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Today we observe a consistent shift towards doing our tasks virtually through machines. This

mode of work ensures that the users are not tied by lack of resources required for the task, and

get additional advantages like ability to make quick corrections and share the result remotely. Re-

searchers in the field of human computer interaction have constantly pushed towards tangible user

interfaces which allow the users to get a sense of doing the task physically while it happens virtually.

Designing interfaces for 3-dimensional tasks poses interesting challenges. The traditional desk-

top or tabletop setups do not work very well here because it is hard for the user to visualize the

3D virtual world using 2-dimensional displays and control them using un-intuitive devices like

keyboard/mouse/joystick etc. Researchers and industry have explored augmented reality-style or

immersive environments-based interfaces to let users interact with the virtual world. However, most

of these interfaces are too specialized and hard to set up.

In this thesis, I explore an easy to set up interactive environment, called a playspace, for a variety

of 3D tasks. The user performs the task while a color+depth camera observes and understands the

task in real-time. It then presents context-specific feedback and automatically reflects the inferred

activity in a virtual world on a screen in front of the user. The playspace also integrates other input

modalities such as gestures, voice commands and standard devices like keyboard and mouse. The

modular nature of the framework allows different applications to plug into the playspace environ-

ment easily.





Playspaces allow users to do a task physically while it is virtually replicated on the fly. The

virtual result can then be post-processed or edited in real-time, again through physical props. The

framework also opens the opportunities to assist users in real-time. I have developed and evaluated

three applications in the playspace environment –

1. Block model assembly - The system automatically learns and builds a virtual replica of a

Duplo R© block model by observing the user build it. It also assists the user in creating a

predefined model in a novel way while detecting any mistakes and assisting in making any

corrections on the fly. I report on a user study that shows that the proposed guidance method

is better than the traditional figure-based guidance method.

2. Digital storytelling - The system allows a user to act out a story using rigid puppets and au-

tomatically converts that into an animation. Further, it also allows the user to record multiple

takes for the same story and merge them automatically after the user has roughly annotated

them based on his liking. This is helpful when the user wants to try out different styles and

later merge them. I report on a user study to test this utility.

3. Designing 3D environment prototypes - The system allows the user to easily manipulate vir-

tual objects in a scene by “attaching” them to a physical object of user’s choice. The user

can add, move, scale, clone or delete objects from a database, thus creating simple 3D virtual

environments. The user can also paint the terrain in the virtual world by using textures from

his surroundings.
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Chapter 1

INTRODUCTION

“Computers are magnificent tools for the realization of our dreams, but no machine can replace

the human spark of spirit, compassion, love, and understanding.” – Louis Gerstner

Computers are capable of performing a lot more mathematical operations than an average human

being. These machines were traditionally used for performing complex computational tasks for

scientific exploration. As their size decreased with the advances in silicon technology, the era of

personal computing began to grow. Initially, personal computers were capable of doing simple tasks

like viewing digital photographs, editing documents and accessing internet. Since then, immense

advances in the hardware technology and human-computer interaction techniques have made these

machines much more accessible and useful to us. Today, personal computing devices like laptops,

phones and tablets are becoming great assistants to human beings. We are witnessing an increasing

shift from doing a lot of tasks by hand (physically) to doing them digitally (virtually), e.g. preparing

documents/presentations, messaging, game play, paintings, 3D modeling, etc. Key reasons behind

this shift are the advantages that virtual tasks offer –

• No limitation of having all the required physical resources, since they can be simulated. E.g.:

playing the game of bowling and many others using a Wii R© mote.

• Ease of modification/correction during the task or in a post-processing phase. E.g.: Editing

digital photographs for better color settings or cropping out unwanted parts.

• Portability and ease of sharing the result. E.g.: Putting up a digital painting for sale on the

online websites.

• Assistance from online knowledge bases can be seamlessly built into the system. E.g.: spell-

check for documents.
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(a) Modeling with physical Lego R© blocks. (b) Virtual modeling with Lego Digital Designer R© tool.

Figure 1.1: Building models with physical Lego R© blocks is much more fun and intuitive than using
a keyboard and mouse to click and drag blocks into place in a software-based tool like Lego Digital
Designer R©.

These advantages make a strong case for doing all our tasks virtually. Researchers have devel-

oped human-machine-interfaces allowing users to do the tasks virtually. However these interfaces

tend to differ from the way users would do the same tasks in the physical world. Researchers have

tried to minimize this gap by developing interfaces that do not involve the traditional keyboard and

monitor style interaction. Instead, users work with a stylus or even their hands to manipulate 2D vir-

tual content on a surface [56, 11, 24, 55, 83, 81, 84, 13, 75]. Thus, users can now do many 2D tasks

like writing, sketching and moving widgets around in a natural way while getting all the advantages

that virtual tasks offer.

Unfortunately, the current interfaces for working with 3D content are not quite as natural. Fig-

ure 1.1b shows a screenshot of the Lego Digital Designer R© system for making block models. The

user uses a mouse for clicking, dragging and placing blocks in a 3D virtual space. This is highly

non-intuitive compared to building the model with physical blocks as shown in Figure 1.1a. Such

non-intuitive interfaces are also common for tasks like 3D modeling, animation design and 3D nav-

igation. For this reason, it is hard for lay users to work with software tools to create virtual 3D

content.

The goal of this dissertation is to make it easier for the users to create 3D content. The central

idea is to remove the intermediate layer of a software tool that a user would traditionally have to
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use to access the virtual content. Instead, a better way is to observe the user work with physical

3D content and then use technology to transfer that into the virtual world automatically. Hence the

user gets to create the content both in physical and virtual ways and enjoys the advantages of both

these modes. Based on this idea, some researchers have developed immersive environments and

augmented reality-based systems [41, 48, 2]. However, many of these systems are too application-

specific and at times require sophisticated hardware which may not be easy for a lay user to set

up.

Microsoft’s Kinect R© for game play serves as a good example of what a natural interface for

working with virtual 3D content could look like. Instead of using buttons to control the 3D digital

avatars, the camera tracks the human body pose [75] and maps the motion to the avatar. Thus the

user can literally walk around and jump in his living room while making his avatar do the same

for game play. The product has received rave reviews from people all around the world who claim

that this interface makes them play the game rather than control the game. Currently this system

is specific to tracking human bodies and cannot be generalized to work with different types of 3D

content.

In this dissertation, I design and explore a more general framework in a slightly different setting.

It allows the user to do a task physically on a planar work surface, while the task is replicated

virtually using a sensing mechanism. The virtual counterpart can be appropriately modified at any

stage and can be easily shared across different users or setups. The framework also allows the

user to use physical proxies for high fidelity virtual counterparts. In addition to this, it allows for

back and forth feedback between the virtual and physical world using different modalities. More

importantly, the framework is modular in nature, enabling different applications to be plugged into

the same setup easily. Thus, the playspace framework aims to achieve all the advantages of doing a

task virtually while still allowing the user to do it physically.

In the following section, I describe the concept of a playspace in more detail and a few applica-

tions that I use it for. Finally I conclude the chapter by outlining the organization of this dissertation.
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Figure 1.2: Playspace organization: User works on a planar work surface which is divided into two
regions. The Play Area is mapped to a part in the virtual world which is rendered on the screen in
front of the user. Any physical object manipulations in the Play Area are tracked by the camera and
reflected in the virtual world on the screen. Control Boxes are volumetric regions which can be used
by applications as check boxes, buttons or sliders using physical props as handles. The playspace
also integrates input through voice and standard devices like keyboard and mouse.

1.1 Playspace

A playspace is an interactive system that aims to combine the advantages of doing a task physically

and virtually. Figure 1.2 shows the overall organization of a playspace. In this setup, the user works

on a planar work surface. The surface is divided into two parts – Play Area and Control Boxes. Any

physical objects in the Play Area are tracked in real-time using the Kinect R© color+depth camera.

The Play Area is exactly mapped to a part of the virtual world which is rendered on the display
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Block Model Assembly Digital Storytelling 3D Scene Design

Figure 1.3: The dissertation presents novel interactive systems for virtual 3D content design appli-
cations – Block model assembly (Chapter 3), Digital storytelling (Chapter 4) and 3D Scene design
(Chapter 5).

screen in front of the user. The tracked motion of physical objects is reflected in the virtual world in

real-time. The Control Boxes can be used for gesture-based inputs. Further the playspace integrates

other input modalities like voice-based commands or keyboard and mouse inputs. I would like to

emphasize that the playspace is a general framework in which different applications can be plugged

in. I describe the process of setting up a playspace in detail, in addition to the algorithms for

analyzing various input modalities, in Chapter 2.

In this dissertation, I also explore the use of playspaces for three different applications, broadly

related to assisted creation of 3D content - block models, animations and 3D scenes. The existing

software-based tools for these applications have a steep learning curve and hence their usage is

limited to expert users. I strongly believe that such tools for expressing one’s creativity should

be accessible to lay users even if they trade off content fidelity with accessibility. I demonstrate

that playspaces can be utilized for these applications to enable novel interfaces for expressing and

sharing one’s creativity.

I now briefly describe the three applications. Each of them has novel algorithmic contributions

related to real-time analysis of the camera feed and providing context-specific assistance to the user.

(a) Assembly of Block Models.

Building block models with Lego R© or Duplo R© blocks is a popular hobby across adults and

children. The block sets usually come with a set of instructions to put together a preconfigured
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model. These instructions can be hard to understand at times for users and any undetected

mistake can require backtracking and re-doing a lot of steps. Instead, it will be better to have

technology detect any mistakes and automatically and assist the users to make corrections.

I propose a system DuploTrack [27] where a user works in a playspace with physical Duplo R©

blocks to build a pre-defined model. The system uses a novel 3D-tracking based guidance

method to present instructions to the user. It also tracks the assembly process in real-time,

points out any mistakes and helps correct them. The capability to track the assembly process

also enables the system to learn how a new block model is assembled by a user. This learned

representation can be used to share the model with other users via automatically generated

representations like virtual 3D mesh models, static instructions, instruction videos or by boot-

strapping it back into the system for guiding a new user.

DuploTrack is a novel system which guides a user to build pre-configured block models as well

as automatically learn the assembly of a new model by watching a user build it. In this work,

I also report on a user study which compares the traditional figure-based guidance methods to

DuploTrack’s guidance method. DuploTrack forms a basis for developing more sophisticated

algorithms in the future for complicated tasks like furniture assembly, fixing bike parts, chang-

ing a printer cartridge etc.

(b) Digital Storytelling.

Animations are a great way to tell a story. However, the current tools for creating animations

like Maya R© have a steep learning curve which may prohibit a lay user from using them. I pro-

pose a novel puppeteering-based interface for creating digital 3D animations using playspaces.

The first part of this work, 3D-Puppetry [30], was done in collaboration with Robin Held and

Maneesh Agrawala from UC Berkeley. 3D-Puppetry allows users to act out stories using phys-

ical objects in a playspace. These stories are tracked in real-time and are converted to digital

animations on the fly.

From our user studies with 3D-Puppetry, we learned that lay users often do not have the same

artistic knowledge about depicting animated motion as trained animators. Hence they often

record different motion depictions of the same story and then choose the one which they like
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the best. However, it is common that the user likes or dislikes different parts of the different

takes, and it is hard to achieve the perfect story in repeated attempts.

I present a system MotionMontage which allows the users to record multiple takes of a story and

roughly annotate the parts based on their liking. I then propose a novel algorithm to combine

these annotated takes into a montage which preserves the users’ annotations and maintains the

temporal continuity. This allows the user to achieve a perfect animation with a few imperfect

takes. I also report on a user study which shows that users find the system easy to use and that

the montage is perceived significantly better than the individual takes.

(c) Design of Virtual 3D Scenes.

Virtual 3D scenes are commonly designed by animators for animated movies, games, advertise-

ments etc. As with digital animations, the software tools have a steep learning curve and hence

are not very accessible to lay users wanting to express their creativity. Games like Minecraft R©

allow players to build virtual scenes by placing and moving simple block primitives. These

simple yet powerful games motivate the need for research towards more intuitive interfaces for

lay users to design 3D scenes.

The key limitation of the existing interfaces is that the motion of the input device does not map

directly to the 3D positioning and motion in the virtual world. Hence I propose a system where

the working 3D volume of the playspace is mapped to a volume in the virtual scene and the

user can use any 3D physical object as a controller. The motion of the controller is directly

mapped in the virtual scene and hence the user has a better 3D perception about the scene. The

controller can be used to move, resize or delete existing objects in the scene or add new objects

from a database. Again, different input/output modalities of the playspace have the potential to

make this a simple, intuitive, and powerful interface to quickly design virtual 3D scenes.

This work is still at a primitive stage. Ideally, the user would be able to use simple proxies in

the Play Area of the playspace to arrange a 3D scene. These 3D scenes can then be used for

digital storytelling or as prototypes for professional designers to work on. This system can also

be extended to collaborative scene designing systems. There is a lot of related research in the
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field of 3D design and modeling which can be integrated to improve the user experience and the

quality of the results.

1.2 Organization of the Dissertation

In this dissertation, I propose and explore a novel playspace framework that allows the users to

perform tasks both physically and virtually in a seamless way. The framework provides a number

of input modalities to the users and allows for plugging in different applications easily. I describe

the hardware setup and the underlying software framework of a playspace in Chapter 2. Then I

demonstrate the efficacy of playspaces with three applications – Assembly of Block Models (Chap-

ter 3), Digital Storytelling (Chapter 4) and Design of Virtual 3D Scenes (Chapter 5). Each of these

chapters include a discussion about the prior research in these domains, detailed description of the

corresponding algorithms and user interaction design, performance analysis through user studies,

and current limitations. I conclude this dissertation in Chapter 6 by summarizing the contributions

and discussing future work directions.



9

Chapter 2

SETUP AND ALGORITHMS FOR PLAYSPACES

“It’s not enough that we build products that function, that are understandable and usable,

we also need to build products that bring joy and excitement, pleasure and fun,

and yes, beauty to people’s lives.” - Donald Norman

2.1 Overview

A playspace allows the user to interact with a virtual world that is rendered on a display screen.

The interaction takes place through multiple modalities. Figure 1.2 shows the organization of a

playspace. The planar work surface is demarcated into two regions – the Play Area and Control

Boxes – and a Kinect R© color+depth camera looks down at the table. A part of the virtual world is

directly mapped to the Play Area and any physical objects in this region are tracked in real-time.

The user can manipulate the physical objects to reflect the changes exactly in the virtual world on

the screen. The playspace also allows for more input modes – gestures in Control Boxes, voice

commands and devices like keyboard and mouse. Any application running in a playspace analyzes

the input modalities and provides a context-specific real-time visual feedback on the display screen

superimposed on the virtual world.

Figure 2.1 shows the software framework of the playspace. The streams from the input modali-

ties are given as input to the playspace algorithms –

• RGBD Processing module for camera feed. The PCL library [67] is used to access the

Kinect R© sensor’s camera color+depth feed which is analyzed using computer vision algo-

rithms. I describe these algorithms in detail in Section 2.3.

• Voice Recognition module for microphone feed. Voice recognition is done using the Julius

library [46] for Linux platform. The application defines a grammar which is given as input



10

Voice commands

Keyboard/Mouse
 events

Object Poses

Segmented
Point clouds

RGBD Processing 
Module

Kinect camera

Microphone

Keyboard/Mouse

Display Screen 
renders 

Virtual World

APPLICATIONPLAYSPACE ALGORITHMS

Voice Recognition 
Module

Event Handler

INPUT MODALITIES PROCESSED INPUTS VISUAL FEEDBACK

Any application
that wants to use

playspaces

Figure 2.1: Software framework of a playspace. The streams from the input modalities are given as
input to the playspace algorithms – RGBD Processing module (for camera feed), Voice Recognition
module (for microphone feed) and Event handlers for keyboard and mouse. The outputs of these
algorithms are given as controls to the application running on the playspace. The application renders
the virtual world and provide context-specific visual feedback on the display screen.

to the library. The library is fairly robust for American accents and also provides confidence

values for the detected words which can be used by the application for robustness.

• Event handlers for keyboard and mouse. These handlers are implemented using in-built call-

back functions in OpenGL [70].

The outputs of playspace algorithms are given as inputs to the application running on the

playspace. The application renders the virtual world and provides context-specific visual feedback

on the display screen. The OpenGL library [70] is used for 3D rendering on the display screen.

All the components of this framework are implemented to run in parallel on the Ubuntu-based ROS

platform [62].

In the next section, I explain how a playspace is set up initially. This involves setting up the

hardware and some preprocessing steps for initializing the playspace algorithms. Next, I describe

the computer vision techniques for processing the camera feed in detail. Finally, I conclude the

chapter by summarizing the concept of playspaces.
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2.2 Setup of the Playspace

The configuration of various interface components of a playspace is flexible. This is an important

feature of playspaces which makes them easy to use under various conditions. The user needs to

first set up the hardware – work surface, the color+depth camera looking down at the work surface

and the display screen. He then scans the physical objects that need to be tracked in the Play Area.

Next, he defines the Play Area and the Control Boxes on the work surface and the system learns to

segment out the camera feed based on that. Finally the system learns a color model for the user’s

skin via a machine learning algorithm. I now discuss each of these components in detail.

2.2.1 Hardware setup

Figure 1.2 shows a possible hardware setup for the playspace. The user first needs a planar work

surface which can be a table-top or floor etc. The Kinect R© camera needs to be positioned in such

a way that it looks down on the work surface. The camera positioning has a couple of caveats.

First, it is better if the camera’s view direction is at an angle of about 20 to 40 degrees with the

normal of the work surface. This allows the camera to have a better geometrical view of the work

surface. Second, the height of the camera should not be too low since the depth sensors have a

limited working volume and cannot sense very close data. The Kinect R© sensor does not provide

reliable data for depths closer than 0.5m. The camera should be sufficiently high to closely cover

the work surface in its field of view. This allows it to use most of its resolution for relevant pixels.

The user can sit on one end of the working surface and place the display screen right across on the

other side to get a good real-time view of the virtual world while the task is done. Other devices

like keyboard, mouse, external microphone can be placed where it is convenient for the user to use

them. All the devices are connected to a computer on which the algorithms run in real-time.

