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Abstract
This paper presents a novel approach for estimating pa-
rameters for MRF-based stereo algorithms. This approach
is based on a new formulation of stereo as a maximum a
posterior (MAP) problem, in which both a disparity map
and MRF parameters are estimated from the stereo pair it-
self. We present an iterative algorithm for the MAP esti-
mation that alternates between estimating the parameters
while fixing the disparity map and estimating the disparity
map while fixing the parameters. The estimated parame-
ters include robust truncation thresholds, for both data and
neighborhood terms, as well as a regularization weight.
The regularization weight can be either a constant for the
whole image, or spatially-varying, depending on local in-
tensity gradients. In the latter case, the weights for inten-
sity gradients are also estimated. Experiments indicate that
our approach, as a wrapper for existing stereo algorithms,
moves a baseline belief propagation stereo algorithm up six
slots in the Middlebury rankings.

1. Introduction
Stereo matching has been one of the core challenges in
computer vision for decades. Many of the current best-
performing techniques are based on Markov Random Field
(MRF) formulations [8] that balance a data matching term
with a regularization term and are solved using Graph
Cuts [2, 11] or Belief Propagation [16, 4]. Virtually all of
these techniques require users to properly set hard-coded
parameters, e.g., regularization weight, by trial and error on
a set of images. In this paper, we argue that different stereo
pairs require different parameter settings for optimal perfor-
mance, and we seek an automated method to estimate those
parameters for each pair of images.

To see the effect of parameter setting on stereo matching,
we estimated disparity maps, D = {di}, for Tsukuba and
Map image pairs [15] by minimizing the following energy

∑

i∈I

U(di) + λ
∑

(i,j)∈G

V (di, dj) (1)

where I is the set of pixels, G is the set of graph edges
connecting adjacent pixels, U measures similarity between
matching pixels, and V is a regularization term that encour-
ages neighboring pixels to have similar disparities. We min-
imize Eq. (1) using an existing MRF solver [4] and plot the
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Figure 1. Some stereo pairs require more regularization than
others, as shown in the above graphs that plot error as a
function of regularization weight λ. The parameters shown
above (dotted vertical lines) were computed automatically
using our algorithm.

error rate of the disparity estimation versus ground truth as
a function of λ, as shown in Figure 1. The figure shows that,
for the same algorithm, the optimal regularization weight λ

varies across different stereo pairs. As shown later in the
paper, λ and other MRF parameters, e.g., robust truncation
thresholds, are related to the statistics of image noise and
variation of scene structures, and can all be estimated from
a single stereo pair. Furthermore, we also show that neigh-
boring pixel intensity difference [2] can be conveniently in-
corporated into our formulation to encourage the disparity
discontinuities to be aligned with intensity edges, and the
relevant parameters can be estimated automatically.

To estimate the MRF parameters, we interpret them us-
ing a probabilistic model that reformulates stereo match-
ing as a maximum a posterior (MAP) problem for both the
disparity map and the MRF parameters. Under this for-
mulation, we develop an alternating optimization algorithm
that computes both the disparity map and the parameters.
Our approach serves as a wrapper for existing MRF stereo
matching algorithms that solves for the optimal parameters
for each image pair. Our routine uses the output of the stereo
matcher to update the parameter values, which are in turn
fed back into the stereo matching procedure—it can inter-
face with many stereo implementations without modifica-
tion. Therefore, we emphasize that the goal of this paper is



not a specific stereo algorithm that performs better than ex-
isting algorithms. Rather, we introduce a methodology that
boosts the performance of MRF-based stereo algorithms.
Although we use a baseline stereo algorithm based on be-
lief propagation, any MRF-based stereo algorithm could be
used instead (e.g., graph cuts, dynamic programming).

The rest of the paper is organized as follows. After re-
viewing related work in Section 2, we first give the intuition
for our parameter estimation technique in Section 3. We
then formulate the idea as an MAP problem in Section 4,
propose an optimization algorithm in Section 5, and extend
it to estimate the weights that depend on intensity gradients
in Section 6. Finally, we show experimental results in Sec-
tion 7, and discuss future research directions in Section 8.

