful scene visualizations, that

achieve our objectives of being coherent, informative and efficient. We encode these objectives as

constraints and objectives in our formulation and optimize them directly. Rather than relying on

user interaction, we instead pose the problem of automatically generating the sequence of frames

that best conveys the essence of that scene. We call such a sequence a photo tour — an automatically

generated movie that serves as a informative guide for the scene.

We look upon creating such a photo tour as a path planning problem through an image graph

consisting of a node for each image and an edge between a pair of nodes if they share common

visible 3D points. A tour on this graph is a sequence of nodes that we would like to visit to convey

the feel of the scene. We make the tour informative by computing a set of canonical views [88]

capturing the most frequently photographed scene content, and constraining the tour to include

these nodes, as shown in Figure 1.4(b). We address efficiency by posing this as a traveling salesman

problem (TSP) [7] on this graph to compute the shortest tour (shown in Figure 1.4(b)), under an

appropriate cost function, that enforces coherence by choosing edges in the graph that encourage

high quality transitions — the transitions themselves are created by moving a virtual camera along

the edges between the nodes, using techniques from image based rendering(IBR) [15, 24, 41] to

generate 3D movies.

Our system represents the first attempt to deploy an image-based rendering (IBR) system at

world-scale by harvesting the vast stores of community photo collections on the Internet. The photo

tours feature in Google Maps implements our method to generate movies for thousands of sites.

These sites are indicated as red dots on the maps in Figure 4.1, which shows the distribution of

photo tours across the globe, in Europe and around Paris. Photo Tourism [92], behind the Microsoft
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Figure 1.4: For the Colosseum (a) shows the point cloud overlayed with the graph and canonical
views highlighted as green circles. (b) shows the ordering amongst the canonical views after solving
the Traveling Salesman Problem. (c) shows the final computed tour through the camera centers in
red that maximizes our objectives.

Research’s popular product Photosynth [2], is another popular system for browsing large collections

of photographs in 3D. Being interactive, it requires considerably mastery to use its different viewing

modes and controls, and even for an expert it can be difficult to find his way around a new scene.

Instead, watching a photo tour is like looking over the shoulder of an expert Photosynth user, who

knows all the highlights and how to traverse them. Furthermore, the movie can communicate the

most interesting aspects of the scene in a relatively short amount of time.

The primary contribution of this thesis is in computing reconstructions and creating compelling

visual experiences for architectural scenes, both outdoor and indoor. We harvest millions of images

to create photo tours at world scale. To achieve this, we make the following three contributions to

create such experiences.

• We design effective preconditioners to solve the non linear Bundle Adjustment problem effi-

ciently, to obtain 3-5 times reduction in execution time for state-of-the-art BAL dataset [5].

I describe the bundle adjustment problem techniques and our proposed technique to solve it

efficiently in Chapter 2.

• I show how combining stereo cues with monocular cues for architectural scenes can lead

to reconstructions that outperform the state-of-the-art stereo algorithms on scenes contain-

ing planar textureless regions. In Chapter 3, I describe our approach and show results that

outperform the state-of-the-art stereo systems.



8

• We automatically compute paths through the reconstruction that are coherent, informative

and efficient, to create 3D movies for famous sites all over the world. I describe the tour

generation algorithm in Chapter 4.
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Chapter 2

SCALABILITY OF THE RECONSTRUCTIONS : VISIBILITY BASED
PRECONDITIONING

As we have seen in Chapter 1, one way to create effective visualizations is to reconstruct the

scene in 3D. Computing a 3D representation enables rendering the scene from new viewpoints

and under different lighting conditions. This gives users the ability to explore the scene while

maintaining context as they switch from one part of the scene to the other. 3D geometry can be

represented in many different forms such as 3D point clouds or volumetric models in the scene

domain, or simply as depth maps in the image domain.

With the creation and ubiquitous spread of the Internet, the amount of visual data available for

human consumption is immense. Thus, a search for the colosseum in Rome returns millions of

images on Flickr or Google Images. But processing this data also brings about its own challenges.

Traditionally, multi-view stereo data sets used for reconstruction were captured in controlled set-

tings and under known lighting conditions, often with the cameras parameters known, or easily

recoverable. In contrast the Internet provides us with a collection of photographs from unknown

view points, captured at different times of the day and night, using different camera parameters.

Further, the growing size of the reconstructions, routinely involving millions of 3D points and tens

of thousands of cameras, has led to the need for scalable algorithms for this problem. I now briefly

describe the reconstruction pipeline that is used to compute 3D models from Internet photographs,

and in particular focus on optimizing one of the time consuming steps in this pipeline.

2.1 Structure from Motion for Internet Photos

Recent work in Structure from Motion (SfM) has enabled 3D reconstructions from large unstruc-

tured community photo-collections [6, 29, 90] and reconstructions with thousands of images are

now routinely computed, as shown in Figure 2.1(b). SfM algorithm relies on the ability to robustly

find features and match them across images. Features refer to discriminative regions that can be
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Figure 2.1: (a) shows the triangulation process of bundle adjustment, where detected and matched
features across images, are used to recover the camera parameters shown in (b) for the San Macro
data set, computed using [6]. Each black dot show a reconstructed cameras. (c) shows the result
for [33] for the San Marco data set. The top image shows the entire reconstruction whereas, the
bottom layer shows us zoomed in regions. (d) shows the result for the approach in [86], using aerial
streetview photography as well.

matched across different images. Many features have been proposed for this [102] — a popular

feature is called the Scale Invariant Feature Transform, or SIFT [69], which provides invariance to

scale and 2D rotation. Having computed the features, the next step is to match the features (and

tracks of features) robustly across images [6, 90].

Given the feature matches between images, the computational bottleneck in an SfM system is

the bundle adjustment process – the joint non-linear refinement of camera parameters and the 3D

scene to minimize the reprojection error [101]. The need to solve this problem with the growing

size of reconstructions has sparked a renewed interest in scalable bundle adjustment algorithms [5,

49, 50, 64, 76, 93–95, 107].

However minimizing the energy function is very difficult. Firstly, it is non linear in the un-

knowns (camera parameters and 3d point cloud)Further the size of the problems can be very large

with thousands of cameras and millions of points. With a few exceptions [22, 100], most of the

successful bundle adjustment methods formulate the bundle adjustment problem as a non-linear

least squares problem and use some variant of the Levenberg-Marquardt algorithm to solve it [77].

Levenberg-Marquardt operates by repeatedly linearizing the objective function into a linear least

squares problem and solving its normal equations. Thus, reducing the cost of bundle adjustment

comes down to reducing the number of times the normal equations are solved, and reducing the

cost of each individual solve. Solving these equations efficiently is the focus of this chapter.

Bundle adjustment recovers a sparse representation for the scene. Typically, the next step in
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the reconstruction is to use a multi-view stereo algorithm [85]. However, owing to the massive

size of these collections (tens of thousands of photographs, and millions of 3D points), traditional

multi-view stereo approaches are not directly usable. Recent work [33, 42] provide approaches

enabling existing MVS methods to operate on these large unstructured collections to reconstruct

dense point cloud representations, as shown in Figure 2.1(c). Further, with ariel photography now

readily available to complement ground photographs of popular sites, the quality of reconstructions

have further improved [86]. In particular, arial photography helps to geo-register individual models

together for city-wide modeling. Further, they help in capturing ground plane details, often missed

in personal photo collections, as shown in Figure 2.1(d).

The rest of the chapter is organized as follows. Section 2.2 presents a brief overview of the

Bundle Adjustment problem and recent work on the use of preconditioned iterative methods for

solving it. Section 2.3 describes the construction of two new preconditioners. Section 2.4 compares

these new preconditioners to the state of the art using problems from the BAL dataset. We conclude

with a discussion in section 2.5.

2.2 Bundle Adjustment

In this section, I present a brief overview of the bundle adjustment problem and methods to solve it.

Please see Triggs et al. [101] for a comprehensive survey.

Given a set of measured image feature locations and correspondences, the goal of bundle adjust-

ment is to find 3D point positions and camera parameters that minimize the reprojection error [101].

More formally, let x be the parameter vector (comprising all the 3D point positions and camera pa-

rameters) and f(x) = [f1(x), . . . , fk(x)] be the vector of reprojection errors (the error between the

actual reprojected position on the images) for the 3D reconstruction. Then the bundle adjustment

problem is formulated as the non-linear least squares problem:

x∗ = arg min
x

k∑
i=1

‖fi(x)‖2. (2.1)

Let J(x) be the Jacobian of f(x). Then in each iteration LM solves a linear least squares
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problem of the form

δ∗ = arg min
δ

∥∥∥∥∥∥
 J
√
λD

 δ +

f
0

∥∥∥∥∥∥
2

(2.2)

and updates x ← x+ δ∗ if ‖f(x+ δ∗)‖ < ‖f(x)‖. Here, D(x) is a non-negative diagonal matrix,

typically the square root of the diagonal of the matrix J(x)>J(x) and λ is a non-negative parameter

that controls the strength of regularization [77].

Before going further, lets make some notational simplifications. We will assume that the matrix

√
λD has been concatenated at the bottom of the matrix J (i.e.,

 J
√
λD

) and similarly a vector of

zeros has been added to the bottom of the vector f (i.e.,

f
0

) and the rest of our discussion will be

in terms of J and f , i.e. the linear least squares problem.

min
δ
‖J(x)δ + f(x)‖2. (2.3)

Further, let g(x) = −J(x)>f(x) and for notational convenience let us drop the dependence on

x. Then by taking vector derivatives, we see that solving (2.3) is equivalent to solving the normal

equations

J>Jδ = g (2.4)

The solution of (2.4) in each iteration of the LM algorithm is the dominant computational cost in

bundle adjustment.

Let the parameter vector be organized as x = [xc;xp], where xc is the camera parameter vector

and xp the point parameter vector. Similarly for δ, g, and J , we use subscripts c and p to denote the

camera part and the point part respectively . Let U = JTc Jc, V = JTp Jp and W = JTc Jp, then (2.4)

can be re-written as the block structured linear system U W

W T V

δc
δp

 =

 gc
gp

 . (2.5)

It is worth noting that for most bundle adjustment problems V is a block diagonal matrix, with blocks

of size 3 × 3 and thus trivial to invert. This observation lies at the heart of the Schur complement
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trick [71] used to solve this linear system efficiently, where by applying Gaussian elimination to the

point parameters, we obtain a linear system consisting of just the camera parameters:

Sδc = r (2.6)

where r = gc − WV −1gp and S = U − WV −1W T is the Schur complement or the reduced

camera matrix. Given the solution to (2.6), δp, the point parameters vector can be obtained by

back-substitution:

δp = V −1(gp −W>δc) (2.7)

Since S is symmetric positive-definite, Cholesky factorization can be used to exactly solve (2.6) [66].

But Cholesky factorization libraries, even ones like CHOLMOD [16] which exploit the sparsity

structure of S, are space and time intensive making them prohibitively expensive for large problems.

Thus, there has been a recent focus on Conjugate Gradients(CG) based methods for solving (2.4)

and (2.6) [5, 13, 49, 50, 107]

CG based methods have a fraction of the memory usage of factorization based methods and

can even be run matrix-free, where the Jacobian is never stored in memory [107]. However, the

rate of convergence of CG depends on the condition number of the linear system being solved and

bundle adjustment problems are notoriously ill-conditioned. This ill-conditioning occurs because

of gauge ambiguity (the solution is invariant to global position and rotation if the scene) and wide

variability in the sensitivity of the objective function to the different parameters, e.g., small changes

in the translation of a camera affect the objective less than small changes in the radial distortion

parameters.

One approach is to improve the condition number of the linear system [81] by using a precondi-

tioner. A good preconditioner has the competing goals of reducing the condition number as much

as possible while still being efficiently computable. Constructing such preconditioners is the subject

of this chapter. I present Visibility Based Preconditioning, a new technique for constructing efficient

preconditioners for bundle adjustment problems that improve the condition number of the system

substantially. Based on the idea that the number of 3D points mutually visible to a pair of cam-

eras is an indicator of the strength of their coupling, we present two preconditioners, cluster-jacobi

and cluster-tridiagonal. The former is a block-diagonal preconditioner and the latter a block-

tridiagonal preconditioner. When coupled with an inexact Levenberg-Marquardt algorithm [106],
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these preconditioners provide significant improvements over the state-of-the-art performance on the

BAL dataset [5].

In this chapter, I will look at solving (2.6) using Preconditioned Conjugate Gradients. Note that

CG can be run on the Schur complement S without actually computing and storing it in memory

[5, 107], by exploiting the relation

Sx = J>c

[
Jcx− Jp

[
V −1

[
J>p [Jcx]

]]]
. (2.8)

Thus, it is possible to perform one iteration of unpreconditioned CG on S, which is a smaller better

conditioned linear system, at practically the same cost as one unpreconditioned iteration of CG on

the Hessian H = J>J [5, 107].

2.2.1 Related Work

Jeong et al. proposed using the band block diagonals of the Schur complement matrix S as pre-

conditioners. They observed that amongst the various banded preconditioners, the block Jacobi

preconditioner was a cheap and robust choice[49]. Byröd & Åström avoided the computation of

H and S, and instead ran CG on J directly with an incomplete QR factorization based precondi-

tioner [13]. Their construction is equivalent to running CG onH with a block Jacobi preconditioner.

Agarwal et al. proposed the use of the block diagonal of J>c Jc and the block diagonal of S as pre-

conditioners for S without storing S in memory explicitly [5]. Wu et al. [107] extended this work to

a multicore Jacobian free bundle adjustment method. It ran CG on S by using (2.8) with the block

diagonal of J>c Jc as the preconditioner.

More recently, there has been work towards designing preconditioners based on the combina-

torial structure of the bundle adjustment problem [26, 50]. Inspired by the work in combinatorial

preconditioning, the authors have proposed using low-stretch spanning tree approximations to H as

preconditioners for (2.4).

2.3 Visibility Based Preconditioning

Recall that we are interested in the efficient iterative solution of the symmetric positive definite linear

system Sδc = r. The convergence rate of CG on this linear system, depends on the condition number

κ(S) of S. If we use a preconditioner matrix M , the condition number changes to κ(SM−1). The
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computational cost of using M is the cost of computing M and evaluating the product M−1y for

arbitrary vectors y. Thus, there are two competing factors to consider: 1) How much of S’s structure

is captured by M so that the condition number κ(SM−1) is low, and 2) the computational cost of

constructing and using M . It is usually the case that the more information M has about S, the more

expensive it is to use. For example, Incomplete Cholesky factorization based preconditioners [63]

have much better convergence behavior than the Jacobi preconditioner, but are also much more

expensive to construct and factorize.

In designing new preconditoners for S, our point of departure is the block Jacobi preconditioner

for S [5, 49] which is a simple approximation to S, but ignores all pairwise camera interactions.

A better approximation would be one that includes off-diagonal block from S in the form of its

band block diagonals [49]. Constructing these preconditioners however, has two challenges . First,

the ordering of the cameras in S dictates which off diagonal blocks are included, and second, band

diagonals of positive definite matrices are not guaranteed to be positive definite (unless the matrix

being preconditioned is diagonally dominant). These challenges makes their use in CG problematic.

So the task ahead of us is to construct a symmetric positive definite matrix M , that accounts

for the significant camera-camera interactions in S. This of course begs the question, how do we

measure the interaction/coupling between a pair of cameras? A number of heuristic choices are

possible — some that use the numerical values of the entries of S, while others only pay attention to

its sparsity structure. We propose the use of scene visibility as a predictor of the coupling between

cameras, i.e., In an SfM reconstruction, the strength of coupling depends positively on the number

of points visible in both the cameras. Scene visibility has previously been used to speed up image

matching and bundle adjustment [6, 30, 90]. We will now exploit this structure for preconditioning.

A significant advantage of using scene visibility over other measures is that it is independent of

the actual numerical values of the camera and point parameters and in turn the numerical entries

of S (which change in each iteration of the Levenberg-Marquardt algorithm [77]). Thus it can be

computed once and used to determine the sparsity structure of the preconditioner before the start of

the bundle adjustment algorithm. Yet, it contains more information than just the 0-1 structure of S,

giving more weight to the interaction of two cameras that have 100 points in common, as compared

to cameras that have 1 point in common. Our experimental results show that despite ignoring the

magnitude of the entries in S, scene visibility leads to excellent preconditioning performance.
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S S1 = P1SP
>
1 cluster-jacobi degree 2 tree cluster-tridiagonal

Figure 2.2: Visibility based preconditioning. S is the sparsity pattern of the Schur complement
matrix for the ladybug-138 [5]. S1 is the same matrix, with its rows and columns permuted using
the permutation matrix P1 induced by the clustering. cluster-jacobi preconditioner is the block
diagonal of S1. We show two views of the cluster-tridiagonal preconditioner, as a degree 2 tree in
S1 and as a block tridiagonal matrix, after permuting it by P2

2.3.1 Clustering

SfM problems, especially the ones involving community photo collections have highly non-uniform

visibility — popular points of interest like entrances to landmarks and interesting locations have

a very high concentration of images. On the other hand as we move from one popular viewpoint

to another it is very common that there is little or no interaction between the images. Thus most

of the interactions occur within dense clusters of cameras and show up as dense sub blocks in

S. Identifying and accounting for these clusters in M should lead to a good approximation to S.

Therefore the first step in our algorithm is to cluster the cameras.

