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Abstract
We propose the problem of automated photo album cre-

ation from an unordered image collection. The problem is
difficult as it involves a number of complex perceptual tasks
that facilitate selection and ordering of photos to create a
compelling visual narrative. To help solve this problem, we
collect (and will make available) a new benchmark dataset
based on Flickr images. Flickr Album Dataset and provides
a variety of annotations useful for the task, including man-
ually created albums of various lengths. We analyze the
problem and provide experimental evidence, through user
studies, that both selection and ordering of photos within
an album is important for human observers. To capture and
learn rules of album composition, we propose a discrimi-
native structured model capable of encoding simple prefer-
ences for contextual layout of the scene (e.g., spatial layout
of faces, global scene context, and presence/absence of at-
tributes) and ordering between photos (e.g., exclusion prin-
ciples or correlations). The parameters of the model are
learned using a structured SVM framework. Once learned,
the model allows automatic composition of photo albums
from unordered and untagged collections of images. We
quantitatively evaluate the results obtained using our model
against manually created albums and baselines on a dataset
of 63 personal photo collections from 5 different topics.

1. Introduction

With abundance of devices that are able to capture im-
ages (including cell phones, electronic readers, and con-
ventional cameras), the need for automated ways to sort
and meaningfully present these images to users is becom-
ing ever so important. We take inspiration from conven-
tional photography, where often large photo collections are
presented in the form of sparse important key moments in a
particular viewing order. Viewing order may, in general, be
different from the temporal order in which original photos
were taken and depends on the story that the photographer
is trying to tell. Typical key examples are traditional photo
albums, wedding albums and photo slideshows. In all these
instances a sub-set of photos is chosen, by a professional or
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Figure 1. Problem formulation: The goal of this work is to select
and order a small sub-set of photos, from a larger image collection,
to form a visual story.

the users themselves, and are arranged in a particular view-
ing order (e.g, see Figure 1). The process is, however, man-
ual and often laborious for large image collections.

To this end, we look at the problem of automated album
creation, where given a large set of unordered and untagged
vacation photographs the method is tasked with selecting
and ordering a smaller sub-set (e.g., 5 or 10) of these photos
that make a compelling visual narrative. In addressing this
problem, one needs to model (i) the image quality of indi-
vidual photographs, (ii) the level of semantic understanding
of the photo’s content, and (iii) the preferences that people
have for selection and ordering of photographs, based on (i)
and (ii), for creation of albums.

We are motivated by recent work in image set summa-
rization. However, our problem is sufficiently different. In
particular, most summarization techniques rely heavily on
the time stamps [7, 30, 10, 16, 25], geo tags [25] and even
social tags [13] within Facebook-like on-line communities
[16]; others rely on implicit photographer biases [24] for
view selection. In [1], feature matching and epipolar geom-
etry between pairs of images is used to provide partial time
order of a subset of images. In contrast, we focus on visual
content in a single image set where identities of people, ex-
act geo location and temporal order of images is unknown.
In addition, we address the narrative/storytelling aspects of
the task, largely unaddressed by prior literature.

We take inspiration from advice given in photography
that advocates the use of storytelling as one of the top ele-
ments in photo album design. While chronological order-



ing and geo-tag information can enhance event-based sto-
rytelling, other storytelling strategies exist and are readily
used by photographers, e.g., “don’t be afraid to break from
[chronological ordering], by grouping photos that make
sense together for impact”1. Past albuming frameworks, in-
cluding [7, 30, 13, 5], largely rely on temporally chronolog-
ical ordering (given by time-stamps) for presentation. Our
approach is more general, and can build storylines in a data-
driven fashion by leveraging preferences of single, or mul-
tiple, user(s) and visual content. In our preliminary experi-
ments, we found that people manually trying to make a short
story-driven album in 40% of the cases prefer to place two
consecutive photos out of chronological order. This implies
that for an album of 5 photos, only about 13% of all created
albums will maintain exact chronological ordering and 87%
will have one or more photos out of chronological order.

