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ABSTRACT
This paper proposes direct learning of image classification from
image tags in the wild, without filtering. Each wild tag is supplied
by the user who shared the image online. Enormous numbers of
these tags are freely available, and they give insight about the image
categories important to users and to image classification. Our main
contribution is an analysis of the Flickr 100 Million Image dataset,
including several useful observations about the statistics of these
tags. We introduce a large-scale robust classification algorithm, in
order to handle the inherent noise in these tags, and a calibration
procedure to better predict objective annotations. We show that
freely available, wild tags can obtain similar or superior results to
large databases of costly manual annotations.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept learning; I.5.1
[Pattern Recognition]: Models—Neural nets

Keywords
Deep Learning; Tags in the Wild; Large-scale Robust Classifica-
tion; Image Tag Suggestion; Image Retrieval

1. INTRODUCTION
Image classification has made dramatic strides in the past few

years. This progress is partly due to the creation of large-scale,
hand-labeled datasets. Collecting these datasets involves listing ob-
ject categories, searching for images of each category, pruning ir-
relevant images and providing detailed labels for each image. There
are several major issues with this approach. First, gathering high-
quality annotations for large datasets requires substantial effort and
expense. Second, it remains unclear how best to determine the list
of categories. Existing datasets comprise only a fraction of recog-
nizable visual concepts, and often miss concepts that are important
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to end-users. These datasets draw rigid distinctions between differ-
ent types of concepts (e.g., scenes, attributes, objects) that exclude
many important concepts.

This paper introduces an approach to learning about visual con-
cepts by employing wild tags. That is, we directly use the tags pro-
vided by the users that uploaded the images to photo-sharing ser-
vices, without any subsequent manual filtering or curation. While
previous vision datasets have used data from photo-sharing sites
[25] or other, smaller-scale sources [5, 15, 29], the scale and scope
of these datasets is tiny in comparison to the uncurated wild tags avail-
able on sharing sites. Enormous number of images and tags are
freely provided by users worldwide, representing a vast, untapped
source of data for computer vision. Moreover, tags in the pho-
tosharing services give insight into the image categories that are
important to users and include scenes (beach), objects (car), at-
tributes (rustic), activities (wedding), and visual styles (portrait),
as well as concepts that are harder to categorize (family). Further-
more, tags are shared on many types of popular sharing sites, such
as Behance, Shapeways, Imgur, and Lookbook. Learning to har-
ness these data sources could benefit both computer vision, as well
as consumer interfaces, such as tag suggestion.

While wild tags offer tremendous potential for computer vision,
they also present significant challenges. These tags are entirely un-
curated, so users provide different numbers of tags for their images,
and choose different subsets of tags [1, 20]. Each tag may have
multiple meanings, and, conversely, multiple terms may be used
for the same concept. To paraphrase a famous saying, an image is
worth thousands of visual concepts, but, yet, the average Flickr im-
age has only 4.07 tags, and the precise sense of each is ambiguous.
Is it even possible to learn good models from such messy data?

The main contribution of this work is to study the statistics of the
tags that users provide for their uploaded images. A crucial first
step in any data modeling is to understand the dataset, and these
online datasets exhibit many types of structure and bias. We make
many observations about the structure of this data that will inspire
future research. Furthermore, we show that, perhaps surprisingly,
good deep classifiers can be trained from this data. As a first step
toward exploiting the structure of the data, we describe a stochastic
EM approach to robust logistic regression, for large-scale training
with randomly-omitted positive labels. Since tag noise is different
for different tags, the tag outlier probabilities are learned simulta-
neously with the classifier weights. Furthermore, we describe cal-
ibration of the trained model probabilities from a small annotation
set.

