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Character Animation in Two-Player Adversarial Games
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The incorporation of randomness is critical for the believability and effectiveness of controllers for characters in competitive games. We present a fully
automatic method for generating intelligent real-time controllers for characters in such a game. Our approach uses game theory to deal with the ramifications
of the characters acting simultaneously, and generates controllers which employ both long-term planning and an intelligent use of randomness. Our results
exhibit nuanced strategies based on unpredictability, such as feints and misdirection moves, which take into account and exploit the possible strategies of an
adversary. The controllers are generated by examining the interaction between the rules of the game and the motions generated from a parametric motion graph.
This involves solving a large-scale planning problem, so we also describe a new technique for scaling this process to higher dimensions.
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1. INTRODUCTION

Some of the most complicated and intricate human behaviors arise
out of interactions with other people in competitive games. In many
competitive sports, players compete for certain goals while simulta-
neously preventing the opponents from achieving their goals. These
scenarios create very dynamic and unpredictable situations: the
players need to make decisions considering both their own actions
and the opponent’s strategy, including any biases or weaknesses in
the opponent’s behavior. We propose that a mathematical frame-
work based upon game theory is the appropriate choice to animate
or control characters in these situations. Furthermore, we show that
a game-theoretic formulation naturally accounts for real-world be-
haviors such as feints and other intelligent uses of nondeterminism
which are ubiquitous in real life but have thus far been difficult to
incorporate believably into games without significant hand-tuning.
This is particularly of value in video games where an intelligent use
of nondeterminism is an absolute necessity for a virtual character
in a competitive situation.

The root assumption upon which our method is based is that the
characters act simultaneously, in contrast to previous adversarial
character animation techniques which model the players as taking
turns. This closely matches the structure of many real-world games
and sports, and captures the reason it often pays to be unpredictable
in these games. In turn-based approaches the best way to act is
always deterministic, and any randomness must be postprocessed
in an ad hoc, and often difficult to hand-tune, manner. This signif-
icantly complicates the design of the animation controller and is
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prone to errors, leading to characters that don’t behave randomly
when they should or that choose randomness when it is not appropri-
ate. By allowing simultaneous actions we arrive at a game-theoretic
formulation which incorporates nondeterminism in its definition of
optimal behavior. This not only allows for intelligent and random
controllers to be automatically constructed, but also gives rise to
emergent behaviors such as feints and quick footsteps which ex-
ploit unpredictability for their effectiveness.

The particular mathematical model we employ for character an-
imation is known as a zero-sum Markov game. In this model each
character acts according to the probability distribution that max-
imizes the likelihood of winning, assuming that the opponent is
capable of this same line of reasoning and is attempting to stop
them as effectively as possible. This approach also allows for an
easy integration of long-term planning where characters choose
their moves based not only on what will happen immediately but
also taking into account what the future ramifications might be.
This is necessary for the method to be applicable in real games, and
gives rise to intelligent-looking anticipation, such as “leading” the
motion of a runner in order to tackle them or planning a feint in a
sword fight.

Unfortunately, building optimal game-theoretic controllers is
hard because we plan for optimal policies by considering both
adversaries simultaneously. This magnifies all the issues of high
dimensionality, making it significantly harder than creating a con-
troller for a single character. This is particularly problematic as
existing MDP and Markov game planning algorithms require expo-
nential time and storage in the dimension of the game’s state space.
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We provide a new offline learning algorithm that employs an iter-
ative function learning and compression heuristic. This algorithm
effectively mitigates this difficulty and is particularly well suited
to the sorts of problems encountered in character animation. By
incorporating this with a model which uses the character’s motion
graph directly rather than relying on a simplified abstraction, we are
able to produce detailed and realistic results.

Finally, we provide a method for altering the behavior of our
characters in light of knowledge about an opponent’s biases and
inefficiencies. For example, if it is known that an opponent tends to
prefer a specific move, the character can adjust its behavior so that
this particular move is not successful. We believe that the ability
to naturally account for randomness and other nuances resulting
from competing characters will be of great use in defining complex,
intelligent, unpredictable, and adaptable behaviors that contribute
to the realism and uniqueness of repeated play experiences.