2.2.2 Scanning the Physical Objects to be Tracked

The playspace tracks the 3D pose of rigid objects in real-time in the Play Area. The pre-requisite for

this is having the virtual 3D scans of the objects, also denoted as virtual models. There are many off-

the-shelf software tools which allow us to scan objects using depth sensors (e.g., KinectFusion [35]

or ReconstructMe R© [28]) or color sensors (e.g., AutoDesk R© 123D Catch R© [9]). These algorithms
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Figure 2.2: Software tools like ReconstructMe [28] can create rough 3D scans of objects by moving
a Kinect R© around them.

rely on fusing multiple depth and/or color images and work fairly well. Figure 2.2 shows a couple of

examples of scans obtained using the ReconstructMe [28] tool. The scan quality is still not perfect

and will improve as the sensors and fusion algorithms improve. The users can also use expensive

laser scanners or existing CAD models to obtain high fidelity virtual models.

The current implementation needs the virtual models in the PLY format for tracking. I use

MeshLab [80] to convert the different file formats to PLY format. I also compute the per-vertex

normals for the virtual models using MeshLab. These are used in the tracking algorithm which is

described later.

2.2.3 Defining the Play Area and Control Boxes

The work surface of a playspace has a Play Area in which the physical objects are tracked, and a set

of Control Boxes which can imitate toggle buttons or sliders or can be used for gesture recognition.

The number of Control Boxes required can vary with the application that uses the playspace. For the

purpose of this discussion, I consider the Play Area and Control Boxes together as a set of volumetric

boxes bounded at the bottom by the planar work surface and height parallel to the plane normal.

On start up, the system fits a 3D plane to the work surface using a RANSAC-based tech-

nique [23]. The assumption here is that the work surface forms a majority plane in the camera’s

field of view which was also suggested during the hardware setup. The output of the Kinect R© cam-

era is a 3D point cloud. RANSAC considers sets of 10 randomly chosen points from the point cloud
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Figure 2.3: The volume for Play Area is computed by first asking the user to click four corner points
in clockwise order. These four points define the bottom surface of the volume for Play Area. The
system assumes that the Play Area extends perpendicular to the work surface, i.e. bounded by four
walls in the direction of work surface’s normal n. The system computes a normal for each wall of
the Play Area such that the normal points inside the volume. These normals can be used to check if
a 3D point inside the volume or not.

and fits a plane using a standard least squares formulation [63]. The algorithm repeats this for dif-

ferent random sets of points and chooses the plane which gets the maximum support from the 3D

point cloud, i.e. the number of 3D points which vote for lying on that plane. Mathematically, this

plane is denoted by a 3D point (P ) and the normal vector (n).

The user can define each box by a simple process. The user is shown a screenshot from the

Kinect R©’s viewpoint. He clicks four corner points in clockwise order for the bottom surface of each

box that needs to be defined. The corresponding four points in 3D are used to define the four planar

surfaces (walls) perpendicular to the work surface, thus bounding the box on the sides. Let the four

points for the Play Area be ({A,B,C,D}) as shown in Figure 2.3. The first wall connecting A and

B is a plane containing these points whose normal vector is (B − A)× n. Similarly we can define

the planes for all the four walls for the box. We can use this to classify whether a given 3D point is
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inside a box or not. A point is inside a box if it lies in the positive half-spaces of the normals for all

the four walls and the bottom surface. The direction relative to the normal of a plane can be checked

by taking the dot product of the plane’s normal vector with the vector from a point on the plane to

the 3D point. A positive value indicates along the direction and opposite otherwise.

Hence, the user defines all the boxes in the work surface (Play Area and Control Boxes) and

the system computes their volumetric representations. This will be used in the segmentation step

described later to discard any pixels that do not lie in any of the boxes.

2.2.4 Learning Color Model for User’s Skin

The system needs to segment out the user’s hands in the Play Area for tracking the objects. This

segmentation is done using a skin-color-classifier learnt at this step. After defining the Play Area,

the user runs the module for learning the skin color and waves his hands in the Play Area. The

system segments out the hand pixels from a window of 10 frames using the background subtraction

technique (discussed in the next section) and builds an aggregate histogram using those pixel colors

in HSV color space. The color channels lie in the range of 0.0 to 1.0 and each channel’s histogram

bins are of the size 0.2. The color bins having more than 10 pixels are chosen to be skin color bins.

The learned color model is used for skin color classification. If a pixel’s color lies in a skin color

bin after conversion to HSV color space and quantization, it is classified as user’s skin. Otherwise

the pixel is considered part of the object to be tracked.

There has been a lot of research for building general skin color models [40]. However, there is

no standard color model that works well for all users. Since we need a reasonably high classification

rate and our system is already interactive, I use the per-user approach to learn a skin color model

separately for every user. The color models for the users can be saved over time and need not be

learnt again if the lighting conditions do not change considerably.

2.3 RGBD Processing Module for Kinect R©’s Color+Depth Feed

Figure 2.4 shows the processing pipeline for the feed from the Kinect R©. The Kinect R© camera

provides a continuous stream of images with an RGB color and depth at each pixel. The Segmenter

module takes each color+depth image from the camera and prunes it to the pixels corresponding to
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Figure 2.4: The RGBD Processing module receives color+depth images from the Kinect R© camera.
It first segments each image to extract the foreground pointclouds in the Play Area and the Control
Boxes. It tracks the object in the Play Area using the its virtual replica’s pointcloud. The pose of the
object in the Play Area and the two foreground clouds are returned as outputs.

Color+Depth image
from Kinect
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Figure 2.5: The segmentation algorithm works in two stages. In the first stage, it uses background
subtraction followed by a test of inside Play Area or Control Boxes to extract the foreground. In
the second stage, it uses the skin color model learnt at start to remove the pixels corresponding to
skin. It gives out the 3D point clouds corresponding to the remaining pixels in the Play Area and
the Control Boxes.

the physical objects in the Play Area. It passes the corresponding 3D point cloud, denoted by Pc,

to the Tracker module. It also extracts the pixels in the Control Boxes and converts that to a point

cloud which forms one of the outputs. The Tracker module tracks the physical objects and provides

their poses as an output. I now describe the segmentation and object tracking algorithms in more

detail and discuss their limitations.

2.3.1 Segmentation

The segmentation algorithm receives a color+depth image and returns two point clouds correspond-

ing to (a) the physical objects in the Play Area and (b) the foreground pixels in the Control Boxes.
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The algorithm works in three stages as shown in Figure 2.5 –

1. Extracting the foreground in Play Area and Control Boxes.

First, the system removes background pixels via background subtraction. The system starts

with an empty work area and stores the background depth for each pixel. For subsequent

images, for every pixel in the incoming depth image, if the observed depth is less than 95%

of the background depth, that pixel is marked as foreground. The 95% value is empirically

determined to counter the depth inaccuracies from the Kinect R© camera. This simple test

removes a lot of background clutter and leaves the pixels that correspond to any moving

background or relevant parts on the work surface.

Next, the system removes all the pixels whose corresponding 3D points are not inside the

Play Area or any of the Control Boxes. The 3D point for a pixel can be obtained by backpro-

jecting the pixel using its observed depth value and the camera’s internal parameters which

are known beforehand. Checking whether this point is in a 3D box can be done as described

earlier in Section 2.2.3. After doing this for all the pixels, the remaining pixels correspond

to user’s hands and physical objects in the Play Area and the Control Boxes. The 3D points

corresponding to the pixels in the Control Boxes are directly given as the output without fur-

ther processing. The remaining pixels from the Play Area undergo one more filtering stage to

remove the pixels corresponding to the user’s hands.

2. Removing Skin-color from the Play Area.

The stage uses the learned color model for the user’s skin, described in Section 2.2.4, to re-

move any pixels in the Play Area whose colors lie in the skin color bins after being converted

into the HSV color space. The remaining pixels in the Play Area correspond to the physi-

cal objects and the corresponding point cloud is passed on to the Tracker module for pose

estimation.

Performance and Limitations

The depth-based background subtraction is observed to work very well for removing the static back-

ground clutter. Ideally, the order of the first two stages can be switched. However, doing background
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subtraction first helps because it involves lesser floating point operations per pixel compared to

checking a 3D point for lying inside volumetric boxes.

The skin-color segmentation algorithm has problems when the color of the physical objects is

close to the user’s skin. This leads to some parts of the physical objects getting segmented out at

times. One straightforward, if not elegant, solution to this is to make the user wear special colored

stockings on the hands. However, there are a couple of solutions that might work better. Heat sensors

have been used by researchers [21] to detect and track human body parts and can be useful in this

case too, albeit at the cost of an additional sensor. Another solution might be to use an algorithm

which fits a user’s hand and forearm in the scene and then tries to segment it out. I leave these ideas

for future research.

2.3.2 Object Tracking

A key component of the system is the ability to track the physical objects in the Play Area. In this

section, I will only discuss tracking of one rigid object using the segmented point cloud from the

Kinect R©. Tracking multiple objects was done as a joint work with Robin Held for the 3D-Puppetry

system [30] and does not form the part of this dissertation.

As described in Section 2.2.2, we need to have the virtual 3D model of the physical model to

track it. The virtual model’s point cloud is referred to as Pv and the segmented point cloud of

the physical object as Pc for the purpose of this discussion. Tracking the object essentially means

that Pv needs to be aligned with Pc. The system uses the ICP (Iterative Closest Point) algorithm

proposed by Besl and McKay [12] to align the point clouds by solving for a 6D transformation: 3D

rotation and 3D translation.

Given an initial transformation T0 between the point clouds, the ICP algorithm iteratively solves

for the final transformation Tf . The algorithm first applies T0 to Pv to create a transformed virtual

point cloud. For each point in Pc, it finds the closest point in the transformed Pv, accelerated with

a K-d tree. Correspondences with distances greater than an outlier threshold are rejected. The

transformation is then updated by minimizing the total squared distances between the remaining

correspondences. This optimization is solved in closed form. The same steps are repeated with the

updated transformation until convergence. At each iteration, I reduce the outlier-rejection threshold.
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Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 2.6: The ICP algorithm [12] for object tracking computes a transformation that aligns the
red point cloud (virtual model) to blue point cloud (physical object). In each iteration, the algorithm
finds nearest neighbor correspondences between clouds and computes a transformation to align the
correspondences. This process is repeated till convergence and the transformations are sequentially
combined to compute the final transformation that aligns the two clouds.

Figure 2.6 shows a few iterations of the ICP algorithm to align the red point cloud Pv to the blue

point cloud Pc.

Since the ICP algorithm performs a greedy, local optimization, success depends on good initial-

ization, T0. Typically, T0 is set to the Tf from the previous tracked frame. However, when the object

first appears before the camera, there is no previous transformation available. Further, the system

can lose track of the object, e.g., when the motion is too fast. We detect loss of tracking when the

distance between the nearest point correspondences becomes too large. Thus, when tracking is lost

or a model is newly introduced, we require a method for pose initialization.

The initial pose can be computed by matching visual features, for instance SIFT [51], of the ob-

served physical object to a pre-compiled feature database of different views of the object. However,

the visual features do not work with objects which lack sufficient texture. Hence in this dissertation,

I use a 3D geometry-based method for initializing the pose. In the 3D-Puppetry system [30], we

combine the feature-based and geometry-based tracking algorithms to robustly estimate the pose. I

refer the reader to that paper [30] for more detail about this hybrid method.

Pose Initialization

To initialize the pose, we need to estimate a suitable 3D translation and 3D rotation. For 3D trans-

lation, I simply use the difference between the 3D centroids of Pv and Pc. To estimate an initial

rotation, I use a brute force approach to generate all possible orientation candidates to align Pc and
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Pv and evaluate them in parallel to find the best alignment. The parallel computation is done using

the pthreads library [58]. To avoid finely sampling all possible rotation values, I make use of the

fact that ICP algorithm can align two point clouds if they differ slightly in alignment. Hence I sam-

ple each rotation dimension at the resolution of 10 degrees which leads to a total of few thousand

candidates.

Then, for each orientation candidate j, the virtual model point cloud Pv is transformed using the

corresponding candidate rotation as well as the previously estimated translation. The visible parts

of the transformed Pv are selected using a depth buffer rendering from the camera’s viewpoint.

Then the ICP algorithm is used to refine the orientation to arrive at a candidate transformation Tj .

Applying Tj to Pv results in a candidate point set Pj to match against samples Pc from the Kinect R©.

The best transformation candidate Tj having the minimum match error between Pc and Pj is chosen

as the initial pose.

For the match error, one simple option is to use the proportion of points in Pc which do not find

a close match in Pv. However, it is hard to decide a 3D distance threshold for classifying a match

as close or not. Hence I use the difference in the projections of the two aligned point clouds as their

match error. This metric is observed to work better in general. The system renders the colored point

clouds Pc and transformed Pj from the camera’s viewpoint to create two color images. First, the

images are partitioned into abutting 50 × 50 windows. For each window, a color histogram is built

by clustering the pixels into the bins of corresponding colors. The pixels in Pc’s projection may

have saturated pixels which cannot be classified as any color. I put them in a separate bin called

saturated-color bin. I set the match error between the images as the sum of the match costs between

the histograms of corresponding windows.

I use the Earth Mover’s Distance (EMD) [65] metric to match any ith histograms in the two

images. This metric measures the cost of recreating the latter histogram by moving around the data

in former. There is a cost to move data between the bins. I set the cost to move pixels from any

color to a different color as 1. I set the cost to move pixels from the saturated-color bin to any color

bin as 0.
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The Special case of Block Models

Many of the applications described in this dissertation work with block objects, i.e., objects com-

posed of mutually orthogonal planar surfaces. In such cases, the rotation component of the initial

pose can be chosen from a much smaller candidate space. We can estimate the dominant face nor-

mal directions, resulting in a small set of possible rotations to align Pc and Pv. In fact, two normal

directions suffice, as the third direction can be inferred from the cross product of the first two.

First, normals at every point in Pc are estimated based on each point’s position and the positions

of its nearest neighbors. The normals are clustered into bins in direction space, i.e., bins over the

unit sphere. A Hough-transform finds a pair of mutually-orthogonal bins in the direction space

which have the most normals supporting them. Given this pair of directions, there are 24 possible

orientations of the X , Y , and Z axes such that any two line up with this pair. Hence the 3D rotation

search space can be pruned to testing 24 candidate orientations, j = 1...24. For tracking models

made of Duplo R© blocks in Chapter 3, I assume that the hollow side of the blocks does not face up

since there is not enough 3D geometry to track the model.

Performance Analysis and Limitations

The performance of the object tracking algorithm depends directly on the computational complexity

of the ICP algorithm. The ICP algorithm consists of two major parts that run in each iteration – (a)

Nearest neighbor correspondences between the point clouds and (b) Fitting a pose transformation.

The bottleneck for the algorithm is the first step of finding correspondences. Let us assume the

size of the point clouds to be n, where n is the number of points. One of the clouds is stored as a

K-d tree so the nearest neighbor search for one point takes O(log n) time. Hence the total time for

computing correspondences is O(n log n). I employ two techniques to improve this performance.

First, I run the nearest neighbor searches in parallel using pthreads library. The number of threads

running in parallel is limited to the number of hardware threads available to the processor. In the

future, we can also implement this on the GPUs to massively parallelize these searches. Secondly, I

put an upper limit of 1000 to the size of the point clouds. If the point clouds grow bigger than that, I

spatially downsample them uniformly by an appropriate factor to bring the cloud sizes under 1000.

The tracking algorithm still has some limitations. Parts of the object being tracked can get
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occluded by other parts of the object itself or the user’s hands. The tracking algorithm is not able to

align a complete point cloud of the virtual model to that of the physical object in case of significant

amount of occlusion. Occlusions can be handled by augmenting the tracking algorithm with visual

feature-based tracking as shown by Held et al. [30] in the 3D-Puppetry system. Tracking small

physical objects also causes errors. This is because the current resolution of the depth sensor is not

high enough to provide rich geometrical data about the physical object, thus leading to errors in the

alignment process. Newer sensors are seeing a significant improvement in the resolution and field

of view now, and I believe using such sensors will significantly extend the tracking range of the

tracking algorithm.

2.4 Summary

In this chapter, I have explained the hardware setup of a playspace and the algorithms for analyzing

the input feed from various modalities. The algorithms run in parallel and in real-time. I also

discussed the limitations of the algorithms and proposed how they could be overcome. The software

framework of playspaces is modular in nature and allows plugging in different applications easily.

In the subsequent chapters, I will discuss three applications related to creation of 3D virtual content

that benefit from this framework.
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Chapter 3

BLOCK MODEL ASSEMBLY IN PLAYSPACES

“You’ll see more and more perfection of that - computer as servant. But the next thing is going to

be computer as a guide or agent.” – Steve Jobs

3.1 Introduction

Block model assembly toys have retained their popularity over time. These are particularly liked by

children who start assembling models at an early age, developing spatial skills useful throughout life.

Lego R© and their larger cousin Duplo R© blocks are well known snap-together blocks for assembling

models. These blocks are designed to be easily assembled into interesting models and de-assembled

for reuse.

Model assembly often follows printed step-by-step instructions as shown in Figure 3.3a. Such

step-by-step instructions can be hard to follow and are not very robust to mistakes during the assem-

bly process. Also, rebuilding a model that we created at some earlier point in time would require

re-finding the instructions. Or if we want to share our original physical models with friends who

want to build a replica, there are no easily generated instructions. We could save/share the completed

model in its physical state but then we might run out of blocks while building more models, and even

so, the completed model serves as a poor instructional device. The Lego Designer Tool R© [77] al-

lows users to create virtual models using a keyboard and a mouse and can then generate instructions

for them. But making a model virtually can be far less intuitive than actually making the physical

model.

Ideally, we can save the construction of the model in some digital format from which it is easy for

the same user or others to rebuild it later in future. One could take photographs or video of the model

during construction. Casually captured videos of the construction process may be useful in guiding

the rebuilding process, but can be confusing or tedious to follow especially if there is any back-

tracking in the construction process. A user could also create a well-annotated set of instructions in
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Figure 3.1: System setup. The user builds the model in the Play Area and uses the Control Boxes
(Add/Remove/Recheck) to interact with the system. The Kinect R© looks down from the right and
passes the captured video/depth stream to our system to track the model and infer the assembly
process in realtime. Visual feedback is shown on the display in front of the user.

form of photos or figures like standard Lego R© blocks instructions; however, this requires great skill

and significant effort. We would like to enable users to build models with minimal interference from

the recording mechanism and to be able to store and transmit instructions to rebuild that model later

with ease.