We demonstrate results for several useful tasks: predicting the
tags that a user would give to an image, predicting objective an-
notations for an image, and retrieving images for a tag query. For
the latter two tasks, which require objective annotations, we cali-
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brate and test on the manually-annotated NUS-WIDE [4] dataset.
We show that training on a large collection of freely available,
wild tags alone obtains comparable performance to using a smaller,
manually-annotated training set. That is, we can learn to predict
thousands of tags without any curated annotations at all. More-
over, if we calibrate the model with a small annotated dataset, we
can obtain superior performance to conventional annotations at a
tiny fraction (1/200) of the labeling cost. Our methods could sup-
port several annotation applications, such as auto-suggesting tags
to users, clustering user photos by activity or event, and photo
database search. We also demonstrate that using robust classifica-
tion substantially improves image retrieval performance with multi-
tag queries.

2. RELATED WORK
Current computer vision research is driven, in part, by datasets.

These datasets are built through a combination of webscraping and
crowd-sourcing, with the aim of labeling the data as cleanly as
possible. Important early tagging datasets such as Corel 5k [5]
and IAPR TC 12 [15] comprise only a few thousand images each,
and at most a few hundred possible tags. ImageNet [25] is now
the most prominent whole-image classification dataset, but other
significant recent datasets include NUS-WIDE [4], SUN scene at-
tribute database [22, 30], and PLACES [31]. The curation process
has a number of drawbacks, such as the cost of gathering clean la-
bels and the difficulty in determining a useful space of labels. It is
unclear that this procedure alone will scale to the space of all im-
portant visual concepts [25]. We take a complementary approach
of using a massive database of freely available images with noisy,
unfiltered tags.

Previous work in automatic tagging from tagged examples uses
nearest-neighbor-like approaches, notably TagProp [8], or by model-
based regression (e.g., [13]). This work has used small-scale datasets,
which are quite different in scale and statistics than wild tag datasets.
Our work is also the first to explore deep feature learning for tag-
ging. Li et al. [14] give a detailed survey of the related work in this
area, and perform comparisons on large collections of Flickr tags.
Gong et al. [7] use raw Flickr tags as side-information for associat-
ing images with descriptive text. Gong et al. [6] train deep features
to predict NUS-WIDE tags.

Classification with noisy labels is a well-studied learning prob-
lem, e.g., [19, 23, 24, 28]. We extend robust logistic regression [23]
to large-scale learning with Stochastic EM. The model is similar to
concurrent research on deep learning with noisy labels [24, 28] but
with a simpler interpretation and better stability guarantees.

3. ANALYSIS OF WILD TAGS
When can wild tags be useful, and when can they be trusted? In

this section, we analyze the tags provided on Flickr, and compare
them to two datasets with ground truth labels. Some of these obser-
vations motivate our algorithm in Section 4, and others provide fod-
der for future research. Our main dataset is the Yahoo/Flickr Cre-
ative Commons 100M dataset1, which we refer to as YFCC100M.
This dataset comprises 99.3 million images, each of which includes
a list of the tags supplied by the user that uploaded the image.

3.1 Types of Tags
The YFCC100M dataset provides an enormous number of im-

ages and tags (Figure 1) that could be used for learning. There are
5400 tags that occur in at least 1000 images. The set of tags pro-
vides a window into the image concepts that are important to users.
Many of these represent types of image label that are not repre-
sented in previous datasets. Some of the most important tag types

1http://yahoolabs.tumblr.com/post/89783581601

Flickr tag # Flickr synset # node # subtree
travel 1221148 travel.n.01 0 0
wedding 734438 wedding.n.03 1257 1257
flower 907773 flower.n.01 1924 339376
art 902043 art.n.01 0 11353
music 826692 music.n.01 0 0
party 669065 party.n.01 0∗ 0
nature 872029 nature.n.01 0 0
beach 768752 beach.n.01 1713 1773
city 701823 city.n.01 1224 1224
tree 697009 tree.n.01 1181 563038
vacation 694523 vacation.n.01 0 0
park 686458 park.n.01 0 0
people 641571 people.n.01 1431 1431
water 640259 water.n.06 759 7585
architecture 616299 architecture.n.01 1298 1298
car 610114 car.n.01 1307 40970
festival 609638 festival.n.01 0 0
concert 605163 concert.n.01 1322 1322
summer 601816 summer.n.01 0 0
sport 564703 sport.n.01 1888 200402