Contributions: Our human study experiments show that
the structure and ordering of photos in an album highly af-
fect the human preferences. Based on these results, we for-
mulate the problem of album creation within a framework
of discriminative Structured SVM. Our model contains two
sets of terms that encode learned rules for album compo-
sition. Unary terms, independently, model the preference
for certain photographs to be used in pre-defined positions
within the album. Pairwise terms implicitly model (1) ex-
clusion preferences, which ensure that alike photographs
are not selected more than once within an album without
reason, (2) local ordering preferences that help to convey
the narrative through local album consistency, and (3) long-
term consistency as, for example, often exists between the
first and the last frame. Finally, we propose a novel dataset,
Flickr Album Dataset, that consists of nearly 9K annotated
images, spanning 5 topics and 63 photo collections.

2. Previous Work
Image set summarization: In early work, digital tapestry
[22] and picture collages [28], small collections of photos
are summarized by a single large output image that com-
bines salient and spatially compatible blocks from the in-
put image set. Both [22] and [28] assume that the images
are given and only address the problem of spatial layout.
An extension, [21], in addition, addresses the issue of im-
age selection by choosing a sub-set of photographs based
on entropy of textures and presence/absence of faces.

Many approaches in image summarization make as-
sumptions about criterions necessary to select the summary
images. Typically those include: image quality – measure
of image interestingness and visual attractiveness, diversity
– a measure of non-redundancy, and coverage – measure
of how complete the summary is with respect to the orig-
inal image set [25]. Optimization of these criterions often

1http://digital-photography-school.com/5-top-tips-for-designing-good-photo-book-layouts

takes the form of unsupervised clustering where clusters are
formed based on metadata (e.g, GPS or text tags [25]), time
stamps [5, 10, 16, 25] and/or appearance dissimilarity [10];
representative exemplars are then chosen to summarize each
cluster. For example, in [10] face size and positioning are
used to select a representative photo for each cluster; [4] use
centrality measure for a graph with edges weighted by the
near-duplicate similarity and [26] uses combination of vi-
sual and time stamp data. In [13] a social image value is pro-
posed, based on the relationship of people in an image and
intended audience, assuming social relationships between
portrayed subjects are known and subjects can be identified.
In contrast to other methods, that often use heuristic mea-
sures for clustering, in [26], authors propose to use human-
centered measures by building a social game – Epitome.

Notable distinctions are the works of [16] and [7]. Sim-
ilar to our overall goal, in [16] authors propose a system
for building stories from personal image collections on so-
cial media. The approach is interesting because it attempts
to encode rules of dramaturgy and cinematography for sto-
rytelling. However, the method relies on a greedy proce-
dure that tries to match certain marginal statistics obtained
from Facebook-like social media profiles (e.g, desired ra-
tio of faces to non-faces, desired distribution over tagged
actors/characters, etc.). In [7], time ordering across Flickr
photo streams is used, instead, as a method for learning
large scale storyline graphs; however, the method relies on
temporally consistent diversity clustering, making it more
appropriate for summarization.

All mentioned image summarization approaches have
three key limitations: (1) they assume knowledge of meta-
data, (2) they often produce summaries that are order inde-
pendent or purely temporal (based on time stamps), and (3)
the rules for selection and ordering are often hand coded.
In contrast, our goal is to learn a human-preference-centric
album creation model. As we show in Sec. 3.1 semantic
(not necessarily temporal) ordering of photos is critical to
predict how an actual user would choose to select and or-
der photos in an album. Coverage and diversity also take
a different form. Finally, we assume that our images come
without any metadata, or social context data [13, 16].

Scene understanding: The task of semantic scene under-
standing has a long history in computer vision and we omit a
detailed review of literature due to space limitations. Clas-
sically, scene understanding relied on global holistic fea-
tures (e.g., GIST [18], filter banks, bag of words models
[9]). More recently, however, richer representations that
rely on spatial layout of objects [11, 12], interactions be-
tween objects and/or attributes to encode the scene have
been successfully proposed. We build on these richer scene
descriptions by utilizing both holistic and ObjectBank [12]
features as representation. We also take advantage of pre-
trained scene and attribute classifiers from [29, 19].