2. RELATED WORK

In a game it is desirable to have a character controller which behaves
intelligently both in its motion choices and in its use of random-
ness. Previous approaches to animating characters that are compet-
ing against each other have typically approached the problem from
a turn-based framework [Shum et al. 2008, 2007]. In a somewhat
different approach, Liu et al. [2006] use a sequence of alternating
spacetime optimizations to generate a tackling-dodging motion. In
these methods an ordering is imposed on the characters’ actions,
forcing them to “take turns” in selecting their movements. This
allows a deterministic strategy to be obtained using standard alter-
nating minimax search techniques. In some cases this is appropriate,
and it allows the authors generate some impressive animations, but
in other cases these approaches can perform poorly. The difficulty
with these methods is that the imposed ordering is often arbitrary
and does not reflect the true nature of physical games in which ac-
tions are taken simultaneously. The result of this is twofold. Firstly
the player “going second” in a turn-based approach has a distinct
advantage, often leading to unrealistic motions in which the player
seems to “predict” their opponent’s moves before they happen. Sec-
ondly, optimal behavior in these approaches is always deterministic.
By allowing actions to occur simultaneously we naturally arrive at
a game-theoretic approach and remedy both of these problems. The
nondeterministic policies seem to capture fakes, jukes, and quick-
step motions that we expect in competitive games.

Attempts to layer nondeterminism on top of a deterministic
framework have been proposed. In Shum et al. [2007], the authors
suggest setting the probability that a motion will be chosen based
on its score in the minimax search where each agent picks the sin-
gle action which maximizes their reward based on the opponent’s
current state. Lee and Lee [2006] hand-label a small set of actions
that the character can select from at random. Such approaches gen-
erally produce unsatisfactory results because the degree and nature
of randomness required can vary in complicated ways depending
on the states and available actions of the characters. For example, in
some cases there is only a single motion that is appropriate, such as
running directly away from an opponent in the game of tag. Other
motions, such as turning or slowing down slightly, might result in a
score only slightly worse than the best actions, but would look very
odd indeed were a character to choose them. Conversely, there are
some cases such as dodging around an oncoming tackler where it
pays to be unpredictable and the character would wish to choose
randomly between a left and a right dodge. Our game-theoretic
framework naturally incorporates randomness into its definition of
optimality and determines the stochastic policy which trades be-

tween diversity and effectiveness as necessitated by the state of the
game.

Our approach is also related to reinforcement learning techniques
which have been employed to generate intelligent single-character
behavior in real time. Lee and Lee [2006] use value iteration to
produce boxing avatars. Ikemoto et al. [2005] and Lau and Kuffner
[2006] store the discounted sum of reward obtained by simulating
for a short amount of time. McCann and Pollard [2007] construct a
value function that adapts to user command patterns. Lee and Lee
[2006] use a discrete representation to compute an optimal path
for a boxer to hit a target, obtaining a two-character animation by
having each character treat the other’s body as the target. Treuille
et al. [2007] and Lo and Zwicker [2008] produce compact represen-
tations for value functions to obtain a policy quickly at runtime. Our
work extends these ideas to multiple characters to produce strategic
behaviors not possible in single-character frameworks.

A particularly interesting single-character approach to control-
ling competitive characters is presented by Graepel et al. [2004].
They use reinforcement learning to gradually build an effective pol-
icy by having a character play a fighting game over and over. This
approach does allow adaptation to an opponent’s behavior, but also
neglects the adversarial aspects to the game because it treats the
opponent as a stochastic process rather than something capable of
reasoning. This means that the generated controllers are still deter-
ministic, and may require a large amount of training data before
being applied in new situations.

3. OVERVIEW

We consider the problem of animating one character competing
against another in a game in which each character seeks to do
well while simultaneously preventing their adversary from doing
the same. This means that any actions taken by the characters will
be chosen not only by how well they help them perform in the
game but also by how their opponents might counteract them. For
convenience we will henceforth call one character the agent and the
other the opponent and describe the game from the agent’s point of
view. However, the agent and opponent are interchangeable in our
model and our technique can be used to animate either or both.

The fundamental assumption upon which our approach is based
is that the characters choose their actions simultaneously, in contrast
to the turn-based approaches previously used in character anima-
tion. This assumption better models the way that most real-world
physical games are played and why it is often useful to behave un-
predictably. As a simple illustration of this property, consider the
difference between tic-tac-toe and rock-paper-scissors. The former
is turn-based, and there is an optimal deterministic strategy. In rock-
paper-scissors and in many real games, however, the lack of turns
necessitates a nondeterministic strategy.

This insight leads to the use of a Markov game to model the
character animation problem. In particular we employ a zero-sum
Markov game in which two characters are competing with opposing
goals. In such a game each player has at their disposal a set of
available moves at each state, which we will refer to as actions.
Our method is agnostic to the source of these actions, but in order
to animate human characters we generate them by employing a
parametric motion graph. In this scenario a character’s actions at
a state correspond to the available transitions through the motion
graph starting at the character’s current state and ending some short
amount of time in the future. Our approach allows a continuous
state space, performs its planning directly on the character’s motion
model, and fully captures the issue of simultaneous actions. This
naturally yields nuanced and intelligent nondeterministic results.
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We further wish to be able to control a character in real time. This
is particularly important as one of the most interesting applications
for an adversarial animation controller is in computer games. In
order to allow real-time control while still allowing for long-term
planning we precompute a structure known as a value function for
the game. A value function is a general concept in planning algo-
rithms, but in the case of adversarial games it represents a function
which maps each possible state of a game into a real number rep-
resenting the expected future reward of the agent assuming optimal
play by both the agent and the opponent. This allows us to deter-
mine the expected long-term reward of an action by simply looking
at the state immediately resulting from taking the action, and then
querying the value function to determine that state’s long-term ex-
pected value. Since the value function can be entirely precomputed
offline, this method is very efficient at runtime.