Table 1: The 20 most frequent tags in YFCC100M, after merging plu-
rals and omitting location and non-image tags. Corresponding Ima-
geNet synsets are given, along with synset node and subtree counts.
These statistics are typical: we estimate that nearly half of popular
Flickr tags are absent from ImageNet. Moreover, even when there is
correspondence, some ImageNet tags do not capture all meanings of a
term (Section 3.2). (∗There are 66 party images in ImageNet, in the
wrong synset party.n.04.)

are as follows: events and activities such as travel, music, party,
festival, football, school; specific locations such as california and
italy; scene types such as nature, park, urban, sunset, etc.; the
seasons (fall, winter, summer, spring); image style such as por-
trait, macro, vintage, hdr; and art and culture such as painting,
drawing, graffiti, fashion, punk. Many frequent tags also repre-
sent categories that do not seem learnable from image data alone,
which we call non-image tags, including years (2011, 2012, ...),
and specific camera and imaging platforms (nikon, iphone, slr).

3.2 ImageNet and The Dataset Gap
We hypothesized that YFCC100M contains information missing

from existing, curated datasets. Does it? We compare YFCC100M
to the ImageNet image classification dataset [25], which comprises
14 million images gathered from several image search engines,
and labeled according to the WordNet hierarchy [16] through a
carefully-designed crowdsourcing procedure.

Missing concepts. In order to quantify the dataset gap, we stud-
ied the 100 most frequent tags in YFCC100M (after omitting the
non-image and location tags described above). For each tag, we
manually determined a correspondence to WordNet, as follows. In
WordNet, each concept is represented by a synonym set, or synset.
WordNet synsets are ordered, and most tags (78%) correspond to
the first WordNet noun synset for that word. For example, the tag
beach corresponds to the synset beach.n.01. In other cases, we
corrected the match manually. The most-frequent examples are
shown in Table 1. Based on this analysis and some simple cal-
culations, we estimate that about half of the common Flickr image
tags are absent from ImageNet. Some of these missing tags are
covered by scene [22, 30, 31] and style databases [11, 18]. Some
common tags in Flickr do not even exist in the WordNet hierarchy,
such as cosplay (costume play), macro (macro photography), and
vintage (in the sense of “retro” or “old-style”). We also observed
a few large set of images assigned to the wrong ImageNet synset,
including “party,” “landscape,” and “tree/tree diagram.”

Poorly-represented concepts. Even when there is a correspond-
ing tag in ImageNet, the tag may be poorly represented. There
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Figure 1: Tag histogram for the most popular tags, excluding non-
image tags. The distribution is heavy-tailed, and there are 5400 tags
with more than 1000 images each.

are 11k images in the ImageNet art.n.01 hierarchy, but there are
only 8 subtrees of art.n.01 with at least 1000 images; the biggest
ones are “olympian zeus,” “cinquefoil,” and “finger-painting;” and
there are no subtrees for “painting,” “drawing,” or “illustration.”
The ImageNet synset for “band” includes only images for “march-
ing bands” and not, say, “rock bands.” Many image categories that
are significant to users—for example, in analyzing personal photo
collections—are not well represented in the ImageNet categories.
Examples include family, travel, festival, and summer. Based on
the above observations, we conclude that ImageNet falls far short
of the full Flickr database for representing the set of visual concepts
important to users. This is not in any way meant to disparage the
substantial, important efforts of the ImageNet team, but to empha-
size the enormous difficulty in trying to precisely curate a dataset
including all important visual concepts.

3.3 Label Noise and Ambiguities
A fundamental challenge in dealing with wild tags is that the

mapping from observed tags to true concepts is ambiguous. Here
we discuss some of the ambiguities that we have observed.

