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Abstract

Computers are usel to display visuals for millio ns of live presentations each day, and yet only the tiniest fraction
of thesemake any real useof the powerful graphics hardware available on virtually all of today's machines. In this
paper, we desaibe our efforts toward harnessirg this power to create better types of presentations: presentations
that include meaningful animation as wel as at least a limited degree of interactivity. Our approach has been
iterative, alternating between creating animated talks using available tools, then improving the tools to better
support the kinds of talk wewanted to make. Through this cyclic design process,wehaveidenti ed a se of common
authoring paradigms that we believe a system for building animated presentations should support. We desaibe
these paradigms and presant the latest version of our saipt-based system for creating animated presentations,
called SLITHY. We show several examples of actual animated talks that were created and given with versions of
SLITHY, including one talk presented at SGGRAPH?2000 and four talks presented at SGGRAPH2002. Finally,
wedesaibe a se of design principles that we have found useful for making good useof animation in presentation.

Caegories and Subject Desaiptors (according to ACM CCS): 1.3.4 [Computer Graphics]: Graphics Utilitie s — ap-

plication packages 1.3.6 [Computer Graphics]: Methodology and Techniques — languages

1. Intr oduction

By Microsdt estimates, at least thirty million PoverPant
presentations are made every day.16 Even if this estimate is
off by an order of magnitude, the implication is clear: pre-
santation sdtware is a technology that is having an impact
on people'slives.

Modern-day presentation sdtware — of which Power-
Pant, in representing 95% of the presentation-sdftware mar-
ket, is the most prominent example by far — is still rooted
rm ly in the past. Although the sdtware has evolved in
many ways, PaverPant presentations are still essentially
steic in nature, just as they were when the sdtware, orig-
inally designed to create overhead transparencies, was rst
releasad in 1987. Even in the latest, animation-enhanced
PaverPant X P, what limited animation capabilitie sthere are
exist amost entirely to provide “canned” embellishmentsto
the static layout of the slide—a srazzy entry or exit for a
given text or graphical element, or a way of momentarily
highlighting a particular element.
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As researchers and educators, we give a lot of talks, and
we sit through even more. Our own liveswould be improved
if we could give — and receive — better talks. This paper ex-
plores how computers might be used to help us communicate
more effectively. In particular, we examine how computers
could be usel to create meaningful animation, as well as
same degree of interactivity, to improve live presentations.

Our approach to this problem has been iterative: we be-
gan by trying to make talks that incorporated animation and
interactivity using existing sdftware tools. This led to awish
list of effects we wanted to achieve and ways we wished
the authoring worked. We began implementing and using
our own system, aternately creating talks and improving
the system itsdf. We have coalesced our obsevations about
strategies for authoring animated presentations into a set of
three authoring principles, which we discussin Section 2.

Our current system is caled SLITHY. It is an animation
tool designed speci c ally for creating and giving presenta-
tions. In designing SLITHY, weideally wanted to accommo-
date as wide arange of usea's as possille. However, try aswe
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might, we were unable to imagine any single graphical use
interface — the type of interface, perhaps, that the highest
number of useswould n d intuitive —that could encompass
the steggering variety of animations that we could envision
authorswanting to create. Ultimately, we choseto emphasize
power over easeof use SLITHY is therefore a saipt-based
programming system, analogous to TeX for text processirg,
and as swch is better suted for use by more technically -
inclined usea's. Despite these limitations, SLITHY has been
usal to give a number of presentations (including four at
SIGGRAPH 2002 by use's other than the authors of the sys-
tem). Although we recognize that this style of authoring is
not for everyone, we feel that the problem of creating bet-
ter presentations is important enough and hard enough that
even a sdution that serves only the needs of a more limited,
but still signi c ant community (including, but not limited
to, the technical contributors to SIGGRAPH and other com-
puter graphics conferences) is aworthwhile step. The design
and implementation of SLITHY are covered in Section 3.

It is an open question among cognitive psychologists
as to whether or not animation improves learning. A
number of studies® 1520 have found a positive effect, but
other researchers criticize these resuts on methodological
grounds 13 2 The central isste seems to be determining how
to make two presentations, one animated and one not, that
are exactly equivalent, “except for the animation.” Despte
thelack of conclusive psychological research, people are us-
ing animation, even if it is only the simple effects available
in PaverPant. In our experience, audiences seem to appreci-
ate aricher style of animation even more. As we made more
and more of theseanimated talks, we were alsointerested in
learning how bestto apply animation in presenting material.
If animation is going to be used, we can at least try to make
it as useful as possibde. We have tried to understand why
same uses of animation seemed to make information clearer,
while others appeared to be simply gratuitous and distract-
ing. For example (and to our own surprise), we found that
many of the principles of classial animation! do not neces-
saily work sowell for presentations. In Section 4 we detail
our obsevations on principles for good presentation anima-
tion.

Finaly, Section 5 shows examples of same presentations
created with our system, Section 6 compares SLITHY, the
systan we built, to other existing systems, and Section 7
presents same conclusions and directions for future work.

2. Authoring principles

Our rst sa of principles is concerned with techniques
for authoring animation. Since presentation animation com-
monly has a different purposeand visual style than charac-
ter animation, we expect that authorswill demand a different
se of tools for creating the animation. Here we discussthree
general authoring techniques that we have found to be use
ful.

Figurel Fouringancesof a pulley diagram with thehande
in different podtions Parameterization lets us animate the
diagramby manipulating a single abdract “ amountof pull”

paranmeter, rather thanmanagingall theindividual graphical
eementsindividualy.