2. Previous work
An early stereo method that requires no parameter setting is
the adaptive window method of Kanade and Okutomi [10],
which requires proper initialization for good performance.
The only prior work that addressed the problem of com-
puting MRF parameters (aka hyper-parameters) for stereo
matching is by Cheng and Caelli [3]. While their approach
is an important first step, they relied on a restricted MRF
model from the image restoration literature [9], and did
not support key features of the leading stereo algorithms,
e.g., occlusion modeling and gradient-dependent regular-
ization. (Other MRF models in the image restoration lit-
erature, e.g., [12, 19, 14], also have this limitation when
applied to stereo matching.) In contrast, we designed our
approach to support these features in order to interface with
many of the leading stereo algorithms—our approach op-
erates as an auxiliary routine that does not require modify-
ing existing stereo code. Towards this end, we show that
the truncated absolute distance commonly used in leading
stereo algorithms [2, 4] corresponds to a mixture of an ex-
ponential distribution and an outlier process. We use hid-
den variables to model occlusions and other outliers, and
apply expectation maximization (EM) to infer the hidden
variables and estimate the mixture models. Because we
use EM instead of MCMC, our approach is also simpler
and more efficient compared to [3]. Finally, we benchmark
our approach on the Middlebury database, and show that it
dramatically improves the performance of a leading algo-
rithm with the recommended hand-tuned parameters (as op-
posed to showing improvement over randomly-chosen pa-
rameters [3]).

In this work, we use insights from statistical learning to
improve vision algorithms. Our work is therefore related to
Freeman et al. [6] who formulate super-resolution as MRF
inference based on training images, and apply belief propa-
gation to obtain good results. Similarly, with training im-
ages, Freeman and Torralba [5] infer 3D scene structure
from a single image. Unlike Freeman et al.’s approach, our

method doesn’t require training images—MRF parameters
are estimated from the stereo pair itself.

3 Intuition
In this section, we describe our basic idea for parameter
estimation for MRF-based stereo. In the energy function
in Eq. (1), U measures similarity between matching pixels,
and V encourages neighboring pixels to have similar dis-
parities. Many functional forms have been proposed for U

and V , including squared differences, absolute differences,
and many other robust metrics [15]. In this paper, we fo-
cus on truncated absolute difference because it is a popu-
lar choice of top performing stereo algorithms [2, 4] and it
has several good properties. First, it is derived from total
variation [13], thus preserving discontinuities. Second, it
does not have frontal parallel bias and satisfies the metric
property required by the α-expansion algorithm in graph
cut [2]. Third, it can be efficiently computed via distance
transform [4] in belief propagation. Specifically,

U(di) = min(|I(xi, yi) − J(xi − di, yi)|, σ)
V (di, dj) = min(|di − dj |, τ)

(2)
where I and J are the image pairs, and σ and τ are trunca-
tion thresholds.

To best set the parameters σ, τ , and λ for a stereo pair, we
need to know how well the corresponding pixels in two im-
ages can be matched and how similar the neighboring dis-
parities are, in a statistical sense. However, without know-
ing the disparity map, those two questions can not be an-
swered. This dilemma explains why existing MRF-based
stereo algorithms require users to set parameters manually.

To resolve this dilemma, let’s first consider the case in
which we know the disparity maps. In Figure 2(a,c), us-
ing the ground truth disparities from the Middlebury web-
site [15], we plot the histograms of pixel matching er-
rors and neighboring disparity differences for the Tsukuba
stereo pair. In Figure 2(b,d), we show the same histograms
in log-scale. Since the log-scale histograms are not straight
lines or quadratic curves, it means that the probability of
pixel matching errors and that of neighboring disparity dif-
ferences are not simple exponential or Gaussian distribu-
tions. The heavy tail in the matching error histogram is
due to occlusion and violation of brightness constancy; the
heavy tail in the neighboring disparity difference histogram
is due to disparity discontinuities. Those histograms can be
approximated by two segments, a mixture of an exponen-
tial distribution and a uniform outlier process. Figure 2(a,c)
shows the probability distribution of fitted mixture mod-
els overlaid on the histograms. The fit is quite accurate:
the errors are around 10−3, only noticeable in the log-scale
graphs in Figure 2(b,d). From the shapes of the fitted distri-
butions, we can recover the optimal set of MRF parameters,
as we describe later in the paper.
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Figure 2. Histograms of errors between corresponding pixels in two images in linear (a) and log (b) scale. Superimposed on
the plots is the fitted mixture model. (c) and (d) show histograms and models for neighboring disparity difference.