Number of Number of Average Images
Topic Collections Images per Collection

Disney 16 3,194 200
Beach 25 3,014 121
London 5 557 111
Paris 9 1,205 134
Washington 8 692 87

Total: 63 8,662 137
Table 1. Flickr Album Dataset: Statistics of the collected dataset.

Importance and memorability in images: Our method is
implicitly related to recent studies that look at what people
find important [2] or memorable [6] in images. Unlike [2, 6]
that take a perceptual approach toward understanding these
effects, we treat this information as latently present in our
annotated albums and try to learn the model that implicitly
encodes this information. In addition, we deal with col-
lections of photographs, and so the question of importance
must be cast jointly on an album.

Iconic images: Our work is indirectly related to iconic im-
ages, explored by Raguram et al. [20] and Berg and Berg
[3]. Iconic images are representative images of a specified
object category. In this light, the creation of an album, as we
defined it, can be thought of as a simultaneous estimation of
a set of categories, their ordering within a visual narrative,
and an iconic representation (an image) for each.

3. Notation, Data Collection and Analysis
To give a detailed introduction, we first discuss the data

and experiments that explore the problem domain of album
creation. We then focus on model formulation that allows
us to create albums from photo collections automatically.

We collected a dataset from Flickr that contains a total
of S = 63 image collections on 5 topics related to vacation
photographs: 1) trip to a Disney theme park (DS), 2) beach
vacation (BC), and trips to 3) London (LN), 4) Paris (PR),
and 5) Washington DC (WS). Collections contain between
44 and 1353 photographs, i.e, 44 ≤ Nf ≤ 1353, where Nf
is the number of images/photos in the collection f ∈ [1, S].
The statistics of the collected dataset are listed in Table 1.
Images in different collections are of varying quality, rang-
ing from amateur to semi-professional.

More formally, we can represent an image collec-
tion I = {I1, I2, ..., INf

} by X = {x1,x2, ...,xNf
}

where xi corresponds to features computed based on im-
age/photograph Ii. Each album can then be encoded as
A = {xy1 ,xy2 , ...,xyM }, where yi ∈ [1, Nf ] are the se-
lected indices for the images in the collection I. Note that
y = {y1, y2, ...yM} can be interpreted as a structured out-
put that contains ordered set of indices.

Annotation for training: Each photo collection was anno-
tated by A = 4 independent annotators. The annotations
came in two forms: (1) album annotations and (2) shot an-

notation. For album annotation, we asked annotators to
create photo albums of length M = 5 photographs. Our
positive annotated training data then takes the form of pairs
{(Xi,yi,j)}i∈[1,S],j∈[1,A]. Note that we only have annota-
tions of the albums and do not have an explicit negative set;
instead we rely on our learning procedure to mine for neg-
ative examples (bad albums). Annotators were not given
any explicit instructions beyond the fact that they had to
select and order M photographs from an album in a way
that “tells a story”. For shot annotation, one annotator was
tasked with grouping images into sets of near duplicates;
only images that are next to one another, temporally, can be
grouped into a single shot. Recall that at test time we do not
assume any knowledge about the image sets, their content
and any of the annotations.

3.1. Data Analysis

The task of album creation is a high level cognitive task
that involves aesthetics and storytelling. It is unclear how
well people themselves are capable of performing such a
task, or whether they are consistent in it. Figure 2 shows
the albums created by the annotators for 3 different collec-
tions (one from 3 out of the total of 5 topics). It is clear that
certain regularities exist and there is consistency in the se-
lection and ordering of photographs. This is emerging nat-
urally, since instructions to annotators did not specify any-
thing about the content or ordering of images.