Motivated by these issues, I implement a system, DuploTrack which allows the user to assemble

a block model in a playspace environment and infers the assembly process in realtime. Figure 3.1

shows a user using the system. It dynamically tracks the physical model in the Play Area and

displays a virtual replica on the screen in front of the user in the same pose as the in-hand physical

model. In Authoring mode, it records the step-by-step addition of blocks. Removal of blocks is also

handled, effectively deleting the previous addition of that block. In Guidance mode, step-by-step
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instructions are superimposed on the digital replica, again following the dynamically changing pose

of the physical model being constructed. The system detects mistakes made and gives appropriate

feedback to the user, thus avoiding the user’s frustration of undoing and redoing multiple steps for

making a correction in the assembly.

Figure 3.2: Our system uses 2× 4 and 2× 2 Duplo R© blocks of colors – red, green, blue and yellow.
These form the majority of the Duplo R© Basic Bricks Set 6176.

Although blocks come in varying shapes and sizes, to keep the inference problem computation-

ally tractable, the system works only with Duplo R© blocks that each have a 2×4 or 2×2 arrangement

of studs, and have colors – red, green, blue and yellow, as shown in Figure 3.2. These blocks form

the majority of the commercial Duplo Basic Bricks Set 6176. I later discuss how our solution can

be extended to include other different types of blocks.

In this work, I also report on a user study to answer some specific questions related to the

guidance system, comparing it to traditional guidance via static images. I measure time taken to

complete assembly tasks and count the number of mistakes made by users.

I explore two broad directions in this chapter – a novel way of guiding assembly process and

a realtime system to track and infer the assembly process. In the next two sections, I review the

prior work in these directions. I then present the design, implementation and potential applications

of this system. After that, I describe the user study, analyze its results and conclude the chapter by

discussing potential future work.
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(a) Traditional figure-based guidance. (b) High end augmented reality guidance [31].

Figure 3.3: Methods of guiding people for assembly tasks exist at extreme spectrums. Traditional
figure-based methods provide no feedback and may not be understood equally by everyone. In
comparison, the sophisticated augmented-reality based methods require a considerable hardware
setup but provide continuous assistance from user’s viewpoint.

3.2 Related Work

3.2.1 Guiding the Assembly

Agrawala et al. [5] provide an excellent summary of the issues in designing the presentation of many

assembly tasks. Heiser et al. [29] and Agrawala et al. [6] have studied design principles for produc-

ing visually comprehensible and accessible instructions for assemblies, and develop algorithms for

producing such instructions. A key observation is that creating effective static instructions for three

dimensional tasks is difficult and should follow established design principles.

I now discuss some common modes of presenting assembly instructions to the users and discuss

what depth perception cues they provide.

Figure-based guidance. Figures (as drawings or photographs) are the most common way of

providing instructions in assembly tasks. The user is shown a figure or multiple figures depicting
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the current state of the model and showing where the new block goes as in Figure 3.3a. This type

of instruction is used both for toy models such as Lego R© as well as in many other assembly tasks

such as IKEA R© furniture assembly. Each figure provides monocular depth cues such as occlusion,

perspective, relative size, and shading. While all these cues can aid structural perception, the spatial

perception literature [19] has shown that motion cues also play a central role in understanding shape.

Motion parallax [22] and the kinetic depth effect [82] can greatly enhance the structural perception

of the model. In addition, any structure that the user understands from static figures needs to be

mentally aligned to the physical model in his hand. Once done, the user can add the new block. I

call this perceptual alignment from virtual model to physical model perception transfer. Perception

transfer can induce errors in structural understanding which I hope to minimize in our guidance

system.

Video-based guidance. An alternative to figure-based instructions is video-based guidance,

presenting the user with recorded videos of the assembly steps. The user can then pause, play or

repeat each video clip to understand the instruction and then perform it. Videos can provide the

same depth cues as figures, but also provide motion cues that lead to better structural perception.

Video instructions can also show the motion of the parts as they are being placed which can be

particularly useful if the task requires complex moves. However, the user may find it hard to control

the system, needing to pause the video sometimes to understand or replay the clip multiple times.

Further, the problem of perception transfer discussed for the figures still remains. Pongnumkul et

al. [60] have developed a system for generating Pause-and-Play video tutorials and discuss these

common problems.

Kraut et al. [45] have done experiments that show a significant increase in the performance

of users on a bicycle assembly task when they work in a collaborative work space getting video

instructions from their own viewpoint from an expert compared to doing the tasks using an online

figure-based manual. DuploTrack is related to this work in the sense that it provides live feedback

from the user’s viewpoint by tracking the model being built.

It is known that the spatial perception skills of an individual depend on many factors [26, 76,

61, 16] and while an instructional figure/video may be clear for one user, it might be confusing for

another. This observation suggests that an interactive system adapting to the users’ handling of the

model could improve the assembly process.
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Augmented Reality-based guidance. Augmented Reality (AR) techniques try to minimize the

problem of perception transfer by creating an immersive environment to merge the virtual instruc-

tions and the physical model. Augmented Reality has been applied to assembly tasks and tested in

user studies such as Tang et al. [78], Henderson et al. [31] and Boud et al. [14], which evaluate and

demonstrate the advantages of using AR techniques over the traditional figure-based techniques.

Hou et al. [33] have argued the benefits of using augmented reality and also mention the idea of

playing pre-recorded animation clips at each step of the assembly which are better than static fig-

ures. In all these systems, highly specialized equipment is needed as seen in Figure 3.3b, the models

are typically stationary and the motion cues are due to parallax caused by head motion. In Duplo-

Track, I use an inexpensive, widely available color+depth sensor along with a common computer

display to provide motion cues based on the motion of a real model held in the hand.

Guidance in DuploTrack. One of the goals is to solve the problems of perception transfer and

lack of control while providing the same visual cues as figures or video for structural perception.

The system tracks the physical model’s motion and continuously shows the replica on the screen in

approximately the same orientation as the user’s viewpoint with the instruction step superimposed

on it. The continuous rendering on the screen can be seen as a video that is being generated on

the fly from the user’s viewpoint along with the instruction. This instruction mode overcomes the

problems of lack of control and perception transfer.

Since the rendering on the screen is governed by the user’s handling of the physical model, the

user is in complete control of the pose of the model in which the instruction is being shown to him.

This minimizes the need for perception transfer. The system also provides all the depth perception

cues provided by the static images and the recorded video.

I experimentally compare our system with the figure-based guidance method that is most com-

monly used. I do not compare with the recorded video-based systems because, in essence, Du-

ploTrack is also a video-based guidance system where the video is not pre-recorded but generated

on-the-fly based on how the user views the physical model.
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3.2.2 Tracking the Assembly

There has also been work to track and evaluate the correctness of assembly steps presented to the

user. Molineros et al. [54] put encoded markers on each part for tracking it and detecting connections

with other parts. They also precompute a connection graph between parts and feature descriptors for

all configurations. Ju et al. [39] presented a system called Origami Desk which uses special hardware

built into paper to sense folds and hence detect completion of predefined steps. These frameworks

can be extended to a free mode where the user is allowed to connect any part anywhere or make a

fold anywhere. However, this involves precomputation to learn descriptors for the complete space of

allowed manipulations over all the parts. Searching over this space in realtime will be even harder.

In comparison, DuploTrack can track and evaluate an assembly process of Duplo R© blocks.

Recently, there has also been work on tracking manipulations done by user in the free mode.

Jota et al. [38] present a system which captures and projects virtual replicas of physical objects put

together by the user. However, the quality of the virtual replicas suffers due to the inherent noise in

Kinect R©’s depth sensing. There is no inference to establish connections between the parts. Ander-

son et al. [7] use special circuitry-augmented blocks to determine the assembly process of a model

and then convert it to a more detailed and less blocky virtual model. DuploTrack understands the

model assembly without any special hardware and also focuses on guiding the model’s re-creation

in a sequential manner.

In a contemporaneous work, Miller et al. [52] solve a similar problem of tracking and inferring

how a Duplo R© block model is built. They assume that the model always stays with its base on the

table to reduce the tracking to 3 degrees of freedom (DOF): two for in-plane translation and one

for in-plane rotation. Their representation is voxel-centric, rather than part-centric, requiring all

voxels occupied by the model to be seen to correctly model the assembly. These restrictions limit

their system to simple block models, usually built layer by layer. Their user study to measure model

acquisition accuracy shows scanning errors due to tracking misalignment, hand pixels, and parts that

are less visible. In comparison, DuploTrack uses 6-DOF tracking, allowing in-hand manipulation,

and belief accumulation from multiple views for inference of whole-part additions/subtractions,

and subsequently avoids many errors inherent in their system. Further, I enable two-way feedback

between the user and the system compared to only system-to-user feedback in their work. I believe
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this leads to richer human-computer interaction experience. Additionally, I report on a user study

comparing motion-tracked guidance to traditional methods.

3.3 System Overview

The system is set in a playspace environment where the user works with the model on a table surface

while a Kinect R© depth+color camera looks down obliquely on it, as shown in Figure 3.1. At the

back of the table is a display screen facing the user; when the physical model is being tracked, the

display screen shows a virtual replica of the model from the point of view of the user. A set of 2× 4

and 2× 2 Duplo R© blocks sits off to the side of the table within reach of the user. The table surface

has four demarcated regions - Play Area, where the user builds the model, and three Control Boxes

– Add Box, Remove Box and Recheck Box. The user can set up this playspace easily as described in

Chapter 2. The relative layout of the three Control Boxes must be as shown in Figure 3.1. This is

required because of the way the underlying algorithm processes data in these Boxes and I explain

this in Section 3.5.

As described above, the virtual model needs to be shown on the display screen from the user’s

viewpoint. However, there is no mechanism in the playspace to detect where the user is after he sets

up the playspace. Hence the system allows the user to adjust the view of the rendered virtual model

at any point of time using a standard virtual trackball interface [32]. I assume that the user does not

move around much while using the system. If he moves significantly, then the view of the display

screen will need to be adjusted again manually. This is currently a limitation of the system.

The system operates in two modes - Authoring and Guidance. In the Authoring mode, the user

builds a model by adding or removing blocks one at a time. The user can freely move around the

model in the Play Area during the whole process. A tracked virtual replica is shown on the screen.

To add a new block, he first places the new block in the Add Box and then adds it to the model. The

system checks where the block has been added. Once the system detects the block’s most likely

position, it shows the update in blinking mode superimposed on the virtual replica in the display.

If the detection is correct, the user can move to the next step directly. Otherwise, the user puts his

hand in the Recheck Box and the system checks again for the update. To remove a block, the user

removes it from the model and places it in the Remove Box and the system again starts the cycle of
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update detection.

In the Guidance mode, there is a pre-loaded model and a sequence of block additions required to

build it. As before, a tracked virtual replica of the model in the Play Area is shown on the screen, but

with the block to be added next also shown in blinking mode superimposed on the replica. To add

the block, the user first places the new block in the Add Box and then adds the block to the partial

assembly. The system verifies the update. If the update is correct, it loads the next instruction.

Otherwise, a notification is displayed providing feedback about the mistake and asks the user to

correct it.

For tracking the model and inferring updates, the system needs an internal representation for the

block model. I now describe that representation, followed by the system’s processing pipeline.

3.3.1 Representation for Block Models

It is assumed that the model resides in a voxelized space where each voxel is of size 16mm× 16mm

× 19.2mm, the official size of a 1×1 Duplo R© block. The model is made of 2×4 and 2×2 Duplo R©

blocks either red, green, blue or yellow in color.

The following structures are maintained for the model at any point -

• List of blocks where each block has a color (red/green/blue/yellow), type (2× 2 or 2× 4) and

list of voxels it occupies.

• Map of the complete voxelized space where each voxel is either unoccupied or maps to the

block occupying it.

• Mesh model used in rendering.

• Point cloud of the model, denoted as Pv, used for 3D alignments.

The system also has a mesh model and point cloud representation for one 2 × 4 block and one

2 × 2 block which can be added to or removed from the virtual model in any color. The mesh

models are from Google’s 3D warehouse, converted into a dense point cloud using MeshLab. The

point cloud Pv is a union of translated and rotated copies of these block point cloud, with points

removed in areas that are covered by other blocks.
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Figure 3.4: Processing pipeline: The playspace algorithms (Figure 2.1) provide the application,
DuploTrack in this case, with the physical model’s pose and the point clouds corresponding to the
Play Area and the Control Boxes. First, the system infers the instructions codes from the Control
Boxes’ point cloud. These codes and the other data are passed to the Update Detector module which
then checks for any updates to the model and accordingly updates the virtual model (if needed) and
provides visual feedback on the screen.

3.3.2 Processing Pipeline

Figure 3.4 shows the work flow of the system. The Kinect R© camera provides a continuous stream

of images with an RGB color and depth at each pixel. The tracking and segmentation algorithms of

playspaces, as described in Chapter 2, extract the 3D pose of the current model in Play Area. The

model tracking does not work very well if its size is small. Hence I assume that the model is static

when it is less than five blocks in size. I explain the effect of this assumption on the system’s usage

in Section 3.4.

The playspace algorithms also give out two sets of 3D point clouds –

• From the Play Area. This cloud is the observed current model after removing the background

and user’s hands.

• From the Control Boxes. These are point clouds from the Add Box, Remove Box and Recheck

Box. They correspond to user’s hands or any blocks that lie in these boxes and exclude the

background surface.

The system first converts the point clouds from the Control Boxes into a set instruction codes

– an op type (add, remove or recheck), op shape (2 × 2 or 2 × 4) and op color (red, green, blur

or yellow). I explain this inference in Section 3.5. The 3D pose, point cloud from the Play Area
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and the instruction codes, are then passed on to the Update Detector module. This module makes

any decisions about updates to the current model and provides appropriate visual feedback on the

display screen. I describe the details of this module in Section 3.6.

3.4 Tracking the Model in the Play Area

The tracking algorithm, as described in Chapter 2 runs at real-time frame rates. However, the model

tracking does not work well for small models below 4-5 blocks. There are two reasons for this:

• Noise in the camera data. The data from the Kinect R© is particularly noisy near depth dis-

continuities. For smaller point clouds this noise is a significant fraction of the data and the

tracking runs into problems.

• Structure mismatch. If the user adds or removes a block, we still track it using a pre-updated

virtual model until the update is detected and incorporated into the model. When the model

is small, the structural change of even one block confounds the tracking as the outliers from

the newly added block overwhelm the points from before the update.

To start a new model the user needs to place the first block in a fixed position in the Play Area

and add blocks to it at that location. This greatly reduces the possible candidates to search over.

Once the model has 5 blocks, this restriction is removed and the user can freely move the model

around. The system now dynamically tracks it as described earlier.

3.5 Inferring the Instruction Codes from Control Boxes

Each of the Control Boxes has a 3D point cloud associated with it, denoted by Precheck (Recheck

Box), Padd (Add Box) and Premove (Remove Box. From observing these clouds, the system needs to

infer the type of operation (op type), and the properties of the blocks being added – shape (op shape)

and color (op color).

The user uses the Recheck Box by placing his hand in it. He uses the other two boxes by

holding the block being added or removed in the corresponding box. Hence, the method to detect

which operation is being done can just see which of the boxes is occupied and set the instruction

codes accordingly. However, this simple maximum-occupancy based approach is incorrect. This is
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because the Recheck Box is above the other two boxes and hence those two may also be occupied by

user’s arms when he rechecks. Thus, op type is directly assigned to recheck if Precheck is sufficiently

big (more than 10 points). This threshold of 10 points is empirically chosen and is used further in

this section as a test for a point cloud being sufficiently big, and in turn the box being occupied. The

other two codes (op shape and op color) do not matter in this case and are set to default values.

If the Recheck Box is not occupied then we need to check if any of the other two boxes are in

use. If none of the other two boxes are occupied, then the instruction codes are set to invalid values.

Otherwise, we set op type to add or remove based on whether Padd or Premove is bigger is size.

Now we need to decide the block properties and set those in op shape and op color based on the

corresponding 3D point cloud.

The block to be added or removed can only have one of the four colors – red, green, blue or

yellow. Hence the colors of the points are quantized in these four categories using a simple nearest-

neighbor-based color classifier. op color is set to the majority color. Next, the system learns a set of

eight two-way classifiers, to identify op shape, one each for the combinations of the four colors and

two operations – add or remove. The classifier is a threshold value over the size of the point cloud.

The threshold value for an operation and a color is computed by averaging the two observed point

cloud sizes when a 2× 2 block and a 2× 4 block of that color are placed in that operation’s box. If

the observed size is greater than the threshold, op type is set to 2× 4 and 2× 2 otherwise.

We need eight classifiers because the observed point cloud sizes vary with the block color and

the operation. The dependence on block’s color is because different shades of the four colors get

segmented out differently by the skin-segmentation algorithm. The dependence on operation is

because the cloud size varies with the position of Control Boxes.

3.5.1 Limitations

This classifier for the block’s shape is very naive and has limitations. It does not handle occlusions.

For example a partially occluded 2× 4 block can be classified as 2× 2 because the latter is a subset

of the former. This classifier may not work when we introduce more block shapes in our system.

Hence we may want to use a more sophisticated feature, for example the number of studs. This new

classifier should work well under the assumption that the blocks are made up by putting together
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Figure 3.5: The Update Detector is implemented as a finite state machine with user input and tracked
data as input to update the model. In Authoring mode, it detects an update and applies it unless a
recheck is requested by the user. In Guidance mode, it detects and performs the update and displays
feedback to the user if there is a mistake.

1 × 1 basic Duplo R© units and are held with the studs facing up and completely visible. Handling

curved and articulated parts is a bigger challenge which I would like to address in future.

3.5.2 Making the inference more robust

The system infers the instruction codes for every frame and passes them to the Update Detector. As

the user’s hands enter or leave the Control Boxes, the occupancy and the observed clouds will vary

rapidly and per-frame inference may vary with them. Thus, we need to find a way to stabilize this

potentially noisy inference. I design a simple stabilization approach for this.

Before passing a valid set of instruction codes as output, the system waits until that inference

has stabilized over a window of 15 frames, i.e. for about half a second. Until then, the system

sends invalid codes as outputs. Also, once a valid inference is passed as output, the system does

not process a subsequent time window of 60 frames, i.e., a time frame of two seconds. The window

sizes are empirically chosen based on the typical speeds at which users worked with the system.

These policies are observed to provide robust inference of instruction codes.
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3.6 Detecting Model Updates

The Update Detector module gets a continuous stream of inputs in addition to the point cloud of the

“un-updated” virtual model, (Pv) –

• Point cloud of the physical model in the Play Area, (Pc).

• The tracked pose of the physical model, (T ). The pose T can also be seen as a transformation

that aligns Pv, which lies at the origin, to Pc. If a block is added or removed the alignment

may not be perfect. The system also extracts the points from Pc that do not find a good match

in Pv and mark them as outliers. When a new block is added, these outlier points indicate the

possible location to search for the addition.