If the scene contains np points, then each camera i can be described by a binary visibility vector

vi ∈ {0, 1}np , where the kth entry is 1 if the point k is visible in camera i and 0 otherwise. Given

these visibility vectors, we can now define a similarity measure between a pair of camera as the dot

product of their corresponding normalized visibility vectors to cluster the cameras using a variety

of clustering algorithms. We use the Canonical Views algorithm of Simon et al.[88]. The Canonical

Views algorithm has been shown to be effective in identifying image clusters in 3D reconstructions.

It greedily computes a set C of canonical views that maximizes the objective function∑
i∈I

max
j∈C

v>i vj
‖vi‖‖vj‖

− α|C|. (2.9)

Here, the first term maximizes coverage while the second term tries to minimize the number of

canonical views selected. We use a fixed value of α = 2.2 in all our experiments. Given the
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canonical views, the clusters can be obtained by assigning each camera to the canonical view to

which it is most similar. We observed that the average sizes of the clusters returned were independent

of the problem.

2.3.2 Cluster-Jacobi

Given a clustering, the rows and columns of S can be permuted so that all the cameras from cluster

1 appear before all the cameras from cluster 2 and so on. Let’s denote the matrix that performs

this permutation by P1 and let S1 = P1SP
>
1 . Figure 2.3 shows the sparsity structure of a Schur

complement matrix before and after the clustering induced permutation. Cameras within a cluster

are expected to interact strongly with each other – this is reflected in the near dense super-blocks

(one for each cluster) along the diagonal of S1. Comparing S1 to S we can see that we have moved

a significant amount of the mass in S closer to the diagonal of S1. We can now treat S1 as a

block matrix with blocks corresponding to the clusters. We will refer to the block diagonal of this

matrix, as shown in Figure 2.3, as the cluster-jacobi preconditioner, in analogy with the block

Jacobi preconditioner. The block Jacobi preconditioner is a strict specialization of cluster-jacobi

with each cluster containing exactly one camera. Note that since S is positive definite, S1, which

is a symmetric permutation of S, is also positive definite. Thus cluster-jacobi, which is the block

diagonal of a positive definite matrix, is also a positive definite matrix.

2.3.3 Cluster-Tridiagonal

The cluster-jacobi preconditioner only accounts for intra-cluster interactions. As can be seen in

Figure 2.3, inter-cluster interaction can also be quite significant, showing up as dense off-diagonal

blocks in S1. Of course, accounting for all of them is not feasible, because then we would end up

factorizing and inverting S. Instead, we want to add only those off-diagonal blocks which capture

significant interactions between clusters and yet, still lead to an easily factorable matrix M . This

also means that matrixM when factorized, should not introduce any fill-in, i.e. maintain the sparsity

structure of M .

One class of matrices suitable for this are is the set of block band diagonal matrices whose

Cholesky factorization does not introduce any fill-in . We consider the simplest of these - the block-
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tridiagonal matrices. However, simply taking the block-tridiagonal of S1 is not optimal, as the

permutation P1 will determine which off diagonal blocks will be included. Thus, our aim is to

find a second permutation P2 such that S2 = P2S1P
>
2 has as much mass as possible in its block-

super and sub diagonals, i.e., as many of the inter cluster interactions as possible are accounted for.

Finding such permutations is studied in the literature on Bandwidth Minimization and is known to

be NP-Hard [40]. We propose a greedy heuristic suitable for bundle adjustment.

Define an undirected weighted graphG(V, E), whose vertices are the clusters, i.e, V = {C1, · · · , Ck}.

The weight on the edge connecting two vertices is the number of 3D points mutually visible in the

two camera clusters it connects.

Now if S2 were a block-tridiagonal matrix i.e. each cluster interacts with at most 2 clusters, the

graph G would need to be a degree 2 tree – a tree where all its vertices have degree at most 2. A

degree-2 tree is nothing more than a set of vertices on a line, and the corresponding permutation

matrix P2 can be obtained by traversing this line from one terminal vertex to another.

Thus to get a block-tridiagonal approximation of S2, we first compute GT , a degree 2 tree

approximation of G. However, such an approximation, may not span the graph. For example a star

graph, i.e. a graph with n-nodes where one node is connected to the other n−1 nodes does not have

any spanning trees of degree less than n−1. To address this problem, we propose to approximate the

graph G with a disjoint collection of degree-2 trees (i.e., a degree-2 forest) and P2 is then computed

by concatenating the orderings implied by the trees – the ordering amongst the trees themselves can

be arbitrarily.

To compute the degree-2 forest we use a constrained variant of Kruskal’s Minimum Spanning

Tree (MST) algorithm. We start with a graph GT (V, {}), that has the same vertices as G and an

empty edge set. We then iterate over the edges of G in decreasing order of weight, adding them

to GT if doing so does not create a cycle in GT and the degree of all the vertices in GT remains

bounded by two. This O(|E|) algorithm results in a disjoint collection of degree 2 trees that span

the graph G.

Now S2, like S1, is a block matrix, where the blocks correspond to the clusters and the precon-

ditioner cluster-tridiagonal contains the block diagonal, and the first super and sub-diagonal of S2.

Observe that an off-diagonal block corresponding to two clusters is included in the preconditioner

if and only if the two clusters are connected by an edge in GT . Figure 2.3 shows the degree 2 tree
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approximation, and the result of applying P2 to it.

However, cluster-tridiagonal in its current form is not guaranteed to be positive definite. As

we mentioned earlier, band diagonals of positive definite matrices can be indefinite. There are two

ways to address this problem. The first is to find a modified Cholesky factorization M = LL>−R,

where a correctionR is applied toM to make it positive definite. Methods for determining a goodR

require complicated book keeping and are not challenging to implement [81]. For block tridiagonal

matrices, there is, however, a simpler and more efficient static strategy – increase the diagonal

dominance of the matrix M by scaling down the off-diagonal blocks of M . The following lemma

(stated in scalar form, but easily generalizable to block matrices), whose proof can be found in the

Appendix A, describes an optimal static scaling strategy.

Lemma 1. Let A be a positive semidefinite symmetric matrix, then the tridiagonal matrix M(ν)

mij(ν) =


aij i = j

νaij |i− j| = 1

0 otherwise

(2.10)

is positive semidefinite for ν = 0.5 and for every ε > 0, there exists a positive semidefinite matrix

A, such that M(0.5 + ε) is indefinite.

As if we have seen it is possible, but not necessary for the cluster-tridiagonal matrix, M(1) to

be indefinite. Thus we first construct the preconditioner for the unscaled version (i.e., without in-

creasing the diagonal dominance). If its Cholesky factorization exists, we are done. If we encounter

a non-positive pivot, we apply the scaling suggested by Lemma 2, i.e., use M(0.5) and recompute

the Cholesky factorization. This re-computation effort is a negligible fraction of the setup time, and

helps us avoid unnecessary loss of mass in the preconditioner.

2.3.4 Implementation

Given the permutation matrices P1 for cluster-jacobi and P1P2 for cluster-tridiagonal, we identify

which of the blocks of the original matrix S contribute to each of the preconditioners. Only these

entries of the Schur complement are computed. The resulting preconditioner matrix M is factorized
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Figure 2.3: Performance profiles for the six preconditioners on small linear problems from the BAL
dataset. Performance is based on the number of iterations to achieve the desired level of relative
tolerance of τ = 10−6.

using CHOLMOD [16]. CHOLMOD’s optimized triangular solve is also used to implement the

matrix-vector product M−1y in each iteration of CG.

2.4 Experiments

We compare the performance of our preconditioners cluster-tridiagonal, cluster-jacobi with five

other linear solvers/preconditioners. implicit-jacobi and implicit-ssor perform CG on S using (2.8)

with the block diagonal of J>c Jc and S as preconditioners respectively. normal-jacobi uses the

block Jacobi preconditioner for H . gsp-3 is a combinatorial preconditioner for H that uses a low

stretch maximum weight spanning tree [50]. Finally, explicit-sparse is a direct factorization based

method that computes S and factorizes it using CHOLMOD [16]. All the preconditioners with the

exception of gsp-3 were implemented as part of the same C++ library. Only a MATLAB imple-

mentation of gsp-3 is available from the authors.

2.4.1 Performance Profiles

We use Performance Profiles to report and compare the performance of the various solvers [28]. We

briefly describe the method here.

Let P be a set of problems, S be a set of solvers and let 0 < τ < 1 be a user specified tolerance.
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Figure 2.4: Performance profiles for the four Schur complement based preconditioners on linear
problems from the BAL dataset. Performance measures the percentage of problems solved as a
function of time.

For each problem p ∈ P , run all the solvers s ∈ S until some convergence criterion (time, iteration

or error tolerance) is satisfied.

Let f(p, s) denote the minimum function value achieved on problem p using solver s. Let

f∗(p) = mins f(p, s), be the minimum value across all solvers for problem p. Define

fτ (p) = f∗(p) + τ(f0(p)− f∗(p)), (2.11)

where f0(p) is the initial value of p.

Now to characterize the time performance of the solvers in S, let t(p, s) denote the time it

takes solver s to reach fτ (p), where t(p, s) = ∞ if the solver is unable to reach fτ (p). Then the

performance profile of a solver s over the problem set P is the curve

ρ(s, α) = 100× |{p : t(p, s) < αmins t(p, s)}|
|P|

(2.12)

ρ(s, α) is a non-decreasing function of α. It measures the percentage of problems that are solved

to a relative tolerance τ by solver s in time bounded by αmins t(p, s). A perfect solver (one that

solves all the problems the fastest) will have a performance profile ρ(s, α) = 100,∀α ≥ 1.



22

2.4.2 Linear Problems

We begin by comparing the performance of the six iterative solvers (minus explicit-sparse which

is not an approximate solver) on linear least squares problems, based on the number of iterations

to converge. Since there is no high-performance implementation of gsp-3 available, comparisons

based on execution time would not be fair. Further, the MATLAB implementation made available by

the authors does not scale to large problems. Therefore, we selected five small bundle adjustment

problems from the ladybug dataset and four small problems from the venice dataset1. For each

problem we generated a linear least squares problem at the initial estimate of the solution. Each

of the six solvers was run until achieving a relative residual tolerance of 10−6 or 1000 iterations,

whichever came first. Figure 2.3 shows the performance profiles for τ = 10−5. Since time is not a

factor in this experiment, the setup time for all the preconditioners is ignored and the iteration time

(time taken per iteration) for each preconditioner is assumed to be the same. Notice that the cluster-

jacobi and cluster-tridiagonal preconditioners perform extremely well, with cluster-tridiagonal

the better of the two – in fact it is the perfect solver (it solved a 100% for α = 1, i.e., it was the

fastest solver for all the problems). The next best solver implicit-ssor requires up to five times as

many iterations to solve the same problems. The other three solvers including gsp-3 were not even

able to solve all of the problems. normal-jacobi, the simplest of the six preconditioners, is the

worst performer. This is by no means a comprehensive experimental suite, but it does indicate that

Schur complement based methods perform better than Hessian based methods. These performance

profiles are also correlated with the condition number of the corresponding preconditioned matrices

as shown in the Table 2.1.

Table 2.1 shows the condition numbers for the six preconditioners cluster-tridiagonal, cluster-

jacobi, implicit-jacobi, implicit-ssor, normal-jacobi, gsp-3 we considered for the problems in

Experiment 1. We also include the condition number of the Schur complement S, and the Hessian

H , to show how the various preconditioners improve them. The smallest condition number for each

problem is indicated in bold. Observe that in every instance cluster-tridiagonal has the best condi-

tion number. Observe also that gsp-3, has a worse condition number than the Schur complement S,

thus at least in this small test it seems that eliminating the points from the linear problem provides

1Details of problem selection are provided in the Appendix B
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problem Hessian normal gsp-3 S implicit implicit cluster cluster

jacobi jacobi ssor jacobi tridiagonal

p-162-22824 4.58e+08 3.43e+08 8.01e+07 1.04e+07 4.47e+06 1.14e+06 1.35e+06 1.05e+06

p-282-37322 1.15e+09 7.40e+08 2.75e+07 3.29e+07 1.34e+06 1.27e+06 1.24e+05 8.63e+05

p-339-44056 1.49e+09 1.87e+09 5.63e+07 6.00e+07 3.00e+07 2.18e+06 8.67e+05 6.71e+05

p-384-49181 1.15e+09 1.18e+09 3.31e+07 3.39e+07 1.98e+07 8.81e+05 3.82e+05 3.31e+05

p-412-52215 1.20e+09 1.00e+09 8.12e+07 3.36e+07 1.53e+07 2.04e+06 1.24e+06 5.07e+05

p-52-64053 5.73e+09 8.37e+09 2.69e+09 1.99e+07 7.44e+06 8.08e+06 3.54e+06 1.00e+00

p-89-110973 7.40e+09 1.08e+10 2.69e+09 2.55e+07 9.89e+06 9.08e+06 4.66e+06 1.67e+06

p-245-198739 8.90e+09 1.23e+10 2.72e+09 4.32e+07 1.46e+07 1.15e+07 5.94e+06 2.55e+06

p-427-310384 1.09e+10 1.91e+10 2.37e+09 5.29e+07 2.10e+07 1.68e+07 7.00e+06 2.62e+06

Table 2.1: Condition Numbers for Preconditioners.

as much benefit or more than constructing a low stretch spanning tree and using it to precondition

H . Like Agarwal et al. [5], the Hessian matrix (J>J) has been scaled by the inverse of its diagonal

(the scalar Jacobi preconditioner).

A more strenuous and fair test of linear solver performance is one that accounts for the total

time (rather than iterations) taken to solve a problem. Thus, in our second experiment we took 26

problems each from the ladybug and venice datasets with more than 400 cameras each and ran

the Schur-based preconditioners (as the Hessian based preconditioners are clearly worse), cluster-

tridiagonal, cluster-jacobi, implicit-jacobi and implicit-ssor on them. Each solver was allowed a

time budget of 300 seconds with a convergence tolerance of 10−6. We account for the time needed

to compute the entries of the Schur complement for the cluster-tridiagonal, cluster-jacobi and

implicit-ssor as well as the time needed to factor the resulting matrix. The time for computing

the clustering and the tridiagonal permutation is only spent once per bundle adjustment problem

and amortized across all linear solves and therefore not accounted for. Figure 2.4 shows the profile

curves for each of these two datasets for τ = 10−2, τ = 10−3 and τ = 10−5. Note that the cluster-

jacobi and cluster-tridiagonal solvers dominate all the other solvers, especially for τ = 10−3,

τ = 10−5. Only for the extremely loose tolerance of τ = 10−2 is the performance of the other
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solvers even comparable, where the setup time of the preconditioner is a factor. As we decrease τ ,

cluster-tridiagonal beats all other solvers, especially for the venice problems, where we expect the

clustering structure and some inter-clustering interaction to be present. The extra mass in cluster-

tridiagonal means the time spent computing it is well worth it. It is also worth noting, that the

ladybug is not a community photo collection dataset, rather it was collected by mounting cameras

on a moving vehicle, and thus isn’t likely to have significant cluster structure. This would explain

the similar performance of cluster-jacobi and cluster-tridiagonal on this dataset.

In Figures 2.5 and 2.6 we show the detailed convergence behavior of the four preconditioners on

the first nine problems in the ladybug and venice data sets (the remaining problems are shown in

Appendix B). For each preconditioner, we plot the log relative residual log( ||Axk−b||||Ax0−b|| ) as a function

of time. The time needed to compute the preconditioner is also accounted for. Note that CG does

not reduce the residual monotonically, thus the relative residual plots are oscillatory. As can be seen

from the plots for most of the problems, cluster-tridiagonal performs the best (seen as the relative

residual error falling the fastest), followed by cluster-jacobi, implicit-ssor and implicit-jacobi in

that order.