& 6 e b

Useparameterization. The rst principle is the useof pa-
rameterization at all levels of the system. The useof param-
eterized models is common in 3D character animation tools.
Sinceit is impractical to create 3D animation by keyframing
individual pieces of geometry, alayer of indirection is added.
Models are created that encapsuate the details of geometry
and exposehigh-level logical parameters to the animator.

This idea is just as usdul in 2D as it is in 3D, though it
is not so commonly seen in 2D animation tools. When we
create a g ure for useon an animated slide, we want to cre-
ate not just a picture but also a set of behaviors that restrict
how the parts of the diagram move and change, similiar to
the work of Ngo et al.1* This simpli e s the task of anima-
tion considerably. Consider the pulley diagram of Figure 1.
It is much easier to create and edit an animation by changing
an abstract “pull” parameter than by moving the rectangle,
lengthening and shortening the lines, rotating the triangle,
and soon. We expressjust once the mapping between model
parameters and the underlying geometry; then we can (po-
tentially) usethat model again and again in multiple anima-
tions. Of course just as in character animation, the model
and the animation cannot be designed in isolation from each
other. If a character needs to smile in one saene, the model
had better have a“smile” control. If aslide diagram needsto
animate in a certain way, the diagram creator needs to make
sure it exposes the appropriate controls.

Combining graphical primitives into models is not the
only application for parameterization within a presentation
authoring system. Many elements of a presentation are typi-
caly used repeatedly throughout the talk, from the animated
transitions to the layout of text on slides. We desire sup-
port for creating al theseelements through parameterizable
macros, partly to avoid repetitious work by the author and
partly to encourage the useof auni e d visua style through-
out a presentation—including the ability to make changesto
the style without editing each individual slide.

Treat animations as models. The second principle we
have obseved is the us€ulnessof treating animations them-
sdves as parameterized models that happen to have a single
parameter: time. By this way of thinking, both animations
and models are objects that map a se of input parameters
onto aset of output graphical primitives. The only thing spe-
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cial about “animations” is that their input parameter set hap-
pensto consistof asingle scaar value. The advantage of this
approach is that an animation object does not have to contain
everything visible on the saeen at once. Instead, we can con-
struct animations in smaller logical units and combine them
to make slides, justaswe would combine staic graphics and
text in standard presentation tools.

Build slides hierarchically. The resut of combining ani-
mations together is, of course a new composite animation.
This swggestsour n a authoring principle, that of support-
ing deep hierarchical assenbly. We want the ability to nest
these characters and models within each other to any de-
gree of depth. This ability is not typically necessay in a
traditional character animation setting. There, the modeled
characters are placed into a scene, their controls manipu-
lated via keyframing, and frames rendered out. In presenta-
tions, though, the models and animations can be much more
abstrect, and it often makes sense for them to be included
in one another. For example, imagine a slide (an anima-
tion) that features a block diagram of a system. The diagram
would be created as a parameterized model. Each block of
the diagram might contain athumbnail animation to suggest
to the audience the task performed inside that block. The
small animations would each contain their own models as
well. While very deep nesting is not necessay — afew levels
is al that is probably useful in practice —it is clearly useul
to support more than justone level of models-in-animations.

3. Slithy

Our presentation system, SLITHY, isimplemented asa se of
libraries and a runtime system for the popular programming
language Python. SLITHY uses therefore have accessto a
complete, general-purposeprogramming language for usein
creating their animations. A presentation in SLITHY can be
thought of asacollection of drawing objects. There are three
major types of drawing object available in SLITHY:

Parameterized diagrams can require an arbitrary se of pa-
rameters as input, and they produce their graphical output
imperatively by executing a procedure that makes calls to
the SLITHY drawing library. The use creates a parame-
terized diagram by writing a Python function; this Python
function is executed every time the diagram needs to be
redrawn. These functions can contain arbitrary Python
code; they are not limited to the primitives available in
our graphics library. They can aso invoke other parame-
terized diagrams or animation objects.

Animation objects require exactly one scalar parameter,
which we will typicaly think of as representing time.
The object provides a mapping from the time parameter
to a se& of other drawing objects to invoke, along with
values for their parameters. This kind of object is con-
structed by writing an animation saipt in Python. The
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saipt is executed just once to produce the animation ob-
ject. Each command in the saipt edits the mapping that
the object represents; the n ished object is returned at the
completion of the saipt. The SLITHY runtime system can
then “play” an animation object by repeatedly invoking it,
passirg in the current time as the value of its parameter.

A single animation object can control the parameters of
multiple other drawing objects. In addition to use-created
parameterized diagrams, the system aso has a number of
built-in objectsto display thingslike background lIs, text
boxes, still images, and bulleted lists. These objects are
essatially very simple prefabricated parameterized dia-
grams created to implement commonly used slide ele-
ments.

Interactive objects are similar to animation objects in that
they represent a mapping from a single scar time pa-
rameter to a se of other drawing objects and their param-
eters. The difference is that while animation objects are
created by a single saipt, executed just once when the
presentation is loaded, interactive objects can be edited
while they are being played. The author writes an inter-
active controller that contains handlers for input events
sueh as keystrakes and mouse movements. The handlers
can then modify the animation being shown. With inter-
active controllers, the presenter can effectively generate a
new animation object during the presentation.