Many terms have multiple or overlapping meanings. The sim-
plest case is plurals, e.g., car and cars, which have different mean-
ings but which seem to be more or less interchangeable tags on
Flickr. Some tags have multiple distinct meanings [26], e.g., rock
can mean both “rock-and-roll music,” and “rocky landscapes.” Trick-
ier cases include terms like music, concert, and performance,
which often overlap, but often do not. Some words are used nearly
interchangeably, such as cat and kitten, even though their mean-
ings are not the same. It seems that nearly all common tags ex-
hibit some multiple meanings, though often one sense dominates
the others. Synonyms are also common, as well as misspellings.

Multi-word tags often occur split up, e.g., images in New York
are frequently tagged as New and York rather than New York. For
this reason, tags like New and San are largely meaningless on their
own. Merging these split tags (especially using cues from the other
image metadata) is a problem for future research.

3.4 Analysis with Ground Truth
In this section, we perform analysis using the annotated subset of

the NUS-WIDE dataset [4]. This is a set of 269,642 Flickr images
with both wild tags, and “ground truth” annotations by undergrad-
uate and high school students according to 81 concepts. There are
a number of potential sources of noise with this dataset. Since the
dataset was constructed by keyword searches, it is not an unbiased
sample of Flickr, e.g., only one image in the dataset has zero key-
words. Annotators were not asked to judge every image for every
concept; a query expansion strategy was used to reduce annotator
effort. Annotators were also asked to judge whether concepts were
present in images in ways that may differ from how the images
were originally tagged.
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Figure 2: Tag likelihood as a function of index. (Error bars show
standard error.)

Tagging likelihoods. We now quantify the accuracy of Flickr tags.
We consider the Flickr images in NUS-WIDE that contain man-
ual annotations, and we treat these 81 labels as ground truth. We
assume an identity mapping between tags and annotations, i.e., the
Flickr tag cat corresponds to the NUS-WIDE annotation cat. Over-
all, given that a tag correctly applies to an image, there is empiri-
cally a 38% chance that the uploader will actually supply it. This
probability varies considerably for different tags, ranging from 2%
for person to 94% for cat. Frequently-omitted tags are often non-
entry-level categories [21] (e.g., person) or they are not an impor-
tant subject in the scene [2] (e.g., clouds, buildings). Given that a
tag does not apply, there is a 1% chance that the uploader supplies it
anyway. Across the NUS-WIDE tags, this probability ranges from
2% (for street) to 0.04% (for toy).

Despite these percentages, false tags and true tags are almost
equally likely, since only a few of the 81 tags correctly apply to
each image. Each image has an average of 1.3 tags (of the 81), and
an observed tag has only a 62% chance of being true. This per-
centage varies across different tags. None of these numbers should
be taken as exact, because the NUS annotations are far from per-
fect. Additionally, many “false" tags are due to differences in word
senses between Flickr and NUS-WIDE. For example, many earth-
quake images are clearly the result of earthquakes, but are labeled
as negatives in NUS-WIDE. Many cat images that are annotated
as non-cat are images of tigers, lions, and cat costumes. Many
nighttime images were probably taken at night but indoors.

Tag index effects on accuracy. Flickr tags are provided in an or-
dered list. We observed that tags earlier in the list are often more
accurate than later tags, and we again treat the NUS-WIDE anno-
tations as ground truth in order to quantify this.

We find that the effect is substantial, as shown in Figure 2. A
tag that appears first or second in the list of tags has about 65%
chance of being accurate. A tag that occurs in position 20 or later
has about a 35% chance of being accurate. The scales and shape of
these plots also vary considerably across different tags.

Effect of total number of tags. We hypothesized that tag relia-
bility depends on the total number of tags provided for an image.
This was motivated by our observation of commercially-oriented
sharing sites, where uploaders are incentivized to include extrane-
ous tags in order to boost search results. However, we did not find
substnatial evidence of this in Flickr.