2.4.3 Bundle Adjustment

We now look at the performance for these iterative solvers and explicit-sparse on the bundle adjust-

ment problems. All of the iterative solver based bundle adjustment algorithms were run inside an

inexact Levenberg-Marquardt (LM) loop [106], with the forcing sequence set to a constant ηk = 0.1

and the termination rule suggested by Nash & Sofer [73]. We use the same set of bundle adjust-

ment problems as the previous experiment. As the ladybug problems are smaller they were run

with up till a maximum time of 600 seconds; while the venice problems are denser and were run

up to a maximum time of 1200 seconds. No other convergence tolerances were used. The solver

time now accounts for time spent in computing the visibility, clustering and degree-2 tree structures.

Figure 2.7 show the performance profiles for τ = 10−1, 10−2 and 10−3.

As observed in [5], explicit-sparse is dominated by the iterative solvers. Only for τ = 10−3

in the venice dataset is explicit-sparse doing better than implicit-jacobi, the simplest of the four

preconditioners. Also worth noting is that the visibility based preconditioners find better solutions
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faster for the vast majority of the problems. For τ = 10−1, the high setup cost of the more so-

phisticated preconditioner dominates and the simpler preconditioners are able to get to the solution

faster. However once the tolerance is tightened, both implicit-ssor and implicit-jacobi are unable

to compete with the visibility based preconditioners either in solution quality or in time. For the

same percentage of problems solved for τ = 10−2, the visibility based preconditioners are up to

two times faster than the next best solver, and for τ = 10−3 this gap widens to up to 5 times.

Perhaps the most surprising fact is the similar performance of cluster-jacobi and cluster-

tridiagonal and that the former at times, performs a bit better. We believe the reason for this is

the rather large constant value of the forcing sequence ηk = 0.1, which only rarely requires the

full power of the more sophisticated preconditioner to achieve that convergence threshold. Thus the

extra time needed to construct the cluster-tridiagonal preconditioner is not always worth it. Having

said that, even with their higher setup times and complexity, both visibility based preconditioners

are a clear win over the existing state of the art and we recommend their use.

Figures 2.8 and 2.9 show the detailed convergence behavior of Levenberg-Marquardt as a func-

tion of the linear solvers used for the first nine problems of the ladybug and venice data sets (the

remaining can be found in the Appendix C). Again, we plot the log relative error for each problem,

ek,s = log
fk,s − f∗

f0 − f∗
, (2.13)

where, f0 is the initial error, f∗ is the lowest error across all solvers, and fk,s is the error for solver

s at iteration k. The log relative error ek,s is plotted against time. As can be seen, for most of

the plots, cluster-tridiagonal and cluster-jacobi compete for the best preconditioner (seen as the

relative error falling the fastest).

2.5 Conclusion

In this chapter, I presented bundle adjustment as one of the key steps in the reconstruction pipeline

for Internet photo collections. I presented Visibility Based Preconditioning, a new technique for

preconditioning the linear least squares problems arising in large scale bundle adjustment problems.

Using the visibility information in the scene, we cluster the cameras into tightly interacting clusters.

These clusters form the basis of our block diagonal and block tridiagonal preconditioners. When

combined with an inexact step LM algorithm, these preconditioners offer equal or better solution
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quality compared to the best available methods at 3-5x less execution time on problems from the

BAL dataset.

The theory of preconditioning is still in its infancy. For certain classes of matrices, e.g., symmet-

ric diagonally dominant(SDD) matrices and matrices arising from finite element methods, Support

Graph Theory [10, 10] provides bounds on the condition number, but for general positive semi defi-

nite (PSD) matrices very few techniques exist. Even for well known preconditioners like incomplete

cholesky the theory only deals with existence and breakdown of the preconditioner and not its per-

formance. Thus, a theoretical analysis of visibility based preconditioning remains an interesting

open problem.

Our experiments are limited to the BAL dataset. The sparsity patterns present in the BAL dataset

are only a subset of the sparsity patterns encountered in real world SfM problems. A notable excep-

tion for example is the presence of camera blocks with long range interactions, e.g., aerial views of

a scene that correspond to near dense rows in the Schur Complement S. Visibility based clustering

is not the optimal approach here, and better approximations can be obtained by isolating such views

and dealing with them separately.

And finally, while preconditioners excel at solving linear least squares problems to high preci-

sion, the extra work of setting up the block tridiagonal preconditioner is at times not worth the gain,

when used with an inexact step LM algorithm for loose tolerances. In future work, better forcing

sequences (ηk) can be explored along with ways of reducing the setup time of the block tridiagonal

preconditioner.



27

Figure 2.5: Convergence Plots for Linear Problems 1-9 of the ladybug data set, plotting the relative
residual error as a function of time.
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Figure 2.6: Convergence Plots for Linear Problems 1-9 of the venice data set, plotting the relative
residual error as a function of time.
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Figure 2.7: The Performance Profiles for the full bundle adjustment problems. Performance mea-
sures the percentage of problems solved as a function of time.



30

Figure 2.8: Convergence Plots for Bundle Adjustment Problems 1-9 of the ladybug data set, plotting
the relative residual error as a function of time.
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Figure 2.9: Convergence Plots for Bundle Adjustment Problems 1-9 of the venice data set, plotting
the relative residual error as a function of time.
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Chapter 3

QUALITY OF THE RECONSTRUCTIONS : MONOCULAR CUES FOR STEREO

Another challenge in creating effective visualizations is in computing high quality reconstruc-

tions — poor 3D reconstructions lead to hallucination or ghosting artifacts when the scene is visu-

alized from a novel view point. A variety of cues have been investigated to determine the problem

of computing the 3D structure from 2D image(s) under the title of Shape− from−X . The most

widely applicable amongst these is Stereo, and has been studied across different domains such as

robotics, medical imaging, artificial intelligence and machine learning.

Yet, despite decades of research on stereo algorithms [11, 27, 84, 85, 97, 110], state-of-the art

methods fail on poorly textured, piece-wise planar scenes such as houses and room interiors [32].

Ironically, such scenes are composed of the simplest possible shapes: large planes, axis-aligned

boxes, etc. Why should our stereo algorithms, which can reconstruct complex objects up to sub-

millimeter precision [85], fail on the simplest possible scenes? These planar scenes, shown in

Figure 3.1, occur in abundance in architectural scenes, both indoor and outdoor. Figure 3.1(a)

shows one of the input images part of a stereo pair, and Figure 3.1(c) shows the result of using the

DoubleBP algorithm [111], which is one of the top stereo algorithms on the Middlebury dataset [1],

the most popular stereo benchmark. Note how the layout of the scene, e.g., the door and floor in the

drawers data set, or the closet and walls in the the closet data set, is not well reconstructed using the

stereo algorithm.

Arguably, large planar regions are better captured via monocular rather than binocular cues.

Indeed, significant progress has been made in recent years in modeling architectural structures using

single-view techniques [23, 25, 46, 62, 83]. A limitation of these methods, however, is that only a

coarse approximation of the scene is reconstructible; owing to the strong assumptions needed to

make the problem tractable. Figure 3.1(b) shows the orientation map computed using [62]. Thus

while the overall layout of the scene is captured well in the orientation maps, the details of the teddy

bear are completely missing.
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Figure 3.1: The figure shows for two indoor scenes (a) one input image part of a stereo pair, (b) the
orientation map computed using the monocular cues (the colors R, G, B correspond to the three
primary orthogonal directions), (c) the reconstructed range map using DoubleBP [111] and (d) the
reconstructed range map by integrating monocular cues with stereo using our linear relaxation.

We seek a best of both worlds solution: we want the metric, highly accurate results we’ve come

to expect from stereo algorithms, together with the ability to accurately represent large planar, tex-

tureless surfaces. Humans have no trouble interpreting these scenes, as we combine both monocular

and binocular cues to estimate depth. In this chapter, I present a solution combining monocular and

binocular cues, to produce reconstructions shown in Figure 3.1(d), where both the layout and the

details are reconstructed accurately.

Our approach is the first algorithm that addresses at the problem binocular stereo of man-made

environments which is a very important application domain, e.g., for robots in urban spaces. While

there has been prior work in modeling Manhattan Scenes [32, 34] and piecewise planar scenes [89],

these approaches require several images as input, from a range of different viewpoints. Binocular

stereo is more challenging due to the much more limited input (weaker data term), yet is an important

special case due to the prevalence of binocular rigs. We show that our approach of combining
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orientation information can improve the quality of multi-view stereo results too in Section 3.4.

Further our approach has the following additional advantages:

• Linearity: we introduce a simple relaxation that leads to a closed form, linear stereo solution

with results that rival or outperform nonlinear formulations.

• Continuity: while the vast majority of stereo algorithms require discretizing the solution

space, our formulation is continuous; especially important for modeling non-frontal-parallel

surfaces in architectural scenes without severe aliasing and metrication errors.

Our approach computes a range map from an image pair that best fits both a photo consistency

term from stereo, as well as an orientation term derived from the monocular line sweeping approach

of Lee et al. [62]. We show that parallax and orientation cues are best combined using a range-

based rather than disparity-based formulation. Our linear, continuous formulation enables fast and

globally optimal solutions on challenging data sets. Our results provide the ability to accurately

reconstruct low-textured elements such as walls, floors, and beds, while also providing fine scale

geometry for highly textured objects such as pillows, curtains, baskets, etc.

3.1 Related Work

Stereo Matching has been one of the most active research areas in computer vision. Scharstein et

al. [84] provide a taxonomy of dense stereo correspondence algorithms. The algorithms are classi-

fied along various attributes such as the matching cost (e.g., SSD, SAD or NCC), cost aggregation

(e.g., 2D square or gaussian windows of fixed or adaptive sizes [52]), optimization methods (e.g.,

local “Winner takes all” [21] or global optimizations [11, 97]), and disparity refinement. They show

that while global methods outperform the local approaches, optimizing them using Graph Cuts [11],

or Belief Propagation [97] can be slow for large images or a large label space. Recently, edge aware

filtering [27] and Patch Match stereo [9] have been used for speeding up these formulations. Second-

order smoothness priors have also been incorporated in these global formulations, by showing that

inference with triple cliques can also be effectively optimized [105]. While cost aggregation is typ-

ically performed locally, in recent work Yang et al. [110] compute the matching costs adaptively on
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a suitably defined minimum spanning tree to generate a more natural image pixel similarity mea-

sure. Typically stereo approaches work in a discrete setting, however, recent work [79] has looked

at continuous formulations using variational models, to come up with convex relaxations for the

problem.

Despite this progress, all stereo algorithms rely on the presence of texture in the scenes to iden-

tify corresponding regions in the images. While texture is often easy to find in photographs of

monuments leading to successful reconstructions [33, 85, 92], indoor scenes have walls, ceilings

and other surfaces that are often painted for a uniform appearance. In addition, these scenes often

contain transparent, translucent or specular surfaces (e.g., polished table tops, washing machines,

windows, lifts etc.), which although they have received attention in literature [65], still pose chal-

lenges for stereo. Thus these techniques do not generate reliable stereo cues on such surfaces which

leads to poor reconstructions, as can be seen in the reconstruction in Figure 3.1(c), where incorrect

geometry is computed for the wall, the floor and the polished drawers.

Monocular cues have the potential to overcome these challenges and have been studied in de-

tail [8, 25, 43, 46, 47, 62, 70, 83, 103, 114]. One of the earliest attempts at the single view problem

was undertaken by studying the variation of brightness, or shading in an image [12, 47], which

relates the orientation of a patch with its intensity in the image. While these methods can recon-

struct very fine details on the surface, they work well only under strong assumptions on the albedo

of the surface and on the lighting distribution. Similarly other physics based cues such as the con-

tours [103] or repeated textural patterns [70] in the scenes have been shown to work for a restricted

class of scenes. In the last decade attempts have been made to overcome these restrictions and re-

construct photographs downloaded from the Internet, by using the vast amount of suitably labeled

image data and machine learning approaches for reconstruction [45, 46, 82, 83]. While these ap-

proaches allow us to automatically reconstruct arbitrary images downloaded from the Internet, they

have their limitations. Automatic Photo Pop-Up [45, 46] computes a very coarse representation of

the scene as a collections of texture mapped planar bill boards (such as ground, vertical, sky). The

only horizontal surfaces that can be modelled using their method are the ground and sky, not suitable

for many architectural scenes, and clearly not applicable to indoor scenes. While Make3D [82, 83]

looks at modeling more general scenes, their method also reports results only on outdoor scenes

with partial success.
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In contrast, the reconstruction of architectural scenes [23] has provided impressive results be-

cause of the natural constraints imposed on these scenes which help to overcome the ill-posed nature

of the single view problem. These scenes have clusters of parallel lines which under perspective pro-

jection, intersect at vanishing points. Detecting lines and clustering them using vanishing points can

help to determine their 3D direction. Further, many of these scenes exhibit a Manhattan structure,

i.e., the lines directions correspond to three mutually orthogonal directions (the X, Y and Z axis).

Computing the three dominant clusters helps to specify the layout of the scene. While some prior

work [96] has focused on interactively reconstructing scenes using piecewise planar approxima-

tions, other approaches look at automatically computing the geometry from a single image [25, 62].

Our work takes inspiration from the line sweeping approach of Lee et al. [62] which showed that

automatically detected line segments combined with prior knowledge about how building interiors

are structured can be used to reconstruct 3D models. In this approach, detected line segments are

clustered and swept towards each other to generate partial orientation maps for the image. While

later extensions [60] have generalized it to include piecewise planar and curved surfaces, these meth-

ods work best on (uncluttered) manhattan world scenes, where all the planes are oriented along the

three mutually orthogonal directions and most of the lines (range and orientation discontinuities)

are clearly discernible. Indoor scenes often have such a manhattan structure where the walls, ceiling,

floor, tables and beds are placed along the manhattan axes. However there is often other significant

geometry such as cushions, pillows, curtains, baskets, utensils etc. that do not exhibit this manhattan

geometry and can be misclassified. This can be seen in Figure 3.1(b) where the overall structure of

the scene is well captured by the orientation map, but the teddy and other objects on the table are

missing or incorrectly assigned a manhattan orientation. Further, these methods rely on the detec-

tion of all discontinuity lines, which may not be visible because of occlusions or clutter present in

scenes.

In our approach we use these two sources of complementary information (parallax and orienta-

tion) and solve for the range map for an image pair by casting it as an range integration problem.

The orientation map is integrated as a pairwise interaction between neighboring pixels, which helps

to complement stereo in textureless and structured regions and compute reconstructions that out-

perform those constructed using only photo consistency based methods. This can be seen in Fig-

ure 3.1(d), where both the overall layout as well as the details of the scene are well reconstructed.
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This approach of combining positional and orientation information has been used in [74] where the

information from a triangulation scanner and photometric stereo was combined. However, their ap-

proach is suitable for generating bump mapping on surfaces captured in a laboratory setting, and not

for architectural scenes. Similarly while Make3D [83] has also investigated combining such cues,

their approach is aimed at natural outdoor scenes and not suitable for texture less scenes. Plane

sweeping techniques [37, 112] have used detected manhattan directions from the point cloud, to

sweep planes along multiple directions to generate better matching scores, particularly for scenes

with planes along grazing angles. While they show impressive results by using slanted windows to

reconstruct the ground plane, they too focus on outdoor scenes which typically are more textured.

We instead use the orientation information in a global optimization to complement stereo in regions

where the stereo cues are truly inadequate. Finally, while the two view problem continues to be the

focus of much research, multiple views (both from images [32, 35, 85] or video [53, 75]) have been

shown to be extremely effective in disambiguating disparities, and getting sub-millimeter results.

3.2 Formulation

Given a pair of images I1, I2, along with their projection matrices P1, P2, our objective is to compute

a range map (as a grid overlayed over the image). Thus, we compute the range zp (the distance from

the camera center to the 3D point along the ray) for each cell p in the grid.

It is well known that traditional stereo algorithms work well in regions with texture, while they

perform poorly in planar textureless regions e.g., floors, ceilings, walls. On the other hand monocu-

lar cues such as those introduced in Lee et al. [62] work well in determining the overall structure of

the room via an orientation map, but often miss or provide wrong orientations for (non-manhattan)

objects and clutter present in these scenes. We formulate our approach to use both these comple-

mentary sources — parallax between the images as well as orientation information for each image

to compute the range maps. We thus assume that we have a parallax cost function cparallax(p, z),

which refers to the cost of assigning a range z to a cell p in the grid based on the photo consistency

of the pair of images (Section 3.4.1). We also have a partial orientation map [62], i.e. we have a

normal np for a subset of cells in the grid (Section 3.2.3).