Every drawing object takes a se of input parameter values
and produces graphics on its own notionaly in n ite can-
vas. A camera rectangle speci e swhat region of that canvas
must be visible in the object's viewport. An object's view-
port may be placed on the canvas of another object. In this
way, drawing objects can contain each other in a hierarchy.
Each object is responsible for providing parameters to the
objects it contains. The top object of the hierarchy is aways
an animation object, whose viewport is the entire SLITHY
window, and whose single time parameter is driven by the
computer's real-time clock.

Theremainder of this section will discussthethree classes
of drawing objects and their implementations in more detail.

3.1. Parameterized diagrams

Parameterized diagrams are the most straghtforward kind of
drawing object. A parameterized diagram is simply a Python
function that does same drawing when called. For doing this
drawing, SLITHY provides agraphics library that has a vari-
ety of primitives beyond the lines and triangles provided by
OpenGL.

We will illustrae same of the features of our param-
eterized diagram system by building a simple example—
constructing an analog clock face. We begin with this six-
line function:
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def clock_face()
set _canera( Rect(-12, -15, 12, 12) )
clear( white )
t hi ckness( 0.25 )
circle( 10, 0, 0)
circle( 10.5, 0, 0)

The Python keyword def is used to introduce anew func-
tion, named clock_face in this example. The other ve
lines are calls to functions in the drawing library. First we
specify what rectangular portion of the in n ite canvas must
be visible in the diagram's viewport—in this case the area
from ( 12; 15) to (12;12). Then we clear the diagram's
canvas to white, se the line thickness, and draw a pair of
concentric circles around the origin. Note that diagrams are
written in a straghtforward imperative style of program-
ming. This function is called every time the diagram is to
be drawn (typically, once per frame of animation). There is
no object stee to track from one invocation to the next; the
appearance is completely speci e d by the sequence of draw-
ing library routines used in the current call to the function.

Continuing the example, supposewe want to place marker
dotsat the 12, 3, 6, and 9 o'clock positions. We could do this
with four calls tothedot drawing function (which produces
a lle d circle), but instead we'll encapsuate the marker-
drawing code in a new helper function and call that instead.
To the function stated above, we add:

marker ( 9
marker( O
mar ker (-
marker( O

def marker( x, y )
dot( 0.5, x, y)

This version of the code creates a function marker that
takes two parameters, x and y, and draws a marker at the
indicated position. For simply drawing a dot this might be
overkill, but sypposewe then wanted to change every marker
from a dot to a diamond. We could do this quite easily by
changing the body of the marker function.

di anond = Pat h()

di anond. novet 0(0.5,0).1ineto(0,0.5)
di anond. lineto(-0.5,0).1ineto(0,-0.5)
di anond. cl osepat h()

def marker( x, y )

push()
translate( x, y )

fill( diamond )
pop()

Unlike dot , thereis no built-in function for drawing dia-

monds. Here we build one using a path object, another fea-
ture provided in our drawing library. With path objects, usa's
can desaibe arbitrary paths constructed of line and Bézier
curve sgments, similar to the path construction operators in
PostScipt. The path object can then be instanced in the di-
agram using the stroke  and/or fill  functions. Here we
den e apath called diamond , which can be drawn within
the marker function with a single cal to fill . To posi-
tion the diamond correctly, we use the push and pop li-
brary functions, which save and restare the current graphics
stae (including transform matrix, drawing color, etc.), and
the translate function, which changes the origin of the
drawing coordinate system.

Now we will draw a clock with hands. Since we are cre-
ating a parameterized diagram rather than a staic picture, of
course thetime shown on the clock should come asaparam-
eter to the function. We'll begin by declaring a new function
clock and usethe aready de n ed function clock_face
to draw the dial:

def clock( m nutes=(SCALAR, 0, 1440),
| abel =(STRING ' San Diego') ):
cl ock_face()

The clock function takes two parameters. One,
minutes , represents the number of minutes past midnight
to display on the clock, while thelabel parameter is atext
string to be shown beneath the clock face. Scalar-valued pa-
rameterslikeminutes arespeci e d aong with their allow-
able range of values. We can then make useof theseparam-
eter values in drawing:

mnute_angle = mnutes * 6.0
hour _angle = minutes / 2.0

push()

rotate( -mnute_angle )
color( gray50 )

line( 0, -2, 0, 8)

pop()
San Diego
col or( black )
text( 0, -13, label, font = |abelfont,
size = 3, anchor ="'c' )

The rst two linesusethe value of the minutes  parame-
ter to compute the appropriate angles for the minute and hour
hands. This computation is done with the ordinary Python
arithmetic operators, and the resuts are assigned to a new
local variable. Note that the Python language is dynamically
typed, and does not require variable declarations. Thesefea
tures, among others, make Python well suited for beginning
programmers.

Since the drawing is constructed as a Python function,
all of the features of the Python language are available: op-
erators for computation, control structures suwch as if  and
while , and arich se of data types including lists and dic-
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tionaries. It is not necessay to useall of these abilitie s for
simple diagrams like this example, but they can be helpful
for making more complex g ures.

The next group of lines actually draw the minute hand by
rotating the coordinate system through the appropriate angle
and drawing agray line. A similar block of code (not shown
here) is used to add the hour hand aswell. Finally, the string-
valued label parameter is drawn beneath the clock face.

Parameterized diagrams can be tested by loading them
into SLITHY's test harness,which lets the use interactively
manipulate the diagram's parameters via on-saeen widgets
and see the resuts. Use's can aso click in the diagram and
see those points back-projected into the diagram's coordi-
nate systam; this aids in placing objects on the canvas. Fig-
ure 3(a) shows the clock diagram in the test window—the
minutes andlabel parametersare mapped to by aslider
and atext box, respectively.