In practice, however, ground truth disparities are un-
known and we propose an iterative algorithm that alternates
between estimating MRF parameters from the current his-
tograms and estimating disparities using the current MRF
parameters. The algorithm iterates until the estimated dis-
parity map yields histograms that agree with the MRF pa-
rameters or a fixed number of iterations is reached. In the
next section, we present the details of this method by cast-
ing the problem in a probabilistic framework.

4 A probabilistic mixture model for stereo
In this section, we present the mixture models for the his-
tograms of pixel matching errors and neighboring dispar-
ity differences, and formulate stereo matching probabilisti-
cally, based on those mixture models.

4.1 Matching likelihood

Given an image pair I and J and the disparity map D, we
define the mixture model for pixel matching error as fol-
lows. We assign each pixel i in I a hidden binary random
variable γi, indicating whether the corresponding scene
point is visible in J .1 Let e(di) = I(xi, yi)−J(xi−di, yi).
We define the mixture model for e(di) as

P (e(di)|di, γi) =

{
ζe−µ|e(di)|, γi = 1.
1
N

, γi = 0.
(3)

where µ is the decay rate for the exponential distribu-
tion, |e(di)| takes discrete values, {0, 1, · · · , N − 1}, and
ζ = 1−exp(−µ)

1−exp(−µN) is a normalization factor. We define the
mixture probability

P (γi = 1) = α (4)

where α is the percent of pixels in I that are also visible in
J . Summing over γi gives the marginal matching likelihood

P (e(di)|di) = αζe−µ|e(di)| + (1 − α)
1

N
(5)

1For brevity, we refer to γi as a visibility variable, but it can also ac-
count for differences in brightness, e.g., due to specularity.

4.2 Disparity prior
Define ∆dg = di − dj to be the disparity difference on the
graph edge g connecting adjacent pixels i and j. Similarly
as for pixel matching probability, we assign each edge g a
binary random variable θg , indicating whether the edge is
continuous. We define the mixture model for ∆dg as

P (∆dg|θg) =

{
ηe−ν|∆dg|, θg = 1.
1
L

, θg = 0.
(6)

where ν is the decay rate, |∆dg| ∈ {0, 1, · · · , L − 1}, and
η = 1−exp(−ν)

1−exp(−νL) . We define the mixture probability

P (θg = 1) = β (7)

where β is the percent of continuous edges in I . The
marginal distribution is

P (∆dg) = βηe−ν|∆dg| + (1 − β)
1

L
(8)

4.3 Stereo as a MAP problem
Now we formulate stereo matching as a MAP problem
based on the two defined mixture distributions. Given an
image pair, I and J , our probabilistic model consists of a
disparity field D = {di} over I and two sets of random
variables Γ = {γi} and Θ = {θg} for pixel visibility and
edge connectivity, respectively.2

We seek to estimate D, α, µ, β, and ν, given I and J by
maximizing

P (D,α, µ, β, ν|I, J) = P (I,J,D|α,µ,β,ν)P (α,µ,β,ν)
P (I,J)

∝ P (I, J,D|α, µ, β, ν)
(9)

where the prior on (α, µ, β, ν) is assumed to be uniform.
We can factor P (I, J,D|α, µ, β, ν) as

P (I, J,D|α, µ, β, ν) = P (I, J |D,α, µ)P (D|β, ν) (10)

and compute P (I, J |D,α, µ) and P (D|β, ν) by marginal-
izing over visibility variables Γ and continuity variables Θ,
respectively, as follows.