While the vast majority of stereo algorithms require discretizing the disparity space, we seek
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a formulation that is continuous. This is especially important for modeling non-frontal-parallel

surfaces in architectural scenes without suffering from aliasing artifacts. Further, while most global

stereo formulations (and our photo consistency cost function cparallax(p, z)) are non linear, we seek

a linear formulation that provides a closed form solution. We thus introduce a simple relaxation that

apart from significantly minimizing computational time generates results that rival or outperform

the nonlinear formulations.

This is achieved by minimizing a novel objective function that requires that the range map min-

imize the consistency between the images, and that the inferred normals in the range map be con-

sistent with the orientation map generated by using [62], and is given by

min
z
λscs(z) + λmcm(z) + cr(z) (3.1)

Here cs denotes the stereo matching cost between the images, cm denotes the monocular cost that

ensures consistency between the inferred normals in the depth map and those generated using [62].

cr denotes the regularizing cost across neighboring cells. All the costs cs, cm, cz are constructed as

continuous and linear functions in z, the range for every cell. While stereo methods usually operate

in the disparity space [84], we operate in the range space as this is critical to the integration of the

orientation information. We now describe these individual terms.

3.2.1 Linear Relaxation

The matching cost between two images (and so also our cost cparallax) is typically a non linear func-

tion of range and is computed by measuring the photo consistency between the images at discretely

sampled values z ∈ [zmin, zmax]. We interpolate this function between these samples to compute a

continuous cost function cparallax (we defer the construction of the photo consistency measure used

to Section 3.4.1).

Figure 3.2 shows this function cparallax for three separate cells. For most of the cells, there

is a clearly identifiable minima in the function (first two cells in Figure 3.2) which is close to

the correct range at the cells, while for some of the cells there are multiple candidates for range

(third cell in Figure 3.2). In computing our linear relaxation cs for the parallax cost cparallax, we

restrict our attention to a subset of cells Ns which satisfy two conditions. Firstly, we reject cells for
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which minz cparallax(p, z) >= T , i.e, cells that do not have a good match in the other image for

any range value. Secondly, we reject cells that have multiple minima. While it might be possible

to disambiguate between these multiple minima, our experiments show that ignoring these cells

does not hurt the quality of the reconstructions because of two reasons. First we found that these

cells were rare in our scenes (typically less than 2% of cells). Second as opposed to pure stereo

algorithms, we also use orientation as a cue, so dropping the stereo cue for these cells is often

mitigated by the presence of orientation cues which can serve to compute range here.

The shape of the matching cost function cparallax also determines the confidence in the minima.

The first cell in Figure 3.2(a) has a sharp minima whereas the second one in Figure 3.2(b) comes

from a textureless region and thus cparallax varies smoothly across the minima. We are looking for

a linear approximation of this function, that both captures the minima, as well as the confidence in

the estimate. We thus construct cs as linear approximation for cparallax, where

cs(z) =
∑
p∈Ns

αp · |z − z0
p | (3.2)

Here for a cell p, z0
p denotes the range where the matching cost function achieves the minimum,

and αp indicates the slope of the function in the neighborhood of z0
p , as shown in Figure 3.2(a),(b)

which show the matching cost functions for two different cells. The first cell has a sharp minima

and αp is large, while for the second cell αp is small indicating the weaker confidence in the range

estimate. The red dotted curves show the linear approximation cs(z) for the two cells. Thus we

are able to capture not only the minima but also the shape of the function cparallax, to a first order

approximation. We do not include the third cell in Ns for which we have two peaks in the cparallax

curve as show in Figure 3.2(c). The slope αp is computed as the slope of the best fitting tent function

that approximates cparallax in a local neighborhood (within +/− 10z values of z0
p).

To complement the parallax cues, particularly in low-texture regions we also use the orientation

information that these scenes readily provide. Thus we first construct a partial orientation map, i.e.

the normal nq for certain cells q in the image following the approach of [62] (the details are deferred

to Section 3.2.3).

Given the normal at a cell q in the image grid, we use an approach similar to that used in

photometric stereo [58, 78] to impose constraints on the range around the cell q. Given the projection
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Figure 3.2: The figure shows the matching cost cparallax in blue and the approximation cs in dotted
red as a function of z for three different cells in the image. The first two cases have one minima in
cparallax and are included in Ns, while the third pixel has two minima and is excluded from Ns

matrix, we know t̂q, the unit vector along the ray in 3D that projects onto the cell q. Then 3dq, the

3D point corresponding to q, has one degree of freedom given by the range of the cell zq, and is

computed as 3dq = t̂q · zq (shown in Figure 3.3).

We can thus get constraints on the range zq by requiring that the surface be locally perpendicular

to the computed normal at the cell q. Let Nm be the set of pairs of pixels {q, r} that are connected

by a 4-neighborhood and for which we the normal nq is known. Then, for each pair of pixels

q, r ∈ Nm, we require the local surface direction (3dq − 3dr), be perpendicular to the normal nq

(shown in Figure 3.3). We thus setup the monocular cost as,

cm(z) =
∑

q,r∈Nm

|(nq) · (zq t̂q − zr t̂r)|, (3.3)

which enforces this orthogonality constraint, wherever such orientation information is present.

This integration approach dictates why it is critical to work in the range space as oppose to the

disparity space.

While we observe in our experiments that the regions in the scenes are typically either highly tex-

tured and thereby have a reliable photo consistency score, or are planar and manhattan and thus have
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Figure 3.3: The figure shows construction of the monocular cost cm from the orientation cues. Given
two neighboring cells q and r, the range of the cells is related by Equation 3.3

reliable orientation information, there are regions where neither source of information is present. To

propagate to these regions we require that the range vary in a smooth manner in these regions. We

use a 4-neighborhood Nr in our grid, i.e. two cells q, r ∈ Nr, if q is the left, right, top or bottom

neighbor of r. The regularization cost is set as

cr(z) =
∑

q,r∈Nr

|zq − zr|, (3.4)

which penalizes the difference in the range of neighboring cells.

As all the terms cs, cm, cr are linear in z, any linear solver can be used to solve Equation 3.1 to

solve these constraints efficiently.

Other regularizers, e.g., second-order smoothness, total generalized variation can be used, while

still maintaining this linear formulation. Dependence on the regularizer, however is lower in our

approach as compared to stereo, as stereo and orientations cues, being complementary, together

cover most of the image. In our experiments, we also compared L1 and L2 norms to minimize this

system. As expected, while L1 norm gives more piecewise planar results, L2 norm yields more

smoother results. The artifacts are very similar in both cases.

3.2.2 Photo consistency

We use a Normalized Cross Correlation (NCC) matching cost and a square window as the cost

aggregation function to compute the matching between the two pixels in the two images. We use a

plane sweeping approach to discretely sample ranges z ∈ [zmin, zmax]. Let NCC(p, z) denote the
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Figure 3.4: The figure shows how lines are swept towards each other to sweep out regions with
known normals, and generate orientation maps

normalized cross correlation score for a cell p at a range of z. We then set the matching cost as

cparallax(p, z) = e−NCC(p,z), (3.5)

and interpolate the cost between these samples to get a continuous function.

3.2.3 Orientations

In this section we describe the algorithm used to compute the orientation map for an image by clus-

tering the detected lines into the manhattan directions. While we use the approach of Lee et al [62]

to generate this orientation map, other approaches to generate such manhattan orientations [25] can

also be used interchangeably.

We first apply the Canny edge detector [14] to an image and then extract and cluster lines using

the method described in [57]. The lines are clustered based on the vanishing points (parallel lines

meet at a vanishing point in the image) — in our example we restrict ourselves to the top three

clusters only. Having computed the vanishing point v and all the cluster of lines that pass through

it, we can compute the 3D direction dl of these parallel lines by using

dl = P+v. (3.6)

Here P+ refers to the Moore-Penrose pseudo inverse of the known projection matrix. To com-

pute the orientation map associated with the image, we then use the approach of Lee et al. [62]. They

introduced a line sweeping approach where a detected line l having one of the Manhattan directions
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dl is swept towards the vanishing point of another line l
′

and (Manhattan) direction dl′ to sweep out

an area which is likely to have the normal dl × dl′ .

We briefly describe the approach here. Consider two clusters α and β, and let lα ∈ α and lβ ∈ β

be any two lines in these clusters as shown in Figure 3.4. We sweep lα towards vβ , the vanishing

point for β cluster, to sweep out a red region Oαβ until we intersect a line from another cluster, lγ .

Similarly Oβα is computed (blue trapezoid). Then

Rα,β = Oαβ ∩Oβα (3.7)

is the intersection of these regions (shaded in the figure), and the orientation for Rα,β is set to

dlα × dlβ . If any two such regions with different normals ever intersect at any pixel (i.e., there

is a conflict), then the orientation information is removed. The result of the sweeps is shown in

Figure 3.5(b), where the three colors (R,G,B) correspond to the three mutually orthogonal normal

directions. The regions in black are regions which are either not included within any sweep, or

where there is a conflict.

3.3 Results

In this section we show the reconstructions obtained by minimizing Equation 3.1. Figure 3.5(a)

shows one of the two input images part of a stereo pair, and Figure 3.5(b) shows the orientation maps

generated using [62] for the input image. Figure 3.5(f) shows the range maps reconstructed using

the linear relaxation cs and the orientation cost cm. We compare our results with those obtained

using only the non linear matching cost cparallax in Figure 3.5(c). This energy function is solved

using graph cuts [11], which provides guarantees on its convergence.

Comparing the stereo results with the linear result using both the stereo and orientation costs, we

can see how the textureless parts of the image which determine the layout of the scene are poorly

reconstructed in the stereo result, but are much better modeled once we include the orientation

information. This can be seen clearly in the drawers data set, in the shape of the door and walls in

closet data set, in the correction of the bulge at the bottom left in the kitchen data set. Similarly the

walls and ceilings are recovered for the livingroom, corridor and lab data sets which were otherwise

incorrectly reconstructed or missing in Figure 3.5(c). Figure 3.6 shows more results. These results
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Figure 3.5: The figure (a) shows one of the two input images (b) the orientation map created by
sweeping the lines towards each other, (c) the range map constructed with just the matching cost
cparallax. The range map constructed by including the orientation cost cm are shown in (d) optimized
using TRWS [56], (e) optimized using CERES [4] and (f) optimized using the linear relaxation in
Equation 3.1.
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Figure 3.6: The figure (a) shows one of the two input images (b) the orientation map created by
sweeping the lines towards each other, (c) the range map constructed with just the matching cost
cparallax. The range map constructed by including the orientation cost cm are shown in (d) optimized
using TRWS [56], (e) optimized using CERES [4] and (f) optimized using the linear relaxation in
Equation 3.1.

show that including the orientation information helps stereo in the these traditionally challenging

regions of the scene, while still preserving the details in well-textured regions.

3.3.1 Linear vs Non Linear

As discussed in Section, the linear relaxation is an approximation, as certain multi model cells

(roughly 2%) are dropped and the cost cparallax is approximated as a linear function elsewhere. As

an alternative, we can instead optimize the raw matching cost cparralax instead of the relaxed cost

cs in Equation 3.1, using a more sophisticated nonlinear optimizer.

One popular approach is to consider this as a discrete optimization problem, and use approximate

algorithms like Graph Cuts [11], or Belief Propagation [97] to compute suitable local maxima for

the energy function, with some guarantees on the convergence. This energy function can also be

put in the requisite form with the unary term set to cparallax, and the pairwise term set to cm + cr.

However, a closer examination of the pairwise term shows that it is not sub modular owing to the

form of cm, and thereby the convergence guarantees of graph cuts are lost. Empirically too, we see
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that the depth maps generated by graph cuts are of poor quality. We instead use a variant of loopy

belief propagation, called Sequential Tree Reweighted Belief Propagation TRWS [56, 99] as the

discrete optimizer, which works the best amongst the possible choices in [98]. We show the results

of minimizing the non linear formulation in Figure 3.5(d) using TRWS.

A second approach to minimize the non linear function is to treat it as a continuous optimization

problem and use a generic non linear solver to minimize this. We use Ceres [4] to optimize the

energy function. This is highly sensitive to the initialization, and we use the stereo solution (in

Figure 3.5(c)) to initialize this. These results obtained are shown in Figure 3.5(e).

Comparing our linear approach to the nonlinear TRWS and CERES alternatives, the results are

of comparable quality, with the linear solution producing more consistently correct results and at a

fraction of the runtime (described later). This can be seen in the case of the teddy bear in the drawer

data set, the cushions in the living room data set and the couch in the corridor data set. Further, in

certain cases, CERES gets stuck close to the stereo solution to which it is initialized as can be seen

in the closet or corridor data set.

3.3.2 Computational Time

In terms of computation speed the linear relaxation provides significant gain. While the linear

relaxation takes less than a millisecond to compute these reconstructions, the stereo result takes 3

minutes using Graph cuts. The non linear formulation (including the monocular cost cm) on average

takes 10 minutes using CERES, and about 8 hours to converge using TRWS (as shown in Figure 3.5.

As mentioned before cm makes the binary term non sub-modular, and thus we cannot use graph cuts

to optimize this non linear function. For all the approaches we compute a 100 X 100 depth map

and use 800 range samples uniformly sampled between zmin and zmax to sample the parallax cost.

These timings include only the time taken within the optimizations. In addition all the algorithms

require computing the photo consistency cost (on average 8 minutes) and detecting lines and line

sweeping to compute orientations (on average 3 minutes, though this depends on the number of

lines detected).
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Figure 3.7: The figure (a),(b) shows the two input images of the stereo pair (c) the depth map using
just the stereo information, (d) the depth map using just the orientation information, (e) the depth
computed using the approach of Nehab et al. [74] to combine normals and depth maps, (f) the result
using our linear approach to combine the normals and parallax cues jointly.

3.3.3 Comparisons

Nehab et al. [74] propose an approach of generating depth maps from laser scans and from normals

obtained using photometric stereo separately, and then linearly combining them. However, the

problems domains, are quite different. While they work on controlled scenes in the lab, our settings

are more general. They rely on photometric stereo to provide the high frequency details that stereo

lacks, whereas our orientation information fills in the low frequency details missing in stereo.
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The reconstructions obtained using [74] on our indoor data sets had a lot of artifacts. In contrast

to the laser scans used in [74], state-of-the-art binocular stereo depthmaps produce major artifacts

for low-textured architectural scenes that a linear merge with normal maps cant fix. Our approach

optimizes the range map to jointly conform to the NCC curves and orientation cues, thereby avoids

poor depth estimates. Furthermore, their approach doesnt work under perspective projection (neces-

sary for binocular stereo), whereas ours does—the key is our innovative formulation in range space

instead of depth.

We show a comparison between the approaches in Figure 3.7. Figure 3.7(c), (d) show the re-

constructions using the cues — binocular and monocular separately. Note that the monocular cues

cannot reconstruct the finer details, whereas the stereo cues produce major artifacts in textureless

regions. Figure 3.7(e) shows the result of combining them using the approach of [74] (this is the

best result obtained using their method for different weights to both binocular and monocular cues),

which continues to produce similar artifacts, as the normal maps cannot fix these depth estimates. In

contrast, our linear approach shown in Figure 3.7(f) achieves high quality reconstructions, by jointly

optimizing for parallax and orientation.

3.4 Extension to Multi-View Stereo

While our approach is the first algorithm to address the problem binocular stereo of man-made

environments, the multi-view stereo problem for urban scenes has received some attention [32, 34,

89]. These methods rely on many views taken from different viewpoints, along with strong priors

on the geometry to compensate for the lack of texture in these scenes. In this section, I demonstrate

how our approach of combining orientation information with stereo can be used extended to the

multi-view case. While prior works [32, 34, 89] require a manhattan or piecewise planar scenes, our

approach can handle a mix of free form and piecewise planar geometry.

Consider a collection of images Γ = {I1, I2...Im}. The objective as before is to compute a

depth map over an (NXN) grid for each image I ∈ Γ. Thus, for each cell p in the grid, we wish to

compute a depth zp. While a natural extension of our previous approach is to compute a cost function

cmvsparralax, set to the sum of the parallax functions for each pair of images in Γ, state-of-the-art multi

view approaches use many sophisticated heuristics to build a visibility model (to handle occlusions),
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priors [85]. Our experiments showed that the 3D points generated by state-of-the-art approaches

like PMVS [35] serve as better depth candidates than those obtained by summing the parallax costs,

for combining with orientation costs. This might seem counter-intuitive, especially in textureless

regions, where PMVS [35] fails to recover any 3D points. In contrast, the sum of parallax functions,

while cannot isolate the correct depth, can indeed provide a range of valid depths (matching white

wall patch with other white patches), which includes the correct depth. However, this is a very weak

cue, and as these regions are often well recovered using the orientation information, this cue is often

not important in these regions. On the other hand, for very detailed textured regions, PMVS and

other MVS algorithms have been finely tuned to give accurate depth estimates, which outperform

the sum of parallax functions. Of course, this comes at the expense of the linear formulation.