3.2. Animation saipts

Our systam applies the character animation technique of
building models and animating them via high-level controls.
Parameterized diagrams provide away to expressone half of
this scheme—mapping from the control parameters onto the
output drawing. Animation objects provide aconvenient way
to specify the other mapping—from a single time value onto
asd of valuesfor the model control parameter. In contrastto
the procedural nature of parameterized diagrams, where the
usea code is executed every time the diagram is drawn, once
per frame, an animation saipt is executed only once, during
the initialization of the presentation. The saipt builds an an-
imation object that the SLITHY systan can then sample to
draw the animation. An example saipt is shown in Figure 2,
with the resuting animation illu strated in Figure 5.

Every parameter controlled by an animation object is rep-
resented by a data structure called a timeline. The timeline
partitions the entire range of possile time values (from neg-
ative in n ity to positive in n ity) into a se of nonoverlap-
ping domains. For each domain, the timeline contains either
a constant value for the parameter, or a function that can be
called to produce the parameter's value within that domain.

When an animation object is created, atrivial timeline is
created for each parameter under the animation's control.
This trivial timeline is just a single domain covering al of
time, containing the parameter's default value. Subsequent
commands within the animation saipt then edit thesetime-
lines to produce the desired animation. Using the linear
command on a parameter, for instance, will overwrite part
of a parameter's timeline with a pair of hew domains: one
expressirg linear interpolation to a new value and one con-
taining the new value for al the following time. This and
other timeline editing commands are illu straed in Figure 4.

While the saipt is executing, the systen maintains a
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def clock_animation():

bg = Fill( style='horz', color=black, color2=darkgray )
left = Drawable( get_camera().left(0.5).inset(0.05),
clock )
right = Drawable( get_camera().right(0.5).inset(0.05),
clock, _alpha=0.0 )
start_animation( bg, left, right )

set( left.label, 'San Antonio' )

set( left.minutes, 195+120 )

set( right.minutes, 195 )

parallel()

smooth( 3.0, bg.color2, lightgray )
linear( 3.0, left.minutes, 300+120 )
linear( 3.0, right.minutes, 300 )

fade_in( 1.5, right )

serial()

wait( 15 )

fade_out( 1.5, left )
end()

end()

return  end_animation()

Figure 2 A script for creating a four-second animation con-
taining three drawing objects. a gradient badground | |
andtwo Dr awabl es, which are containers for other draw-
ing objects (usually parameterized diagrams). In this case
both drawablkes contain ingances of the clodk exanple dia-
gram from Section 3.1. The body of the script (between the
start_ani mation and end_ani mat i on calls) con-
sists of commandsto manipulate the parameter timelines of
theanimation's graphical elements.

2980
File Object

San Antonio

London
minutes 12 =
— T |
el [fondon pay | stop [ sample | v sampie
€ (b)

Figure 3 Two screenshots of the SLITHY object tester. Part
(a) showstheclock parameterized diagram; the controls cor-
respondto the diagrami's parameters. In part (b), the tester
is showing the animation of Figure 2; the controls are a time
dider with “ play’ and“ stop” buttons

vaue called the time cursar, which speci e s where edits
will take place. At the stat of a saipt the systam is in se
rial mode, which means that every edit command with a
duration (such as linear , which produces linear interpo-
lation, and smooth , which produces smooth interpolation)
advances the cursar by that duration. Animation commands
will then happen in sequence, one beginning when the previ-
ous one ended. The whole saipt has a single time cursar, so
even edits applied to different parameters will not overlap.

To make simultaneous changes to different parameters,
the saipt can use parallel mode. In paralel mode the cur-
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San Antonio San Diego

N Figure 4 The effect of
a series of animation script
commands on the timeline
of a single parameter x.
The dotted line represents
thepostion of thetime cur-
sor.

N
San Diego

J Figure 5 Frames from
theanimation of Figure 2.

sa is not advanced after each edit command, so edits begin
at the same time. When the saipt exits parallel mode, the
cursa is advanced to the end of the longest of the parallel
components. Uses of parallel mode and seial mode can be
nested within one another to produce complex overlapping
effects.

Other edit commands include set , a zero-duration edit
that produces an instaitaneous change in a parameter's
value, and wait , which moves the time cursa without
changing any of the timelines. Figure 4 illustraes the ef-
fect of aseries of thesecommands on a simple timeline. The
get function can be used to obtain a parameter's value at
any point in time.

In addition to the timelines of parameter values for draw-
ing objects contained in the animation, thereis alsoaspecial-
ized timeline called the working-set timeline that determines
which of thoseobjects are drawn and their stacking order at
any point in time. The details of this timelineare hidden from
the user; it is instead manipulated via the functions enter
and exit , which add and remove objects from the anima-
tion, and lift ~ and lower , which change the stacking or-
der. Thepause command marksapoint where SLITHY will
stogp and wait for the presenter to pressthe spacebar before
continuing.

Loading an animation object into the test harness as in
Figure 3(b) allowsthe use to interactively saub to arbitrary
pointsin time as well as playing it back in the normal fash
ion.