4. WILD TAG CLASSIFICATION VIA RO-
BUST LOGISTIC REGRESSION

We now describe a Robust Logistic Regression (RLR) algorithm,
designed to address the following observations from the previous
section: wild tags often omit relevant tags, and the rate of omission
is different for each tag. A conventional robust loss (e.g., Huber,
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Figure 3: Effect of calibration set size on image annotation score. By
first training on the annotation cost can be reduced by a factor of 200,
while obtaining the same results.

Geman-McClure) would not be appropriate because of the need to
set the loss function’s parameters individually for each tag. The
method is based on previous robust logistic regression methods
[23], and we adapt these methods to the large-scale setting using
Stochastic EM [3].

The classifier takes as input image features x and predicts class
labels y ∈ {0, 1}. We perform prediction for each possible tag
independently (i.e., mulitilabel classification), and so we consider
simple binary classification in this section. We use as image fea-
tures x the output of the last fully-connected layer of a Convolu-
tional Neural Network [12] and assume a prediction model z =
σ(wTx), where σ(t) = (1+ exp(−t))−1 is the sigmoid function.

As discussed in Section 3, wild tags are often noisy. However,
the logistic regression model assumes that the observed labels {yi}
are mostly reliable—that is, it assumes that yi = 1 almost always
when wTxi is large. To cope with this issue, we add a variable π
defined as the probability that a user will supply a tag, conditioned
on the tag being true for the image. Lower values of π dampens
the influence of confident predictions, which allows the model to
be robust to outliers. The model parameters are then θ = {w, π},
and the loss function for training is the negative log-likelihood of
the data:

L(w, π) = −
∑
i yi ln(πσ(w

Txi)) + (1− yi) ln(1− πσ(wTxi))
(1)

Optimization via stochastic EM algorithm. Learning the model
for a given tag entails minimization of the loss with respect to w
and π. Stochastic gradient descent could be used for all parameters
[28]. However, we use Stochastic Expectation-Maximization (EM)
[3], since the steps are simpler to interpret and implement, and the
updates to π are numerically stable by design. Our stochastic EM
algorithm applies the following steps to each minibatch:

1. Define the sufficient statistics for the minibatch as:
Smb
α ≡

∑
i αi/N ; Smb

yα ≡
∑
i yiαi/N, (2)

where N is the number of data points in the minibatch and:

αi =

{
1 yi = 1
(1−π)σ(wT xi)

1−πσ(wT xi)
yi = 0

(3)

Estimates of the average sufficient statistics for the full dataset
are updated with a step size η, Sds ← (1− η)Sds + ηSmb.
In our experiments, we initialized Sds

α and Sds
yα to 1 and used

a fixed step size of η = 0.01.

2. Compute π from the current estimate of the sufficient statis-
tics, so that π is an estimate of the percentage of true labels
that were actually supplied as tags, π ← Sds

yα/S
ds
α .

Supervision Recall Precision F-score
Visual feature+kNN [6] Clean(Train) 32.1 22.6 26.5
Visual feature+SVM [6] Clean(Train) 34.2 18.8 24.3
CNN+Softmax [6] Clean(Train) 48.2 22 30.2
CNN+Ranking [6] Clean(Train) 42.5 22.8 29.7
CNN+WARP [6] Clean(Train) 52 22.3 31.2
NUS-Wide, LR Clean(Train) 58.2 26.1 36
NUS-Wide, LR, ft Clean(Train) 58.9 27.7 37.7
YFCC, LR Wild(Train) 61.4 22.3 32.7
YFCC, RLR Wild(Train) 62.1 22.6 33.1
YFCC, LR, ft Wild(Train) 63.4 21.9 32.6
YFCC, RLR, ft Wild(Train) 66.9 21.1 32.1
YFCC, LR, Calib. Wild(Train)+Clean(Calib.) 40.4 39.3 39.9
YFCC, RLR, Calib. Wild(Train)+Clean(Calib.) 43.3 35.9 39.3
YFCC, LR, ft, Calib. Wild(Train)+Clean(Calib.) 42.6 37.8 40
YFCC, RLR, ft, Calib. Wild(Train)+Clean(Calib.) 44.7 36 39.9