Thus, we decide to use an off-the-shelf, state-of-the-art algorithm [35] to compute the point

cloud. However as we have discuussed, for challenging indoor scenes these approaches are unable

to capture the structure of the room, because of the low textured nature of walls, floors, ceilings.

As before, line sweeping cues such as those introduced in Lee et al. [62] work well in determining

the overall structure of the room but provide incorrect or missing orientations for (non-manhattan)

objects as well as the clutter present in these scenes. Thus we combine these two cues to obtain

high quality reconstructions by minimizing the objective function

min
z
λmvscmvs(z) + λmcm(z) + cr(z) (3.8)

for the multi view stereo case which outperform state-of-the-art for urban scenes [32]. Here, cMV S

is the cost function obtained using the 3D point cloud generated using [35], and cm and cr are the

orientation cost and regularizer as before. We now describe the construction of the cost function

cmvs

3.4.1 MVS Cost

I use the SfM + MVS pipeline in [108] to generate the 3D point cloud X , associated with the

image set Γ and the projection matrices PI ,∀I ∈ Γ. Further, the MVS algorithm used in the case

(PMVS [36]) also returns a list of points XI visible in each image I .

Given the set of 3D points visible in the image XI and its projection matrix PI , we can project

each point x ∈ XI to some cell p on the depth grid. Let the collection of non empty cells (cells onto
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Figure 3.8: The figure (a) shows the detected and clustered lines for the 3 manhattan clusters, (b) the
orientation map created by sweeping the lines towards each other, (c) the reconstructed point cloud,
(d) the depth map constructed using just the orientation map, (e) the depth map constructed by inter-
polating just the MVS points, (f) the depth map reconstructed by combining the MVS points with the
orientation information, (g) shows the result obtained by using Poisson Surface Reconstruction [54]
and (h) shows the result using Manhattan World Stereo [32]

which at least one point projects) be given by Nmvs. Further, let zp, p ∈ Nmvs be the average depth

of all the 3D points projecting onto p.

Then I set

cmvs(z) =
∑

p∈Nmvs

|zp − zp|2, (3.9)

which measures the disparity of the depth map from the point cloud for all the cell in Nmvs (non

empty MVS points), in Equation 3.8

3.4.2 Results

In this section I show the reconstruction in Figure 3.8. Figure 3.4a shows one of the images in

the image sequence for three different sequences. Figure 3.4b shows the result of using the line

sweeping approach of [62] on the image, and Figure 3.4c shows the reconstructed point cloud. As
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can be seen, many of the details are captured by the point cloud, but the overall structure is well

represented in the orientation maps.

The reconstruction results by combining these cues is shown in Figure 3.4f. For comparison, the

depth maps using just the monocular cues, i.e. setting λs = 0 are shown in Figure 3.8d. Similarly,

the depth maps using just the MVS points, i.e. setting λm = 0, are shown in Figure 3.8e. The results

in column Figure 3.8d brings out the overall layout of the scene. However it misses all the objects

in the room (the objects on the cabinet in sequence 1, the cushion and the bean bag in sequence

2, and the cushion in sequence 3). Further, it introduces various other artifacts in the depth maps.

In contrast, the results in Figure 3.8e show the finer details such as the cushion, bean bag, couch,

as well as objects kept on the cabinet, but fails to reconstruct the planar facades. The results in

Figure 3.8f bring out both the finer details as well as the layout of the scene.

3.4.3 Comparison

I compare the result of our algorithm with Poisson Surface Reconstruction [54] which is a popular

choice of meshing and fusing point clouds and works in the 3D space. The results of their method is

shown in Figure 3.8g. The results show that structure of the room is not reconstructed well, and the

finer details too have a number of artifacts. I also show the results using [32] in Figure 3.8h which

enforces the manhattan prior on the structure on the point cloud. In their approach, first (manhattan)

planes are detected in the reconstructed 3D point cloud (in regions where texture was present) and

then a labeling problem is solved to assign a plane label to each pixel in the image. The depth maps

have disconcerting occlusions and the a manhattan structure is wrongly imposed on non manhattan

objects such as the cushion, couch or objects on the cabinet. For the second result, the manhattan

structure itself is incorrect due to the sparsity of points in the three orthogonal directions.

3.5 Conclusions

In this chapter we introduced an approach for the reconstruction of architectural scenes, in particular

indoor scenes, which have traditionally been challenging for stereo by complementing stereo cues

with monocular cues, readily present in such structured scenes. Further, while traditional global

formulations for stereo are non-linear, we propose a linear relaxation for our problem that produces
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uniformly better results, and significantly reduces computational time. We also extend our approach

to the multi view stereo case, to obtain reconstruction that outperform state-of-art-methods [32, 54].

Currently, we use the orientation information in only one of the two input images. In future it

might be useful to incorporating the orientation map of the second image and use it to resolve any

conflicts. However, projecting this orientation information into the first image, is possible only if

we know the depth estimates first. While an E-M style approach could yield improvements, in our

limited experiments we found that this showed very minor improvements, at the expense of more

algorithmic complexity.

Future improvements would include extending the algorithm to handle non-Manhattan orienta-

tions. Our prior work [60] has been used to model a broader class of architectural scenes called

Piecewise Swept Surfaces. It would be interesting to combine the results in [61] using SVR tech-

niques, with stereo.

As we have seen, the broad literature on SVR has studied many cues such as shading, con-

tours which can also be readily combined with stereo. Other cues such as brightness variation in

rooms with height of the wall (as most light sources are on the ceiling) can also be used within this

approach. Similarly other learning approaches [25, 46, 83] can also be used within this framework.
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Chapter 4

VISUALIZING THE RECONSTRUCTIONS : A PATH PLANNING APPROACH

In the previous chapters, I focussed on techniques to create high quality 3D models, automati-

cally and in a scalable fashion. Having constructed the 3D models, the next challenge is to create

useful scene visualizations that can provide a rich and immersive experience for the user. Such an

experience should replicate the feeling of being physically present, in terms of being able to visu-

alize the scene from different viewpoints, and quickly assimilating the highlights of the scene. As

we have seen in the previous chapters, Internet photographs provide a rich and diverse source of

visual data that can be used to efficiently create 3D reconstructions for many popular tourist sites.

One immediate application is in creating virtual tours for these famous tourist sites. Indeed, our

approach [61] has been commercialized as the Photo Tours feature in Google Maps to create tens

of thousands of tours all over the world [3]. Figure 4.1 shows the world scale deployment of our

approach — each photo tour (shown as a red dot on the map) is a movie which includes fluid 3D

transitions between a sequence of photographs of the scene.

As we want our approach to scale, rather than relying on user interaction, we instead propose

the problem of automatically generating the sequence of frames that best conveys the essence of

the scene. We call such a sequence a photo tour — an automatically generated movie that serves

as a informative guide for the scene. We look upon creating such a photo tour as a path planning

problem through an image graph consisting of a node for each image and an edge between a pair of

nodes if they share common visible 3D points. A tour on this graph is a sequence of nodes that we

would like to visit to convey the feel of the scene. We make the tour informative by computing a set

of canonical views [88] capturing the most frequently photographed scene content, and constraining

the tour to include these nodes. We address efficiency by posing this as a traveling salesman prob-

lem (TSP) [7] on this graph to compute the shortest tour, under an appropriate cost function, that

enforces coherence by choosing edges in the graph that encourage high quality transitions — the

transitions themselves are created by moving a virtual camera along the edges between the nodes,
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(b)(a) (c)

(d)

Figure 4.1: We have computed thousands of photo tours across the globe, shown as red dots (a). (b)
shows a closeup of Europe, and (c) a zoom-in to one neighborhood in Par is. (d) shows the sequence
of views in the photo tour for Sacre-Couer near Paris; the movie itself includes 3D transitions
between consecutive views.

using techniques from image based rendering(IBR) [15, 24, 41] to generate 3D movies. To achieve

this, we crawled more than a million geo-tagged user photos, clustered them into thousands of in-

dividual sites, reconstructed camera positions, scene geometry, and popular viewpoints, planned

optimal tours, and rendered fly-through movies of each site.

4.1 Related Work

Work on image-based rendering [15, 24, 41] has yielded significant progress towards addressing

coherence through more realistic transitions between photos which allow the viewer to maintain

context and physical relationships. However, for a visualization to be informative, it must commu-

nicate what that scene is about, i.e., the most interesting and relevant content. Finding good content

and navigating efficiently remain significant challenges for current state-of-the-art IBR systems like

Photosynth [2] and Streetview. Photosynth, for example, has four different modes of viewing the

scene (3D view, overhead, 2D view, point cloud), with a dozen different controls (buttons or other

click behaviors) in the main 3D mode - which take time to master. Even for an expert, it can be

difficult to find his way around a new scene. To overcome these problems, we propose to take away

user interaction, and instead pose the problem of automatically generating a short video for each

site of interest that conveys the essence of the scene. Watching a photo tour is like looking over

the shoulder of an expert Photosynth user, who knows all the highlights and how to traverse them.
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Furthermore, the movie can communicate the most interesting aspects of the scene in a relatively

short amount of time. And while our focus is on automation, we note that photo tours can be used

to compliment an interactive system, e.g., as a quick scene overview or auto-play mode.

Secondly the warps produced by the PhotoSynth based on planar proxies, work well for roughly

planar facades (e.g., Trevi Fountain, Notre Dame), but are not as effective for non-planar scenes.

While depth data, e.g., from multi-view stereo [33, 35, 42], can be used to produce more realistic

warps [91], such data is typically incomplete - and thus the renderings produced often suffer from

artifacts such as ghosting depth hallucination. Goesele et al. [41] introduced an approach to address

this completeness issue which uses 3D data where it is available, and a blurred color wash effect

(called the ambient point cloud) elsewhere. This combination results in fewer holes in the rendering,

at the expense of blur. Our approach looks instead at carefully choosing only those transitions that

can be rendered with high quality—thus bringing the domain of Internet Photo Collections within

the domain of IBR. The massive size and redundancy in these photo collections allows us to chose

only the informative images and high quality transitions. To create these tours, we draw upon prior

work in path planning, image based rendering and depth generation, which I discuss now.

Path Planning

Most related to our work is the work by Snavely et al. [91] which proposed a way of computing

good paths through photo collections, and guiding the user to these paths. They introduced the

idea of optimizing for and rendering sequences of photos in internet collections. In that work, the

authors computed circular paths (orbits and panoramas), but did not address the general planning

problem (which is the focus of this work). They also addressed the problem of two-point planning,

i.e., recovering the best path from one image to another—an important subcase which we generalize

here. An important distinction is that [91], like prior work in image-based rendering, sought to

produce an interactive system, whereas our objective is a completely automatically generated movie.

We produce photo tours of popular tourist sites by processing imagery from photo sharing sites

like Flickr.com. The goal is to automatically plan a tour through the most interesting (i.e., frequently

photographed) objects and viewpoints, with compelling 3D transitions that convey the spatial rela-

tions between views. In this chapter, we show how to convert this problem into a graph with images
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as nodes, and edge weights encoding the quality of rendered transitions between each pair of im-

ages. Computing an efficient tour reduces to solving a form of the Traveling Salesman Problem

(TSP) [7], which is NP-Complete [19]. However, it differs from the traditional TSP, in that we are

required to visit only a subset of nodes in the graph. The most related formulation is the Traveling

Tourist Problem [44], which solves for the shortest tour that would allow a tourist to see all the nodes

in a graph, by visiting each node or one of its neighbors (it is assumed that every node is seen by

its neighbors—the edges represent lines of sight). The formulation, however, is scene-based rather

than photo based, doesn’t account for partial visibility or rendering quality, and requires coverage of

all the nodes (overkill in our case). Also related is the Art Gallery Problem [18], which looks at the

problem of placing guards in a museum, modeled as a polygon, such that every point in the polygon

is visible to at least one guard. This formulation, however, doesn’t support the notion of a tour, let

alone an optimal tour.

Image Based Rendering

We draw heavily on prior work in IBR for producing effective image transitions, but by optimizing

for fixed tours rather than interactive experiences, we seek to side-step many of the challenges and

pitfalls that have made prior systems hard to learn and navigate. Our technique uses depth maps

to give a compelling sense of parallax, which is further enhanced by using a technique called the

Ken-Burns effect from 2-D photography.

Our system represents the first attempt to deploy an image-based rendering (IBR) system at

world-scale by harvesting the vast stores of community photo collections on the Internet. The photo

tours feature in Google Maps implements our method to generate movies for thousands of sites.

These sites are indicated as red dots on the maps in Figure 4.1, which shows the distribution of photo

tours across the globe, in Europe and around Paris. Our approach resembles Photosynth in terms of

scale and computer vision techniques, but differs in our use of community photo collections(CPC),

rather than photos contributed by a single user. CPC’s are useful in that they also capture the

distribution of photos that people take of a scene, which can be mined to guide the user to the

highlights.
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Depth from Point Clouds

Our approach also draws on techniques for creating geometry from 3D point clouds. A number

of approaches [24, 32, 34, 38, 72, 113, 116] have been proposed that attempt to construct a mesh

model using the reconstructed point clouds under various assumptions. One approach is to generate

a height field (often called a representation in 2.5 dimensions) where the height corresponding to

every point on the ground is solved for. Gallup et al. [38] recover the height map of houses along

a street from street level video. Furukawa et al. [32] using similar manhattan world assumptions,

introduce stereo algorithms for such applications and use them in the reconstruction of building

interiors [34], where stereo algorithms generally fail, due to the presence of low textured walls.

However, in locations with concave structures this assumption often leads to fake geometry which

can produce displeasing hallucinations.

Another approach to reconstructing mesh models from point clouds focuses on detecting sym-

metry and repetition in structures in order to fill in holes in the reconstruction. Mitra et al.[72] focus

on discovering symmetry in geometric models by matching local shape signature pairs and using

them as evidence for symmetries in an appropriate transformation space. However, Zheng et al.

[116] note that the amount of noise typically present in LIDAR scans makes it very hard to detect

symmetry for filling holes. Their approach instead involves having a user select a repeating element

and using this selection to search for repetitions of this element using descriptors. Once such repeti-

tions have been detected, all instances are brought into the same coordinate frame and merged after

some de-noising.

Another approach attempts to fit primitives like planes and cylinders to the point cloud to fill in

regions where these structures extend. Zebedin et al. [113] use primitives such as planes and sur-

faces of revolution for modeling urban scenes using aerial photography. Debevic et al. [24] exploit

the characteristics of architectural scenes and represent the scene as a set of blocks constructed from

polyhedral primitives linked together by spatial relationships in a hierarchical structure. However,

this assumption too, is likely to break in places with complicated geometry, which is usually the

case with internet photographs because structures with complicated and unique geometry are often

photographed the most.

Our approach differs from these approaches in that we do not solve for a global model. Instead,
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we focus on computing a depth map for each image. It avoids the inconveniences in previous

approaches in that they do not have any recovered geometry for textureless regions like the sky

or grassy lawns. As these textureless regions are part of the images but have no corresponding

geometry, the textures are not mapped onto any surface and thus these regions do not appear in the

transitions. We solve for the geometry of the entire image and can therefore display these regions

in the transitions. The fact that they often have smooth texture implies that even with hallucinated

geometry, the transitions produced are pleasing. It also has the benefit of being inherently adaptive

in resolution depending on the detail of the image.

4.2 Problem Definition

Consider a collection of geo-registered images I = {I1, I2...Im} with known camera pose and

sparse 3D points, recovered through a Structure from Motion (SfM) procedure, which also specifies

which 3D points are visible in which images (details deferred to Section 4.6). Suppose we also have

a depth map for each photo, e.g., recovered through stereo, represented as a set of depth values over

a regular pixel grid.

Construct an image graph GI , consisting of a node for each image and an edge between a pair

of nodes if they share common visible 3D points. A tour P = {P1, P2...P|P |} on this graph is a

sequence of nodes in GI such that each node Pj is connected to the next node Pj+1 through an

edge, call it ej . Our goal is to compute a tour that is informative, coherent, and efficient. We address

the first objective by computing a set of canonical views C [88] capturing the most frequently

photographed scene content, and constraining the tour to include these nodes. Simon et al. [88]

select these images using a greedy approach so that together cover the 3D point cloud well.