3.3. Interactive controllers

The implementation of an interactive controller is very sim-
ilar to that of an animation scipt. Instead of a single func-
tion that creates all of the animation, though, a controller
is implemented as a class. An instance of this classis cre-
ated when the interactive object is rst shown on the saeen.
Just like an animation object, an interactive object contains
a sd of child drawing objects and timelines for controlling
their parameters. Unlik e an animation object, though, inter-
active objects can aso have various methods that are called
to edit the timelines while the animation is being played in
responseto use input events swch as keypresse and mouse
movements.

Every time one of theseevent-handling methodsis called,
the time cursar is positioned at the current playback time
sothat edits made by the method will appear immediately.
All of the commands available within animation saipts
can also be usdl in these animation-editing methods of in-
teractive controllers: parameter timelines can be modi e d
with linear , smooth , set , etc.; the time cursar can be
controlled with parallel , serial , wait , etc.; and the
enter ,exit ,lift ,andlower functionscan modify the
sd of child drawing objects.

3.4. GUI tools for authoring

Cregting presentations by programming may be ne for
same technical use's, but we hope to eventually make high-
quality animations available to a wide variety of presenters.
Interactive interfaces for authoring arbitrary animation tend
to be quite complex. We believe that by writing tools for spe-
cic, smal domains, we can limit the range of animations
enough to make interactive speci ¢ ation feasible, while still
producing useful, content-rich animations. We can imagine
assenbling a library of these small tools that cover a wide
range of presentation topics. One tool might be used for
producing ordinary bulleted-list slides, another for produc-
ing animated data plots, a third for showing still images.
(Even with still images there are opportunites for useful an-
imation: zooming in for closeups, labeling and captioning,
etc.) Hand-authoring of SLITHY code would be limited to
the subjects sospecialized that no tool covers them—uwhich,
for same presantations, could be an empty collection.

While this grand vision remains for the moment justthat —
a vision — we have produced simple prototype implementa-
tions of tools that work in this manner. The rst is atool for
creating still image slideshows, insgred by the work of doc-
umentary Im maker Ken Burns. Our tool allows the use to
load in images and to interactively specify zooms and pans
over them and animated transitions between them. The out-
put is acomplete SLITHY animation. Figure 8 shows saeen-
shots of thesetwo applications, as well as the animated out-
put of the slideshow toal.

¢ The Eurographics Association 2003.



Zongler and Saksin / On Creating Animated Presentations

4. Animation principles

When desktop publishing and lase printers started to be-
come more common, displacing the typewriter, the imme-
diate resut was not better-looking documents. Confronted
by dozens of typeseting options, people simply chosethem
all, even within a single document. The messae was not
“look at my content,” but “look at what my sdtware can
do.” Today, too many presentations useanimation with sim-
ilar resuts. Animation can enhance the content, or it can be
visually distracting. By summarizing the resuts of our expe-
rience in making animated presentations as a se of general
principles, we hope to encourage the former, leading to more
engaging and informative presentations. It is important to re-
member that theseare not meant asrules, but more as asd of
defaults. Like mostrules, the principles here should at times
be judiciously broken.

Make all movement meaningful. When we rst stated
adding animation to presentations, we naturally tried to
apply traditional animation principles such as squash and
stretch and exaggeration, with generally poor resuts. These
principles are intended to turn a drawing (or a rendered
model) into a character in the mind of the viewer. While
this livelinessis desirable in animation made to entertain, it
is distracting when the goal is to inform. The audience is
drawn away from the speaker and becomes focused on the
animation itsdf, wondering what interesting thing is going
to happen on the saeen next. We had better resuts when
motion was as economical as possile.

Other classial animation principles such as anticipation
and staging are employed to draw the audience's attention
to the right part of the sareen at the right time. In presen-
tations, though, it is usually better to do this in a way that
maintains a distinction between the attention-getting anima-
tion and the action the audience needs to see. If samething
interesting is about to happen in a particular sectionof a g -
ure, that section should be highlighted by a color change, a
superimposed arrow, or even the speaker manually pointing
at it with the cursa—anything that can't be confused with
the interesting action itsdf.

Avoid instantaneous changes. We suggest making
smooth transitions — even samething as simple as a cross-
fade — the standard way of getting information on and off
the saeen. Sudden cuts between staes of a diagram create
uncertainty and tension, causing the audience to focus on the
saeen sothat nothing important is missed. Even very brief
transitions are better than sudden cuts at creating afeeling of
continuity, which lets the focus move easily from the saeen
to the speaker and back as needed.

Reinforce structure with transitions. An advantage of us-
ing subtle transitions is that it increases the impact of the
more showy effects when they are usel. A presentation in
which every single bullet point tap-dances its way onto the
saeen is a presentation where the audience quickly learns
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to ignore the tap-dancing. Used carefully, transitions can re-
inforce the structure of the presentation. A section can be
visually tied together with simple transitions. Using a more
dramatic effect to move to a new section will then create a
visual break, subtly punctuating the visual half of thetalk as
the speaker punctuates the verbal half.

Good and Bedersan® call this effect the “ senseof seman-
tic distance.” In their system staic PaverPdnt slides are ar-
ranged on a large canvas at various sces; the transitions
from one slide to the next are then pans and zooms of the
camera across this canvas. The natural way of laying out
slides in clustes by topic then leads to small transitions be-
tween related slides and longer, sweeping motions between
more distant sections. Our recommendation can be thought
of as a generalization of this effect, where the concept of
a “bigger” movement is extended to more than simple Eu-
clidean distance.