Perceptual verification experiments: We conducted a 4-
way forced choice perceptual experiment, to ensure that ob-
servations we made about our annotations are perceptually
quantifiable and to explore which aspects of the task are im-
portant. The four conditions tested were: (1) random selec-
tion of 5 images from the collection; (2) uniform selection
of 5 images sorted in temporal order; (3) human annotated
album of 5 images; and (4) human annotated album of 5 im-
ages, but where the order of the images is perturbed. Note,
that since it’s a 4-way choice, the chance of selecting any of
the conditions at random is 25%. We asked participants on
Amazon Mechanical Turk to carry out 3 trials (randomizing
selections where appropriate) for 76 photo collections and
4 annotations each. The total of 3 × 76 × 4 × 5 ≈ 4500
HITs are summarized in Table 2.

We can draw a number of conclusions, looking at Ta-
ble 2. First, we find that annotated albums are substan-
tially better (preferred in 32.8% of cases) than other con-
ditions. Second, we can clearly see that ordering plays an
important role, since performance drops significantly (from
32.8% to 28.0% on average; and in case of BC from 34.9%
to 26.6%) when the order is perturbed. These results re-
veal that structured ordering of photos has a high impact in
human preferences. Therefore, we propose a first, to our
knowledge, structured album selection method which can
simultaneously rank (select) and order the photos.
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Figure 2. Photo albums of length M = 5. Left: correspond to 4 different ground truth album annotations; images in each column are
shown in the selected order (top to bottom). Right: album automatically generated by our method. Note that while the automatically
generated album is not identical to those on the left, it does use the same images and has a similar visual flavor.

Image Image Condition is chosen over all others (in %)
Select Order DS BC LN PR WS Avg
Rand Rand 21.3 19.6 15.2 24.8 15.2 19.6

Uniform Time 19.7 18.8 16.5 13.6 27.4 19.7
Annot. Annot. 30.2 34.9 36.3 31.6 32.5 32.8
Annot. Rand 28.8 26.6 32.0 30.1 24.8 28.0

Table 2. Perceptual experiments with ground truth annota-
tions: Consistently better performance in 4-th row compared to
the 2-nd suggest that selection of images is important; however,
significant degradation of performance occurs when order of se-
lected images is perturbed (2-nd vs. 3-rd row) suggesting that or-
dering is nearly as important. See text for more details.

4. Modeling Photo Albums
Given a new set of photos I, our goal is to select a sub-set

of these photos A (encoded by the index vector y) which
are arranged in the form of an album. We model the al-
bum using the graphical model in Fig. 3, where each un-
shaded node represents a frame in the album and relations
between the frames are encoded by the edges. Parameters
along the edges allow the model to capture semantic rela-
tionships of frame appearances and pairwise relationships
such as correlations and exclusion. During the training we
are interested in learning weights w for a selection func-
tion (that will also implicitly order the images), encoded by
the graphical model, f : X(I) → y that returns indices y
of photos in the set I which maximize the score function
Fw that operates on the feature representation of the frames
X. The structured output y = {y1, y2, ..., yM} defines an
album. The selection function is of the form:

y∗ = f(X) = arg max
y∈Y

Fw(X,y) (1)

The score function Fw factors into the sum of local and
pairwise potentials which measure the quality of the album
y based on the photos (and their order) in that album as a
function of the weight vector w = [wi,wij ]:

Fw(X,y) = w>i Φi(X,y) + w>ijΨij(X,y). (2)

Unary potential: The unary potential w>i Φ(X,y) mea-
sures how well a particular image xyi fits the corresponding
position i ∈ [1,M ] in the album, independent of other im-
ages in the album. To keep the dimensionality of parameters
low, and make it independent of the album size (a desirable
property), we assume there is no independent preference be-
tween middle frames of the album. We do, however, inde-
pendently model preferences for the first and last frames as
those tend to be semantic and different between each other
and all other (middle) frames in the album. This results in
three different terms that contribute to our unary potential:

w>i Φ(X,y) = w>f xy1 + w>l xyM +

M−1∑
k=2

w>mxyk (3)

where xy1 describes the appearance of the photo which is
selected as the first frame; xyk , xyM the appearance of the
photos which are selected as the middle and last frames.