In the remainder of the article we will begin by describing the
parametric motion graph model used to drive our animations. Fol-
lowing this, we give a brief background on the fundamentals of
game theory as it applies to our method. We then discuss the
value function precomputation phase of our method, and in par-
ticular a new technique for estimating our value function in high-
dimensional Markov games and MDPs that are required to apply
our method to character animation. Finally we will show a simple
technique that can incorporate knowledge of an opponent’s biases
and suboptimalities into our model and automatically plan against
them.

4. MOTION MODEL

Before we discuss the game theory behind our animation technique
we will describe the motion model we employ. Our method can be
applied to any motion model which allows simultaneous actions,
so we do not consider our particular choice to be a contribution of
our work. Nevertheless, we hope that having a concrete model will
aid in understanding the mathematics in Sections 5 and 7 for those
unfamiliar with game theory and reinforcement learning.

In order to phrase a character animation problem as a game the-
ory problem, we must define a motion model for each character
describing how they can move. At each possible configuration of
the players this motion model defines a set of actions that each
of the players may take, as well as the motions that will result
for each possible action choice. For our work we have chosen to
use a Parametric Motion Graph (PMG) [Heck and Gleicher 2007;
Shin and Oh 2006], since it provides a high degree of variabil-
ity in the generated motions and uses a compact parameterized
representation.

In our parametric motion graph, a node represents a space of
possible motions, parameterized in one or more dimensions, for ex-
ample, walking speed, and an edge represents a transition between
two points in the parameter spaces of its start and end nodes, respec-
tively. We consider a transition as happening instantaneously, but
apply some blending between the two motions as a postprocessing
step to help eliminate any visual artifacts.

A state within the graph is specified by (node, time, parameters),
where time ranges from 0 to 1 within each node and parameters ∈
Rm, with m being the dimension of node’s parameter space. A
node is constructed from a set of motion capture clips which have
been aligned with dynamic time warping. Each clip is assigned a
point in the node’s parameter space and these clips are blended
to generate a new clip at any point within the parameter space.
To prevent generation of unrealistic motions, we only use convex
combinations of the points assigned to the clips in each node.

We construct edges as in Heck and Gleicher [2007], but hand-
select some pairs of nodes between which we allow transitions
at multiple points in time. This allows us to create a graph with
more possible transitions allowing for better responsiveness and
greater motion variability. In experimenting with this motion rep-
resentation we have found that we can represent a reasonably
wide range of motions with each node. By interpolating only be-
tween the few clips closest to the desired point in a node’s pa-
rameter space, we can approach the continuity of real motion.
There is, though, a trade-off between the variety of motions repre-
sented by a node and its complexity: the more varied the motions
in a node, the fewer dimensions in which it can be parameter-
ized without producing unrealistic animation. In our games we
limit our nodes to a one-dimensional parameter space. This al-
lows us to have a parameterization that is simple to compute and
reduces the number of motions required to construct each node
while still providing a useful degree of variability within each
node.

4.1 Action Lookahead

In order to apply our PMG-based motion model within a Markov
game framework we must define what an action constitutes for a
character. There is a hidden complexity in doing this for multiple
characters which is not encountered in single-character contexts.
Since we consider actions as occurring simultaneously, and since
clips composing each node are of different durations, the transitions
in two PMGs will not necessarily be synchronized. We therefore
define an action not as a transition in the underlying PMG, but
as a state which is reachable at some fixed interval of time in the
future.

We construct such an action as a series of (possibly partial) tran-
sitions through clips in a motion graph that ends at some interval of
time in the future. We refer to the length of interval as the lookahead
of a game’s actions. Generating this set of actions is straightforward:
we simply consider all possible paths through the motion graph from
the current state that end at the given time interval using depth-first
search. In the case where a motion node is parameterized, we uni-
formly choose samples from its parameter space as links in the DFS.
We have found that as few as three such samples are sufficient to
define a useful controller.