• The instruction codes – type of operation (op type – add, remove, recheck) and color (op type

– red, green, blue, yellow) and shape of the block that is added or removed (op shape – 2× 2,

2× 4).

Separate finite state machines implement the Authoring and Guidance modes as shown in Fig-

ure 3.5. These are a formal representation of the system usage already described in detail in Sec-

tion 3.3.

In Authoring mode, when the user indicates an operation, the system checks for changes in

the model as the user moves the model around in front of the sensor. Once the system detects the

update, it echoes this in the display. If the user thinks the system is in error and asks for a recheck,

the system rechecks; otherwise, it updates the model and moves to the next step.

In Guidance mode, the system checks for the correct color and position of the block and gives

appropriate feedback to the user. It goes to the next step automatically if the detected update matches

the instruction otherwise it waits for the user to correct the mistake and ask for recheck. Note that

only block additions take place in the Guidance mode. Any block removals during the Authoring

mode effectively undo the previous addition of that block.
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3.6.1 Creating the Candidate Set for Updates

At any stage in the assembly the system maintains a set of candidate updates to the model. The

candidate updates are one of two types, addition or removal, depending on the indicated operation

in op type. In addition mode, the voxel space is traversed to find sets of unoccupied voxels where

a new block could be added. The shape of the block to check for comes from op shape. To ensure

connectivity in the model, these candidates must be connected to at least two occupied voxels; i.e.,

I assume the user is creating a single, rigid model, each piece connected to the model using at least

two studs.

In removal mode, the candidates are simply any block that can be removed without leaving the

remaining model disconnected, i.e. (1) either the space directly above those blocks or below is

completely free and (2) they are not the only connected neighbors to any other blocks connected

to them. The second condition does not apply when the remainder model has just one block. This

analysis is done via the voxelized representation of the model.

One more candidate is added to both modes which corresponds to no addition/removal, the state

of the model just before the user adds/removes a block.

For each valid candidate, j, the system maintain a belief, b(j), which denotes the belief that

candidate j should be chosen to update the model. The current belief is based upon the input stream

consisting of the physical model’s point cloud Pc and the transformation T that aligns Pv to Pc.

3.6.2 Updating the Belief Distribution

After each new block addition or removal, all the b(j) are set to 0. The b(j)’s are updated each time

new camera data comes in. It is often difficult to determine which block has been added or removed

from a single viewpoint due to input noise, occlusion, and structural ambiguities. Thus, the system

accumulate beliefs from more than one pose of the model as the user turns the model to reveal new

views.

From each pose, the possible candidates are scored based on how well the camera point cloud Pc,

matches with the virtual point cloud corresponding to candidate j, denoted by Pj . For an addition

candidate, Pj is obtained by adding the (colored) point cloud of the new block to Pv and removing

the points that get hidden by this block. For a removal candidate, Pj is obtained by removing the
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point cloud of the block from Pv and adding back the points that were hidden by this block. For the

no addition/removal candidate, Pj is simply equal to Pv.

To compute the matching score, first Pc is aligned with each of the Pj’s using ICP. The Pj’s are

structurally close to Pv and Pv has already been aligned with Pc using the transformation T . Hence

T is used as the initial transform for these ICP [12] alignments. Then the match error for each

candidate is computed using the same matching metric as used for comparing poses for tracking in

Section 2.3.2. For addition candidates, the error is set to infinite if the majority of outliers which

occupy the voxels of the candidate are not of the indicated color op color. The same is done for

removal candidates if the corresponding block is not of the indicated color.

The match errors are sorted in increasing order. The top three ranking candidates get the belief

scores of 3, 2 and 1 and the rest get a score of 0. To select a best update candidate, the system

requires beliefs from at least three poses separated by at least 10 degrees of rotation to make a deci-

sion (for small models, when the system is working with a fixed pose, this requirement is removed).

To accumulate beliefs from three well-separated views, the system begins with the initial transfor-

mation, call this T1, and average beliefs into a belief set b1(j) over subsequent nearby observations

until T has changed by at least 10 degrees of rotation from T1. This establishes a second transfor-

mation, T2, with a new set of beliefs b2(j) for each candidate. The system continue to collect beliefs

over subsequent nearby observations, averaging them with the beliefs corresponding to the nearer

of T1 or T2. We also continuously check for a new transformation, T3, at least 10 degrees from both

T1 and T2, and, if found, begin a new average set of beliefs b3(j). More views and distributions are

added if the user continues moving the model to orientations that are at least 10 degrees away from

all previous views.

Once belief sets associated with at least three well-separated views have been accumulated, each

set is normalized to sum to 1 and then all normalized sets are summed to get an overall set, B(j).

If the ratio of the highest scoring candidate in this set is at least 1.25 (chosen empirically) times

that of the second best candidate, then the highest scoring candidate is declared as the winner. If a

winner cannot be declared, then the system waits for more camera data from new poses to update

the beliefs, continuously checking for a winner as beliefs are updated. If the no addition/removal

candidate is the winner, which can occur if the user has not yet added/removed a block, the system

resets the belief sets and re-starts checking for an update.
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3.6.3 Moving to the Next Step

If the system selects a candidate as the update but the user then asks for a recheck, that candidate is

removed from further consideration, reset the belief sets, and the update checking process restarts.

In practice, I find that the user needs to request a recheck less than one out of twenty additions or

removals.

Once the model update has been identified (and approved by the user in Authoring mode), the

internal representation of the model is updated. The model’s virtual cloud Pv is set to the point

cloud corresponding to the winning candidate. For block addition, the new block is appended to the

list of blocks and map the corresponding voxels in the voxel space to it. For block removal, it is

removed from the list and the corresponding voxels are marked as unoccupied.

3.7 Performance and Applications

The system runs in realtime on a desktop PC with 12-core, 3.33GHz Xeon CPU and uses at most

500MB of RAM. To achieve this performance, the implementation is highly multithreaded with sep-

arate threads for tracking, rendering and checking updates. Within the update thread, the candidates

are evaluated in parallel.

The system takes about 2-5 seconds to infer each model update. The tracking works in realtime

although it lags slightly if the model motion is fast. I have used the system to build models up to

85 blocks in size. At that point the tracking speed reduces to about 5 frames per second. Figure 3.6

shows a few models that users have authored while using DuploTrack.

The bottleneck of the system is nearest neighbor correspondence search in ICP alignments for

tracking and candidate evaluations. These searches can be done in parallel for 3D points in a cloud,

but the number of CPU threads is limited. In the future I believe that my system can benefit from

exploiting the parallelization potential in GPUs as shown by recent works like KinectFusion [35].

I now describe a few applications of our system.

3.7.1 Generating Tutorials for Model Assembly

The captured assembly of a model is a sequence of add or remove operations. To generate an

assembly tutorial, we would like to omit any steps that involve adding and then later removing a
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(a) (b)

(c) (d)

Figure 3.6: Models authored using our system.
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block. I delete such add/remove operations from the representation. This may cause the remainder

of the sequence to have block additions which do not connect to any blocks added before them. I

reorder the steps by postponing the addition of such blocks until they have their first connection

with the prior model. I describe and analyze the reordering algorithm in detail in Appendix A. This

representation can now be used to then generate tutorials or explanations in form of images with or

without annotations [49, 53].

3.7.2 Ease of Sharing and Recreating Models

The captured assembly sequences from the Authoring mode can also be used as input to our Guid-

ance mode which uses exactly the same hardware setup. This allows for an easier way for people to

create and share their models with other users or save these representations for future re-creation.

3.7.3 Access to Virtual Replicas

The output of the Authoring mode is a virtual 3D replica of the model. These virtual models could

be used for different purposes, e.g., as content for games and animations.

3.8 User Study

There are many aspects of the Authoring and Guidance system for which we can ask questions that

can best be answered by observing user behavior. In this work, I conducted a study that focuses on

the Guidance system as it can be compared to other more traditional guidance modes.

In particular, I conducted a user study to focus on the differences between two interfaces for

providing instructions for adding blocks to Duplo R© models. The first interface (Baseline) provides

two static views of the model (with the new block) on the screen. The new block blinks, alternating

between opaque and semi-transparent. These views were manually chosen to give the best possible

view of the new block from two different directions. Figure 3.7a shows a photograph of this system

in progress. This interface is close to the current methods found in user manuals for the assembly

tasks. The second interface, (Track), is my tracking-based system which shows the virtual model

on the screen in the same pose as the physical model in the user’s hands. The display updates in

real-time as the user moves around the model. The block to be added is again shown in blinking
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(a) Baseline interface (b) Track interface

Figure 3.7: Photographs of the two guidance interfaces that I test in the user study. The Baseline
interface depicts two static views of the model. In the Track interface the orientation of the model
tracks that of the model in the user’s hand.

(a) Model A (b) Model B (c) Model 1 (d) Model 2 (e) Model 3

(f) Model 4 (g) Model 5 (h) Model 6 (i) Model 7 (j) Model 8

Figure 3.8: Initial models used in the user study tasks. Models A and B have 4 blocks each and
remaining models have eight blocks each. Participants added one block to each of the 8-block
models and 12 blocks in sequence to each of the 4-block models. The transparent block in each of
the models is the block that needs to be added next.
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mode as in Baseline. Figure 3.7b shows a screenshot of this interface. Please refer to supplementary

videos which show how participants use these interfaces.

For Baseline, I decided against using the more traditional way of showing before and after

figures of the step. Rather, in the two interfaces being tested, I use the same visualization for the

new block to be added to avoid the results being confounded by this difference. Also, I do not use

the mistake-detection capability in Track since I wish to directly compare the instruction modes.

I conduct two tests, one in which I focus on single-block additions, and the other on multiple

sequential-block additions.

3.8.1 Task Design

I assembled ten initial block models, shown in Figure 3.8. Models A and B initially have four blocks

each and Models 1 − 8 have eight blocks each. The task in the study was to add one block to each

of the 8-block models, and 12 blocks sequentially to the two 4-block models. Each participant had

to complete half of the tasks (4 one-block additions and one 12-block addition) with one of the

conditions, and then the remaining tasks with the other condition. I shuffled the models randomly

between the two conditions for each participant. Also, the order in which the participant used the

conditions was randomly decided to counter the effect of any 3D-perception learning that might

occur by completing the tasks.

For each block addition, I measured the time taken to add that block. I also noted if the block

addition was correct or not. I analyze the effect of the interface conditions on these two dependent

variables - the time taken to make the update and correctness.

3.8.2 Procedure

Before starting the assembly tasks, the participants were asked to answer a set of ten questions to test

their spatial visual ability. These questions had a mixture of Mental Rotation questions [72] and 3D

structure assembly and paper-folding visualization questions, which are commonly part of a spatial

IQ test. We might expect that the people with high spatial visual ability perform well in any interface

conditions and hence I wanted to test this possible dependence. I also collected information about

the gender, education level (undergraduate or graduate) and previous experience with Lego R© blocks
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on a Likert scale of 1 to 5. In my analysis, I wanted to analyze the possible effects of these factors

also.

After completing the initial set of questions, the participants started using one of the two inter-

face conditions. Before starting each condition, I gave them a demo of the interface with a training

model, separate from those in the tasks, and asked them to practice adding 4 blocks to it sequentially.

Under each condition, they first did the single-block additions to four of the 8-block models, and

then completed twelve block additions sequentially to one of the 4-block models. After completing

every block addition, the participants were provided feedback about the correctness of the block

addition. Providing feedback was important for the case of the 4-block models because I did not

want the effect of a mistake at an earlier stage to cause a mistake at a later stage. I did not record the

time taken for corrective feedback and correction in our time record of the task completion.

After the participants finished all the tasks, they were asked to fill a post-study survey which

asked for qualitative feedback about the two conditions. I asked them about their preference for the

systems, if any, and also for any other interface ideas that could help guide them better. I report

qualitative comments.

3.8.3 Participants

Sixteen participants (eight female, eight male, ages 20 to 30) volunteered. Twelve of them had built

models with blocks as a child and all of them had experience in doing some 3D assembly tasks like

furniture, electronics etc. Each participant’s study lasted for about 45 minutes.

3.8.4 Results

I analyze the results of the experiment in three ways. First, I discuss the one-block additions to

eight of the ten models across the users and the conditions to make a quantitative comparison of the

two interfaces. Second, I use the measurements from the twelve sequential block additions to the

4-block models to see how the time taken varies when the basic model remains the same. I analyze

each of the two models separately for this. Third and last, I report the qualitative feedback from our

participants about the two interfaces.
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Comparing the Interfaces for the One Block Additions

I analyze the results using two dependent measures - the time taken to complete the block additions

in milliseconds and the correctness.

I perform a mixed-model analysis of variance where Time is the dependent factor, and Par-

ticipant and Model are random effects. Modeling Participant as random effect accounts for any

variation in individual performance, and modeling Model accounts for any difference in difficulty

of block addition across the models. I use the following variables as fixed effects -

• Gender

• Score: The score of each participant on the set of ten spatial IQ questions.

• Education: Level of education - undergraduate or graduate.

• Experience: Personal experience with building Lego R© models (increasing scale of 1 to 5).

• Interface: The interface condition - Baseline or Track.

The mixed-model analysis reveals that only Interface has a statistically significant effect on Time

(F(1,104) = 4.4932, p< 0.05). The average time taken for the tasks using Baseline is 21.809 seconds

(stdev = 10.1s) and for the tasks using Track is 18.871 seconds (stdev = 8.1s), an improvement of

about 14%. The 95% confidence interval for the difference in the mean times is from 0.189 seconds

to 5.687 seconds of improvement for Track over Baseline.

I define the speedup as the percentage increase in the speed of performing the step using Track

vs Baseline. Specifically,

speedup = 100 ∗ (Time(Baseline)
Time(Track)

− 1)

A value above zero indicates that Track took less time and vice versa. In Figures 3.9a and 3.9b

I show the speedup for individual users and models respectively. Although the per-user and per-

model time averages have been aggregated over a small sample of the models and users respectively,
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(b) Percentage speedup for models.

Figure 3.9: Percentage speedup over all the one-block addition tasks (value greater than 0 means
that the Track interface takes less time).
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(a) Model A. (b) Model B.

Figure 3.10: The two 16-block models, each built by adding 12 blocks sequentially by the partici-
pants.

they provide evidence for the statistically significant improvement from the mixed-model variance

analysis.

In a second point of comparison between the interfaces, the users made 3 mistakes out of total 64

single-block additions while using Baseline while no mistakes were made in the same block addi-

tions while using Track. I observed that the participants preferred to take longer times to complete a

step rather than making a mistake as they were correcting their actions continuously before actually

adding the block to avoid making the mistake.

Comparing the Interfaces for Multi-Block Additions

Here, I analyze the times to add blocks one after the other to the same model. I want to see if

there is any dependence on the times taken as the model grows, or any dependence on the particular

steps or on the interface. For this, I consider two 4-block models to which the participants make 12

sequential block additions using the two interfaces, one interface per model. I do a mixed-model

analysis of variance for each of the models separately. Figure 3.10 shows the two complete models

and I refer to them as Model A and Model B. As before, I use Participant as a random effect and

Interface as a fixed effect. I add the size of the model (number of blocks) at every step, denoted by
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variable Step, as another fixed effect. In this analysis, I will call a step harder if it takes a longer

time to add that block.

For Model A, the mixed-model analysis reveals that Time is significantly affected by both In-

terface (F(1,11) = 5.3956, p < 0.05) and Step (F(11,154) = 11.6386, p < 0.0001). The mean times

for Track and Baseline interfaces over all the steps are 11.577 seconds (stddev = 5.38s) and 17.303

seconds (stddev = 17.08s) respectively. The 95% confidence interval for the difference in the mean

times is from 0.438 seconds to 11.014 seconds of improvement for Track over Baseline. Figure 3.11a

shows the mean times for the individual steps. We do not observe any correlation between the step

(which is also the number of blocks in the model) and the times taken. We do observe that some

steps take longer to complete than others, and hence are harder. The Interface by Step interaction is

significant (F(11,154) = 6.1956, p < 0.0001) with Track showing a stronger effect on harder steps.

Figure 3.11b shows the percentage speedup for different steps with the statistically significant data

points marked in red. By observing the significant data points, we can infer that using Track can

help users to understand the structure better particularly when the block update step is harder.

The participants made 7 mistakes in building Model A using Baseline compared to none using

Track.

For Model B, the mixed-model analysis reveals no significant effect of Interface on Time. The

mean times for Track and Baseline interfaces over all the steps are 10.028 seconds and 10.224

seconds respectively. Step does have a significant effect (F(11,165) = 3.5202, p < 0.0002) which

indicates the varying difficulty level across steps. Figure 3.12a shows the mean times for each

step. The Interface by Step interaction does show significant improvement of Track in some cases.

Figure 3.12b shows the percentage speedup for this model with the statistically significant data

points in red again supporting the observation that using Track can help the harder steps.

The participants made no mistakes while building this model using either of the interfaces.

Perhaps the most interesting observation with the multi-step models is that Track provides larger

improvements for the steps in the models which are harder than the others. To further quantify this

observation, I plot the speedups against the mean time taken to complete a block addition using

Baseline across both all the ten models. Higher mean time for a step indicates that it was relatively

harder. Figure 3.13 shows this scatter diagram. I fit a line using least squares to the points (shown in

red) indicating a positive correlation, ie. the speedup obtained using Track over Baseline increases
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Figure 3.11: Metrics for Model A – Mean time per block addition and Percentage speedup.
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Figure 3.12: Metrics for Model B – Mean time per block addition and Percentage speedup.
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Figure 3.13: Scatter plot of percentage speedup vs mean time taken to do a block addition using
Baseline (an indicator of the step’s hardness). Fitting a line using least squares (shown in red)
indicates a positive correlation between the mean time and speedup obtained by using Track over
Baseline.

with the difficulty of the step.

Qualitative feedback

Eleven of the sixteen users said that they preferred Track since it gave them flexibility of moving

the model around and understanding its structure better. It was less mentally taxing. Three users

preferred Baseline since they wanted the guidance to remain static and preferred to move the model

around to match the shown view and then add the block. Based on this, we can imagine another

interface which does the tracking in the background, and allows the user to ask for the instruction in

the current pose of the model if desired.

All the users said that the assembly process using Track was more enjoyable experience. They

talked about the ability to record stories using models and building virtual models on the fly. As one

user said, “This tracking-based system will make playing with Lego R© blocks more fun”.