Pairwise potential: The pairwise potential w>ijΨij(X,y)
models different pairwise contextual relationships between
album frames. In general, we are after learning the inclu-
sion or exclusion principles – given a selection for album
frame i what frame should (or should not) appear in place j
(terms 2–4 in Eq. 4) and long term correlations – given a se-
lection for the first frame what is the likely last frame (term
1 in Eq. 4) To this end we formulate pairwise potentials by
combining four different terms:

w>ijΨij(X,y) = w>fl ψ(xy1 ,xyM ) +

M−1∑
k=2

w>fmψ(xy1 ,xyk)

+

M−1∑
k=2

M−1∑
j=2

w>mmψ(xyk ,xyj )1(k 6= j)

+

M−1∑
k=2

w>lmψ(xyk ,xyM )), (4)

whereψ(xi,xj) are the pairwise feature described in Sec. 6.
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Figure 3. Model: Illustrated is the discriminative structured model
proposed for album selection. See Section 4 for details.

5. Learning and Inference
For learning the weight vector w, we can cast the prob-

lem of album selection as a structured learning task, which
can be solved using structured SVM. The choice of Struc-
tured SVM was motivated by their ability to learn discrimi-
natively and mine for hard negative samples (since our neg-
ative set is exponentially large). The key difference from the
standard formulation, however, is that for each image col-
lection, I, instead of only having one true album, we have
A different labelings for possible albums from A annota-
tors. This aspect can be accounted for using the following,
slightly modified, structural SVM formulation:

min
ω,ξ≥0

1

2
‖w‖2 + C

S∑
i=1

A∑
j=1

ξi,j (5)

s.t Fw(Xi,yi,j)− Fw(Xi,y
∗
i ) ≥ ∆(yi,j ,y

∗
i )− ξi,j ,

y∗ ∈ Y \ yi,j , ∀i, j.
In the above formulation, S refers to the number of image
collections in the training set and A refers to the number of
different ground truth albums that we have for each collec-
tion. The structured output y contains the index of the pho-
tos which are selected in the album. Also, yi,j refers to the
jth ground truth album of the ith collection and y∗ refers to
the highest scoring album selected by the inference rule in
Eq. (1); ∆ is the loss function discussed in next section.

Expansion of the positive set: In practice, since the num-
ber of positive annotations is relatively small, in compar-
ison to the number of images in the photo collection, we
augment the positive set of album annotations by expansion
using the shot annotations discussed in Section 3. For every
selected image by the annotator we treat all images within
the same shot as (near duplicates) as being equally likely as
appearing in that place within an album. Given a hypothet-
ical scenario where each shot is 2 frames, for an album of 5
frames we get 25 positive samples in the expanded positive
set from each original positive album annotation.

Inference: Since our score function Fw includes pairwise
terms and our graph is fully connected, we can not find the
exact maxima. We approximate the solution to the inference
problem using the TRW-S method [8].
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Figure 4. Unary features: The composition of the unary feature
vector is illustrated on top; classifiers are denoted with triangles.

Loss: Unlike standard SVMs which use simple 0/1 loss
functions, we incorporate a more complex loss function
which enables us to penalize output albums based on how
they deviate from our annotated concept of albums. In our
case we can have multiple correct solutions as we are given
multiple (A in total) annotations for each album. In addi-
tion, these annotations are not exhaustive in that typically
other images exist in the photo collection that can be substi-
tuted for the ones selected by annotators without affecting
the quality or story of the resulting album. This is due to the
fact that there is redundancy in photos present in the collec-
tion (which is a common phenomenon); multiple pictures
of identical content and nearly identical visual quality can
be in the collection. We handle this to an extent, by con-
sidering images that come from the same respective shots
as those in annotations to be equally good alternatives. To
handle all these issues, we propose the following loss:

∆(yi,j ,y
∗) = 1−max

j
∆sim(yi,j ,y

∗), (6)

where ∆sim(yi,j ,y
∗) ∈ [0, 1] measures the semantic sim-

ilarity between yi,j and y∗ and max accounts for multi-
ple annotations. We further decompose this similarity to
one on the individually selected frames: ∆sim(yi,j ,y