In addition to ensuring that agent and opponent actions are syn-
chronized, this method has a useful interpretation within the con-
text of character behavior. The nondeterminism inherent in physical
games is a result of the small amount of time required for a character
to consider their possible choices and decide what to do. Because
of this they must commit to an action before they know what the
opponent is going to do. This “planning latency” coincides with
the lookahead interval used to determine the agent and opponent
action sets. In our tests, we achieve good results with a threshold
of a quarter to a third of a second. Smaller lookahead values result
in mostly deterministic games because a player can recover very
quickly from an incorrect response to an opponent’s feint. Larger
lookahead values give games with a large degree of nondetermin-
ism, but in which the players appear to respond too slowly to the
actions of the opponent.

5. CONSTRUCTING OPTIMAL STRATEGIES

5.1 Background: Stateless Games

The core component of our method is based on using the mo-
tion model described in Section 4 to formulate a game-theoretic
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problem. Since the language of game theory is not common in
computer graphics, we will first describe the basics of the required
mathematics in a more abstract form. A more detailed description
of these concepts can be found in Sutton and Barto [1998] and any
introductory text on game theory such as Morris [1994].

A standard pedagogical example of a zero-sum Markov game
is rock-paper-scissors. In this game, as in all Markov games, two
players simultaneously select one of a set of available actions, and a
score is given based on these actions. Although both players have the
same three actions available in rock-paper-scissors, in most games
the players have different sets of available actions.

In a Markov game one player is arbitrarily labeled the agent and
the game is described from this point of view. Any positive score
awarded benefits the agent. Since we are using a zero-sum game this
score also simultaneously counts against the opponent. At any point
in time, we can describe the possible ways in which this score might
be awarded based on the actions chosen by each player with a reward
matrix. To construct this matrix we order the actions available to
the agent and opponent and denote these action sequences with A
and O, respectively. Thus, for instance, Ai denotes the ith action
available to the agent. The element of the reward matrix at row i
and column j is the score given to the agent if they were to pick Aj

while the opponent picked Oi . In the case of rock-paper-scissors
we can let A = O = [r, p, s] and define the reward matrix, R as
follows.

R =
⎡
⎣

0 1 −1
−1 0 1

1 −1 0

⎤
⎦ (1)

Reward matrices such as these are used at runtime to deter-
mine how the characters in our games should move, and we are
able to compute the optimal behavior for each character given
such a matrix. One critical observation required to do this is
that since the actions are chosen simultaneously the optimal be-
havior will in general be nondeterministic. This is illustrated in
the game of rock-paper-scissors, and is in contrast to turn-based
games such as tic-tac-toe where the optimal behavior is always
deterministic.

We will specify the behavior of a player with a policy vector,
typically denoted by π . Each element of such a policy gives the
probability with which the player will choose the associated action,
so for example if π is the policy for the agent, πi gives the probability
with which the agent will act according to Ai .

Since a player in a game wishes to accumulate as much reward as
possible, we find the policy which maximizes the expected value of
their reward. Assuming that the agent acts according to policy πa and
the opponent acts according to πo we can compute this expected
reward as v = πT

o Rπa . Since we treat the agent and opponent
symmetrically, we assume that the agent picks πa so as to maximize
v while the opponent simultaneously picks πo to minimize it. Under
these assumptions we can compute the policy π which maximizes
the agent’s expected reward despite the opponent’s best attempts to
the contrary using a simple Linear Program (LP).

max
π,v

v (2)

such that
∑

i

πi = 1

π � 0

v � R π

The first two constraints in this LP ensure that π is a valid prob-
ability distribution, while the notation v � R π means that the

inequality holds independently for each row of R. The optimal
policy for the opponent can be found by replacing R with −RT . In
the aforementioned case for rock-paper-scissors this method gives
the expected result of πa = πo = [ 1

3
1
3

1
3 ]T .

5.2 Background: Games With State

Although this technique gives the core of the method we use at
runtime to control the motion of a character, the games described
thus far do not allow any notion of the state of a game. In reality the
actions available to each player as well as the possible rewards will
generally change based on where the players are relative to each
other, what motion each is currently performing, etc. Therefore
the previous definition of a game must be generalized to allow the
actions and reward to depend on the state of the game. In addition
we must describe how a game’s state changes over time based on
the actions of the players.

We represent the set of all possible states that a game can take with
a state space, denoted by S. Each element x in this state space gives
a complete state for the game, including the state of both players and
any state of the environment. The actions available to the agent and
opponent at this state will now be denoted with the functions A(x)
andO(x), respectively. We generate these actions directly from each
character’s motion graph as described in Section 4.1. We also allow
the possible rewards to depend on the state of the game by using a
reward function R(x), which gives the reward matrix assuming that
the game is in the state x. Typically this will be identical or closely
related to the scoring function of the game. The number of actions in
A(x) and O(x) and thus size of R(x) vary as a function of x. Finally,
we define how the state of the game can change over time using a
transition function, y = P(x, a, o), which gives the new state of
the game, y, if the current state is x and the agent and opponent
behave according to the actions a ∈ A(x) and o ∈ O(x). We define
this transition function by having the characters move according to
their motion graphs and additionally accounting for any necessary
player-player interaction (such as handling sword collisions in our
sword fighting game).