We will achieve efficiency, by computing shortest paths through the graph. Coherence is achieved

by ensuring the viewer maintains context as the tour transitions between photos, and encoded via

two objectives defining rendering and smoothness costs, respectively, as follows.

• Rendering: We seek a tour P that leads to high quality visualizations. Thus, each edge on the

tour should produce high quality renderings between the images.

• Smoothness: Geometrically, P should result in a smooth (not jerky) camera motion when
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traversed. Thus, for each pair of consecutive edges on P , the corresponding transitions should

vary smoothly.

The overall objective is then to find the tour P : C ⊂ P that minimizes

∑
j

RenderingCost(ej) + α
∑
j

SmoothnessCost(ej , ej+1) (4.1)

where α trades off transition quality for the smoothness of the tour, and is set to 1.0 in all our

experiments.

In the remainder of this section, we elaborate on the cost functions used to encode the objectives.

Later (in Section 4.3), we describe our method for generating tours that approximately minimize

Eq 4.1.

4.2.1 Cost Functions over the Image Graph

We now define the RenderingCost for each edge in GI and the SmoothnessCost for each pair

of edges that share a node in GI . We can think of these two costs as, respectively, a first order cost

that encourages high quality transitions between images and a second order cost that regularizes the

tour to avoid jerky camera motion.

Once we have the key sites detected and the graph GI setup, we set the weights over the edges

(and pairs of edges) in GI , in order to choose paths through the canonical images that are likely to

have high quality renderings and geometrically smooth motion. We look at a variety of desirable

properties that the transitions should have. For each of these we look at the both the first and second

order terms which are then incorporated as edge costs and edge-pair costs respectively.

The first order terms look at each transition (between two images) individually — thus the

smoothness of the path as a whole is not catered for. In particular, without the second order terms,

the paths may not proceed in a consistent direction and may have a lot of wobble in the optical axis,

which causes an unpleasant viewing experience. The second order terms, by considering a pair of

edges, are able to enforce regularization over the path, and make it less jerky.

We construct these costs from a set of terms which we now describe. Let e1 denote the transition

from IA to IB and e2 denote the transition from IB to IC ; these edges correspond to a sequence of

two consecutive transitions. We define the following desirable properties for a good tour:
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1. Camera Motion. Larger transitions – in terms of motion of the camera center, as well as

changes in the rotation matrix – can be expected to render poorly and thus should be penalized

with higher costs. Let OA be the optical center, and RA the rotation matrix for image IA

(similarly for B and C). Then

t(e1) = ||OA −OB||2, (4.2)

r(e1) = ||R−1
A RB||θ, (4.3)

t(e1, e2) = ||OA − 2OB +OC ||2, (4.4)

r(e1, e2) = ||(R−1
A RB)−1(R−1

B RC)||θ (4.5)

where ||R||θ is the angle of rotation. Equations 4.2 and 4.4 penalize the first and second

derivatives of the camera motion, while Equations 4.3 and 4.5 penalize the first and second

derivatives of the camera orientation.

2. Optical motion. Transitions which have large apparent scene motion – optical flow – in the

renderings can be expected to have more artifacts. We approximate the overall flow as the

average projected motion of the SfM points that are common to pairs of images. Denote this

flow as Me1 . Then,

m(e1) = ||Me1 ||2 (4.6)

m(e1, e2) = ||Me1 −Me2 ||2 (4.7)

penalize the first and second order optical motion.

We use SfM points here (rather than the dpeth-map samples, which we compute later) be-

cause the latter are often over-smoothed versions particulary in regions where no 3D data is

recovered, and hence less reliable.

3. Scene Area Coverage. We would like to avoid transitions that zoom-in/ zoom-out of the

scene a lot. We encode this by aiming to keep the surface area covered by an image roughly

the same as we transition between images. We measure the surface area covered by each

image’s depth map as follows. For each pixel with depth z in its corresponding depth map, its

surface area is roughly proportional to z2

f2
, where f is the focal length of the image. Then the
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surface area of the depth map is just the sum over all pixels. Letting SA denote the surface

area for image IA (similarly for B and C), then

s(e1) = |SA − SB| (4.8)

s(e1, e2) = |SA − 2SB + SC | (4.9)

penalize the first and second order change in surface area.

4. Stretching Artifacts. We would like to exclude transitions where the depth map correspond-

ing to one image has regions that are severely stretched when rendered from the viewpoint of

the next camera on the tour. Consider a depth map pixel in IA (but not on its boundary), corre-

sponding to a point in 3D. The projection of this point into IB gives a 2D location p; similarly,

the original 4-neighborhood projects to locationsNp. We define the stretching associated with

p as

Lp = ||p− 1

4

∑
q∈Np

q||2, (4.10)

which measures how much the average of the position of the 4 points around p differs from

p. 1 Then the stretching penalty l(e1) associated with the edge e1, is set to the 99 percentile

value of Lp over the two depth maps involved in the transition, thus ensuring that we penalize

transitions where the (close to) maximum stretching is large, as that is a strong indicator of

the quality of the transition.

These costs are now incorporated into the (first order) RenderingCost and (second order)

SmoothnessCost:

RenderingCost(e) (4.11)

= t(e) + αrr(e) + αmm(e) + αss(e) + αll(e)

SmoothnessCost(e1, e2) (4.12)

= t(e1, e2) + αrr(e1, e2) + αmm(e1, e2) + αss(e1, e2)

We use αr = 1, αm = 30, αs = .002 and αl = 100 for all our experiments. Note we use the

same constants to weight the first and second order weights. For the units, we scale translation so

1This is equivalent to applying the discrete Laplacian and computing the magnitude.
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that the variance of the centers of canonical images is 1. We apply this same scale factor to the scene

area measure. Rotation is measured in degrees, and optical motion is measured in terms of screen

space so that the height of the screen is 1.

4.3 Generating Tours

We now describe our algorithm for generating tours through photo collections. In section 4.2, we

defined the problem as finding the tour P that passes through canonical views C while minimiz-

ing Eq. 4.1. Computing the optimal tour on a large graph GI , however, would be prohibitively

expensive, under the second order smoothness costs.

To simplify the problem, we initially ignore the SmoothnessCost when passing through the

nodes corresponding to canonical views. A preliminary tour then can be seen as the concatenation

of the shortest paths between pairs of canonical views in GI as shown in Section 4.3.1, as each of

the concatenated segments can be solved for independently. As a further simplification, we prune

the graph before computing each of the shortest paths. Having computed the shortest paths be-

tween each pair of canonical nodes, we compute the optimal ordering of the canonical views in

Section 4.3.2, by posing the problem as a TSP. We then retain this ordering of canonical views in

the preliminary tour and compute the final tour after re-introducing the SmoothnessCost across

canonical views in Section 4.3.3, to ensure a tour that is smooth everywhere. Algorithm 1 summa-

rizes our approach.

4.3.1 Approximate Shortest Paths

We can solve for the shortest path between pairs of canonical views in GI under the first and sec-

ond order cost functions described above, using Dijkstra’s algorithm [20] on a modified, higher

order graph GH , called the line graph. In particular, each edge in GI becomes a node with weight

RenderingCost inGH and each pair of edges with a node in common inGI becomes an edge with

weight SmoothnessCost in GH . This graph construction to create the Line Graph GH is shown in

Figure 4.3.

Given a canonical view Cj in GI , we can identify an edge emanating from Cj and thus its

corresponding node in GH . We then treat the node in GH as a source node and run Dijkstra’s
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Algorithm 1 P = Tour(I)

(SfM, depth maps, C)← Pre-process(I)

Construct GI and compute RenderingCost per edge

for Cj , Ck ∈ C do

Compute G̃I(j, k)← Prune(GI , Cj , Ck), using RenderingCost.

Compute SmoothnessCost on G̃I(j, k)

Compute shortest paths in G̃I(j, k) : Cj → Ck

end for

Construct GC . Store cost of Cj → Ck as edge weight in GC

Π← TSP (GC)

Construct GΠ ← Splice(G̃(Π1,Π2), · · · , G̃(Π|C|−1,Π|C|))

Compute SmoothnessCost per edge-pair across each Ci

P ← shortest path in GΠ from CΠ1 to CΠ|C|

RETURN P

algorithm. We repeat this for all edges emanating from Cj and find the shortest edge paths that

reach each of the other Ck.

Pruning the Graph

While our shortest path algorithm is exact, it is again quite expensive. In particular, the constructed

graph GH(VH , EH) has |VH | = |EI | and |EH | = O(|VI |3), where VI , EI denote the vertices

and edges of GI . Thus, the complexity of computing shortest paths in GH is much higher than in

GI [104].

To make the problem more tractable, we solve for approximate shortest paths on a pruned graph.

For each pair of canonical views, we start from the original graph and remove vertices that are

unlikely to be part of the shortest path. Consider a pair of canonical views Cj and Ck. We assign

edge weights to GI according to RenderingCost and then run Dijkstra’s shortest path algorithm

on GI from Cj(and Ck) to get the shortest distance d(Cj , V ) (and d(Ck, V )), to each other node

V . Then we sort the vertices by d(Cj , V ) + d(Ck, V ), the length of the shortest path under the
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Figure 4.2: For the Colosseum (a) shows the point cloud overlayed with the unpruned GI and
canonical views highlighted as green circles. (b) shows the (overlaid) set of pruned graphs G̃I(j, k).
(c) shows the ordered canonical views. (d) shows the final computed tour through the camera centers
in red.

RenderingCost from Cj to Ck, constrained to pass through V , and keep the ones with the K (set

to 50) smallest values. These vertices and the edges between them form a pruned graph G̃I(j, k).

This heuristic helps us to reduce the computational time (in subsequent steps) while keeping the

most promising vertices. Figures 4.2a and 4.2b illustrate the reduction in graph size due to pruning

for the Colosseum data set, while keeping the most promising edges. As another example, for one

of our data sets – The St. Vitus Cathedral in Prague – the number of edges was 303,307 in GH

which was reduced to 1225 edges on average for each pair of canonical views.

After pruning, we include the SmoothnessCost for the pairs of edges in G̃I(j, k) and compute

shortest paths from Cj to Ck. We perform the pruning and shortest path computations in parallel

for each pair of canonical views. At this we have computed the optimal paths between each pair

of Canonical nodes, under both the RenderingCost and the SmoothnessCost. If we ignore

the SmoothnessCost across the Canonical nodes, the tour can be constructed as a concatenation

of these shortest paths. We solve for the order in which to visit the nodes Section 4.3.2. The

SmoothnessCost is then added across the canonical nodes too, in Section 4.3.3, to compute a path

that is smooth everywhere.

4.3.2 Canonical Graph

After computing the shortest paths between pairs of canonical views, we solve for an ordering of

the canonical views as though the tour were to take these shortest paths. To do so, we construct
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Image Graph  Line Graph  

Figure 4.3: The figure shows the construction of the Line Graph GH , from GI , where each edge in
GI becomes an node in GH , and each edge pair incident at a node in GI , becomes an edge in GH .

the canonical graph GC , the complete graph over the canonical views, with the cost of the edge

(Cj , Ck) between each pair of images in GC set to the cost of the shortest path (Cj → Ck) between

these images in G̃I(j, k), as shown in Figure 4.4. The problem now reduces to solving the traveling

salesman problem(TSP) in GC , to get an ordering Π. We now use an approximation algorithm

Christofides [17] to solve our (metric)TSP.

4.3.3 Computing the Final Tour

At this stage, we could concatenate the shortest paths between canonical views according to the

ordering Π, but the lack of smoothness across the canonical views leads to jerky camera motions

when transitioning through them. To avoid this, we first splice together the pruned sub-graphs
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Figure 4.4: (Left) shows the (overlaid) set of pruned graphs G̃I(j, k) with the selected canonical
view nodes in green and the shortest paths between each pair displayed in red. (Right) shows the
construction of GC with the blue line showing the optimal ordering of the nodes.

G̃(Π1,Π2), G̃(Π2,Π3), · · · , G̃(Π|C|−1,Π|C|) to form the graph GΠ. These graphs are spliced so

that only the canonical views are in common; e.g., graphs G̃(Π1,Π2) and G̃(Π2,Π3) are spliced to

meet exactly at CΠ2 . Any other nodes or edges that the sub-graphs have in common are duplicated

rather than identified with each other across the sub-graphs when constructing GΠ. We can then

construct the line graph for GΠ and use Dijkstra’s algorithm to solve for the the shortest path from

CΠ1 to CΠ|C| , following the approach described at the beginning of Section 4.3.1. Note that we have

to compute a shortest path starting from a single source (CΠ1). By construction, this path – the final

tour – will pass through all of the canonical views, and maintain the ordering previously computed.

The construction of GΠ, and the final path is shown in Figure 4.5. Figures 4.2c and 4.2d illustrate

the path through the canonical graph and the tour for one data set (Colosseum).

4.4 Depth-map Reconstruction

Having selected the transitions that comprise our, we need to make these transitions looks as realistic

and compelling as possible. We use the 3D point cloud (generated using SfM and MVS techniques)

to create suitable geometric proxies to generate image based renderings. There has been much

prior work in this domain [24, 32, 34, 38, 72, 109, 113, 116] that attempt to construct a mesh

model using the reconstructed point clouds under various assumptions, such as representing the
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Pruned Graphs Spliced Graph  

Figure 4.5: The figure shows the construction of the spliced graph GΠ from the pruned graphs
G̃(Π1,Π2), G̃(Π2,Π3), · · · , G̃(Π|C|−1,Π|C|). The final path P (Shown in yellow) passes through
the all the Canonical nodes C under the optimal ordering Π, while still being smooth everywhere.

geometry as a height-field, using symmetry to fill in holes, or decomposing the point cloud into

simple primitives. While these assumptions work for certain cases, modeling free form geometry

present in architectural scenes is not possible using these approaches.

Instead we employ per-photo depth maps to serve as geometric proxies for image-based ren-

dering. At one extreme, we could just use planar proxies, but this can lead to significant ghosting

artifacts [91, 92]. At the other extreme, detailed depth maps reduce ghosting, but often significant

outliers lead to other artifacts (e.g., stretching). Instead, we want to capture details where they are

reliable, and fall back on (smooth) planar-proxy-like models elsewhere. We accomplish this by es-

timating partial depth maps which are then completed using a Markov Random Field (MRF) that

downweights low-confidence data. As these depth maps will be relatively smooth, we compute them

at a fairly low resolution, 20, 000 pixels per depth map, while preserving the aspect ratio.

Our depth-map reconstruction algorithm, building on existing techniques, consists of three steps.

First, given a reference image I , we follow Goesele et al. [42] and automatically select k neighboring
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images (k = 16) well-suited to recovering a depth map for I . Second, we run Furukawa’s patch-

based multi-view stereo software (PMVS) [36] on the k images to generate a semi-dense point cloud.

We retain only the points X that were computed using I , as well as the confidence β(x) ∈ [−1, 1]

assigned to each point x. Third, we formulate an MRF objective and solve for the depth dp at each

pixel p that minimizes∑
p

w(p)ρd

(
|dp − dp|

σI

)
+ λ

∑
p,q∈N

ρs

(
|dp − dq|

σI

)
. (4.13)

The data cost (first term) penalizes the discrepancy between dp and the expected depth dp, set to

the average depth of the points in X that project within the extent of pixel p (call this subset X(p)).

We use a robust norm – the Cauchy function ρd(a) = ln(1 + a2) – to handle outliers. The penalty

for each pixel is also scaled by a confidence w(p), where

w(p) =
1

W

∑
x∈X(p)

max(β(x)− βmin, 0). (4.14)

The numerator is the sum of β(x), where βmin (= 0.7) is subtracted from each score, so that

only 3D points with very high confidence values can contribute. If no point projects to the pixel

p, then its confidence w(p) = 0. We normalize w(p) to lie in the range [0, 1] by dividing by

W = (1 − βmin)|X(p)|, which is the upper bound on the value of the numerator, assuming a fully

dense PMVS reconstruction with maximum per-point confidence.

The smoothness cost is chosen to encourage neighboring pixels (defined by a four-connected

neighborhood N) to have similar depths. In this case, where outliers are not a concern (as they

were in the data term), we apply the less robust Huber loss function ρs [48] to the absolute depth

difference between neighboring pixels. λ is a relative scaling factor for the smoothness term, set to

2.0 in all of our the experiments.

The Cauchy and Huber norms, which we apply to depth differences, are designed to operate on

normalized, unitless quantities. The effective unit of depth differences can vary widely from image

to images and across data sets. We compute a per-image normalization constant σI which depends

on the observed scene depths and is proportional to the the average depth of the MVS points visible

in I .