Table 2: Image annotation scores, illustrating how the freely-available
wild tags can augment or supplant costly manual annotations. Testing
is performed on the NUS-WIDE test set. The first set of rows show
training only on the NUS-WIDE training set with logistic regression,
and the previously-reported state-of-the-art [6]. Each of the second set
of rows is trained on YFCC100M with either LR or Robust LR, with
or without fine-tuning (ft). The third section are also calibrated on the
NUS train set. All scores are predictions-at-5.

3. The weights w are updated using stochastic gradient on L.
It is straightforward to show that the gradient is computed by
dL
dw

=
∑
i(σ(w

Txi) − αi) xi. Neural network parameters
may also be fine-tuned with this gradient.

Calibration. To cope with differences across datasets, we apply
a calibration step to adapt the learned weights for a tag to a new
dataset. We tested the calibration method from [27], but found it
degraded performance. Instead we recover a bias β, given learned
weights w on a large dataset such that the prediction model is
z = σ(wTx+β). Very little curated data is necessary for this pro-
cess, since only one new parameter is being estimated per tag. In
our experiments, we train on the YFCC100M data and calibrate on
a subset of NUS-WIDE annotations. More general domain adapta-
tion methods (e.g., [9]) could also be used.

5. EXPERIMENTS
We now describe experiments for testing models learned from

YFCC100M on several tasks, including tag prediction, image an-
notation, and image retrieval with one or more tags.

We use the architecture of Krizhevsky’s network [12] and ini-
tialize our weights with pre-trained network for the large-scale ob-
ject recognition task (ILSVRC2012) which is hosted in Caffe web-
site [10]. Training is performed for 20,000 minibatches, with mini-
batch size of 500 images. Each minibatch takes 2 seconds, and a
complete run takes 11 hours on a GeForce GTX780 GPU. Based on
the observations in Section 3.4, we only keep the first 20 tags in all
Flickr images in our experiments. We use a subset of 4,768,700 im-
ages from YFCC100M as training set and hold out another 200,000
for testing. The sets are split by user ID in order to ensure that
images from the same user do not occur in both sets. Plural and
singular tags are combined using WordNet’s lemmatization.

5.1 Tag Prediction
We first test the following prediction task: given a new image,

what tags would a user be likely to apply to this image? This
task could be useful for consumer applications, for example, auto-
suggesting tags for users when sharing their images. Note that this
task is different from ground-truth prediction; we want to suggest
tags that are both objectively accurate and likely to be applied by a
user.

We trained a logistic regression baseline and a robust logistic
regression model on our 4.7M-image YFCC100M training set, and
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Figure 4: Single-tag retrieval results, and automatically-generated annotations. None of the query tags are in NUS-WIDE, and most (music, rusty,
drawing, bouldering) are also absent from ImageNet. Many of the annotations are also absent from the other datasets.

Recall Precision F-score
LR 9.7 7.9 8.7
RLR 11.7 8.0 9.5

Table 3: Tag prediction results on YFCC100M dataset. Robust logistic
regression improves over logistic regression’s ability to predict which
tags a user is likely to apply to an image.

evaluated the models’ ability to annotate images in the 200K-image
YFCC100M test set. For each test image, the model predicts the
probability of each tag occurring: P (y = 1|x,w, π) = πσ(wTx).
The final annotations were produced by selecting the top 5 most
likely tags for each image. We evaluate overall precision, recall
at 5 for each image, averaged over all images, as well as F-score.
RLR achieves higher recall without sacrificing precision (Table 3).
Figure 4 shows qualitative results using RLR on the Flickr test set.