By considering games with a notion of state, we must also account
for the fact that since the game changes over time a player’s actions
can impact the possibility for future rewards. This is in contrast to
stateless games where we only have to consider immediate rewards.
It is therefore necessary to change the definition and computation
of the optimal policies for the players. In order to allow long-term
planning in such a scenario we take an approach closely analogous
to that already in use for single-character MDP controllers as in
Treuille et al. [2007] and Lo and Zwicker [2008], and refer the reader
to either of these papers for a more thorough discussion of these
concepts in the context of single-character animation. In a game
with state we define an “optimal” policy as that which maximizes
the expected value of the infinite sum of the player’s immediate and
future rewards, where rewards t steps into the future are multiplied
by a factor of γ t . Here γ is a discount factor with 0 ≤ γ < 1
that determines how much the player cares about near-term versus
long-term rewards.

In order to efficiently compute each player’s policy at runtime, we
take the same approach as in single-character animation and employ
a value function. The value function V is defined so that V (x) gives
the expected value of the agent’s future reward, discounted by γ t ,
assuming both the agent and opponent play optimally. In Section 6
we will discuss how to compute such a value function for a Markov
game, but for the moment note that given V we can solve for an
optimal policy for the agent with future rewards taken into account
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Fig. 1. An overhead view of a state in the tag game displaying the charac-
ters’ policies. The width of each arrow corresponds to the probability that
motion will be chosen. Notice how the agent (pictured top) picks randomly
between two dodges so that the opponent cannot predict their movement.

by solving a modification of Eq. (2) in which R is replaced with
R(x) [Lagoudakis and Parr 2002].

R(x)i,j = R(x)i,j + γV (P(x,A(x)j ,O(x)i)) (3)

As is the case with stateless games, R(x) represents the reward
matrix for a zero-sum Markov game. The only difference is that R(x)
represents long-term expected reward, whereas R only represents
instantaneous reward.

An illustration of typical policies computed using this method in
a game of tag is shown in Figure 1.

5.3 Fast Markov Game Solutions

The linear program presented in Eqs. (2) and (3) is sufficient to
solve for the policies by which the players in a game should move.
It has the disadvantage, however, that it requires a computation time
which is quadratic in the number of actions available to the players.
This can make its use in a real-time scenario problematic. To allow
for the easy use of these methods in real time, we present a heuristic
algorithm which is more efficient in practice and easily allows for
early termination.

This algorithm is very closely related to one of Sadovskii [1978].
Since this article is difficult to obtain in English, we will briefly
describe it here. Those desiring further information may find another
description in Petrosjan and Zenkevich [1996, pp. 41–43].

In this method, we do not compute the entire reward matrix all
at once, but rather iteratively compute columns and rows of it by
only considering subsets of the possible agent and opponent actions
respectively, and then iteratively growing these subsets. We will
denote these subsets of agent and opponent actions with A(x) and
O(x) and initialize them byA(x) = {ai} for some random ai ∈ A(x)
and O(x) = {}.

We will alternately grow O(x) and A(x) by adding new actions
to them, starting with O(x). To add an action to O(x), we consider
the reward matrix formed by taking only the actions currently in
A(x), and the full set of opponent actions in O. This matrix consists
of a subset of the columns in the full reward matrix. If we solve
for the optimal opponent policy given this reward matrix using

Fig. 2. An example of incrementally learning the player policies. The
process terminates with the correct policies without computing the entire
matrix (the missing elements are 5, 6, 7, and 8 in this case). For larger
matrices it is common that a small fraction of the elements will have been
computed when the algorithm terminates. The green and orange rectangles
show the submatrices used to solve for the opponent and agent policies,
respectively.

Eq. (2) we get a probability for each possible opponent action. We
then grow O(x) by adding the opponent action not already in O(x)
which has the highest associated probability in this policy, unless
this probability is zero in which case we leave O(x) as is. We can
then grow A(x) by swapping the roles of the agent and opponent
actions, now considering a subset of the rows (instead of columns)
in the full reward matrix.

If we ever reach a case where the only actions which have a
nonzero probability are already in A(x) and O(x), we terminate
the algorithm and return the current policies for each player. Note
that it is possible (and indeed very common) that this algorithm
will terminate before we have considered all rows and columns in
R(x), meaning that we often need to calculate only a fraction of all
values in this matrix, as illustrated in Figure 2. In the games we have
implemented this gives us a speedup of a factor if 3 to 5, and has the
additional advantage that the larger speed increases are generally in
cases where the players have many possible actions, and thus the
method in Eq. (2) would be particularly slow.