Create a large virtual canvas. Often when creating a pre-
sentation it seems lik e there is not enough room on the slide
to include everything the author thinks is important. Ani-
mated panning and zooming can be used to naturaly in-
crease the effective real estae of the saeen. A g ure that
slides off one side of the saeen remains more “visible” in
the mind's eye of the audience than one that simply blinks
out of existence. This effect is supported by psychological
research: Dillon et al.® summarize a number of studies sup-
porting a positive correlation between memory for location
and memory for content in both text and electronic docu-
ments.

Smoothly expand and compressdetail. A closdy related
principle is that of using animation to expand and compress
detail. In the previous principle we suggested using camera
pans and zooms to give the impressian of the saeen as a
window onto avery large spece. It is also effective to usethe
sareen as a kind of magnifying glassfor examining g ures
at avariety of sces. In this way the presentation can eas-
ily Il the saeen with the active portion of a diagram, shut-
ting out the parts not relevant to what the speaker is saying.
With staic slides the saeen jumps between scles, which
typically requires explanation by the presenter and effort by
the audience to make the mental links between the different
views.

With animation, this kind of navigation becomes much
easier to follow. Linking the different views with smooth,
continuous camera motion takes advantage of the viewers'
natural spetial abilitie s, with lessneed for arti ¢ ial highlight-
ing and explanation from the presenter. Zooming in to em-
phasize detail can be done much more often becausethereis
lessoverhead involved in maintaining context.

Manage complexity through overlays. Panning and
zooming alow attention to be focused on one spetial region
of a g ure, keeping unnecessay detail off the saeen while
providing context. Instead of breaking a diagram into pieces
spatially, one can imagine instead slicing along an axis of
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“complexity,” separating detail into layers that become visi-
ble only as required. A simple animated transition such as a
quick fade-in or asmall sliding motion can provide a subtle
and effective cue for differentiating the layers of informa-
tion.

Do one thing at a time. Animations where many things
are changing at once give an overall impressian of the
change, but make it dif c ult to concentrate on any single
part. We have had the best resuts when complex diagrams
are animated relatively slowly and with frequent pauses, so
that the animations track the speaker's words. The techno-
logical advances in slide creation and projection have made
it increasingly common for the presenter's words to take a
back sedt to the elaborate visuals. The extensive use of an-
imation threatens to make this effect worse We believe it
is important to treat any visuals — animated or otherwise —
as an accompaniment to the talk, rather than the other way
around. The presenter can only talk about onething at atime;
the animation on the sareen should match.

Reinforce animation with narration. The idea of using
animation simultaneously with narration is a use€ul one. In
our own preseantations we have noticed a frequent impulse
to try and make two points at once—to have the animation
showing one thing on the saeen while we talk about same-
thing else Even though the two topics are usually closdy
related, it is very dif c ult to follow both threads, and usu
ally theresult is that neither point gets made very effectively.
When used simultaneously, animation and narration should
reinforce each other. The speaker should desaibe what is
happening on the saeen as it happens. To make a point that
isn't illustraed, a pausein the on-saeen motion will nat-
uraly shift attention back to the presenter. The effective-
nessof narration in concert with animation has been demon-
strated in aseies of studies by Mayer and Andersan. 1t 12

Distinguish dynamics from transitions. Our n al anima-
tion principle also deals with reducing the potential for con-
fusion by the audience. We divide presentation animations
into two major classes: dynamics and transitions. Dynamics
refers to perhaps the most natural useof animation: depict-
ing change over time in a real-world process. This change
could be physical, sich as a moving illustraion of a me-
chanical system, or abstract, such as data o wing through
a computer algorithm. The essetial notion is that the ani-
mation is used to show same kind of change in the material
being presented. Transitionsis the term we useto capture all
the other uses of animation—using it to highlight, to draw
attention, to move the talk from one topic to the next. Here,
the animation seaves to help guide the audience through the
presentation itsef.

We have found it important to make sure the distinction
between dynamics and transitions is clear. It is very easy
to create animation that can be misinterpreted. As an exam-
ple, one of our use's was using a prototype of our system to
prepare a talk on a technique for simulating the motion of

nonrigid bodies. He wanted to contrast between two differ-
ent staes of his system and had created a clever animated
transition between the two illustraions. Viewers were of-
ten confused by the transition, thinking that the motion they
were seeing represented the output of the simulation. Fortu-
nately, this problem was identi e d before the n al presenta
tion: replacing the confusing motion transition with asimple
crossfde resdved the ambiguity, making it clear that the se
guence was showing two staic staes rather than an actual
motion.

5. Experience and examples

Figure 7(a) shows same still frames from a SLITHY presen-
tation on image matting. In this sequence the viewer zooms
in on one region of interestin a picture. Animation is then
used to show how the plot on the left is derived from the
image pixels. Further animations (not shown here) then il-
lustrae the operation of the algorithm in the abstrect space.
This is a good use of animation to illustrate content, rather
than just catching the viewer's eye.

Our next example, Figure 7(b), begins with a high-level
overview of the system desaibed, introducing the desired
input and output as iconic images. As other elements are in-
troduced, the two images shrink and spread apart to make
room, presaving the continuity of the sequence. At the end,
al the elements slide off save one, which is used to demon-
strate a number of challenges with the approach.