Finally, we minimize Eq. 4.13 and recover a depth map using Levenberg-Marquardt optimiza-

tion [106].
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4.5 Image-based Rendering

Given a sequence of photos along with the underlying 3D geometry, we use a standard view-

dependent texture mapping technique to project the images onto their respective geometric proxies,

render them to a virtual viewpoint, and blend the images to form a composite frame. As demon-

strated by prior image-based rendering systems, this approach works fairly well and yields com-

pelling viewing experiences [24, 34]. However, it is not free of rendering artifacts, particularly

ghosting artifacts where the geometry is imprecise. While a more sophisticated IBR method (e.g.,

[41]) could be used to achieve further improvements; in this work, we focus on optimizing the

camera path, rather than the IBR technique

A key observation is that rendering artifacts are minimal when the camera is close to an input

photo location. Hence, the visualization should focus most time near input camera positions, speed-

ing up during transition between input camera viewpoints. To generate appealing sequences near

an input viewpoint, we take inspiration from the work of Zheng et al. [115], which adds parallax

effects to create smooth cinematic camera motion across images. This 3D version of the Ken-Burns

effect, a popular technique in 2D film production in which the viewer gently pans and/or zooms

across a single image, provides a visually appealing experience. However, While they operate on

small sets of images, each set carefully taken with one camera near a single viewpoint, we operate

on large, unorganized photo collections, which makes the problem more challenging. Further, while

the authors in [115] treat each set in isolation to create a parallax effect for a single view, our goal is

to create a coherent path through several views; i.e., the Ken-Burns effect must fit within the context

of flying through a photo collection.

In the remainder of this section, we describe how the camera motion is interpolated and param-

eterized.

4.5.1 Camera Path Interpolation

We move a virtual camera that starts from one input viewpoint and interpolates smoothly towards

the next viewpoint on our computed tour. At any point, the virtual viewpoint can be defined by inter-

polating each camera parameter independently with Monotonic Piecewise Cubic Interpolation [31],

which guarantees monotonicity between adjacent sample points and prevents overshooting or os-
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cillations. However, simply interpolating the camera center guarantees monotonicity only in the

camera parameter space, and not in the screen space which is a good measure for the speed per-

ceived by the viewer. To remedy this, we first compute for each image Pj an interest distance dj set

to the average over the all depth map values, and an interest point xj = cj + djOj , where cj is the

camera center and Oj is the optical axis (view direction), i.e., the point along the optical axis at the

average depth dj for the image. We then independently interpolate these interest points and interest

distances, along with camera yaw, pitch, and field of view. Camera roll is set to zero throughout.

Then, at any point along the curve, we use yaw and pitch to recover the camera rotation and thus

the optical axis O. From the interpolated interest point x and the interpolated interest distance d,

we compute the camera center for the virtual camera as c = x− dO. This determines the complete

camera trajectory for our tour.

One approach to traversing this trajectory is to move to virtual camera at a uniform speed from

one camera to the next along our tour, as shown in Figure 4.6(top). Here the contribution of the

two neighboring cameras changes linearly (i.e., as one falls from 1 to 0, the others rises from 0 to

1 linearly) However as noted above, most of the artifacts occur near the middle of the transitions

and the uniform parametrization results in a large portion of the tour focussing on the rendering

artifacts. Further, it results in abrupt changes in all the camera parameters (such as camera center,

optical axis, FOV) at the input viewpoints, which can be displeasing to the viewer. Instead we

choose a different parametrization to overcome these shortfalls. Given a camera trajectory passing

through a sequence of photos {P1, P2, · · ·P|P |}, let S denote the parametrization of the trajectory

curve, where S = i when the camera is at Pi. The curve is divided into two types of segments:

1) Ken-Burns segments {[Ssi , Sei ]} around each photo Pi, where rendering artifacts are minimal

and the camera moves slowly and spends time DKB
i in traversing it; and 2) transition segments

{[Sei , Ssi+1]}, where the camera moves from one photo to the next quickly in time Dtrans. Dtrans

is set to a constant, while DKB
i is different for each image, to allow the optical flow speed inside

the rendering window to be roughly constant. This allows us to spend more time near the input

images, thus minimizing artifacts. This parametrization can be seen in Figure 4.6(bottom). Further

we adaptively slow down the virtual camera near the input cameras, so that there are no sudden

changes in the speed of the camera (note the regions in the black circles where the curve shows no

abrupt changes).
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0 10 4 12 14 6 2 8 16 T 

Adaptive Slow Down 

Figure 4.6: This figure shows our approach of adaptively changing speed and transitioning between
segments in as opposed to using a uniform parametrization. At any time, the contribution in the
blended warp is shown in a color coded fashion. For the uniform camera motion (top) the contribu-
tions rise from 0 to 1, as we approach a camera, and then fall back to 0 as we move away from it to
the next camera, in a linear fashion. In our parametrization (bottom), the curve is divided into two
types of segments Ken Burns (shown as color coded boxes) where only one image is used to render
the scene, and transitional segments, as we transition from one segment to the other.

Below I describe how we estimate the Ken-Burns parameters {Ssi , Sei , DKB
i , Dtrans} for each

segment and the final timing of the tour.

Minimizing Ken Burns Artifacts

The parameters Ssi , S
e
i , and hence the Ken-Burns segments are computed to highlight the details

of the photos. During these segments we want to avoid showing the boundary of the image and to

minimize artifacts due to stretching.

As a pre-process, we narrow the field of view of every virtual camera by a factor of 0.8, to avoid

seeing image boundaries during Ken-Burns panning. For each image Pi, we then set the Ken-Burns
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segment parameters Ssi ∈ [i − 0.3, i] and Sei ∈ [i, i + 0.3], in discretizations of 0.01, to be the

minimum and maximum parameter values, such that each parameter sample in [Ssi , S
e
i ] passes a

screen coverage and stretchiness tests. The screen coverage test simply requires that the resulting

rendered image fills the screen. The stretchiness test requires that the majority of the depthmap edges

(at least 99.7 percents) do not stretch more than a constant threshold (1.8) at the virtual viewpoint.

The Ken-Burns segment is defined to be the longest segment [Ssi , S
e
i ] where both the coverage

and the stretchiness tests pass within.

Estimating Durations

We want the optical flow in each Ken-Burns segment to be roughly the same and compute an initial

estimate of the duration DKB
i = D ·mi. Here, mi is the average optical motion between the virtual

camera at Ssi and Sei based on the motion of the depthmap grid points associated with Pi, where D

is chosen so that the average value of DKB
i becomes 2.0 seconds. To avoid abrupt changes in the

durations, we penalize the first and the second order derivatives and compute the smoothed durations

{DKBi} by solving the following linear least squares problem:

argmin
{DKBi }

|P |∑
i=1

(DKB
i −DKB

i )2 +

|P |−1∑
i=1

(DKB
i −DKB

i+1 )2

+

|P |−2∑
i=1

(DKB
i − 2DKB

i+1 +DKB
i+2 )2.

Lastly, we clamp each DKB
i to be the range [0.7, 2.7] (in seconds) to ensure no segment is too short

or too long. Note Dtrans is set to a constant (0.7 seconds).

Timing

Given the duration of every segment, i.e., {DKB
i } and Dtrans, it is straightforward to compute

times T si and T ei (the start and end times for each Ken Burns segment). We have also computed

the S parametrization for each segment boundary Ssi and Sei , respectively. We can then interpolate

these times to give a complete mapping between S and time, again using Monotonic Piecewise

Cubic Interpolation to avoid abrupt changes in speed as illustrated in Figure 4.7.
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Figure 4.7: A tour is partitioned into a series of Ken-Burns segments (blue intervals) and transition
segments (white intervals). The curve shows the mapping between the timing (x-axis) and the
parameterization (y-axis) of a tour. Transition segments are fixed-length Dtrans in time, while the
lengths of Ken-Burns segments vary both in time and parameterization.

4.5.2 Rendering

For the rendering in a transition segment [Sei , S
s
i+1], we simply render Pi and Pi+1 into the virtual

view and blend with a uniform weight per pixel. The blend weights are set to the fractional distances

between images, where distance is measured in parameter space S.

During the Ken-Burns segment [Ssi , S
e
i ] we warp a single image Pi, to render the photo tour. As

mentioned before, the field of view is reduced so that as we pan over the images, we don’t see any

background pixels.

4.6 Deployment within Google Maps

We obtained 3.2 million (at the time of publication in July 2012) geo-tagged photos from Pa-

naromio/Flickr. Based on the geo-tags, the photos were clustered into individual tourist sites. Each

site was reconstructed using a structure-from-motion technique similar to [67], and placed on the

map using a RANSAC method similar to [51]. These reconstructions were performed in paral-

lel, over a cluster with 1000 CPUs, and took about 24 hours, consistent with the Rome-in-a-day
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Landmark # images # canonical #tour length movie duration

Hagia Sophia 874 4 10 30.6 s

Marianplatz 1442 5 12 29.0 s

Arch of Titus 220 3 10 25.5 s

St. Vitus Cathedral 1093 4 8 20.3 s

Abu Simbel 984 3 10 26.3 s

Colosseum 3230 8 22 58.7 s

Hongcun 49 3 6 15.5 s

Loro Parque 76 3 6 15.5 s

Gundam Statue 281 3 5 12.8 s

Table 4.1: Number of images, number of canonical views, number of images in the tour, and movie
duration for several landmarks from our results.

projects [6, 30], which processed roughly similar numbers of photos using massive parallelism in a

24 hour period. Our depth-map pipeline required 6 hours and 10 minutes on the same cluster.

About 2.5 million images were successfully reconstructed by our structure-from-motion and

stereo algorithms. These images were then processed by our tour generation algorithm to produce

20,857(new) photo tours of popular landmarks all over the world. (See Figure 4.1.) Generating

these photo tours took 3.5 hours on the same cluster. Figure 4.8 shows the geographical distribution

and some of the popular photo tours playing simultaneously. Figure 4.10 shows a sampling of

frames from three of our photo tours (More tours can be seen in the Appendix D). We encourage

the reader to also look up the videos online [3], to see the fluid 3D transitions. Table 4.1 shows

additional information about some of the popular landmarks(the number of images in the collection,

the number of canonical nodes, and the tour length in terms of the number of images and time).

Figure 4.9 shows the size of the reconstructions and the lengths of the tours, measured in photos.

Note the long-tail distribution: the most popular 2% of landmarks contain between 1000 and 25000

images. The remaining average less than 100 images. The landmarks on average have 3.2 canonical

views (and 6 images), while the largest landmark has 16 views (and over 40 images).
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Figure 4.8: The figure shows (a) the geographical distribution of the computed photo tours (each
red dot on the map), and some of the tours in different parts of the world playing together. (b), (c)
show the most popular 25 and 100 tours respectively, playing simultaneously

4.6.1 Web-based Viewing

Our goal was to stream and render photo tours to any viewer over the Internet via their web browser.

The viewer was implemented as a javascript web application running on any browser that supports

the HTML5 WebGL spec (Chrome, Firefox, Safari, etc.). The images, depth maps, and sequencing

information is stored on a server and streamed real-time to the client. We prefer this to pre-recording

movies, primarily to keep the option of interactivity, if needed later. The bandwidth requirements are

dominated by the images, the low-res depth maps and meta data being tiny in comparison. Secondly,

the typical bandwidth required to play a tour of 10 views for a 1024x768 viewport is less than 3MB,

which works out to 115kbits/sec, while for comparison, Youtube’s standard video setting is 250kb/s

and Netflix starts at 625kb/s, so again photo tours are significantly more efficient than streaming

video. Most modern graphics cards have no problem keeping up; the application is able to render a

tour at 30 fps on a GeForce 9400M and 60 fps on a Quadro FX 580.

4.6.2 Discussion

This approach yields high quality results for a broad range of scenes. Overall since launch, we have

found that of all the tours rated by users, 89.7%(at the time of publication in July 2012) of our photo

tours got a thumbs up rating. As with any “at-scale” system, however, there are failure cases. We

now enumerate the types of failure cases we’ve observed.



76

(a) (b)

Figure 4.9: Size of each landmark SfM reconstruction, sorted by number of photos. Note the long-
tail distribution: while most landmarks have less than a hundred photos, the top 2% have over a
thousand. (b) Number of photos in each tour; most tours have half a dozen photos, whereas the
largest tours have over 40.

The first category of failure cases is due to data problems, i.e., problematic photos, pose, or

geometry. One effect of a bad photo (and corresponding bad depth map) is seen in our Trevi Fountain

photo tour, where a toy monkey is prominently featured in the foreground of one of the photos (as

shown in Figure 4.11). It may be possible to reduce or eliminate problematic images through a

combination of moderation, user ranking, image quality measures, and detection of faces and other

foreground elements.

Errors in depth maps can occur for thin objects (e.g., foreground statues, spans on bridges) as

shown in Figure 4.12, reflective surfaces (water, windows), and textureless or partially occluded

regions; such errors can produce warping artifacts. While future research on stereo techniques

(or use of range sensing techniques like Kinect), may produce better quality geometry, another

possibility is to fall back on planar proxies in such cases. Overall, however, the images with depth

maps have turned out well, and we see major problems in a minority of cases.

A second category of failure cases is due to tour problems, i.e., shortcomings in our graph

traversal approach. Some tours are too short, often due to a scarcity of photos, or cases where

the reconstruction breaks up into multiple pieces. Other tours are too long; a good example is the

Colosseum in Rome tour which does a 360 rotation around the outside of the Colosseum, which

can get tedious. The rendering quality is quite good, but the pace is a bit tedious. Similarly, the

Notre Dame tour spends too much time in the back of the Cathedral, then rotating to the side, before
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Figure 4.10: Sample photo tours, displayed as a sequence of images. Top: St. Vitus Cathedral
(Partial) in Prague, Middle: Gundam (Full), Tokyo, Bottom: Hagia Sophia, Istanbul. The sequence
of canonical images are outlined in blue, whereas the transitional views are outlined in green
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Figure 4.11: The figure shows in (a) a person occluding the scene in the photo tour for Propositura
di San Niccolo, in (b) a child occluding the scene in Ponte Mezzo, and in (c) traffic occluding the
main attraction in the Shanghai Exhibition Center Photo Tour.

Figure 4.12: The figure shows on the left and right, two consecutive frames. The middle image
shows the rendering from a view point in the middle of the transition. The foreground object,
because of noisy 3D data or because of the limitation of representing geometry as a depth map, can
result in stretching or ghosting artifacts.
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Figure 4.13: The figure shows a sequence of consecutive images for the Palazzo Balbi photo tour.
The tour jumps between images of a foreground element (purple dog statue) and images of the
landmark, which leads to loss of context.

showing the more interesting details on the front. While repetitions are penalized, they do occur

sometimes, as in the case of the Abu Simbel photo tour.

In most cases the scene traversal feels natural, and moves through the distribution of viewpoints

in a coherent fashion owing to the smoothness term (e.g., an orbit for Trevi Fountain, a pan for

Chicago, an upward pan for the statue of Gundam). The 2nd order smoothness term helps signifi-

cantly in this respect. However, some tours are less coherent. A good example is the Palazzo Balbi

tour which jumps randomly between images of a foreground element (purple dog statue) and images

of the landmark, as shown in the Figure 4.13. Such cases could be identified and improved with user

interaction, or perhaps with machine learning algorithms trained on good and bad tours.

While most of the photo tours we’ve generated have few artifacts, there are those that have one

or more of the aforementioned failures. E.g., the single bad photo in the Trevi Fountain results in

the entire tour to be labeled a failure. By inspection we have found that 50% of the photo tours we

viewed are artifact-free and constitute high-quality results. Breaking down these results by landmark

size, we have found that popular landmarks (top 2%) are more difficult with 42% being artifact-free.

One reason is that larger landmarks result in longer photo tours and are therefore more likely to have

one ore more artifacts. For a completely automatic system deployed at scale on unstructured photo

collections, we consider it quite successful to achieve high-quality results 50% of the time, and even

despite the artifacts, most of low-quality results show promise and are still interesting and useful.

We obtained this estimate by having several people spot-check 5% of the tours and average their

ratings. If this system were to be deployed on the web, it would be straightforward to check all

of the tours and launch only the good ones; a hundred Amazon Mechanical Turk operators could
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provide multiple ratings for each tour in a few hours. While we expect future research to further

improve the success rate, we believe that the current system (with a manual quality check) is already

suitable for large scale deployment.

In addition to addressing these problems, an interesting topic of future work is to add textual

annotations and image captions, providing context on what’s being depicted. For example, the visu-

alization could identify “Raphael’s Tomb” inside the Pantheon, and other significant scene elements.