P (I, J |D,α, µ) =
∏

i

P (e(di)|di, α, µ) (11)

2This model is called “three coupled MRF’s” in [16].
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Figure 3. (a) A graph for Eq. (18) for L = 16. (b) An illustration
of Eq. (24) (solid curve) as an upper bound for Eq. (23)
(dotted curve) for (a, b, c) = (1, 2, 1).

which assumes P (Γ|D,α) = P (Γ|α), ignoring the depen-
dence of visibility on geometry for computational conve-
nience. Similarly,

P (D|β, ν) =
∏

g

P (∆dg|β, ν) (12)

which assumes the independence between ∆dg also for
computational convenience.

Putting Eqs. (11,12) together, we obtain

P (D,α, µ, β, ν|I, J)

∝
∏

i

P (e(di)|di, α, µ)

︸ ︷︷ ︸

P (I,J|D,α,µ)

∏

g

P (∆dg|β, ν)

︸ ︷︷ ︸

P (D|β,ν)

(13)

Given disparity map D, we can estimate α and µ by max-
imizing the marginal data likelihood P (I, J |D,α, µ), and
we can estimate β and ν by maximizing the marginal
prior distribution P (D|β, ν). Also, we can estimate D

by maximizing the likelihood and the prior jointly. Next,
we propose an alternating optimization algorithm for this
maximization and relate the probabilistic model parameters
(α, µ, β, ν) to (σ, τ, λ) in Eqs. (1,2).

5 An alternating optimization
In this section, we present an alternating algorithm to max-
imize Eq. (13). Given D, we apply the EM algorithm to
estimate (α, µ) by maximizing P (I, J |D,α, µ) and esti-
mate (β, ν) by maximizing P (D|β, ν). From (α, µ, β, ν),
we then compute the optimal MRF parameters (σ, τ, λ).

5.1 Estimating β and ν given D

The EM algorithm is well suited for estimating parameters
for mixture models. Given D, we first compute

L = max
g

{|∆dg|} + 1 (14)

Then we compute the conditional probability of θg as

ωg
def
= P (θg = 1|∆dg, β, ν) =

βηe−ν|∆dg|

βηe−ν|∆dg| + 1−β
L

(15)

Finally, we estimate β and ν by maximizing the expected
log-probability Eθg

[log P (∆dg, θg|β, ν)], computed as

∑

g

ωg log P (∆dg, θg = 1|β, ν) + (1 − ωg) log P (∆dg, θg = 0|β, ν)

=
∑

g

ωg (log(βη) − ν|∆dg|) + (1 − ωg) log 1−β
L

(16)
By maximizing Eq. (16), we obtain the following relation

β =
1

|G|

∑

g

ωg (17)

where |G| is the number of edges in G, and ν is the solution
of the equation

1

eν − 1
−

L

eLν − 1
=

∑

g

ωg|∆dg|

∑

g

ωg

(18)

Let f(ν;L) = 1
eν−1 − L

eLν−1
be the left hand side of

Eq. (18). f monotonically decreases from L−1
2 to 0 over

[0,∞), as shown in Figure 3(a). When L is large, the sec-
ond term in f(ν;L), L

eLν−1
, is negligible, and the equation

has a close-form solution ν0 = log( 1
y

+ 1), where y is the
right hand side of Eq. (18). When L is small, we start from
ν = ν0 and refine ν using the Newton-Raphson method.

5.2 Estimating α and µ given D

The EM algorithm can also be used to estimate α and µ.
Given D, we first compute

N = max
i

{e(di)} + 1 (19)

Then we can estimate α and µ in the same way as we esti-
mate β and ν using Eqs.(15,17,18) with the following vari-
able replacement:

(β, ν, η, L, g,G,∆dg) → (α, µ, ζ,N, i, I, e(di), ) (20)

5.3 Estimating D given α, µ, β, and ν

In this section, we describe how the estimated values of α,
µ, β, and ν are used for stereo matching. Given α, µ, β, and
ν, we wish to maximize Eq. (13) by minimizing

Ψ
def
= − log P (D,α, µ, β, ν|I, J)
=

∑

i

ρd(di;α, µ) +
∑

g

ρp(∆dg;β, ν) (21)

where

ρd(di;α, µ) = − log(αζe−µ|e(di)| + 1−α
N

)

ρp(di;β, ν) = − log(βηe−ν|∆dg| + 1−β
L

)
(22)

Eq. (21) can be minimized directly using existing tech-
niques. For example, Sun et al. [16] use Belief Propagation
to minimize a form of Eq. (21).