Based on our interactions with the users, I feel that the type of guidance varies with users. While
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the tracking-based system does show improvement in model-building times and fewer mistakes

made, some users may still prefer the static views or getting static-views on demand.

Results Summary and Discussion

The results suggest that dynamically updating the pose of a virtual model to correspond with the

real model in a user’s hands can improve both speed and accuracy. I observed no mistakes made

with the Track system while a total of 10 mistakes were made with the static Baseline instructions.

I also observed significant speedups for the tasks with the dynamic systems.

Clearly, I have only scratched the surface of the questions raised. All of the models are quite

simple compared to the richness of Lego R© models available. I can conjecture that our results may

even be stronger as the complexity increases but I have only limited evidence for this from our

experiments. The simplicity of our models is also constrained by the technology. The resolution

of the Kinect R© device precluded using the smaller Lego R© block for example. I can hope that this

aspect of the system cam improve over time.

3.9 Conclusion and Future Work

I have demonstrated a system DuploTrack which tracks an evolving Duplo R© block model in real-

time. In Authoring mode, the system learns the assembly through block additions and removals. In

Guidance mode, a user is prompted to construct a predefined model by presenting instructions in

the same pose as that of the physical model. It also provides feedback about mistakes and appro-

priate corrections to the model. I discuss the shortcomings of existing static figures or videos of the

instruction steps and show how my guidance method avoids these. A user study comparing my sys-

tem with the traditional figure-based guidance method suggests that my method is able to aid users’

structural perception of the model and hence leads them to make fewer mistakes and construct the

models in less time.

Some people still prefer the traditional system because they do not want the instruction to move

with the physical model. In the future, a system which tracks the physical model continuously but

only shows the instruction in the current pose on demand may satisfy all users. Based on my infor-

mal discussions with the participants, I noticed that different people tend to use different features of
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the image for adding the blocks. While some looked at edges, others counted the number of studs in

the blocks, and others looked at visibility cues. An interesting future direction would be to analyze

what features people tend to use for different types of assembly tasks and adapt the presentation ac-

cordingly. Additionally, I can explore new human-computer interactions for guidance like the user

being guided to bring the physical model in the same pose as that of instruction. A user study could

also be done to correlate people’s spatial IQ scores to the guidance method that they prefer.

I hypothesized that depicting the virtual model on the screen in the same pose as the physical

model minimized the need of perception transfer. To further reduce that, we can try replacing the

display screen in our current system with a projector attached with the camera. The projector can

project the instruction step directly on the physical model or near it on the work surface. Further,

the projector can be used to display extra information about the model or its different parts for

educational or guidance purposes. I discuss the various augmentations and modifications to the

playspace framework in Chapter 6.

I want to extend this work in future to handle blocks of more sizes and shapes. Rigid blocks

made of standard 1 × 1 Duplo R© units are not hard to include as they easily fit into the voxelized

representation. We can identify the shape of the block when the user puts in it Add or Remove box

and evaluate the appropriate candidates. Developing descriptors for recognizing parts of curved

shapes and articulated parts also has interesting challenges. It would also be useful to move away

from a block-at-a-time update approach and allow for making sub-assemblies and merging them.

This might require a different model representation and present more computational challenges.

I would also like to extend our framework for other types of assembly tasks like furniture as-

sembly, and home repairs. This may require waiting for higher resolution sensors than the Kinect R©

or using multiple sensors and then fusing the data. However I also think some of the complexity can

be overcome with better algorithms. Tracking and candidate evaluation algorithms can be vastly

sped up by the use of GPUs in future. I discuss some more applications of the playspaces for the

assembly tasks in the concluding chapter.
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Chapter 4

DIGITAL STORYTELLING IN PLAYSPACES

“Life itself is the most wonderful fairytale of all.” – Hans Christian Andersen

4.1 Introduction

Visual story telling through puppets has been an age old art form. In the past few decades, digital

animation industry has grown leaps and bounds and has taken the concept of puppetry to an entirely

new level. The digital animators and artists use software tools like Maya, 3ds Max and Blender

to create high quality virtual animations. Currently these animation tools have a very complicated

interface to enable high fidelity controls for the animators. However, I believe that there should exist

more natural intuitive interfaces which allow novice users to easily create digital animations even if

it lowers the quality of the result.

(a) Toys for story telling. (b) 3D-Puppetry system for story telling.

Figure 4.1: Natural and intuitive interfaces for story telling. (a) Toys and puppets are the traditional
ways of natural story telling. (b) The 3D-Puppetry system tracks the moving physical objects using
a Kinect R© camera and renders their tracked virtual replicas on the screen in realtime to create an
animated story.
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An intuitive interface to tell a visual story for novice users is through physical puppets and

toys (Figure 4.1a). Hence we can develop systems which automatically track and transfer the acted

out motion to virtual characters and hence record an animation. There has been prior work in this

domain. Microsoft’s Kinect R© system [75] and commercial motion capture systems use human pose

tracking to control a virtual avatar for games and animations. Chen et al. [17] map the tracked

human skeleton to a virtual object to deform it in realtime. Johnson et al. [37] track a plush toy with

embedded sensors and map motion gestures in the physical space to virtual motions of the replica.

Lee et al. [47] and Dontcheva et al. [20] use marker-based tracking of fixed physical primitives to

move the virtual objects attached to them. All of the above systems track specific objects and hence

restrict the objects that a user may use for acting out a story.

Barnes et al. [10] present a Video-Puppetry system which allows the user to design 2D paper-

cutouts as puppets and feed them in the system. The system tracks the motion of these puppets on

a 2D surface in realtime and maps it exactly to the virtual replicas. Inspired by this we developed a

system 3D-Puppetry [30] which allows the users to act out the story using any physical objects and

the system converts the recording into an animation with virtual object replicas.

The 3D-Puppetry system uses the framework of a playspace. Figure 4.1b shows a user using the

system. As is the case with playspace framework, the user first scans in the physical objects that he

intends to use in the story. Then he acts out the story using objects in the Play Area which the system

tracks in realtime and renders replicas in a pre-selected virtual environments on the display screen

in front of the user. This rendering is also recorded as a video which is the resulting animation.

This system allows user to use some keyboard and mouse-based controls to edit the animation later

by changing light positions, camera viewpoint etc. We invited novice users to use the system and

the overall feedback about the experience was very positive. The users were able to start using the

system in almost no time and record simple yet creative stories. This work was led by Robin Held

and Maneesh Agrawala from UC Berkeley and hence does not completely come under the scope of

my thesis. I refer the readers to the 3D-Puppetry paper [30] for more details.

One significant drawback of 3D-Puppetry and all such performance-based 3D animation systems

is that they require the user to discard a take if any aspect of the motion was incorrect or undesired

and then repeat the take from scratch, hoping the next one will be just right. Yet, each take may

contain some parts that are better than others even if no complete take is satisfactory.
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Figure 4.2: A user working with the MotionMontage system to record multiple takes of a 3D ani-
mation. The user records takes for objects, one at a time, by moving the controller in the Play Area
while the Kinect R© camera tracks it. The Like Box helps the user to annotate the takes which is used
for merging them into a motion montage.

It is also a standard practice in movie industry where multiple takes may be required for one

shot. Such re-takes allow the director to capture variations in the dialogue, and try out different

positioning of the actors and camera angles. In performance-based 3D animation, a director may

ask the animator to perform multiple takes in order to test different styles of motion (e.g. a more

energetic performance versus a somber performance) and find the most appropriate style for the

shot. In film, there are instances of a single shot requiring many takes; for example, one shot in the

movie “The Shining” was reported to have needed 148 takes before the director, Stanley Kubrick,

was satisfied [50].

Motivated by this, I explore the idea of working with multiple takes for performance-based 3D

animation. In this chapter, I present MotionMontage, a system that allows novice animators to

combine multiple takes into a desired result, called the montage. The animator works in a playspace

environment and records one object’s motion at a time, as shown in Figure 4.2. The takes may vary

in style or trajectory of the motion. The system allows the animator to temporally annotate each take

based on their like or dislike of various parts of the take. The system then merges the best parts of

each annotated take into a single composite montage using a combination of dynamic time warping
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and optimization of a Semi-Markov Conditional Random Field. The user can repeat the process for

the same object to further refine the montage or to animate other objects.

The system also allows animators to create layered animations in which multiple objects are

moving at the same time. Although the animator must perform the motion of one object at a time,

the system plays back all of the motions together. To aid the animator in coordinating the motions

of the different objects, we introduce spatial markers indicating the positions of previously recorded

objects at user-specified points in time. The animator can place multiple spatial markers for one or

more objects to help plan the motion of the current object.

The key contribution of this work is a novel technique for combining multiple takes of an object’s

motion into a motion montage using a simple annotation-based interface. I also introduce the use of

spatial markers to aid in layering the motion of multiple objects. I report on a formal user study that

validates that the animation montage is generally perceived to be better than any individual take. I

evaluate this from both the perspective of the users who created the animations and from others who

only view the animations. In addition, we report qualitative feedback from a short informal study of

the use of markers to record multi-object animations.

Organization of the chapter.

4.2 Related Work

My system for combining multiple takes of performance-based 3D animations builds on several

areas of prior work.

4.2.1 Motion Synthesis and Blending

There have been several efforts to synthesize new motions by applying constraints or drawing on

sets of motion capture recordings.

Gleicher et al. [25] propose a formulation for synthesizing a motion sequence respecting a set of

spacetime constraints. They pose it as a global optimization over a high-dimensional motion space.

The optimization is non-convex and grows in complexity as the number of constraints increases.

The problem of combining takes could also be modeled as this kind of global optimization with

the spatial constraints coming from users’ annotations and temporal constraints coming from an
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alignment method like Dynamic Time Warping [57]. Instead, I exploit the structure of our problem

to propose a much simpler solution which leads to a one-dimensional optimization that can be

solved in realtime. Further, unlike Gleicher et al. [25], my method is guaranteed to closely follow

the original takes and the annotations.

Arikan et al. [8] use a database of motion sequences (captured using standard motion capture

systems) to synthesize a new motion sequence. Each frame in the motion sequences is first tagged

with actions like walk, run, jump etc. The user then specifies the desired action tags on a timeline

and the system computes an optimal sequence of motion frames satisfying the tags. Their algorithm

is based on representing the motion frames as a complete graph and then finding an optimal path

in that graph using dynamic programming [44]. In my case, the motion sequences are semantically

bound to a script and also vary in length of time. Hence a complete motion graph does not correctly

represent the allowed valid transitions between motion frames for the story. Instead, we use temporal

warping to align all the motion takes and then work with a graph that respects the temporal ordering

of the frames. Further, the montage in this graph is non-Markovian in contrast to Arikan et al. due

to an additional path constraint that we found necessary for editing the takes. Hence I propose a

different solution based on performing an inference in a semi-Markov Conditional Random Field

(CRF).

Kovar et al. [43] look at the problem of blending multiple, annotated, human motion capture

clips. They propose techniques for temporally and spatially aligning the clips and then do a per-

frame weighted average to blend them. I have found that taking weighted averages of existing takes

gives undesirable results. For example, if a user happens to give high weight to two distinct motions

that overlap in time, then the average at their overlap will not resemble either of the original motions.

Instead, I focus on piecing together sections from the original takes, respecting user annotations to

the extent possible, while finding good places to transition between the takes.

4.2.2 Interactive Compositing of Photos and Videos

This work on compositing multiple motion takes is inspired by Agarwala et al.’s [3] Interactive Dig-

ital Photomontage system for combining the best parts of a set of photographs. The user roughly

annotates the parts of each photograph that are desired in the composite and the system uses a combi-
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nation of graph-cut optimization [15] with gradient domain blending [59] to automatically generate

the composite image. Ruegg et al.’s [66] DuctTake system extends the approach of Agarwala et

al. [3] to compositing multiple videos. The MotionMontage system similarly allows users to anno-

tate the desired parts of each motion take, and automatically combines them into a motion montage.

Since we are working with 3D motion data rather than images or video, I use very different methods

for optimizing the final composite.

The remaining chapter is organized as follows. In Section 4.3 I describe how the playspace for

MotionMontage is setup and the processing pipeline. I then describe how the interaction model

through which the user creates montages for one or more objects in Section 4.4. Next, I mathemati-

cally formulate the problem of merging multiple takes and propose a novel algorithm in Section 4.5.

I then report on a user study in Section 4.8 to evaluate the usefulness of montages. Finally I con-

clude in Section 4.10 by summarizing the contributions of this work and discussing future work in

this domain.

4.3 Playspace Setup and Processing Pipeline

In this section, I describe how the playspace framework is used for the MotionMontage system.

Figure 4.2 shows a user using the system. The user works on a planar surface which is under

observation of a color+depth Kinect R© sensor. The surface is demarcated into two regions – Play

Area, where the user moves a physical object called a proxy, and one Control Box – Like Box through

which user annotates the takes. The display screen renders a virtual object in the same pose as that

of the tracked proxy. The keyboard and mouse are used to provide different input commands to the

system. The user can set up this playspace easily as described in Chapter 2.

Any physical object can be be used as a proxy to control the virtual object, as long as a virtual

model is available for tracking it. In this system, the user constructs the proxy with Duplo R© blocks

using the DuploTrack system 3, which then provides the model of the proxy to be used in tracking.

Currently I assume that there is only one proxy object. However the playspace framework can be

easily extended in future to load multiple proxy objects and automatically recognize the proxy at

runtime using computer vision features.

MotionMontage fits seamlessly the software framework of playspaces (Figure 2.1) as an ap-
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Figure 4.3: System functionality. The user chooses a virtual object from a pre-loaded database and
records takes for the object. After that, he annotates the takes and the system combines them into
a montage, which can be longer than any of the original takes. The process can be repeated for
subsequent objects.

plication. The playspace algorithms from Chapter 2 provide a tracked pose for the proxy and the

observed point cloud for the content in the Like Box. The system assumes that the Like Box is used

as a slider using a green block. The median position of any green pixels in the point cloud is com-

puted and scaled between 0 and 1 using the known width of the Like Box. This width is noted when

the user defines the Like Box by clicking the four points corresponding to it while setting up the

playspace (refer to Section 2.2.3). The controls from keyboard and mouse and mapped to appropri-

ate controls through which the user records, navigates and edits the takes. I describe this interaction

model in the next section.

4.4 System Functionality and User Interaction

The MotionMontage system allows the user to record 3D animations involving multiple objects, one

at a time. I first discuss animating a single object, and then discuss differences in this procedure for

animating multiple objects.

Figure 4.3 gives an overview of the system. The user first chooses a virtual object from a pre-

loaded database. He then records one or more takes for the object, based on a script, by moving a

physical object, called a proxy, in the 3D space in front of him. The tracked motion of the proxy

is mapped in realtime onto a virtual object on a screen. The next step is to annotate each take,

indicating which parts the user considers to be better or worse. The figure shows three discrete

levels of annotations although there is a continuous scale. After annotating the takes, the system

combines the best parts of each one into a montage animation.
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The user can then repeat the process to animate additional virtual objects, and the system com-

bines the montages of all objects to create the final animation. In the remainder of this section, I

describe the details the various interactions described above. The supplementary video shows the

effects of all these interactions in detail.

4.4.1 Setting up the Scene and Virtual Objects

The user first chooses a virtual background scene. The background scenes are created by placing

freely available 3D objects, downloaded from the internet. The Play Area on the table is mapped

to an area in the background scene. This mapping can be modified using keyboard-based controls.

Also, a trackball interface can be used to modify the viewpoint of the virtual scene at any point of

time.

The set of virtual objects is created by downloading instances from online 3D databases. It can

also be augmented with any models that the user may already have from scanning physical objects

or from other sources. The user can use keys on the keyboard to scroll through this set and select

the object that he wants to animate.

4.4.2 Recording a Take

The user starts recording a take by pressing a key on the keyboard. He then acts out the motion with

the proxy and ends the recording by pressing a key again. The user can record multiple takes with

this process. These takes may vary in length. However, the assumption is that all the takes follow

the same template story, and vary only in motion style. Arrow keys and standard playback options

allow the user to scroll through the takes and review them.

4.4.3 Annotating the Takes

The user annotates each take to indicate their varying satisfaction with each part of each take. Anno-

tations are made in realtime as the take is played. While the take is playing, the user moves a green

Duplo R© block in the Like Box to indicate the degree of like or dislike for the part of the take that is

currently playing. The Like Box acts as a slider, ranging from −5 to +5, with the block serving as

the thumb of the slider. Moving the block to the right side of the Like Box indicates like, while mov-
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Figure 4.4: Annotating a take. While the take plays on the screen, the user moves a green block in
the Like Box (top right). The system localizes the position of the block and annotates the take with
the corresponding slider value. Disliked and liked parts of the timeline are illustrated with red and
green, respectively. The degree of like or dislike, is reflected by the brightness of the color.

ing it to the left side indicates dislike. The tracked position of the block is re-scaled to the slider’s

scale. The user annotates the whole take in one play-through. Figure 4.4 shows a screenshot of the

user annotating a take with this process. When annotating a take, the user sees a motion, judges it,

and then physically moves the block. There is a natural time delay between the actual time of the

motion and the moving of the block to its intended position. To compensate for this lag, we shift

the recorded annotations back in time by 0.3 seconds. This value is based on the average human

reaction time [1] plus an empirically added delay for block movement.

The user navigates through the takes using keyboard keys and repeats the annotation process for

all the takes that he wants to composite for the montage. He then triggers the montage creation by

pressing a key and the system generates the montage in realtime. I now describe a novel formulation

and solution to this problem in the next section.
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4.5 Compositing the Takes into the Montage

In this section, I discuss the formulation for merging m annotated motion takes into a single motion

recording called a montage. I denote lth take as Tl and its annotation as a function al where Tl(t)

and al(t) give the pose and annotation values, respectively, at frame t. The annotation values lie on

a continuous scale of −5 to 5. The pose Tl(t) can be decomposed into a rotation quaternion and a

translation vector, Tl(t) = (ql(t), xl(t)).

The goal is to create a montage that utilizes the best parts of each take without introducing

noticeable artifacts due to switching between takes. The latter constraints mean we should find

transition points where different takes agree, and we should avoid frequent flipping from one take

to another. To determine the best set of switching points from one take to another, first all the takes

are aligned in time. All the takes are temporally warped independently to match a single reference

timeline. After warping, specific segments of each take are selected to create the montage on this

timeline. Finally, the timeline is unwarped so that each segment will be played at its original speed,

and then blend between adjacent segments over short intervals to create the final montage. We note

that unwarping the timeline is important to respect the user’s intentions; it is well known that timing

significantly affects the meaning of an animated motion [79].