Additionally, this algorithm may be terminated at any time and
still provide a useful approximation to the correct policy. In fact,
if we terminate the algorithm after the first iteration we achieve
a solution which matches that of a turn-based algorithm, with an
essentially equivalent computation time. This allows the imple-
menter better flexibility in ensuring real-time performance while
maintaining the ability to efficiently solve for the correct policies if
desired.

A plot of the runtime requirements of this technique versus con-
structing a full reward matrix and solving Eq. (2) directly is given
in Figure 3. The time required to compute the policies in our games
is dominated by the computation of the reward matrix, so the ability
of the iterative method to determine policies without computing
every element in this matrix is very useful. Because we do not re-
quire new policies to be computed every frame, but only when the
previously selected actions expire, the iterative method runs in real
time for all the examples shown in this plot. The amount of time
before an action expires is given by the lookahead time described in
Section 4.1. In practice, we find that in both the tag and sword games
solving for the policies of the players requires approximately 0.01s
on average.
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Fig. 3. A plot of the runtime requirements of the naive (dashed line) and
iterative (solid line) methods for solving for the player policies. For larger
reward matrices the iterative method is significantly faster. The reward ma-
trices for this plot were generated from a tag-like Markov game where one
player attempts to grab the other.

6. VALUE FUNCTION LEARNING

In Section 5.2 we used Eq. (3) to define the reward matrix for a
Markov game at some given state, which in turn yields the optimal
behavior for both characters. Constructing this matrix requires a
value function, V (x), which for each point, x, in the state space of the
games gives the expected value of the sum of the agent’s immediate
and future rewards assuming both characters play optimally. At the
time we deferred discussion of how we compute this value function,
and we will now describe how this is achieved.

6.1 Background

The problem of learning a value function has already been addressed
in the context of single-character animation based on Markov de-
cision processes [Treuille et al. 2007; Lo and Zwicker 2008]. In
doing so for the sorts of problems encountered in character anima-
tion (both single-character and two-player games) it is necessary to
be able to learn a value function over a state space with continuous
variables, such as the position of a character, and to be able to learn
this value function in state spaces with a higher dimensionality than
can be feasibly be directly represented with a table.

One technique which aids in both these goals was first used in
the context of character animation by Treuille et al. [2007] and
involves representing a value function with a linear combination
of a set of basis functions. Given such a set of basis functions,
φ = {b1(x), . . . , bn(x)}, we can approximately represent the value
function with a vector v of length n such that V (x) ≈ v1b1(x) +
· · · + vnbn(x). We solve for this weight vector in a least-squares
sense using a method which minimizes the errors at a set of sample
points randomly distributed throughout the game’s state space. For
the details of this method please see Appendix A.

By representing a value function with a linear combination of a set
of basis functions we can easily learn an approximate value function
for a game with a continuous state space while still representing the
value function with a finite vector. Depending on which set of basis
functions we choose, this approximation will resemble the “true”
value function to a greater or lesser degree.

One obvious way to increase the accuracy of the approximate
value function is simply to use more basis functions. This is an
effective strategy for games with a relatively small state space, but
unfortunately the number of basis functions for a given degree of
accuracy is in general exponential in the dimensionality of the state

space, making this approach intractable for games with more than
three or four state space variables.

Since we are interested in two-player games, the state spaces
needed will in general have twice the dimension of those required
in single-character animation. This curse of dimensionality causes
a serious difficulty for learning a suitable value function, since it
will often be impractical to do so by the brute-force technique of
simply using a larger set of basis functions.

Since we cannot learn an effective value function by using more
basis functions, we take the approach of employing a smaller num-
ber of better basis functions. This idea has been noted by many
prior authors in the context of artificial intelligence. If the basis
functions can somehow be chosen so that they share many features
in common with the true value function, then generally few of them
will be needed to represent a value function to within a desired level
of accuracy.

Unfortunately intelligently choosing a small set of basis func-
tions for a Markov game or an MDP is a nontrivial problem. Often
expert knowledge of the domain is employed, but automatic meth-
ods have been proposed, such as analyzing the topology of the
state space [Sridhar and Maggioni 2007; Mahadevan 2006; Petrik
2007; Smart 2004] or trying to project the state space into a lower-
dimensional space [Keller et al. 2006]. Although these existing
techniques show some promise in many contexts, they are unsuit-
able for our approach. The state spaces encountered in the games
involved in character animation often do not contain any particu-
larly useful topology, and the state spaces cannot be projected into
a small number of dimensions. We therefore propose a new tech-
nique for approximate value function learning and representation
which automatically builds an intelligent and compact set of basis
functions in a manner that scales gracefully with the dimension of
the state space and is based directly on the definition of the game
itself.