∗) =∑M
i=1 ωi∆sim(yi, y

∗
i ), where ωi is the relative importance

of the frame such that
∑
i ωi = 1 (in practice we let

ωi = 1
M ). Intuitively, we want ∆sim(yi, y

∗
i ) to act like a

0/1 loss where ∆sim(yi, y
∗
i ) = 1 if Iyi and Iy∗i are seman-

tically similar and ∆sim(yi, y
∗
i ) = 0 otherwise. To this

end we let ∆sim(yi, y
∗
i ) = 1 if the predicted image and the

ground truth annotation come from the same shot (i.e., are
near duplicates) and ∆sim(yi, y

∗
i ) = 0 if they do not.

6. Features
To construct our unary and pairwise features that encode

appearance and relationship of album frames, we employ a
variety of image descriptors that fall into three categories:
(1) face features – encode presence/absence of faces and
their spatial layout in a frame, (2) global scene features –
encode overall scene texture and color, and (3) image qual-
ity – encode the overall esthetic quality of the image. The
illustration of our unary terms is given in Fig. 4.

Global scene features: For global scene features, we use
a number of common feature representations: 1) color his-
tograms, 2) HoG, 3) self similarity (SSIM) [23], 4) local bi-



nary patterns (LBP) [17], 5) texton histograms [15], 6) SUN
scene attributes [29, 19], and 7) scene classifiers [29]. For
scene attributes and classifiers, we make use of responses of
pre-trained scenes and attribute classifiers from [29].

Based on each of these features we build independent 1-vs-
All SVM (using LIBSVM) classifiers to classify an image
as a first, middle, or last frame. We use homogeneous kernel
map [27] of order 3 with χ2 kernels for SSIM and textons
and combination of intersection and χ2 kernels for LBP and
color histograms. This results in a 7-dimensional (one di-
mension for each feature type) response vector, ν ∈ R7, for
each classification task. This gives 21 scores which can be
interpreted as confidence of a given frame being the first, the
last or the middle frame based a given feature type. These
scores make up the final scene feature x(glob) ∈ R7.

Face features: We first detect all faces in each image using
the Fraunhofer2 face detector. Based on these detections
we compute spatial layout features that contain certain as-
pects of proxemics [31]. The face detector returns a bound-
ing box containing the face and eyes. Based on this infor-
mation we compute: 1) histogram of face area – fraction
of the normalized image area occupied by a face detection;
2) histogram of face overlap – we compute the overlap of
two faces A and B using the following two measures A∩B

A∪B
and A∩B

A ; 3) histogram of pair-wise face distances – pair-
wise distances between centroids of all detected faces; 4)
histogram of distances to face centroid – distance of each
face detection from the centroids of all the detections in an
image, 5) histogram of face orientations – we approximate
orientation of the face by the angle of the line connecting
the two eyes to the horizontal, and 6) histogram of the node
degree in the minimum spanning tree graph3. This results in
a concatenated feature vector of dimension 102. Similar to
above, we train a 1-vs-All SVM (using LIBSVM) with an
intersection kernel to classify photos into the first, middle,
and last frame, resulting in score vector x(face) ∈ R3. Our
face features are symbolically illustrated in Figure 6.

Image quality: For image quality we pre-train a standard
classifier based on generic low-level visual features as sug-
gested in [14] using the PhotoNet4 dataset. The PhotoNet
dataset comes with ground truth quality assessment labels.
Having this classifier trained on PhotoNet, we apply it to
our images producing a quality score: x(qual) ∈ R.

2http://www.iis.fraunhofer.de/en/bf/bsy/fue/isyst/detektion.html
3We use Euclidean distance, in an image, between any two face de-

tections to construct a fully connected face graph.The weight along each
edge corresponds to the distance between detections. We then compute the
Minimum Spanning Tree (MST) of this graph. The MST shows the prox-
imity of faces and we use the degree of each vertex as a measure for the
arrangement of the people in the image. As the final measure, we compute
the normalized degree of each node by dividing the degree of each node by
the maximum possible degree of a node in a n-node graph (n− 1).