5.3.1 From mixture model to regularized energy

Although Eq. (21) can be optimized directly, it is not in a
form that efficient MRF solvers [2, 4] assume. Recall that
our objective is to interface with and boost the performance
of existing stereo algorithms, and we therefore want to con-
vert Eq. (21) to the form of Eqs. (1,2). We notice that a
function of the form

h(x; a, b, c) = − log(a exp(−b|x|) + c) (23)

is tightly upper-bounded by

h̄(x; r, s, t) = min(s|x|, t) + r (24)

where s = ab
a+c

, t = log(a+c
c

), and r = − log(a + c), as
shown in Figure 3(b). Therefore, minimizing Eq. (21) can
also be approximately achieved by minimizing

Ψ̄ =
∑

i

min(sd|e(di)|, td) +
∑

g

min(sp|∆dg|, tp) − C

(25)
where

sd = αζµ

αζ+(1−α) 1

N

td = log(1 + αζN
1−α

)

sp = βην

βη+(1−β) 1

L

tp = log(1 + βηL
1−β

)

C = |I| log(αζ + 1−α
N

) + |G| log(βη + 1−β
L

)

(26)

To further simplify the problem, we let σ = td

sd
, τ =

tp

sp
,

and λ =
sp

sd
, and define

Ψ̄′ =
∑

i

min(|e(di)|, σ) + λ
∑

g

min(|∆dg|, τ) (27)

Ψ̄′ differs from Ψ̄ by an affine transform, which does not
affect the estimation of D. Eq. (27) is the objective function
used in [2, 4] for stereo matching.

Now, we summarize our algorithm as follows.
Initialize (α, µ,N, β, ν, L), and iterate
— Compute sd, td, sp, and tp using Eq. (26)
— Set σ = td

sd
, τ =

tp

sp
, and λ =

sp

sd

— Compute D by STEREO-MATCHING with Eq. (27)
— Update L,β, and ν by iterating EM Eqs. (14,15,17,18)
— Update N ,α, and µ by iterating EM Eqs. (19,15,17,18)

with the variable replacement defined in Eq. (20)
Until convergence or a fixed number of iterations.

We typically start with α = β = 0.5, µ = ν = 1.0,
N = 255, and set L be the maximum disparity plus 1,
although robust convergence is observed with various initial
values, as shown in Section 7. STEREO-MATCHING
could be any stereo algorithm that works with Eq. (27).

6 Intensity gradient cues
Recent stereo algorithms use static cues, such as color seg-
ments [17, 16] and color edges [7, 1], to improve perfor-
mance. Here, we show that neighboring pixel intensity dif-
ference [2] can be conveniently incorporated into our for-
mulation to encourage the disparity discontinuities to be

aligned with intensity edges, and the relevant weighting pa-
rameters can be estimated automatically.

Define ∆Ig to be the intensity difference between the
two pixels connected by a graph edge g. To relate ∆Ig to
the continuity of the disparity map, we treat ∆Ig as a ran-
dom variable and define a corresponding mixture distribu-
tion. We require the mixture distribution of ∆Ig to share
the same hidden variable θg of ∆dg . Specifically,

P (∆Ig|θg) =

{
ξe−κ|∆Ig|, θg = 1.
1
K

, θg = 0.
(28)

where κ is the decay rate, |∆Ig| ∈ {0, 1, · · · ,K − 1}, and
ξ = 1−exp(−κ)

1−exp(−κK) . This model has the following property:
if a graph edge is continuous, both the color and the dispar-
ity differences are encouraged to be small; if a graph edge
is discontinuous, the color and disparity differences are un-
constrained. The corresponding marginal distribution is

P (∆Ig,∆dg) = βξηe−(κ|∆Ig|+ν|∆dg|)+(1−β)
1

KL
(29)