6.2 Learning in Higher Dimensions

In order to extend the basis function approximation algorithm to
higher dimensions, we present a novel heuristic algorithm that ex-
ploits similarities between different parts of the state space to in-
crementally build a set of basis functions in an intelligent manner.
Our method uses the game’s reward and action functions directly
to generate these basis functions, and unlike other methods, can be
polynomial (rather than exponential) in the dimension of the state
space.

The key observation behind our algorithm is that in many actual
games, the value function will retain similar features across many
of the dimensions of the state space. For example, in learning a
value function for a game in which one player attempts to tackle
the other, the value function will vary with the relative angle of the
two players. However, we expect that it will probably not vary too
wildly, and that at each angle it will be desirable, for instance, for
the tackler to be both close to and facing their opponent.

6.2.1 Simplified Example. The regularity of the features which
we expect to see in the true value function motivates us to detect
and exploit these features using a sampling-based technique. Before
we describe how this is done in full, it will be useful to provide a
simplified pedagogical example. For the moment let us consider a
standard (nongame-theoretic) example of solving for a controller
which can balance a pendulum on its end by applying torques to
the base of the pendulum. This problem can be formulated as an
MDP with a two-dimensional state space and a reward function that
penalizes pendulum positions deviating from the upright. As is the
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case in the character animation games we use, the state space for
the inverted pendulum can be written as the Cartesian product of a
set of dimensions, in this case the pendulum’s angular position and
angular velocity.

Spendulum = pos × vel (4)

We begin by defining a set of basis functions over each of these
dimensions, denoted by φpos and φvel respectively. These basis sets
can be defined in any manner, but we use the bases of a third-degree
B-spline. We also define an outer product operator on a pair of basis
sets in the same manner as Treuille et al. [2007].

(φα ⊗ φβ )(x) = {b1(x)b2(x)|b1 ∈ φα, b2 ∈ φβ}
This definition allows us to construct a set of basis functions

in a high-dimensional space as the outer product of sets of basis
functions defined in low-dimensional spaces. For instance, if φα(x)
is a set of basis functions of size |φα| over X and φβ (x) is a set
of basis functions of size |φβ | over Y , then φα ⊗ φβ is a set of
|φα| · |φβ | basis functions defined over X × Y . This allows us to
define a set of basis functions over the entire state space for the
inverted pendulum with φpos ⊗ φvel. Since we are assuming for the
sake of argument that it is intractable to learn a value function over
φpos ⊗φvel directly, as indeed it will be for higher-dimensional state
spaces, we instead construct such a value function one dimension
at a time using a sampling-based approach.

We begin by randomly selecting a set of values, vel1, . . . , velm,
for the velocity of the pendulum. For each such veli we formulate
a problem identical to the original MDP except that the velocity
of the pendulum is restricted to always be equal to veli by simply
setting the velocity to that value whenever we generate a new state.
This corresponds to taking a one-dimensional “slice” of the original
state space in a direction parallel to the position axis. The method
given in Appendix A (or in Treuille et al. [2007]) is then used to
learn a (one-dimensional) value function for each slice using the
basis function in φpos, yielding a set of vectors v1, . . . , vm, one per
sampled velocity.

Although the value functions given for these slices by v1, . . . , vm

will not generally be identical to the true value function along that
slice, they will often have many features in common. Furthermore,
since we expect the value function to have some regularity in its
features, it will normally be possible to span v1, . . . , vm with a
low-dimensional subspace. This means that we can represent all
the features which are expected to be found along the position axis
of the pendulum with a few basis vectors, which we determine
using truncated PCA. Each of these vectors can be used in the same
manner as the vi vectors to define a single basis function over the
position dimension of the problem. We denote the set of these basis
functions with φPCA

pos .
Instead of learning a value function over φpos ⊗ φvel , we can

now instead learn a value function over φPCA
pos ⊗ φvel. Since φPCA

pos
will generally contain fewer basis functions than φpos, this problem
will normally be computationally simpler. Furthermore, since we
expect that φPCA

pos spans the set of all features found along the position
dimension of the state space, the final value function will normally
still be relatively accurate. A graphical illustration of this process is
given in Figure 4.

6.2.2 Nested-PCA Value Functions. In the preceding example
of learning a value function for an inverted pendulum, we described
a procedure which worked on a two-dimensional state space by
learning a series of one-dimensional value functions sampled from
this state space, using PCA to find a reduced set of basis functions,
and using an outer product operation to expand these basis functions

Fig. 4. A graphical illustration of the learning process for an inverted
pendulum MDP using a nested-PCA representation. At top the entire state
space is shown, with blue lines indicating a set of one-dimensional “slices”
formed by fixing the pendulum’s velocity to a particular value. The value
function learned for each of these slices is shown in green. These slice value
functions are then compressed into a reduced set of new basis functions
using PCA. These basis functions are outer-producted with a set of B-spline
basis functions over the velocity axis to form the set of basis functions used
to learn the final two-dimensional value function, shown at bottom.

over the entire state space. The key insight which allows us to apply
this procedure to higher-dimensional problems is that this process
can be repeated recursively.