4http://ritendra.weebly.com/aesthetics-datasets.html
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Figure 5. Illustration of Face Features: See text for description.

Unary and pairwise features: For unary features we sim-
ply concatenate all feature types to form: xi = [x

(face)
i ,

x
(glob)
i ,x

(qual)
i ]. The pairwise feature, ψ(xi,xj) ∈ R7,

encodes dissimilarity of individual feature channels as a
feature-wise dot product of global scene features x(glob)

i .

7. Experiments

Data: We introduce a Flickr Album Dataset, specifi-
cally for the purposes of automated photo album creation.
The dataset consists of 63 photo sets collected from Flickr.
Complete discussion of the dataset is given in Section 3.

Experimental setup: We train models, one for each topic,
in a leave-one-out fashion. This results in 16-fold cross val-
idation setup for Disney theme park trips, 25-fold for beach
vacations; 5-, 9- and 8-fold cross validation for sets depict-
ing vacations in London, Paris and Washington DC respec-
tively. Note that we are able to train effectively even with
few sets thanks to i) expansion of the positive set (that we
discuss in Section 5), ii) low-dimensionality of our features,
and iii) the large margin structured SVM formulation, that
is particularly well suited for learning from little data.

Baselines: We compare performance to six different clus-
tering baselines (obtained using K-means) as outlined in Ta-
ble 3. These are consistent with literature on image set sum-
marization. Note that while some baselines do make use of
time stamp information, our method does not.

These baselines are stronger than they may appear at the
first glance. For example, T-K10-T-Q over segments the im-
age set using 10 clusters, by temporally segmenting the set
into bursts of shots – this often results in clustering of im-
ages into events. The largest 5 clusters are then chosen for
the summary, under assumption that more important events
will contain larger number of photos. Image quality is used
to pick the most representative image from each cluster, en-
suring that the overall image quality is maximized. The or-
dering among, effectively, representative images from im-
portant events, is done based on timestamps (which is the
predominant strategy for event-based storytelling). I-K10-
T-Q is similar but uses visual similarity, instead of temporal
burst frequency, for initial clustering, ensuring each cluster
corresponds to visually coherent set of images.



Baseline K Cluster Image Selection Image
Name Based On from Cluster Ordering

I-K05-S-R 5 VSim Random Size
I-K05-S-Q 5 VSim Image Qual. Size
I-K10-T-R 10 VSim Random Time
I-K10-T-Q 10 VSim Image Qual. Time
T-K10-T-R 10 Time Random Time
T-K10-T-Q 10 Time Image Qual. Time

Table 3. Baselines: Table outlines the 6 baselines we compare
against. K is the number of clusters used by K-means. Note, when
K is 10 the collection is clustered into 10 clusters, from which the
5 biggest ones are taken to form an album. Clustering is either
done on visual similarity (VSim), based on global scene features,
or time stamps (Time); note, our method makes no use of time
stamps. Once clusters are selected one image is drawn from each
cluster, either at random (Random) or based on image quality mea-
sures discussed previously (Image Qual). The final set of 5 images
is ordered either by size of the clusters they came from (larger
cluster first) or using time stamps in temporal order (Time).

Frame selection: We first test our ability to choose frames
for particular placement in the album. We consider choos-
ing frames for first, middle and last place in the album. We
define accuracy as follows: for a predicted album we check
if the selected first frame matches any frame within a shot
(near duplicate set) containing the annotated album’s first
frame, same for the last frame and all middle frames. Re-
sults can be seen in Fig. 6 (left). On average our method
outperforms the next best baseline (I-K10-T-R) by 9.9% in
accuracy, which is actually 35% improvement. Our results
are considerably better than the baselines in all but the Lon-
don category; we believe this is due to the limited number
of training collections (only 4) for London.

Feature importance: The contribution of individual fea-
tures to the selection of the first frame in an album is given
in Fig. 6 (right); we show remaining plots for last and mid-
dle placement in the supplemental material. All features
seem important, but of the largest importance are the face
features we propose as those allow to model “social” con-
text of the photo. Note, chance performance is low because
few images are selected to be first (or last) in an album.