The example presentation of Figure 7(c) uses a block di-
agram of the overall system as a navigation aid for the talk.
One by one the blocks are highlighted, with the camera
zooming in on each to start the in-depth explanation of that
block. This gives a strong impressian that the detail slides
arelocated “within” the corresponding block. This structure
is used recursively. The g ure shows part of the sequence
contained within the “Momentum constrants” block. The
various types of momentum constrants are presented as a
seies of animated sub g ures; the camera zooms in more to
focus on each one. At the end, the camera pulls back to show
all of the sub g ures in their end stae, then pulls back again
to return to the origina block diagram. This sequence was
produced by one of our volunteer use's before SLITHY sup-
ported arbitrary nesting of objects. Seeing it motivated us
to add deep hierarchical assembly to the system sothat the
detail animations could actually appear within the blocks,
rather than camera movement just giving that impressian.

Figure 7(d) is a good example of expanding and com-
pressirg detail. This sequence stats by animating the con-
struction of a single Bézier curve. The camera then pulls
back to reveal that the curve is one of many. After those
curves are constructed, forming the boundary of asdid area,
the camera pulls back again to show that the curvesden ea
character, before suyperimposing a grid and illustrding the
rasterization process. Without animation, it would be more
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Figure 6 Three exanples of interactive objects. Exarmple (a)
lets the presenter interactively place control points to illus
trate the de Cageljau algorithm for drawing Bézier curves.
Interactive objects can coexist with other SLITHY elements—
exanple (b) showsan interactive annottion drawing tool
running on top of a text dide Exanple (c) comes from the
presentation of Figure 7(b). It showsthe opeation of a k-
nearest-neighbor algorithm lines are drawn between the
mouse cursor postion ond the four nearest neghbors, with
linethickness used to indicate a weight

dif ¢ ult to make clear therelationship between the diagrams
at three different scales. Animation obviates the need for any
verbal explanation at all.

Figure 6(a) is asimple interactive object that displaysapie
chart and allows the use to highlight any wedge by clicking
on it. The clicked wedge moves outward with a smooth, an-
imated motion. Figure 6(b) is a more elaborate interactive
diagram, from the same talk as Figure 7(b). It illustrates ak-
nearest-reighbor-based interpolation algorithm; by moving
the mousecursa around in the diagram the sample point is
linked to its four nearest neighbors by drawing green lines,
with linethicknessused to indicate the weight of each neigh-
bor.

6. Comparisonsto other systems

Although the SLITHY systam itsdf is just one of the contri-
butions we hope to have made in this paper (the others be-
ing, primarily, the principles underlying both the design of
any system for creating animated presentations and the de-
sign of the animations themsdves), it is neverthelessinstruc-
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tive to try to compare SLITHY, as a systam, to other related
commercial and research systems. Although an exhaustive
comparison would take more space than we can reascnably
afford, we will at leastlook at a few of the most sdient sys-
tems, which we divide into two major classes: systems de-
signed for creating presentations, and systems designed for
creating animation.

6.1. Presentation sdtware

PowerPoint. PoverPant makes designing staic slides very
simple, through an intuitive WY SIWY G graphical interface.
PawerPdnt also features a palette of animation effects that
can be applied to slide elements. However, it is extremely
dif c ult to create meaningful animation (the kinds of anima-
tion we have termed “dynamics” in Section 4) using Pow-
erPadnt's x ed library of effects. Even samething as simple
as the animated pulley diagram of Figure 1 would be next
to impossile to create. For complex animations use's must
resart to rendering avideo le in same other application and
playing it from within PoverPant. Moreover, PoverPant
provides templates for slide layout, but thesetemplates are
not parameterized. The use must sdect a template for each
slideand Il in content manually; there's no way to, for in-
stance, say “take this template and create ten slides using
thesetenimage le s”

In contrastto PowverPant's design asaword processa for
slides, SLITHY has been built from the beginning with ani-
mation in mind. In part to makeit fully e xible, and in part to
avoid the interface complexities of GUI animation systems
sieh as Maya or Flash, we have chosen a saipting model,
where authorswrite programsthat desaibetheir animations,
rather than creating them directly through graphical interac-
tion. Although certain operations lik e positioning elements
on the saeen are more dif ¢ ult to do with our approach, we
have tried to reduce these dif c ulties with tools that alow
usas to rapidly test and ren e their code, and interactively
query canvas coordinates. We have also developed some pro-
totype GUI-based tools that author SLITHY code for certain
narrowly de n ed domains (as desaibed in Section 3.4).

CounterPoint. CounterPant,® is a presentation system
implemented using the Jazz toolkit,! which itsdf is a de-
scendent of the Pad “zoomable sketchpad” system.1” Coun-
terPant allows PowerPant slides to be interactively scaled
and positioned in arbitrary locations on a large canvas, and
paths representing the order of the presentation to be drawn
through the slides. Animated zooms and pans across this
canvas are then usel to transition from one slide to the next.
The animation in CounterPant is focused exclusively on us-
ing animated navigation between slides to convey the struc-
ture of the presentation. In our work, we want to support the
animation of content aswell. SLITHY can be used to create
both kinds of animation.
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6.2. Creating animation

As we iteratively ren ed our own system, we were in u -
enced by previous saipt-based animation systans going
back to ANIMA [1° and DIAL.7 We use a general-purpose
programming language asin ASAS*® Modeling and anima-
tion are integrated in one language asin CHARL 1.4 We will

address a few of the most closdy related systeans in more
detail.