4.5.1 Temporal Warp of the Takes

The system uses a Dynamic Time Warping (DTW) [57] algorithm to align all the takes in time.

For simplicity, we arbitrarily choose the first take as the reference, and warp all other takes to its

timeline.

Formally, take T1 is considered to be the reference take and then compute a monotonically

increasing function wl from the reference take’s timeline to the timeline of each source take Tl.

Each warp function wl can be written as a mapping,

wl : {1, ..., ||T1||} → {1, ..., ||Tl||} (4.1)

which is monotonically increasing,

t1 > t2 ⇒ wl(t1) ≥ wl(t2) (4.2)
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Figure 4.5: Dynamic Time Warping (DTW) finds an optimal warp function, wl(t), from the frames
of the reference take, T1 (x-axis), to the frames in the source take, Tl (y-axis). The values at each
point in the quadrant represent the match of pose between the corresponding frames in the reference
and the source takes. Darker color shows better pose match. The yellow path is optimal warp
function computed by the algorithm while the green path shows the naive linear-scaling-based warp.

and matches the start and end frames of reference and source,

wl(1) = 1 and wl(||T1||) = ||Tl|| (4.3)

The system solve for an optimal wl by minimizing the cost of bringing each reference frame into

alignment with a source frame summed over all frames t:

w∗l = argmin
wl

∑
t

Cmatch ( T1(t), Tl(wl(t)) ) (4.4)

The matching cost Cmatch measures the difference between two poses. For two posesA1 = (q1, x1)

and A2 = (q2, x2):

Cmatch(A1, A2) = ||q1 − q2||2 + λ||x1 − x2||2 (4.5)

λ is set to 2.5 based on experimentation.
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Figure 4.5 shows a visualization of the matching cost and the optimal wl. The standard DTW

algorithm [57] is used to solve this problem. Graphically, it finds a monotonically increasing path

that tries to stay in the darker regions of the diagram in Figure 4.5. wl(t) lets us warp Tl(t) to a new

warped take, T ′l (t) = Tl(wl(t)) that follows the reference timeline.

We also need to warp the respective annotations to the reference timeline. This requires special

care. Consider the case where wl(t) is constant for a duration of Nwl(t) frames. This corresponds

to a horizontal, flat region of the curve in Figure 4.5. In this case, the annotation al(wl(t)), which

applies to only one frame in the source take, will have an influence overNwl(t) frames in the warped

space. As a result, during later optimization over the warped timeline (described in the next section),

this annotation will have extra influence because it is artificially sustained by the warp. In this case,

we should downweigh the annotation by 1/Nwl(t) for each frame in the set that maps to wl(t).

Conversely, where the slope of wl(t) is steep, the warped sequence can skip from one source

frame to a distant next source frame when moving from frame t to t+1 in the reference timeline, thus

also skipping past all source annotations in between. The influence of these annotations will then be

heavily undervalued; during later optimization over the warped timeline, these skipped frames will

have no influence. In this case, we add all of their influences together to be stored as the warped

annotation.

Formally, the warped annotations are computed as follows:

a′l(t) =



wl(t+1)−1∑
t′=wl(t)

al(t
′), if wl(t+ 1)− wl(t) > 0

1
Nwl(t)

al(wl(t)), if wl(t+ 1) = wl(t)

(4.6)

Another way of thinking about this is that we are (intelligently) scaling the values so that the sum-

mation of the warped annotations a′l(t) over ||T1|| frames of the reference timeline is the same as the

summation of the unwarped annotations al(t) over ||Tl|| frames of the (unwarped) source timeline.

I have found this scaling to significantly improve the quality of results over naively warping the

annotation functions.
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4.5.2 Merging the Takes

I now have m warped, annotated takes T ′l ’s, each comprised of n = ||T1|| frames. I first seek to

compute a warped montage, M ′, such that each frame of the montage comes from a corresponding

frame in one of the m takes. M ′ can be denoted in shorthand as {l1, l2...ln} where lt ∈ {1, 2...m}

is the take selected for time t ∈ {1, 2...n}. (Strictly speaking, the montage is a sequence of poses

{T ′l1(1), T
′
l2
(2), ...T ′ln(n)}.) I now define the overall cost function for a montage:

CT (M
′) =

n∑
t=1

Cd(t, lt) + µ
n−1∑
t=1

Cs(t, lt, lt+1) (4.7)

The total cost CT is the sum of two terms: a data cost, Cd, and a smoothness cost Cs. µ is set to 100

based on experimentation.

Cd is the cost of frame t coming from take lt and is based on the annotation functions, where a

higher annotation rating translates to lower cost. Specifically, for a given frame t and take l I define

this cost to be:

Cd(t, l) = −a′l(t) (4.8)

The smoothness cost Cs favors temporal coherence by discouraging transitions between takes

in regions where their poses are dissimilar. At frame t, it is computed by considering time windows

in the takes Tlt and Tlt+1 , centered around the unwarped location of t, and summing up the cost of

matching the poses in those windows. Specifically, given frame t and given two takes l and k, I

define the cost to be:

Cs(t, l, k) =
∑
h∈W

Cmatch (Tl(wl(t) + h), Tk(wk(t+ 1) + h− 1) ) (4.9)

Note that poses of the unwarped takes are compared, as the final composite will be comprised

of sequences of unwarped takes between which we want smooth transitions. The windowW is set

to the range [−7, ..., 7], suitably truncated when the window goes out of bounds in either of the two

takes. Cmatch is the same cost function as in Equation 4.5. Here we choose λ = 0.8 based on

experimentation.

The optimal warped montage, M ′∗, can be found by minimizing the total cost:

M ′∗ = argmin
M ′

CT (M
′) (4.10)
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This formulation is equivalent to an inference problem over a Markov chain, which can be solved

exactly using the dynamic-programming-based Max-Sum algorithm [42].

However, I have found that optimizing this objective, despite the smoothness term, can occa-

sionally lead to sections of the montage that have rapid, frequent flipping between annotated takes.

To address this problem, I impose a minimum length on contiguous frames with the same label in

the montage.

Specifically, the warped montageM ′ can be rewritten as a sequence of subsequences, {M ′1,M ′2, ...},

such that each subsequence of frames or segment M ′j = {l, l, ..., l} comes from a single take l. I

then impose the constraint that the length of each segment M ′j must be greater than a threshold d,

set to 60 frames in our experiments. In further discussion, I refer to this additional constraint as the

Segment Length Constraint. I also analyze the effect of this constraint on the montages created by

the users in Section 4.8.3.

The formulation for the optimal montage M ′∗ now becomes,

M ′∗ = argmin
M ′

CT (M
′) (4.11)

s.t. ||M ′j || > d, ∀j (4.12)

This formulation is equivalent to a Semi-Markov Conditional Random field that can be solved ex-

actly with another dynamic-programming-based algorithm [69].

I now briefly describe the algorithm. Let C(t, k) define the cost of the montage over the frames

{1...t} where lt = k. C(j, k) can be recursively defined as,

C(t, k) = arg min
h∈{1..(t−d+1)}

(
argmin

x 6=k

(
C(h−1, x)+Cs(h−1, x, k)

)
+

∑
g={h....t}

Cd(g, k)

)
(4.13)

This recursion finds the best interval, of at least length d from the end which can come from take

k. It can be solved in O(n2m2) time and O(nm) space using dynamic programming where n is the

number of frames andm is the number of takes. The optimal montage can be found by backtracking

through the matrix C, starting from C(n, l∗) where, l∗ = argminl C(n, l).
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4.5.3 Unwarping the Montage

M ′ is the optimal warped montage of length n frames where the frames come from the warped takes.

This montage is now unwarped to preserve the original speed at which the takes were recorded. The

span of frames for each segment M ′j in the warped montage is replaced with the corresponding

interval of frames, Mj from the original take. Each corresponding interval is determined by the

corresponding mapping function wl. Thus, the unwarped montage, M , is a sequence of intervals of

poses from the original takes Tl’s.

4.5.4 Motion Blending

As a last step, the poses are blended around the transitions between takes in M to ensure temporal

coherence. The system considers a window of length 15 frames centered at each transition point

and blends the poses using a linear weighting scheme. For blending, it uses linear interpolation of

the translation vectors and spherical linear interpolation of the rotation quaternions [74].

4.6 Creating montages for more than one object

I noted earlier that recording of takes for the first object are untimed, i.e., the user records the motion

at his preferred speed. However, the takes of an added, new object cannot be untimed because its

motion may need to be carefully timed with a previous object’s recorded motion. Hence after the

first object, I use fixed-time recording for the rest, i.e., all previous objects’ motion play in realtime

on screen as the new object’s motion is recorded. This is similar to the layered animation recording

approach of 3D Puppetry [30]. In the end, all the takes for new objects are of the same length. They

can then be annotated and composited into the montage by the same process as described above,

skipping the time warping stage.

Recording motion for a current object while the previously recorded motions of other objects

play on the screen can be difficult since the user has to plan the current object’s motion based on

where other objects will be in future. For example, if the two objects were supposed to touch each

other, they may end up passing by each other without touching or perhaps intersecting each other.

To aid the user, I introduce spatial markers to alleviate this problem. Spatial markers are static

grey instances of the previously recorded objects rendered on the screen. The user adds a spatial
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Figure 4.6: Mario (left, with red hat) is supposed to hit the Monster’s head (right) in the script. The
user adds a spatial marker for the Monster’s position at the supposed time of the hit (3D replica
in grey) to help plan Mario’s motion. The marker’s position in time is shown as a pink bar on the
timeline.

marker for an object by navigating to a frame in the timeline of the object’s montage and pressing

a key. The spatial marker appears as a grey version of the object in that pose of the montage. It

is also marked on the timeline as a pink bar. Figure 4.6 shows the usage of spatial markers in a

sample script. Please see the supplementary videos to see the use of the markers in action. To avoid

visual clutter, I do not allow two markers for the same object to be close to each other in time. This

threshold is empirically chosen to be 60 frames. The user can remove the markers by clicking on

them and using a key stroke. Spatial markers are essentially a sparsely sampled motion trail for an

object where the sampling is decided by the user.

4.7 System Performance

The system runs in realtime on a desktop PC with two 6-core 3.33GHz Xeon processors and uses

at most 400MB of RAM. To achieve this performance, the implementation is highly multithreaded

with separate threads for processing the camera feed, tracking and rendering. The algorithm for

merging the takes works in realtime. In my experiments, the length of takes can be on the order of



69

few thousand frames (few minutes at 30fps) and the number of takes on the order of 10. Creating

a montage at this scale takes under a second. The computational complexity will increase with the

increase in the size of the takes or the number of takes being composited. But I do not see that

considerably affecting the performance of the montage-creation phase.

4.8 User Study: Single Object Montage

MotionMontage combines takes in a way that tries to preserve the parts most liked by the animator

and discard the disliked parts, while keeping the whole animation temporally coherent. I conducted a

user study to understand the performance of the system in three ways. First, I observed users creating

and annotating the original takes. Second, I evaluated whether the montage is indeed perceived to

be better than the original takes. Third, I analyze the quantitative and qualitative effect of Segment

Length Constraint (from Section 4.5.2 on the montages.

4.8.1 Phase 1: Creating animations

The goal in the first phase was to familiarize the participants with using the system, then have

them record takes and create a montage for a story script. I call the participants of this phase the

animators.

Introduction to System

The animators were first given an introduction to the hardware setup and the capabilities of the

system. I then demonstrated the process of recording takes, annotating them, and creating a montage

for a simple script –

Mario

“Mario is happily walking around the park. He first takes a round in a clockwise direction and then

turns back and takes a round in an anti-clockwise direction.”

Figure 4.7a shows a screenshot of this story. After the demo, the animators were asked to

practice using the system by acting out this script, thus familiarizing themselves with the system.
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(a) Demo script - Mario. (b) Task script - Soldier takes a Break.

Figure 4.7: Screenshots of the scripts used for user study.

Task Design

After the demo, I asked the animators to record three takes for the following script –

Soldier takes a Break

“A soldier is guarding a castle by marching in front of it, back and forth. “This is so boring”, he

thinks. The weather is nice and he decides to take a walk around the castle’s pathway. He looks

around to see if anybody is watching him. Nobody else is there, so he starts his casual stroll. Slowly

he becomes more and more carefree. Jumping around with joy, he does not notice a banana peel

that is lying on his path. He steps on the banana peel, slips and falls down. He gets up slowly

with effort and limps towards back to the castle. The monotonous routine starts again, guarding the

castle by marching in front of it, back and forth, now with a limp. He finds it very hard to walk now

and stops marching after reaching the other end.”

Figure 4.7b shows a screenshot of this script. The animators were shown a sample path of the

soldier and the goal was to record takes which roughly followed this path, while acting out the story

script. I encouraged participants to try different motion styles on each take to better express the

script. After recording the takes, the participants first viewed each take and then annotated them in

a second viewing. The system used the annotated takes to create a montage.

To conclude, the animators filled out a short questionnaire about their experience with the sys-

tem. I discuss this qualitative feedback later in the paper.
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Participants

Twenty participants (ten female, ten male, ages 20 to 30) volunteered to create animations with our

system. None of them had prior 3D animation experience. The study took about one hour for each

participant. At the end of this phase, I had 3 takes and 1 montage for each of the 20 animators.

4.8.2 Phase 2: Comparing animations.

A week after the first phase I ran the second phase of the experiment. The goal in phase 2 was to

compare the quality of the animations recorded in the first phase. I refer to the participants in this

phase as scorers. Note that some of the scorers were also the animators in the first phase.

Task Design

I asked the scorers to perform binary comparisons between a montage and one of its takes recorded

by a randomly chosen set of 10 animators. The scorers first read the script which the animators

had acted out. In each comparison, the scorer watched one of the three takes and the montage in

a random order. The scorer then selected the animation they would have preferred if they were the

script’s director. Note that scorers only rated one of the animator’s takes against the montage instead

of ranking all 3 takes and the montage. I designed the task this way to reduce visual fatigue for the

scorer by simplifying the task to an A/B comparison. If a scorer was also an animator in Phase 1, I

make sure that he did not do a binary comparison for his own animations.

If the scorer was also one of the animators, I added a second task. I asked them to rank all four

animations (3 takes and 1 montage) that they created, ranking them from 1 to 4 (1 being the best)

after watching them in a random order. This approach gave us a complete ranking of the animations

from the animator’s own perspective.

Participants

42 participants (21 female, 21 male, ages 20 to 30) volunteered for this phase. Of these, 20 were the

animators from Phase 1. Each scorer’s study lasted for about 50 minutes. At the end of the phase, I

had 420 comparison samples, or 7 samples per comparison between a take and a montage for each

animator. Additionally, I had each animator’s ranking of their own takes and resulting montage.



72

Figure 4.8: Average ranks for the takes (shown in the order originally recorded) and the resulting
montage, as reported by animators evaluating their own work, averaged over the animators.

4.8.3 Results

I analyze the results of the experiment in four ways. First, I present a quantitative analysis of the

perceived quality of montage from the animators’ perspective. Second, I present a similar analysis

about the perceived quality of montage from scorers’ perspective. Third, I present some qualita-

tive feedback from the animators about their experience with the system. Finally, I analyze if the

Segment Length Constraint helps in creating better montages for the animators.

Animators’ perspective

I analyze animators’ rankings of their own animations (Take 1, Take 2, Take 3, Montage). I run a

chi-square test with rank as an ordinal variable and animation as a nominal variable. animation is

found to have a statistically significant impact on rank, χ2(df = 3, N = 80) = 48.12, p < 0.0001.

Figure 4.8 shows the that the average rank of the montage, averaged over all the animators, is much

better than any of the three takes. Thus, I can conclude that the animators significantly prefer their

montages to any of their individual takes.
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Figure 4.9: Probability that montage is better than a take for animators.

Scorers’ perspective

Next, I analyze how scorers rate other people’s animations, to see if they generally prefer montages

to original takes. I first compute how frequently the montage is perceived to be better than an

individual take. The proportion of the scorers who voted for the montage vs. each of the 60 takes is

shown in Figure 4.9. For further analysis, I denote the fraction of the ratings that chose the montage

for animator i better than take j as mij , i.e., if mij = 1.0 then all 7 scorers rated the montage better,

and a score of 0 has the opposite meaning. I test three hypotheses.

H1. The average probability of an animator’s montage being better than a take is greater than

random chance, i.e., µ(mij) > 0.5. A one-tailed single sample t-test indicates that the probability

of the montage being better (µ = 0.6457, σ = 0.133) is significantly greater than 0.5 (t(19) = 5.18,

p < 0.0001).
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Figure 4.10: Probability that montage is better than all the takes for animators. The red line is the
probability for random chance, 0.125.

H2. The probability of the montage being better than all the three takes for an animator is greater

than random chance. This probability for an animator i is given by (mi1 ∗mi2 ∗mi3), and I denote it

as bi. Thus the hypothesis can be restated as µ(bi) > 0.125. Figure 4.10 shows the probabilities bi’s

for individual users. For all but 2 of the animators, the probability is higher than random chance. A

one-tailed single sample t-test indicates that the probability of the montage being better than all the

takes (µ = 0.299, σ = 0.126) is significantly greater than 0.125 (t(19) = 4.555, p < 0.0002).

H3. The probability of the montage being rated better than an individual take significantly de-

pends on the order of the takes, i.e. mij is related to j. Figure 4.11 shows the average probability

and standard errors of the montage being better than individual takes averaged over animators. I

conduct a mixed-model analysis with take j as the fixed effect, user i as random effect and proba-

bility mij as the observed variable. The analysis indicates that there is no significant effect of the

order of take on the probability of montage being better, (F (2, 38) = 0.8277, p = 0.4448). Hence

we can reject the hypothesis.

Qualitative feedback

All the users said that they liked the capability to take multiple takes for the story, since they did

not have any prior animation experience and wanted to try out different styles. They were excited
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Figure 4.11: Probability that montage is better than a take (in the order they were recorded).

about the ability annotate different parts of the takes and that the system could combine the takes for

them. A few users suggested that the method of annotations required patience as they had to watch

the whole animations while annotating them. Further, they had to mentally remember the different

parts from takes that they want to appear in the montage and annotate the takes accordingly. This

leads to an interesting future direction of research of good ways to summarize and visualize the

takes together.

Effect of the Segment Length Constraint on resulting montage

The Segment Length Constraint in computing the montage (Section 4.5.2) ensures that the minimum

length of a contiguous set of frames taken from a take must exceed a minimum threshold. This

threshold was empriically chosen to be 60 frames, i.e. a time duration of 2 seconds. The goal of this

constraint is to enforce a restriction on quick take transitions in the montage.