5.2 Image Annotation
We next test the task: given an image, which labels objectively

apply to it? We use the same YFCC100M training set as above,
but evaluate on the manually-annotated 81 labels, treating them as
ground truth. We also compare to models trained on NUS-WIDE.
We evaluate per-tag precision, recall, and F-score, which are com-
puted for each tag separately, and then averaged across tags (Table
2). We define precision for a tag that is never predicted to be 0.
To predict annotations with RLR, we compute σ(wTx), adding β
when calibrated. Testing and training LR on NUS produces better
scores than training on YFCC100M alone; it also produces better
scores than the reported state-of-the-art on this dataset [6]. We get
the best scores by training on YFCC100M and then calibrating on
NUS (Section 4).

It is important to consider the cost of annotated labels. The wild
tags in YFCC100M are basically free, whereas obtaining manual
annotations is a very costly process. We compare training on a
subset of NUS training annotations, versus YFCC100M training
plus calibration with the same NUS subset. As shown in Figure 3,
the calibration process can yield scores superior to training on the
full annotation set, but with a 200x reduction in annotation cost.

We also compared our method to nearest-neighbor tagging meth-
ods, using published scores on IAPR TC12 (Table 4). Our method

Method Recall Precision N+
JEC [15] 29 28 250
TagProp σML [8] 35 46 266
SKL-CRM [17] 32 51 274
RLR (ours) 41 46 277

Table 4: Results of comparison with nearest neighbor methods on
IAPR TC12 [15] dataset. We follow the experimental setting of [8]. N+
shows the number of tags with non-zero recall.

1 Tag 2 Tags 3 Tags
NUS-Wide, LR 81 17.9 9.1
YFCC, LR 70.1 8.5 2.3
YFCC, RLR 71.9 9.2 2.7
YFCC, LR, Calib 70.1 10.3 3.6
YFCC, RLR, Calib 71.9 11 3.9

Table 5: Image retrieval results, showing precision at 5 for multi-tag
retrieval. Testing is performed on the NUS-WIDE test set. Columns
show performance for each method for the number of tags that need to
be matched. See the caption to Table 2 for an explanation of the rows.
Robust LR consistently outperforms LR, and calibration consistently
improves results. These trends are clearer for longer (and therefore
more difficult) queries.

produces higher scores, except for one precision score. Applying
nearest neighbor methods to YFCC100M is impractical in practice,
due to the need to search in the entire dataset at test-time, even with
nearest-neighbor acceleration.

5.3 Image Retrieval
Finally, we consider the tag-based image retrieval task: given a

set of query tags, find images that match all the tags. We measure
performance using normalized precision at 5; each system returns
a set of 5 images, and its score for a given query is the number
of those images that are characterized by all tags divided by the
smaller of 5 and the total number of relevant images in the test set.
We use the NUS-WIDE annotations as ground truth. We tested the
same models from the previous section. We tested each method
with queries consisting of every combination of one, two, and three
tags that had at least one relevant image in the test set. All models
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Figure 5: Multi-tag retrieval queries where Robust LR gives notably superior results to LR. Retrieval results are sorted from left-to-right.

perform well on single-tag queries (Table 5), but the differences
in precision grow rapidly as the number of tags that the retrieved
images must match increases. RLR consistently outperforms LR,
and calibration significantly improves the models trained on Flickr.
Figure 5 shows some queries for which RLR outperforms LR.

The model trained on NUS-WIDE achieves the best score. How-
ever, there are many thousands of tags for which no annotations are
available, and these results show that good results can be obtained
on these tags as well.

6. DISCUSSION AND FUTURE WORK
Online wild tags represent a great, untapped natural resource.

We show that, despite their noise, these tags can be useful, ei-
ther alone or together with a small amount of calibration. Though
we have tested the Flickr dataset, there are numerous other online
datasets with different kinds of wild tags that can also be leveraged
and explored for different applications. As noted in Section 3, there
is a great deal of structure in these tags that could be exploited in
future work. These tags could also provide mid-level features for
other classification tasks and consumer applications, such as tag
suggestion and organizing personal photo collections.
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