Menv. The Menv systean!8 is arguably one of the most
suwceessfu efforts at using a saipt-based systam for produc-
ing animation. A desaendant of the system is still in useto-
day by Pixar for producing animated feature Im s. Models
are created in Menv using aspecialized language, with prim-
itives for creating 3D geometry and performing common
graphics operations. Menv's authors point out three major
advantages that language-based modeling systems have over
interactive ones: replication, parameterization, and preci-
sion. While both types of systens allow replicating a model
through instancing, a language-based systam has the addi-
tional power to alow calculation of how many timesto repli-
cate and how to transform the various instances. A procedu-
ral speci ¢ ation of models also alows for complex param-
eterization, sothat multiple instances can vary in nontrivial
ways. The third advantage, precision, derives from the fact
that the model' s subparts can be positioned through calcu-
lation, eliminating the problems in alignment that can come
from graphical placement, especially as the model is ani-
mated. All of theseissies are as relevant for the creation of
abstract 2D g uresin SLITHY as they are for the creation
of redlistic 3D characters, yet this style of authoring is not
commonly seenin 2D toals.

Algorithm animation. One area in which animation sys-
tems have been designed for presentation useis in animating
algorithms. The Zeus system? is typical in that it works by
taking an implementation of an algorithm and instrumenting
it sothat the events that happen in the course of execution
arere e cted in the graphical display. It is not clear how this
style of generating animation would be extended to things
that are not algorithms, though.

Alice. Like SLITHY, the Alice project of Conway et al.>
created a graphics programming environment based on the
Python programming language. Alice, however, was specif-
ically targeted at uses with no graphics or programming
experience. It had no modeling component; the animations
were created by applying various transforms to premade 3D
objects. The emphasis was on creating interactive worlds
rather than saipting staries. Alice animation saipts were at-
tached to events such as mouseor keyboard inputs, or colli-
sions between 3D models. Executing an Alice saipt imme-
diately fed a se of commands for updating the world to a
central renderer. This allowed saipts to be activated in par-
allel, allowing use's to create a world full of objects with
interesting behaviors. This model makes it dif c ult to ac-
cessan animation at arbitrary points in time: there was no

representation of the animation apart from the saipt itsdf,
which had to be run from the beginning. In SLITHY, execut-
ing an animation saipt resuts in an intermediate animation
object, which can be sampled and manipulated arbitrarily.
This kind of e xibility is especially important during the au-
thoring process.

Flash.One of the mostwidely used 2D animation systems
today is Flash, from Macromedia. Flash was designed for
useon the web. It is a 2D, vector-based keyframe animation
system.

Themajor limitation of Flash(and of asimilar, competing
product from Adobe called LiveMotion) is that there is no
obviousway to create models with complex controls without
drawing the graphical elements using hand-written code, just
asin SLITHY. The interactively-created drawing primitives
and graphical timeline alow only simple transformations to
be speci e d. Primitives can be grouped together, but only
simple transformations such as applying af n e transforms
and modify ing opacity can be applied to the group. Without
the ahility to expressnontrivial mappings from the abstract
parameters of a group to the parameters of its members, it
is impossille to encapsuate interesting behavior and expose
that to the animator as a high-level control. (While an ani-
mation can be composed of many clips layered together, the
only controls offered by each clip are position on the sareen,
opacity, and which frame is being shown. A clip could be
used as a model, but only if that model required just a sin-
gle scalar parameter, which would be mapped onto the frame
number.)

Moreover, we believe there is an advantage in using a
saipt-based interface for expressirg the kind of simple, fre-
quently repeated animations used in presentations. Using
Flash's saipting language to create intricate complex ani-
mations is possilde, but awkward. FlasH's built-in graphical
timeline can only be edited interactively using the mouse
The saipting language can not be used to desaibe ani-
mations using the timeline. To specify animation procedu-
rally, one can write a callback function that is caled once
per frame and updates parameters of the graphical elements
manually based on the frame number. However, manually
positioning primitive objects as a function of time is tire-
same and error-prone. In contrast, SLITHY is built around
the concept of making parameterized models, justasin 3D
character animation systems. This parameterization is ex-
tended to every part of the systam. Even animation saipts
can themsdves be parameterized, letting use's create not just
animations but animation-generators, making it easier to au-
tomate complex or frequently repeated tasks.

7. Futurework and conclusion

There is still a great deal to be done. Most importantly, we
don't yet know how to make an animated presentation tool
that is both very genera and easy to use We believe the
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prototype tools desaibed in Section 3.4 have promise, but it
will take agreat deal of work and testing to determineiif this
is really the way to make animation available to the masses.

Every day computers are being used to tell staries and
present ideas in boardrooms and classrmms around the
globe. Thereis agreat opportunity here for computer graph-
icsto signi ¢ antly improve this widely-used medium. When
we started working on this problem — trying to design an
easy-to-use system to support al kinds of arbitrary anima-
tion — it was not at all obvious to us even what kinds of an-
imation would work well for presentations, let alone how to
design a systeam to create them. We feel that the system and
principles presented here, while by no meansthe n a word,
do at least provide same provocative and useful rst stepsto-
ward allowing usto create and experience more informative
and exciting presentations.
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@ (b) (© (d)
Figure 7 In sequence (a) camera zooning is used to focus on oneregion, then a plot is congructed by animating pixels from
theinputimage. In (b), animation is used to maintain continuity as a simple overview is expandel to show more information.
Presentation (c) uses zooning in on parts of diagrams to re e ct the hierarchical structure of thetalk. Sequence (d) showstheuse
of smoothly animated zooning to join together the actionsat multiple scales.

@ (b)

(©
Figure 8 Part (a) showsthree screenshots from an interactive application for generating animated slideshows The resulting
SLITHY animation appersin part (c). Part (b) showsa similar prototype utility for generating animated line chart sequences.
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