Given I , ∆I , and J , our goal is to recover D, α, µ, β, ν,
and κ, by maximizing

P (D,α, µ, β, κ, ν|I,∆I, J)

∝
∏

i

P (e(di)|di, α, µ)

︸ ︷︷ ︸

P (I,J|D,α,µ)

∏

g

P (∆Ig,∆dg|β, κ, ν)

︸ ︷︷ ︸

P (∆I,D|β,κ,ν)

(30)

The alternating algorithm in Section 5 can still be applied
with minor a change. The estimation of α and µ is the same
as before. The estimation of β, κ, and ν can be done as
follows. Initially, we set K = max

g
{∆Ig} + 1. For each

iteration, we first update L as in Eq. (14). Then we compute
the condition probability of θg as

ωg
def
=

βξηe−(κ|∆Ig|+ν|∆dg|)

βξηe−(κ|∆Ig|+ν|∆dg|) + 1−β
KL

(31)

Finally, we update β and ν using Eqs. (17) and (18), respec-
tively, and update κ also using Eq. (18) with the following
variable replacement (ν, L,∆dg) → (κ,K,∆Ig).

After estimating (α, µ, β, ν, κ), we estimate D by mini-
mizing Eq. (21) with ρp depending on ∆Ig . Specifically,

ρp(di;∆Ig, β, κ, ν) = − log(βξηe−κ|∆Ig|e−ν|∆dg| + 1−β
KL

)
(32)

Accordingly, sp and tp also depend on ∆Ig .

sp = βξηνe−κ|∆Ig|

βξηe−κ|∆Ig|+ 1−β
KL

tp = log(1 + βξηKLe−κ|∆Ig|

1−β
)

(33)
In Eq. (33), sp approaches 0 in proportion to e−κ|∆Ig| when
∆Ig is large; sp approaches ν

1+ 1−β
KLβξη

when ∆Ig is near 0.

Therefore, the regularization weight λ =
sp

sd
varies over the

image: large in uniform areas and small across color edges.



7. Results
We implemented the EM algorithm to estimate the MRF
parameters, and implemented belief propagation (BP) using
distance transform [4] as our baseline stereo matcher. In all
experiments, we alternated between EM and BP six times.
In each alternation, BP was executed for 60 iterations and
each iteration takes about 1 second. The cost for EM is
negligible and the total run-time is about 6 minutes.

7.1 Convergence
In our first experiment, we tested our algorithm on the four
Middlebury benchmarks. In Figure 4, we show the disparity
maps and corresponding (σ, τ, λ) at iteration 1, 2, 4, 6 for
the four cases. Initially, the regularization is weak and the
disparity map is noisy. As the algorithm proceeds, the regu-
larization increases and the disparity map becomes cleaner.

In our second experiment, we repeated experiment 1,
but with different initial values. We show the initial and
final (σ, τ, λ), including those of experiment 1, in the top
five rows in the tables in Table 1. Despite the variation of
scales in initial parameters, the final parameters are consis-
tent, showing robust convergence of our algorithm. We also
compared the final disparity maps using the ground truth,
and showed the error rate in the last column. The error rates
are also consistent. In addition to trying different initial val-
ues, we also tried starting with the ground truth disparity
maps and estimated the parameters. Then we estimated the
disparity map while keeping those parameters fixed. The
error rates are shown in the bottom right corner. Both the
error rates and the parameters are close to the results ob-
tained without knowing ground truth. However, the param-
eters computed from ground truth disparities don’t result in
disparity maps with lower error rates. This unintuitive fact
is because real scenes are not perfectly described by our
MRF model, as discussed in Section 8.

7.2 Optimality
In our third experiment, for each case in experiment 1, we
fix σ and τ but vary λ from 1 to 50 and estimate disparity us-
ing BP. We plot the error as a function of λ in Figure 5. The
red bar indicate our estimated values, whose corresponding
error rates are quite close to the minimum error rates of the
graphs in all the four benchmarks.