For 10 of the 20 animators, not enforcing this constraint led to montage segments less than

the threshold of 60 frames in length. Adding the constraint avoids such segments but results in a

montage with a slightly higher cost. However, the increase in the cost was found to be less than 1%

in all the 10 cases. Hence the proposed algorithm is able to enforce the Segment Length Constraint

without sacrificing much on the cost of the montage.
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The supplementary video shows a visual example of a discontinuity caused because of a short

segment when the Segment Length Constraint was not enforced. We believe that the correct way

to analyze the effect of this constraint will be to conduct a user study with A-B comparisons of

montages with and without the constraint. We leave this study for future research work.

Results summary and discussion

The results suggest that the montages are significantly preferred both by the animators and the

scorers. It is interesting to note that the average rank assigned by the animator is affected by the

order in which takes were recorded. The rank is better for a take that was recorded later. I speculate

that the animators, who were creating animations for the first time, grew better at acting out stylized

motions with subsequent takes. However, the non-animator scorers’ preference for the montage

over the takes does not depend on their order to a statistically significant degree. This result does not

support the conclusion that overall animation quality increases as animators gain more experience.

I do not have a hypothesis for this difference and leave the understanding of visual or psychological

perception in such animations to future work.

4.9 User Study: Multiple Objects and Markers

I conducted an informal user study to observe how users work with the creation of layered anima-

tions using our system. The layered animation allows the user to record motions for one object at a

time. He can also put spatial markers for previously recorded object motions to help him plan the

motion of current object.

Two users (one female and one male) volunteered for this study. They had been animators

in the first phase of the previous user study. I first demonstrated to them the process of recording

layered animations using our system. The users first practiced recording multiple takes with multiple

objects.

For the actual task, I showed them a short animation involving three objects previously recorded

by us the MotionMontage system. (Please see the supplementary video for the complete animation.)

The task for the users was to record the object motions to roughly match the example animation.

They were not allowed to use the montage capability here to simplify the task. I asked the users



77

to record one take for the first object and then two takes each for the second and third objects.

They were not allowed to use markers in the first takes for the second and third objects, but were

allowed to use markers for the second takes of these objects. After recording the takes, I asked them

about the ease of sequentially recording takes for individual objects and whether the spatial markers

helped them in planning the object motion.

I observed that the users quickly became comfortable with recording multi-layered animations

after a few practice runs. In the actual task, the users did have some problems planning the motions

without the use of markers. This led to objects intersecting each other when they would have just

avoided or touched. The users said that using the markers helped them to plan the motion better.

4.10 Conclusion and Future Work

I presented a system, MotionMontage, which allows users to record 3D animations involving mul-

tiple objects, one object at a time. The user can experiment with different motion styles and trajec-

tories and record multiple takes for each object. The system allows the user to temporally annotate

each take to indicate which parts of which takes are considered better or worse. The system then

uses a novel formulation to combine these annotated takes into a montage. The same process can be

performed sequentially for all the objects in the animation. The recording of takes for more than one

object is handled via the traditional layered animation approach. We introduced the notion of spatial

markers which helps the user to refer to the recorded motions of other objects while recording the

current object’s motion.

I also reported on a user study to qualitatively and quantitatively measure the efficacy of Mo-

tionMontage from the animators’ and the scorers’ perspective. The results indicate that the montage

is significantly preferred over the original takes by both. In addition, I reported qualitative feedback

from a few users creating multi-object 3D animations. The users found the system intuitive and

indicated that the spatial markers helped them to record object interactions better in the animation.

The system can be extended in multiple directions. I would like to add the capability of record-

ing audio voiceovers in the system. Currently audio can be added as an after-effect using a standard

audio-video processing software. However, the users gave feedback that they were actually hum-

ming and speaking in their mind while acting out the story, and would have liked to record audio
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while animating. Looking at merging multiple audio takes would also be an interesting direction to

pursue.

To further improve the richness of the 3D animation, I am interested in enabling articulated

3D characters in the animation. Difficulties in mapping the articulation of physical objects to a

character’s motion will require new intuitive puppetry interfaces.

Finally, I observed from the user studies, that animation creation systems should empower the

user while being intuitive, with easy-to-use interfaces. This is challenging since our target is novice

users who do not have any prior animation experience but want to tell animated stories. The current

interaction design of MotionMontage can be extended in many directions to achieve this goal. For

instance, in addition to a physical controller and simple keyboard/mouse-based controls, it could

be useful to present a multi-modal interface involving voice, gestures, multiple physical controller

objects, etc. In the future I would like to explore this interaction space and try to find a good trade-off

between user empowerment and intuitive, easy-to-use interfaces for creating 3D animations.
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Chapter 5

VIRTUAL 3D SCENE DESIGN IN PLAYSPACES

“The way to get started is to quit talking and begin doing.” – Walt Disney

5.1 Introduction

Virtual 3D environments are used in a number of applications. Traditionally they are designed by

expert digital artists for animations, games, interior home/office designs and city planning. These

domains demand high quality and hence the corresponding CAD (Computer Aided Design) tools

have complex interfaces with controls to design every fine detail. The complexity of these interfaces

creates barriers for lay users wanting to try their hand at designing 3D virtual environments.

More recently, we have also seen games like Minecraft which trade off high fidelity design

controls for the simplicity of the interface. Minecraft allows users to build 3D environments by

placing and moving cubes in a 3D scene. The popularity of this game across age groups and the

scale of 3D worlds created prove that users may not require high fidelity controls if the process is

enjoyable.

The input interfaces for the aforementioned tools are still based on devices like keyboard, mouse

and joystick. Further, the 3D environment under creation is rendered on a 2D display screen.

Hence it is at times hard for a user to establish a clear mental mapping between the motion of

the input devices to the positioning in the 3D virtual world. In this work, I develop a system,

SceneDesigner through which lay users can design simple 3D scenes using an intuitive interface

based on playspaces. The resulting 3D scenes can be used as is or for providing a conceptual seed

to digital artists.

For the purpose of this work, I define a virtual 3D scene as a collection of object models placed

on a planar terrain. Figure 5.1 shows a user using our system. The user works on a planar work-

surface which is again divided into two regions – Play Area and Control Boxes. The Play Area is

mapped directly to a part of the virtual terrain. The user works with a physical object as a controller
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(a) A user using the SceneDesigner system. (b) Closeup of the screen.

Figure 5.1: The user works on a planar work-surface which is divided into two regions – Play Area
on the right and Control Boxes on the left. The controller object in the Play Area is tracked using a
Kinect R© camera and a translucent replica is rendered on the screen as shown in the screen close-up
on the right. The replica can be attached to existing or new scene objects to manipulate the virtual
scene rendered on the display screen. The user can use the Control Boxes to rescale objects, paint the
terrain with a texture or navigate to different parts of the virtual scene. Here, the user has attached
the controller to a virtual tree (seen better on the right) and is rescaling it using the green block in
the Scale Box (seen on the left).

which is tracked in the Play Area through a Kinect R© color+depth camera. A virtual replica of the

controller is superimposed on the 3D scene that is rendered on the display screen in front of the user.

The system allows the user to interact with the virtual scene using the controller and a combination

of voice-based commands, keyboard/mouse-based commands, and through a set of Control Boxes.

SceneDesigner currently provides two key functionalities –

• Re-arranging the scene objects: The user can attach the controller to existing or new virtual

objects. A sequence of these operations can be used to add new objects, and move or delete

an existing object in the scene. The attached virtual objects can also be rescaled using one of

the Control Boxes.

• Painting the terrain: The user can use texture from a physical object to paint a part of the
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terrain. The user can shows the texture to the camera which captures its image and attaches

that to the base of the controller. The system then paints the terrain with the texture as the

controller moves. Further, the height of the controller serves the purpose of increasing the

brush size of this painting process.

The chapter is organized as follows. First I discuss some relevant prior work in Section 5.2.

Next, I describe the system setup and functionality in Section 5.3. I then present some results and

talk about system performance in Section 5.4. This work is currently at an early stage and can be

extended into a lot of different directions. I provide a detailed discussion regarding these directions

and conclude the work in Section 5.5.

5.2 Related Work

This work builds upon and uses techniques from a lot of domains. I now discuss the most relevant

prior work in each of these domains.

5.2.1 Interfaces for 3D Modeling and Scene Design

Most of the existing commercial products like Sketchup R© or Autodesk R© 3ds Max R© use key-

board/mouse based controls to design a 3D scene while it is rendered on the 3D screen. But it

can be hard for lay users to start using these systems immediately because of the required need to

master the input controls. Shin et al. [73] allow the users to sketch a view of the 3D scene and the

system generates the scene by retrieving the objects closely matching the sketch and then allowing

user to interactively specify the pose. However, sketching may not be a strong skill of lay users and

further the system still needs the user to understand the 3D pose from a 2D rendering on the screen.

A key idea in this work is to provide a physical 3D space to the users that maps to the virtual

environment and hence help develop a better perceptual understanding of the scene during the design

process. There are 3D modeling tools that focus on using physical proxies [71] or augmented-reality

style interfaces [18] for deformable and parametric objects respectively. However they do not look

at the problem of arranging a 3D scene involving multiple objects. The closest to our work is

the immersive authoring system of Lee et al. [47]. Their system uses an augmented reality-style

interface to track 2D patterns and attach them to virtual objects to move them around. They do
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not specifically look at the problem of designing a 3D scene but their interaction techniques of

manipulating virtual objects is very similar to my work. They require the user to wear a headset and

project the virtual scene directly on the physical pattens. This augmented reality-style setup may be

perceptually better than my setup which is simpler to set up. There is scope to do a user study to

compare these interfaces to understand users’ preferences.

5.2.2 Methods for Painting a 3D Scene

Agarwala et al. [4] developed a system to paint a virtual replica of a physical object by moving a

tracked sensor over the physical object. The paint corresponded to a fixed color picked from a digital

palette. My system uses a similar approach for 2.5D terrains. It first captures the texture shown to

the camera by the user, virtually attach it to the bottom surface of the tracked controller which then

acts as a brush.

Ryokai et al. [68] developed a physical brush equipped with sensors which captures the texture

of the object on which it is placed on using an embedded camera. The brush can then be used

a physical brush to imprint that texture on a digital canvas. The pressure sensors govern the size

of the brush. The texture painting idea for terrains is also very similar except that it is based in a

different setting. The user shows the pattern to the static camera looking down at the table which

then captures the texture and uses it for painting.

A major aspect of painting digitally is how to put the texture on the canvas, or terrain in our case.

I take a simple blending-based approach where a copy of the texture is placed at each position of

the brush and blended with the existing colors. This is a common approach taken while simulating

layered painting. However this continuous blending approach leads to blurring of the texture in the

direction of the brush. Ritter et al. [64] present a better approach where they use texture synthesis

techniques to preserve the intricate structure of the texture while painting. In the future, I would

like to integrate their technique for painting the terrain with textures. Applying this technique for

non-planar terrains may give rise to interesting challenges.
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Figure 5.2: Processing pipeline for the SceneDesigner system.

5.3 System Overview

The SceneDesigner system works in a playspace framework as described in Section 5.1. The planar

work-surface is divided into two areas – Play Area and Control Boxes. The application requires that

the Play Area is roughly rectangular and that the relative layout of Control Boxes is as shown in

Figure 5.1. This is important because of the way the system analyzes these boxes for inputs. Two of

the edges of the Play Area need to be perpendicular to each other since they are used as the X and

Y axes, with the work-surface’s normal being the Z axis. The Play Area is directly mapped to a part

of the virtual scene which is rendered on the display screen in front of the user. The user can move

around a controller object in the Play Area and a tracked replica is rendered on the screen. The user

uses voice-based commands – pick, place, discard, copy, next, previous, texture, erase, back, write,

and four Control Boxes – Scale, Scroll-x, Scroll-y and Texture, to provide inputs to the system. The

first three Control Boxes work as sliders and the Texture Box captures the pattern for painting the

virtual terrain.

The SceneDesigner system seamlessly fits in as an application in the software framework of

the playspace (Figure 2.1). Figure 5.2 shows how the outputs of the playspace algorithms from

Chapter 2 are used by the SceneDesigner application. The 3D pose of the controller is used in the

Renderer to render a virtual replica superimposed on the virtual scene. The point clouds from the

Control Boxes are provided to the Control-Processor which extracts the slider values and the pattern.

These are then passed onto the Processor module which decides the current mode of the system and

the corresponding operations. The system works primarily in two modes – Object manipulation and
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Terrain painting. In the Object manipulation mode, the user adds, moves, deletes or rescales virtual

objects. In the Terrain painting mode, the user can show a physical texture to the system and then

paint that texture on parts of the terrain. Besides this, the user can use the Scroll-x and Scroll-y boxes

to translate the mapping of the Play Area in the virtual terrain to edit other parts of the scene which

are not within the current boundaries. I call this operation Scene Navigation.

I now discuss each part of the system in more detail. First, I describe the system setup followed

by the initialization and the internal representation of the 3D scene. I then describe how the Control-

Processor module extracts the slider values and texture. Next, I explain how the Processor module

transitions and functions in different modes thus allowing the user to manipulate the virtual scene.

5.3.1 System Setup

The user can easily set up this playspace using the algorithms described in Chapter 2. The virtual

terrain is rendered in a canonical coordinate system and may not match the user’s viewpoint. Hence

as in the DuploTrack system in Chapter 3, the user needs to adjust the viewpoint on the screen using

a virtual trackball interface so that the view of the Play Area matches the rendered view of the virtual

scene.

Any physical object available to the user can be used as a controller as long as its virtual model

is available to the tracking algorithm. The virtual model can be obtained by scanning the object or

from an online repository.

In addition to this, the system loads a database of virtual object models. This database is built

by downloading models from online repositories or by scanning physical objects that the user may

have access to. There is a lot of scale and pose variation in the models downloaded from the internet.

Hence all the models are re-scaled manually to be compatible with each other in size. They are also

manually aligned to match the upright pose of the controller’s virtual model.

5.3.2 Scene Representation and System Initialization

The virtual scene is represented as a planar terrain and a list of objects positioned in the 3D space

above the terrain. The terrain’s size is fixed to 5m × 5m and its mesh model is sampled at the

resolution of 1 point/mm. Each object stores a mesh model that lies at the origin, a scale factor
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Figure 5.3: Mapping the Play Area to the virtual scene.

and a pose for positioning it in the scene. Thus a scene can be rendered on screen by rendering the

terrain’s mesh model and the objects’ mesh models after applying the corresponding scale factor

and the pose transformation.

The virtual scene is stationary and resides in a canonical coordinate system where the terrain

lies on the X-Y plane and is centered at the origin. The positive Z axis forms the upward normal for

the terrain. At start-up, the system computes a transformation Tinit that maps the Play Area exactly

to the virtual scene. The system assumes that one of the corners of the Play Area maps to the origin

in the virtual scene and two edges emanating from that corner map to the X and Y axes such that

the work-surface’s normal maps to the Z axis. Figure 5.3 illustrates this mapping.

During the course of using the system, the user may want to move the Play Area’s mapping

in the virtual scene to edit the other parts of the scene. He is allowed to translate the mapping

along the virtual terrain in the X or Y direction. For this the system maintains a translation-only

transformation Tnav. At start up, this is set to zero translation.

Hence at any point of time, the pose of the controller in the Play Area can be mapped to the

pose in the virtual scene’s coordinate system by applying the transformations Tinit and Tnav, in this

order.

At start up, the system is intialized with a virtual scene consisting of a planar terrain and zero

objects. It can also be initialized with another scene previously created with SceneDesigner.
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5.3.3 Control-Processor

The Control-Processor gets as inputs the point clouds in the Control Boxes.

The Scroll-x, Scroll-y and Scale boxes act as sliders along their longer dimension and are op-

erated by a green block. Also, I restrict the usage of these boxes to one at a time. Amongst the

three point clouds, the system selects the one of them which has sufficient and maximum number of

green points. For the selected point cloud, the median position of the green points along the longer

dimension of the corresponding box is computed. This value is then normalized w.r.t. the length

of the longer dimension resulting in a value between 0 and 1. This is the corresponding slider’s

value. The threshold for sufficiency is chosen to be 20 points empirically. The classifier to check

for green color is fairly simple – the green channel must exceed the red and the blue channels by a

multiplicative factor of 1.5.

For the Scale Box, the slider value is further scaled to the interval [0.2, 3.0], which is the range

of rescaling allowed for an object. This mapping is a piecewise linear mapping which matches the

interval end points and has a derivative discontinuity at 0.5 which is mapped to the scale of 1.

The Texture Box is used to capture the pattern that the user wants to paint on the terrain. The

system captures a square patch centered about the center of the box and pass this bitmap image as the

captured texture. The square window’s dimension is either 50 or the lesser of the two dimensions of

the pattern, whichever is smallest. These inputs are passed to the Control module which uses them

in conjunction with the voice commands for further operations.

5.3.4 Processor

The Processor receives the voice commands and the inputs from Control Boxes and operates the

system in different modes. The system also gives text feedback on the screen about the current

mode. I now describe the functionality of each mode in detail. The supplementary video shows

recorded demos of these functionalities.

Object Manipulation

To add a new object, the user says pick. The virtual replica becomes translucent and a virtual object

model from the database is rendered over it in the tracked pose. The user can scroll back and forth
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through the list of object models by saying previous or next. Once the desired object appears, the

user can move the controller to the appropriate location in the Play Area. The user can optionally

rescale the virtual model by using the green block in the Scale Box. The user can place the virtual

object in the current location by saying place. The user can also decide not to place it anywhere by

saying discard. The controller is back to being rendered in the opaque way. The new object is added

to the list of scene objects with its pose in the canonical coordinate system and the scale associated

with it.

To manipulate an existing scene object, the user moves the controller so that its virtual replica

intersects that scene object on the screen. The user needs to be given some feedback when the

replica intersects with a scene object. The system renders a bigger translucent version of the object

over the actual object if the intersection happens. Once the controller’s replica intersects with the

desired scene object, the user says pick. The system attaches the scene object to the controller and

follows its tracked pose. The user can move and optionally rescale the picked object and place it

at a desired location by saying place. The user can also remove the object from the scene with the

discard command. The system now goes back to the initial state.

The user can also create a copy of an existing object. He positions the controller in the Play

Area so that its replica intersects with the desired object. The user says copy and the system attaches

a copy of the object to the tracked controller. The user can move and rescale this new object and

place it anywhere in the scene as described earlier.