Automated album creation (quantitative performance):
In Fig. 6 (left), we omit the ordering among the different
types of frames within albums. In Fig. 6 (middle) we show
an alternate measure of performance that takes the ordering
into account. This measure is similar to the loss function
we use to learn our model. Given a predicted album we first
compute the accuracy of this album with respect to each of
the 4 annotations. We define accuracy as the fraction of the
frames within a predicted album that appear within shots
(we define a shot as a set of near duplicate frames) of the
corresponding frame in the annotated album. For example,
100% accuracy means that all 5 frames in the predicted al-
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Figure 7. Forced 4-way choice experiment: Percentage of trials
where a given method was selected over 3 competitors; see text.

bum were from the same shots as frames in the annotated
album; 80% may mean that first frame is mismatch (or any
one of the other frames), etc. Since we have 4 annotation we
consider accuracy as the max across the 4 accuracies com-
puted with respect to each annotation. This measure, unlike
the one we use for frame selection experiment above, takes
exact ordering of selected images into account. We further
compare our model to the various baselines considered with
respect to this measure. The performance can be seen in
Fig. 6 (middle). Our model achieves accuracy of 11.03%
on average and the closest baseline (I-K10-T-R) – 7.46%
on average; our method has nearly 47% higher accuracy.

Automated album creation (perceptual experiments):
To objectively compare the automatically created albums
to the various baselines and ground truth we run 4-way
forced choice perceptual experiments on Amazon Mechan-
ical Turk (for our method we ask 20 subjects to label their
preference; for ground truth album annotations 10, since
there are more trials – 4 annotations for each album). The
tests are randomized, in terms of presentation order, and
hence ensure unbiased preference estimates without post-
filtering of MTurk results (though observed relative im-
provements may be lower due to uniform noise). Since we
can only compare 4-choices at one time we run the exper-
iment in 4 parts: I-K05-S-R vs. I-K10-T-Q vs. I-K10-T-R
vs. Our Model (or Ground Truth Annotations – Ann) and
I-K05-S-Q vs. T-K10-T-Q vs. T-K10-T-R vs. Our Model
(or Ann). Our model consistently outperforms the compe-
tition by a large margin, except for London as discussed
above, and is somewhat lower than ground truth (which can
be seen by comparing Fig. 7 (top row) to (bottom row)). On
average we achieve improvement of 24.7% over the next
closest baseline, in terms of performance, of I-K10-T-R.

Creating longer albums: Our model is specifically de-
signed to be agnostic to album length (due to the reuse of
terms for all middle frames). This fact allows us to generate
longer albums (by running inference on augmented graph
with more intermediate nodes, while reusing the learned
weights for all the terms) using the same model that was
trained to produce 5-frame albums. The results are shown in
Fig. 8 where we generate 10-frame albums. Visually the re-
sults are appealing, and show similar structure to the shorter
albums, despite the fact that the model was not trained to
produce an album of size 10; showing generality of method.
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Figure 6. Frame selection, album creation accuracy and feature importance: Left: Accuracy of predicting the first, middle, and last
frames using our method vs. the baselines. Center: Accuracy of automatic album construction using our method vs. the baselines. Right:
Feature contribution towards final classifier for predicting which image goes first in the album.
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Figure 8. Longer albums: We use the learned 5-frame model to generate albums of length 10. In general, we can generate albums of
arbitrary length without re-training the model.

8. Discussion
We explore automatic creation of photo albums, that go

beyond chronological ordering, to predict how an actual
user may choose to select and order photos to tell a com-
pelling visual story of a vacation trip. In doing so, we rely
purely on visual information for features and exemplar al-
bum annotations to drive the discriminative learning pro-
cedure. To the best of our knowledge, our framework is
the first attempt at this complex visual task. While here we
learn models from multiple annotations, in essence trying to
capture population average of what a good album is, we can
easily learn albums from exemplars provided by individu-
als (without any alterations to our framework). This way a
user, by creating a few example albums, can teach the sys-
tem how to form albums of similar semantic structure.
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