7.3 Improvement
In our fourth experiment, we show how our automatic pa-
rameter setting method can improve over choosing fixed pa-
rameters manually. We first run BP with the fixed parame-
ters suggested in [4] and the result is shown in the fourth
row (“Fixed”) in Table 2. Then we compare this result
with the result in the first experiment where we solve for
(σ, τ, λ), shown in the third row (“Adaptive”) in Table 2.
Our adaptive method shows similar results to the fixed pa-
rameters for Sawtooth and Venus, but dramatic improve-

ment on Map. As reported in [16], the Map pair requires
different parameter settings than the other three datasets.
Our algorithm automatically finds appropriate parameters
without any user intervention. For the Tsukuba data set,
the result is slightly worse than the results with the fixed
manually-chosen parameters. The reason is that a user ex-
ploits the ground truth or his perception as a reference when
setting the parameters, while our algorithm estimates the
parameters based on model fitting. When the ground truth is
not the optimal solution of our model, the estimated dispar-
ity map could deviate from the ground truth. Overall, our
automatic parameter setting technique improves the rank-
ing of the baseline algorithm by six slots on the Middlebury
benchmarks.

The experiments so far do not include the intensity gra-
dient cue proposed in Section 6. Now we consider this cue.
First, we use the estimated values for (α, µ, β, ν), but set
κ = 1 and 0.01, respectively. The results for the two κ

values are shown in the fifth row (“Fixed+grad 1”) and the
second row (“Fixed+grad 2”), respectively. κ = 1 is ap-
parently too large and κ = 0.01 is better. If we estimate
(α, µ, β, ν, κ) together, as described in Section 6, we get the
first row (“Adaptive+grad”) of Table 2. As expected, error
rates in discontinuity regions, shown in the columns under
“disc.”, are consistently reduced. Overall, our parameter es-
timation technique raises the rank of the baseline algorithm
(with intensity gradient cue) by six slots, and the resulting
adaptive algorithm is ranked the fifth among all stereo algo-
rithms in the Middlebury rankings, as of April 24, 2005.

8. Discussion
In this paper, we presented a parameter estimation method
for MRF stereo. Our method converges consistently and
significantly improves a baseline stereo algorithm. Our
method works as a wrapper that interfaces with many stereo
algorithms without requiring any changes to those algo-
rithms. Here we discuss some ideas for future work.

First, our model gives higher energy to ground truth than
to the estimated disparity maps [18]. One of the reasons is
that we model visibility photometrically, but not geometri-
cally. In other words, we assume visibility variables Γ are
independent of D. One piece of future work would be to
model the occlusion process more precisely. Second, we
use histograms of pixel matching errors and neighboring
disparity differences for a whole image, assuming the mix-
ture models don’t vary across the image. This assumption
may be valid for the matching errors, which are largely due
to sensor noise, but it may not be accurate for the disparity
maps, which may have spatially varying smoothness.
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σ = 5.12, τ = 16.10, λ = 0.065 σ = 8.94, τ = 7.02, λ = 0.83 σ = 17.50, τ = 2.31, λ = 6.78 σ = 18.39, τ = 1.64, λ = 9.49

σ = 5.12, τ = 16.92, λ = 0.069 σ = 16.11, τ = 10.76, λ = 0.95 σ = 34.43, τ = 2.42, λ = 13.78 σ = 34.79, τ = 1.73, λ = 20.08

σ = 5.12, τ = 16.92, λ = 0.069 σ = 13.29, τ = 11.13, λ = 0.76 σ = 28.10, τ = 2.65, λ = 11.14 σ = 28.87, τ = 1.90, λ = 15.59

σ = 5.12, τ = 18.49, λ = 0.075 σ = 16.99, τ = 12.51, λ = 0.89 σ = 60.25, τ = 4.43, λ = 13.42 σ = 85.50, τ = 1.87, λ = 41.71

Figure 4. Convergence on the four Middlebury benchmarks. The four columns correspond to iteration 1, 2, 4, and 6.
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Figure 5. Graphs of error rate with respect to ground truth as a function of regularization weight λ while fixing (σ, τ). The
vertical dotted lines are our estimation for λ.
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