Terrain Painting

To paint a part of the terrain, the user places a texture in the Texture Box and says texture. The

system captures the patch from the Texture Box. The patch has square dimensions in pixels. To

apply this patch it to the terrain, it needs to be converted to metric dimensions. The system maps

the patch to a 4cm sized square area centered about the projected position of the controller’s replica

along the terrain normal. The size of the mapped area increases linearly to a maximum of 12cm

with the controller’s height.

To apply the patch to the area on the terrain, bilinear interpolation is used to resize the patch and

then blend the colors at each point in the area using alpha blending. If Cold is the original color of a
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terrain’s point, and Cpatch is the patch’s color at that point, then the blended color is given by –

Cnew = Cold ∗ (1− α) + Cpatch ∗ α (5.1)

where α at each point is the value of a 2D Gaussian centered at the area’s center and with a

standard deviation of one-fourth the area’s dimension. If the terrain was not painted earlier, i.e.

Cbefore was not defined, then α is set to 1.0.

The user can come out of terrain painting mode by saying back. To erase texture from the terrain,

the user says erase from the default state, and the same painting process as above takes place, except

that now instead of putting color on the terrain area, the system removes the colors from those areas.

The user comes out of this mode by saying back.

Scene Navigation

Since the virtual scene is bigger in area than the Play Area, the user is provided with a way to

translate the Play Area’s mapping on the terrain to edit other parts of the terrain. The user can use

the Scroll-x and Scroll-y boxes as sliders to move the mapping in X and Y directions respectively.

The slider values lie in the interval [0, 1] and are mapped to [−5,+5] using a parabolic function

where the minima lies at 0.5 which is mapped to 0. The new values refer to the velocity with

which the mapping moves on the virtual terrain. The change in the mapping is reflected in the

transformation Tnav, which stores the total amount of X and Y translation.

5.3.5 Saving the Scene

The user can save a 3D scene at any stage by saying write. The format of the saved scene is the list

of objects with paths to the object’s 3D models, and their scales and poses in the scene. It also links

to the painted terrain model which is saved in standard PLY format as a separate file.

5.4 Performance and Applications

The system runs on a 12 core desktop machine in real-time. The segmentation, tracking, rendering

and scene processing algorithms run as separate threads. The controller tracking has a bit of lag, as
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in previous chapters, but it can be significantly sped up by implementing the ICP (Iterative Closest

Point) 3D alignment algorithm on the GPUs as discussed in Chapter 2.

Figure 5.4 shows a few scenes that I created using the system. Some of these scenes were

also used in the MotionMontage work from Chapter 4 to create digital animations. Besides creat-

ing sets for digital animations, this system can also be used for developing prototypes for interior

home/office design or professional animations that the expert artists then work on. Further, the

system can be extended to be used in collaborative environments for design or competitive game

play.

The current version of the system is a just a first step towards exploring interactive environments

for designing 3D virtual scenes. There is ample room for further research and development in a lot

of different aspects of the system. I discuss these in the next section.

5.5 Conclusion and Future Work

I have developed and described an initial version of the SceneDesigner system which allows lay

users to create virtual 3D scenes using a novel interface based on playspaces. A marked region on

the planar work-surface of the playspace is mapped to the virtual scene. The user can use a physical

object as a controller to navigate the mapped area and add, remove or move virtual objects in it. The

system also allows the user to paint the planar terrain with a texture that can be shown to the camera.

All along, the virtual scene with the controller’s replica and appropriate visual feedback is rendered

on the screen to assist the user.

As mentioned earlier, this is only a first step in designing a simple, yet powerful system to build

3D scenes. There are many interesting directions to work on in the future.

5.5.1 Not Just One Controller

My vision for this system is where the user can use multiple physical objects in the Play Area to

represent different objects. These objects can be as small as chess pawns and as simple as a color

piece of folded paper. So the user could just write table on a piece of paper, fold it and make it stand

in the Play Area. The system could possibly detect the writing and retrieve a virtual table model

in the scene or the user can choose from the database manually as is the case now. Tracking such
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(a)

(b)

Figure 5.4: Example scenes designed using the SceneDesigner system.
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objects in real-time will present interesting challenges.

Having multiple objects as controllers will result in a tangible scene arrangement in the Play

Area in addition to the virtual world. This will provide a better spatial understanding about the

scene compared to the current method of working with one controller and observing its effect on the

display screen.

5.5.2 Retrieving Virtual Objects from Database

Currently, the user linearly scans through the objects of the virtual database by speaking next or

previous. This can take a long time if the size of database is big. Hence there is a need to develop

interfaces for quick retrieval of desired objects. One solution could be to tag the object models

and retrieve the objects with the tags spoken by the user. Another solution could be to allow users

to build customized controllers using Duplo R© or Lego R© blocks and retrieve similar models as

has been done by some researchers [85, 34]. A naive solution based on mouse-based pointing and

clicking the desired virtual object from a collection of icons may also work well.

5.5.3 Viewing the Scene from Different Angles

To get a better understanding of the virtual 3D scene, it is important to be able to view it from

different viewpoints smoothly. Currently, the user can use virtual trackball interface to move around

the scene on the screen. However, this creates a disconnect in the ongoing design process. It might

be a better idea to use a physical proxy object for the camera which is tracked in the 3D physical

space and can help set the viewpoint on the screen. Another solution would be to remove the 2D

display and let user be in an immersive environment where he can walk around in the scene and use

augmented-reality style glasses to see the virtual world.

5.5.4 Geometric Manipulation of the Terrain

The current system only allows the user to paint the planar terrain with texture. The capability to

geometrically edit the terrain by treating it as a 2.5D map would also be a significant enhancement to

the system. A possible solution would be to add a terrain manipulation mode where some gesture of

the controller could be mapped to increasing or decreasing the terrain height in a local neighborhood.
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This will present interesting problems about handling the existing objects that stand on that part of

the terrain or deforming the texture in that area in an appropriate way.

5.5.5 Collaborative SceneDesigner in Immersive Environments

In the future, an interesting direction would be to allow multiple people to design a system in an

immersive environment. This will possibly involve tracking the human body and many other objects

and design holographic technologies that project virtual objects in the physical space. Remote

collaboration between people would also be an interesting direction to look into.

5.5.6 User Studies for Evaluation

A very important aspect of this work will be to evaluate it against the existing scene designing

systems. The user study would look to test the hypothesis that the interfaces presented in this work

allow lay users to create 3D scenes more easily than using a keyboard/mouse-based systems like

Sketchup R© or Lego Digital Designer R©.
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Chapter 6

CONCLUSION

“Now this is not the end. It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.” – Winston Churchill

6.1 Contributions

In this dissertation, I presented an easy-to-setup environment called playspaces which enables the

users to interact with virtual 3D content in a more natural way. The key motivation behind this work

is to allow the users to perform tasks in the physical world while still interacting with the virtual

counterparts for assistance or content transfer in a seamless way. This way of interaction is better

than the traditional interfaces for interacting with 3D virtual content which either use specialized

augmented reality setups or require a steep learning curve on users’ parts.

In a playspace, the user works on a planar work-surface while a color+depth camera looks down

at it. Part of a planar work-surface called Play Area is mapped to the virtual world and any physical

objects in the Play Area are tracked in real-time. The virtual world, which is rendered on a screen,

can be manipulated by these physical objects as defined by the application running in the playspace.

The framework also enables the user to define Control Boxes on the work-surface by a simple

clicking mechanism. These boxes are monitored by the camera and can be used as buttons, sliders,

or gesture-inputs using physical tokens or hands. Further, the framework integrates the usage of

voice commands and inputs from standard devices like keyboard and mouse.

The modularity of the playspace’s software framework allows applications to easily plug in and

provide users with a richer interaction experience. I designed and developed three applications

which deal with different types of 3D content – block model assemblies, digital storytelling and

design of virtual scenes.
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6.1.1 Playspaces for Block Model Assemblies

I presented a system DuploTrack in Chapter 3 that automatically learns and builds a virtual replica of

a Duplo R© block model by observing the user build it. It also assists the user in creating a predefined

model in a novel way while detecting any mistakes and assisting in making any corrections on the

fly. I reported on a user study that shows that the proposed guidance method is better than the

traditional figure-based guidance method.

6.1.2 Playspaces for Digital Storytelling

I presented a system MotionMontage in Chapter 4 that allows a user to act out a story using rigid

puppets and automatically creates an animation from the tracked puppet motion. Further, it allows

the user to record multiple takes for the same story and merge them automatically into a montage

after the user has roughly annotated them based on his liking. This approach is helpful when the

user wants to try out different styles and later merge them. I reported on a user study that shows that

lay users are able to work easily with the system and that the created montages are perceived to be

visually better by the creators as well as viewers.

6.1.3 Playspaces for Designing Virtual 3D Scenes

I presented a system SceneDesigner in Chapter 5 that allows the user to easily design simple 3D

virtual scenes. Instead of using a traditional keyboard/mouse-based interfaces the user manipulates

virtual objects in a scene by attaching and detaching them to/from physical objects of his choice.

The user can add, move, scale, clone or delete objects from a database, thus creating simple 3D

virtual environments. The system also allows the user to paint the terrain in the virtual world by

using textures from his surroundings.

In all the above applications, I found that the playspace environment was more engaging than

traditional interfaces. I identified current limitations of each of the systems and proposed some ideas

to overcome them. I now talk about some future research directions for advancing the concept of

playspaces and for each of the above applications.
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Figure 6.1: Word cloud summary of the dissertation.

6.2 Future Work

The current design of playspaces is only one exploratory step in the domain of interactive envi-

ronments. I have identified some of its limitations by observing the users using playspaces. First,

having the virtual content on the 2D display screen still requires the user to look back and forth

between the work-surface and the screen. Augmented-reality (AR) style techniques bridge this gap

but traditionally those technologies have been quite expensive and specialized. However, we see are

beginning to see some AR systems commercially these days – Google Glass, zSpace to name two.

In such frameworks, there will be no need to have a static color+depth camera or a display screen.

Both will probably sit around the human eye. Such systems will present their own challenges in

terms of tracking objects successfully and projecting virtual content wthout lag.

A playspace allows the use of multiple modalities – visual, voice, gestures and standard input

devices. The application running in the playspace specifies the exact usage of these modalities.

However, in the future I want to explore systems where the application just defines operations and

the user is able to define his personalized interface by combining all these different modalities. This

is motivated by the idea that all human beings are unique and have different comfort levels and skill
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sets in using different modalities. Some people might be dexterous with hands while others may be

good at articulating things with their voice. Hence a user should be allowed to easily define his own

interface for the task at hand.

I now discuss the future work in the two main domains that this dissertation explored – object

assemblies and digital storytelling.

6.2.1 Object Assemblies

In this dissertation, I limited myself to working with assemblies of Duplo R© block models. This

choice was mainly because even with this simpler case, the problem was challenging in terms of

developing robust ways to track objects and infer any structural changes.

In the future, I want to look at assisting users with objects assemblies which are much more

complex with large variation in part shapes and sizes, and even including articulated parts. Assem-

bling furniture, Legostorm R© robot kits and desktop computers are a few common examples of such

tasks. Building an interactive system to track and assist people through these tasks is a lot more

challenging. First, it may not possible to do this with a static camera as was the case in DuploTrack.

We would probably need an egocentric camera or a mobile camera which can get multiple views

of the task easily. Second, the tracking and inference mechanisms will need to be much more so-

phisticated given the large variety in part sizes and shapes. Third, a real-time assistance framework

may be too expensive. Instead a query based model for task assistance might work well. In this

query-based model the camera would not track each activity in real-time but only try to check for

correctness and then assist when the user asks for it.

Overall I believe the domain of object assemblies is very exciting and has many technical chal-

lenges in store that span a variety of fields including computer vision, computer graphics, machine

learning and human computer interaction.

6.2.2 Digital Storytelling

The use of playspaces for digital storytelling has opened a completely new domain for users to

convey their stories using any physical objects around them. These tools could also be used by pro-

fessional directors to convey their ideas to digital artists in a more tangible way and hence improve
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the workflow. Currently these tools are still limited to tracking objects that are rigid and are suffi-

ciently but not too big. With the advances in sensing technology and computer vision algorithms

in future, I foresee these limitations going away. I would like to point out a few key ideas and

directions in this domain that can benefit from future research and can have a big impact –

• Tangible cinematography. The work in this dissertation only looks at tangible ways to record

the animation. However, camera view angles and transitions play a key role in presenting

any story. James Cameron used a virtual camera for shooting the movie Avatar which he

could physically carry around, visualizing the rendered world, and hence plan the camera

path. Developing similar accessible technology for lay users for editing camera views in their

own recorded animations is an interesting future work direction.

• Gestural interfaces for style editing. In my MotionMontage system, the user needs to re-

enact the new style that he wants to try out and then later combine takes using annotations.

However, it may be much easier to provide high level style inputs by waving one’s hands or

even through facial expressions. Finding a mapping from this abstract gesture space to the 3D

motions of objects is a challenging task and involves understanding user’s intent. However, it

has huge potential in making digital animation editing more accessible to the lay users.

Digital stories are a great way to convey ideas visually, and tangible interfaces such as the ones

presented in this thesis make this art accessible to lay users. The goal of future research in this

direction is to provide the means to create and edit higher quality animations while making the

underlying technology invisible.

6.3 Summary

In this dissertation, I designed, developed and evaluated the playspace environment specifically for

interacting with 3D virtual content. The design of the playspace was motivated by the ease of

setting it up and flexibility in its usage. I demonstrated the efficacy of this concept through three

applications targeted towards working with 3D content.

I strongly believe that technology should not be a replacement but a means of empowerment

for human capability. This empowerment can come in forms of assistance in daily tasks or seeing
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creative ideas come to life. For instance, the lay users who used my MotionMontage system had

never made an animation before but soon they were adding their own motion effects and twists

to the storyline. They exclaimed in joy now and again seeing their creative ideas come to reality

seamlessly. It is this joy of using technology that I want to target with an idea like playspaces.

However, playspaces are just one small step towards exploring this domain. I hope this dissertation

motivates researchers and opens doors for exploring novel interaction environments for 3D content

that are joyful and useful at the same time.
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Appendix A

REORDERING ASSEMBLY STEPS TO ACCOUNT FOR BLOCK REMOVALS

A.1 Problem Definition

We are given a sequence of block addition or removal operations for building a block model. It is

known that the model remains one connected piece at any stage during this building sequence. We

need to compute a new sequence of operations to build the same model such that no block removals

occur. Basically, we do not want to add the blocks which are going to be removed later.

The general version of the problem is to generate assembly instructions given the structure of

a block model. This is useful for toy companies like Lego R© who sell assembly sets for building

object models. Allerelli et al. [36] have patented a technique which computes an optimal assem-

bly sequence by dividing the model into sub-assemblies and computing an optimal sequence of

assembly steps for each.

In my problem, I am interested in keeping the building process as close to the original sequence

of operations through which it was built. Hence I propose an algorithm which first removes all the

redundant addition operations. An addition operation is redundant if the corresponding block is

removed from the assembly at a later stage.

However, the new sequence may have block additions which are not possible at that stage.

Figure A.1 shows an example of this. In this example, the blocks are first added in the order - 1, 2,

1 1 1 1 1
2 2 2

3 33
4 4

Figure A.1: Example where assembly steps need to be reordered. The sequence of steps are – Add
1, Add 2, Add 3, Add 4, Remove 2. After removing the redundant addition of 2, the steps become –
Add 1, Add 3, Add 4. However, 3 cannot be added in this order since it has no connection to 1. The
correct order would be to postpone addition of 3 after addition of 4.
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3 and 4. Then block 2 is removed. If we remove the redundant additions, the remaining sequence

is 1, 3, 4. Clearly 3 cannot be added be added right after 1 because there is no connection. Hence

the addition of block 3 has to be delayed till after block 4. This leads us to the general strategy or

reordering where we postpone the addition of disconnected blocks till we find a connection for them

in the subsequent steps.

I now describe the algorithm formally.

A.2 Algorithm

Let S be a sequence of block additions, implemented as a queue, after removing the redundant

additions. Each block addition is uniquely identified by the voxel it occupies. Let the new sequence

of additions be denoted by R, again implemented as a queue. R is initialized with the first element

of S which is popped from S. We linearly scan elements from S, process them and continue till S

has been exhausted.

A.2.1 Invariant state

The algorithm maintains the following invariant state. Consider a stage where we have read the first

i block additions from S. R has j out of those block additions which can be connected together.

We maintain the unconnected block additions so far, i− j in number, in a graph G where the graph

nodes are the block additions and the edges indicate connections between those blocks. The nodes

of G also have an ordering associated with them based on when they were added to G.

A.2.2 Each iteration

At any stage, the algorithm reads a block addition b from S.

If b can be connected to the elements in R, then it is pushed in R. We then check if any nodes of

G have a connection with b. We expand this set of nodes to all the nodes of G which are connected

to these nodes. This computation is done via breadth first search in G starting with these nodes. The

nodes from this expanded set are deleted from G and pushed into R in the order in which they had

been inserted into G.
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Else, when b cannot be connected to elements in R, it is added to G. The connections of b with

other nodes of G are added as new edges.

A.2.3 Correctness

Let us assume that the algorithm is incorrect. There can be two cases.

Case 1: There exists a block addition in R which is not connected to its preceding blocks.

This is impossible by the algorithm’s definition because a block addition is only added to R if it is

connected to the preceding blocks.

Case 2: The algorithm ends with G non-empty. This implies that the algorithm has divided the

block additions into two disjoint sets R and G of blocks with no edges between them. However we

know that the physical model is connected at the end and hence the blocks cannot be divided into

two disjoint sets. Hence either R is empty or G should be empty. We started with one block in R so

G has to be empty. This contradicts the assumption that G is non-empty.

Thus the algorithm correctly results in a sequence of block additions such that the any subse-

quence of steps starting from the first block addition is a connected model.

A.2.4 Complexity

Processing each node can involve two cases – addition to R or addition to G. Checking the con-

nection of a block b with elements in R can be done O(1) time by maintaining a voxel occupancy

grid and just checking if the voxels above or below b are occupied for a valid connection. Hence the

cost of adding b to R is the cost of doing breadth first search over the nodes connecting with b and

adding them to R. Since all those nodes are deleted from G, the total cost of breadth first searches

over the course of entire algorithm in O(n) where n is the number of block additions. Similarly, the

cost of adding b to G is also O(1) since we can check for any connections of b with nodes of G by

maintaining a voxel occupancy grid for G.

Hence the total computational complexity of the algorithm is O(n), where n is the number of

block additions.
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