Recent work [80] attempts this and uses Wikipedia to automatically search and label reconstructed

3D point clouds.
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Chapter 5

CONCLUSION

In my thesis, I have looked at the problem of reconstructing and visualizing 3D models, partic-

ularly for architectural scenes. The Internet does provide us with a rich and diverse source of visual

imagery for this purpose, but the challenge is in using this imagery to create compelling visualiza-

tions for the users. One approach to creating such experiences discussed here is to compute the 3D

geometry of the scene (to achieve coherence), along with the 3D location of the images and then

plan efficient and informative paths, as a sequence of images, through the reconstruction. I use this

path planning approach for scene visualization to create these experiences.

To achieve this goal, I propose solutions to challenges that need to be overcome to make this

approach feasible. In Chapter 2, I look at improving the scalability of SfM algorithms used to

reconstruct 3D models. I introduced Visibility Based Preconditioning, a new technique for precon-

ditioning the linear least squares problems arising in large scale Bundle adjustment problems. Using

the visibility information in the scene, we cluster the cameras into tightly interacting clusters. These

clusters form the basis of our block diagonal and block tridiagonal preconditioners. When com-

bined with an inexact step LM algorithm, these preconditioners offer equal or better solution quality

compared to the best available methods at 3-5x less execution time on problems from the BAL [5]

dataset.

A second challenge is in improving the quality of the reconstructions. The presence of texture

in the scenes is a necessary requirement for stereo algorithms that are used for reconstruction. But

many scenes and in particular indoor scenes, still pose challenges for stereo, due to the lack of

texture. Monocular cues have the potential to overcome this limitation. Stereo cues and the line

sweeping cues (one possible Monocular cue) are shown to be complementary in nature, and thereby

perform well in different regions of the scene. Hence the reconstructions using both these cues

are more accurate and complete than those that would be constructed using either of these cues

independently. In Chapter 3, I setup the problem as a depth integration problem requiring that the
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depth map be consistent with both photo-consistency term (for stereo), as well as the orientation

information generated using line sweeping [62]. I show results that outperform state-of-the-art

stereo algorithms on challenging indoor data sets. These techniques are also extended to the multiple

view case [85] to create reconstructions that are more accurate, compared to other state-of-the-art

methods [32, 54].

Having constructed the 3D models, the next challenge is to create useful scene visualizations

that can provide a rich and immersive experience for the user. Such an experience should replicate

the feeling of being physically present, in terms of being able to visualize the scene from different

viewpoints, and quickly assimilating the highlights of the scene. We thus propose the problem

of automatically generating the sequence of frames that best conveys the essence of the scene in

Chapter 4. Our approach of creating such photo tours has been commercialized as the Photo Tours

feature in Google Maps to create tens of thousands of tours all over the world [3].

5.1 Future Scope

While this is an encouraging first step in automatically and scalably creating compelling visualiza-

tions, there are many directions for future research, both at the big picture level as well at the level

of the individual challenges. Here I discuss future research directions at both these levels.

The problem of replicating the feeling of actually being present at the scene, in fact has many

different aspects to it. For e.g., an actual experience at the Trevi fountain in Rome would possibly

involve hearing Italian in the background, which makes audio an integral part of the experience.

Video alone cannot capture this. Similarly to obtain a truer experience, other factors such as the

ambient atmosphere, weather, clouds etc. need to be replicated as well. Another thing that is often

missed in these experiences is the sense of the scale, e.g. the massive size of the Trevi fountain

or the Dome in the Pantheon. By creating a stereo display, metric depth could be conveyed to the

viewer, to better provide them with a sense of scale.

Another limitation of the photo tours, in their ability to capture the experience, is that most

input views and hence the virtual camera in our photo tours have a very restricted field of view. In

contrast humans have peripheral visions, thus allowing us to experience almost a 180◦ view of the

surrounding area. Recent work [87] address the problem of extending the field of view of a photo —
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an operation they call uncrop. Given a reference photograph to be uncropped, their approach selects,

reprojects, and composites a subset of Internet imagery into a larger image around the reference

using the underlying scene geometry. This approach, modified suitably can help to increase the field

of view for the virtual camera as well.

Further, while we generate one photo tour per site, experiences can vary depending on different

times of day/ seasons etc. It would be interesting to categorize the dimensionality of this variation,

similar to [39], and customize photo tours by varying these parameters. These experiences could

then be part of virtual reality games, i.e, a user could load in a model of the Hagia Sophia for

example, and fight aliens there. Projects like Google’s Tango or Matteport, aim to create 3D models

for indoor scenes that can be used for these purposes. The same could be done for these Internet

photo collections as well.

Another direction for future research is to customize photo tours with personal photo collections

of the scene, i.e., allowing users to put their personal photo collections, say for their trip to the

Colosseum, and create a photo tour that traverses through their photo collections. One simple way

to extend our framework would be to first recover the 3D position of these photographs, and to mark

them as canonical nodes. This would then force the path to visit these images as part of the photo

tour.

While the previous directions are ways to improve the experience at the big picture level by

adding in other perceptory senses, such as audio, feel etc., there is scope for improvement within

the individual challenges themselves to improve the quality of the visual tours. There are two

clear directions for future work in terms of improving the scalability of our approach. Firstly, our

experiments are limited to the BAL dataset. The sparsity patterns present in the BAL dataset are

only a subset of the sparsity patterns encountered in real world SfM problems. Thus one future

direction would be to increase the scope to other classes of SfM problems. A notable exception

to the BAL dataset, for example, is the presence of camera blocks with long range interactions,

e.g., aerial views of a scene that would correspond to near dense rows in the Schur Complement

S. Visibility based clustering is not the right approach here, and better approximations can be

obtained by treating such views separately. Similarly satellite imagery or photographs taken from

a plane or a street-view car, would often have a very dense diagonal as it is, and thus a diagonal

approximation with a fixed width (capturing the overlap between neighboring photographs) may be
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more appropriate. Secondly, while the preconditioners excel at solving linear least squares problems

to high precision, when used with an inexact step LM algorithm, which uses fairly high tolerance

convergence criterion, the extra work of setting up the block tridiagonal preconditioner is at times

not worth the gain. In future work, better forcing sequences (ηk) can be explored along with ways

of reducing the setup time of the block tridiagonal preconditioner.

Further, while our approach of combining monocular cues with stereo outperforms the state-

of-the-art stereo methods, the approach is restricted to corners and regions where the manhattan

structure (all three orthogonal directions) are visible. It would be interesting to extend this to the

case of panoramas. This provides the most promise in overcoming this challenge of obtaining

orientation information even for images that don’t capture the manhattan structure themselves, by

transferring this information (orientation and 3D line direction) from neighboring images in the

panoramas. Further, by working with panoramas, we can obtain full 360◦ models for indoor spaces

rather than just depth maps.

On the visualization side, an interesting topic of future work is to improve the visualizations

by adding textual annotations and image captions, and providing context on what’s being depicted.

For example, the visualization could identify “Raphael’s Tomb” inside the Pantheon, and other

significant scene elements. Recent work [80] attempts this and uses Wikipedia to automatically

search and label reconstructed 3D point clouds. Merging this work with photo tours could be a

direct extension.
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Appendix A

PROOF OF LEMMA 1

Lemma 2. Let A be a symmetric positive semidefinite(PSD) matrix, then the tridiagonal matrix

M(ν)

mij(ν) =


aij i = j

νaij |i− j| = 1

0 otherwise

(A.1)

is positive semidefinite for ν = 0.5 and for every ε > 0, there exists a positive semidefinite matrix

A, such that M(0.5 + ε) is indefinite.

Proof. Since A is symmetric PSD, there exists a matrix U such that A = U>U . Let the column

vectors of U = [u1, u2... · · ·un]. Consider M(0.5) .Then for any x,

x>Mx =

n∑
i=1

xiMi,ixi + 2

n−1∑
i=1

xiMi,i+1xi+1

=

n∑
i=1

xiAi,ixi +

n−1∑
i=1

xiAi,i+1xi+1

=
n∑
i=1

x>i u
>
i uixi +

n−1∑
i=1

x>i u
>
i ui+1xi+1

=
1

2

n−1∑
i=1

(xiui + xi+1ui+1)> (xiui + xi+1ui+1) +
1

2
x>1 u

>
1 u1x1 +

1

2
x>n u

>
n unxn

≥0

Next we show that this is the best static scaling strategy, i.e. for ν > 0.5, we can find a PSD

matrix A, s.t. M(ν) is indefinite. Choose an integer n > 1
2ε + 1, and set A to be the square matrix

of size n with all entries set to 1. Then clearly A = 1
n(11>) is PSD. Now consider the matrix

M(0.5 + ε) that has 1 on the diagonals and 0.5 + ε on the super and sub diagonal and the vector
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v = [1,−1, 1,−1....]>, then observe that

v>Mv =

n∑
i=1

v2
i + 2

n−1∑
i=1

(0.5 + ε)vivi+1

=
n∑
i=1

1− 2
n−1∑
i=1

(0.5 + ε)

= 1− 2(n− 1)ε

< 0

Thus ν = 0.5 is the largest number that can be used in any static scaling strategy for scaling the

sub and super diagonals, and ensuring that the matrix M(ν) still remains PSD.
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Appendix B

COMPARISON FOR LINEAR PROBLEMS

The venice problems are community photo collections, are expected to have a clustered struc-

ture and some inter-clustering interaction present. In contrast the ladybug is not a community photo

collection dataset, rather it was collected by mounting cameras on a moving vehicle, and thus isn’t

likely to have significant cluster structure.

Table B.1 lists the problems used for comparing the performance based on iterations, which

compared the six preconditioners (including gsp-3) by the number of iterations it took for them to

converge.

Ladybug Venice

problem-162-22824 problem-52-64053

problem-282-37322 problem-89-110973

problem-339-44056 problem-245-198739

problem-384-49181 problem-427-310384

problem-412-52215

Table B.1: List of Problems for iteration based convergence.

Table B.2 lists the problems used for the experiment to compares the four Schur-based precon-

ditioners on the time it takes for them to solve large linear least squares problems to convergence. It

consists of 26 problems each from the Venice and Ladybug datasets.

Figure B.1 reproduces at full scale the performance profiles of the four Schur based precon-

ditioners for varying values of τ = 10−2, 10−3 and 10−5. The first row shows the performance

profiles for ladybug, the next for venice, and the third for the combined dataset(all 52 problems

together). Note that cluster-tridiagonal outperforms the others in all the charts.
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In Figures 2.5–B.5 we show the detailed convergence behavior of the four preconditioners. For

each preconditioner, we plot the log relative residual log( ||Axk−b||||Ax0−b|| ) as a function of time. To be fair

to each preconditioner, the time needed to compute the preconditioner is accounted for. Note that

Conjugate Gradients algorithm does not reduce the residual monotonically, thus the relative residual

plots are oscillatory. As can be seen from the plots for most of the problems, the cluster-tridiagonal

performs the best, followed by cluster-jacobi, implicit-ssor and implicit-jacobi in that order.



98

LADYBUG VENICE

problem-412-52215 problem-427-310384

problem-460-56811 problem-744-543562

problem-539-65220 problem-951 -708276

problem-598-69218 problem-1102-780462

problem-646-73548 problem-1158-802917

problem-707-78455 problem-1184-816583

problem-783-84444 problem-1238-843534

problem-810-88814 problem-1288-866452

problem-856-93344 problem-1350-894716

problem-885-97473 problem-1408-912229

problem-931-102699 problem-1425-916895

problem-969-105826 problem-1473-930345

problem-1031-110968 problem-1490-935273

problem-1064-113655 problem-1521-939551

problem-1118-118384 problem-1544-942409

problem-1152-122269 problem-1638-976803

problem-1197-126327 problem-1666-983911

problem-1235-129634 problem-1672-986962

problem-1266-132593 problem-1681-983415

problem-1340-137079 problem-1682-983268

problem-1469-145199 problem-1684-983269

problem-1514-147317 problem-1695-984689

problem-1587-150845 problem-1696-984816

problem-1642-153820 problem-1706-985529

problem-1695-155710 problem-1776-993909

problem-1723-156502 problem-1778-993923

Table B.2: List of Problems for time based convergence.
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Figure B.1: Time based performance profiles.
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Figure B.2: Convergence Plots for linear problems 10-18 of the ladybug data set, plotting the
relative residual error as a function of time.
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Figure B.3: Convergence Plots for linear problems 19-26 of the ladybug data set, plotting the
relative residual error as a function of time.
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Figure B.4: Convergence Plots for linear problems 10-18 of the venice data set, plotting the relative
residual error as a function of time.
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Figure B.5: Convergence Plots for linear Problems 19-26 of the venice data set, plotting the relative
residual error as a function of time.
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Appendix C

COMPARISON FOR BUNDLE ADJUSTMENT PROBLEMS

We use the problems listed in Table B.2(same as that used for the experiment on the linear

problems based on time) to report the performance of the non-linear solvers.

Figure C.1 shows the performance profiles for the four preconditioners and the explicit-sparse

solver for τ = 10−1, τ = 10−2, τ = 10−3. Here, the initial setup time to compute the clustering

as well as the degree 2 forest is also taken into account. As can be seen from the plots, for tighter

values of τ , cluster-tridiagonal outperforms the rest. Even for τ = 10−1, where the initial setup

cost becomes a factor, the preconditioners cluster-tridiagonal, cluster-jacobi catch up quickly with

the others as the value of α is increased. The first row shows the performance profiles for ladybug,

the next for venice, and the third for the combined dataset(all 52 problems together).

Figures2.8–C.5 show the detailed convergence behavior of Levenberg-Marquardt as a function

of the linear solvers used. Again, we plot the log relative error for each problem.

ek,s = log
fk,s − f∗

f0 − f∗
, (C.1)

Where, f0 is the initial error, f∗ is the lowest error across all solvers and fk,s is the error for solver

s at iteration k. The log relative error ek,s is plotted against time. As can be seen, for most of the

plots, cluster-tridiagonal and cluster-jacobi compete for the best preconditioner.
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Figure C.1: Performance profiles for the bundle adjustment problems for different data sets.
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Figure C.2: Convergence Plots for bundle adjustment problems 10-18 of the ladybug data set,
plotting the relative residual error as a function of time.
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Figure C.3: Convergence Plots for bundle adjustment problems 19-26 of the ladybug data set,
plotting the relative residual error as a function of time.
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Figure C.4: Convergence Plots for bundle adjustment problems 10-18 of the venice data set, plotting
the relative residual error as a function of time.
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Figure C.5: Convergence Plots for bundle adjustment problems 19-26 of the venice data set, plotting
the relative residual error as a function of time.
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Appendix D

EXAMPLE PHOTO TOURS

Here, we show the sequence of images in some of the popular photo tours. The actual photo

tours are movies which includes fluid 3D transitions between a sequence of photographs of the

scene. The canonical images are shown as larger images, and the images that are used to transition

between in the path are shown as smaller image. The arrows indicate the order of the images in the

tour.
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Figure D.1: The figure shows the photo tour for the Arch of Titus in Rome, Italy. The tour starts
from the main inscriptions, zooms out to show the full arch with the inscriptions on the top, before
zooming into the details of the central coffers.

Figure D.2: The figure shows the photo tour for Loro Parque, in Tenerife, Spain. The tour pans
across the arena of the dolphin show. The sequence of frames almost gives a temporal feel of the
dolphin show.
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Figure D.3: The figure shows the photo tour for the central clearing in Hongcun, in China.

Figure D.4: The figure shows the photo tour for Svarifos, in Iceland. The tour starts out from a
zoomed out image and moves in a coherent fashion to show the details of the waterfall.



113

Figure D.5: The figure shows the photo tour for Mt. Rushmore. The tour starts out from a zoomed
out image and moves in a coherent fashion to show the details of the carvings.
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Figure D.6: The figure shows the photo tour for Marian Platz, in Munuch, Germany. The tour starts
from a city scale view of the square, before zooming in on the individual attractions.
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Figure D.7: The figure shows the photo tour for Pantheon, in Rome, Italy. The tour starts at the
central dome, before zooming in on the details at the ground level.

Figure D.8: The figure shows the photo tour for St. Peters, in Rome, Italy. The tour starts at
the central dome, before zooming in on the details at the ground level, the altar with Bernini’s
Baldacchino, and Bernini’s Cathedra Petri and Gloria
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Figure D.9: The tour starts by showing us the inscriptions on top of the Trevi fountain. Then
the tour focusses on the central statue, and as it revolves about it capturing it from every angle, it
takes us through different appearances — both day and night shots. Finally the tour shows us the
surroundings, the people and crowds giving a feel of how it is to be present there.