We start with a character animation problem formulated as a
Markov game with an n-dimensional state space, represented as the
Cartesian product of n variables.

S = s1 × · · · × sn (5)

For each variable in the state space we also define a set of basis
functions, φ1(x), . . . , φn(x). Thus φ1(x) is a set of basis functions
defined over s1, φ2(x) is a set of basis functions defined over s2,
etc. As before, we begin by learning a set of one-dimensional value
functions over s1 by sampling x2 ∈ s2, . . . , xn ∈ sn and defining a
set of games identical to the original one except that the allowed
values in the state space along dimensions 2, . . . , n are restricted
to x2, . . . , xn. Using truncated PCA on the set of vectors describing
these value functions gives a new set of basis functions, φPCA

1 .
We can now continue the process by randomly sampling

x3, . . . , xn, and for each sample learning a value function for the as-
sociated restricted game. These games are three-dimensional and we
learn the value function using the set of basis functions φPCA

1 ⊗ φ2.
Each of these value functions is again represented with a single
vector, so we can use PCA in the same manner as before to deter-
mine a reduced set of two-dimensional basis functions over s1 × s2,
denoted as φPCA

2 . This process is continued, yielding φPCA
3 , φPCA

4 ,
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Fig. 5. From top left to bottom right: The precomputation time needed
to learn a value function in the persuit/evasion games, the memory needed
to store the value function, a breakdown of the learning time for learning
a full value function, and a breakdown for learning using the nested-PCA
procedure.

etc., until we arrive at the final set of basis functions spanning the
entire n-dimensional space of our problem, φPCA

n−1 ⊗ φn.
There are a few properties about this method which we would like

to note. Firstly, since we adaptively reduce the current set of basis
functions with each added dimension, this technique produces a set
of basis functions which can be orders of magnitude more compact
than those required by the naı̈ve approach as well as orders of
magnitude faster to learn. This allows it to be applied to problems
which would otherwise be intractable due to speed or memory
requirements. At each iteration, however, the nested-PCA approach
only has a limited view of a single “slice” of the full state space,
so there is no strict guarantee that the final value function will be a
good approximation. Nevertheless, we have observed this method
to work well in practice, and we are unaware of any other approach
which can learn suitable value functions for the problems required
in our character animation scenarios.

In order to numerically evaluate the nested-PCA technique for
value function learning we examine its impact on the time needed
to precompute a value function, the memory needed to store this
value function, and the impact on the accuracy of the final value
function.

In order to illustrate the computational requirements of learning
a full value function versus using the nested-PCA approach, we
consider a simplified pursuit/evasion game where one particle at-
tempts to “catch” another. The particles have both a position and a
velocity and move at each step by applying an acceleration parallel
to one of the principal axes. This game has the advantage that it can
be defined for particles moving in a space of any dimensionality,
allowing us to illustrate the impact that a problem’s dimension has
on the time and memory needed to learn and store a value function.
We test this problem with state spaces of 2, 4, and 6 dimensions
(half for position and half for velocity).

A plot of the time and memory needed to compute a value function
for the pursuit/evasion game is shown at the top of Figure 5. The x-
axis of these plots shows the number of B-spline basis functions used
along each dimension in the state space (i.e., the size of each φi).

Fig. 6. The accuracy of the full versus nested-PCA methods for a
two-dimensional inverted pendulum problem and a four-dimensional pur-
suit/evasion game. The accuracy is measured as the average squared devia-
tion from the highest resolution value function learned with the full method.

The set of basis functions used by the full approach is taken to be the
outer product of these basis sets, yielding

∏n

i=1 |φi | = ∏n

i=1 x = xn

total basis functions for an n-dimensional state space. Note the use
of the log scale for the vertical axis of these plots.

For a small-dimensional game such as pursuit/evasion in a two-
dimensional state space, this shows that the nested-PCA method is
slower than the full approach. This is a result of the time involved
in learning the value functions of the sampled “slices” of the state
space which we then perform PCA on. In the higher-dimensional
state spaces, however, the nested-PCA method is far more efficient,
giving a 60-fold increase in speed and a 30-fold decrease in storage
for the four-dimensional problem with 20 basis functions per axis.
For the game with a six-dimensional state space we observe a 65-
fold increase in speed and a five-fold decrease in storage with a
mere six bases per axis. Furthermore, in practice the nested-PCA
approach exhibits a superior asymptotic complexity as the number
of bases per axis is increased, allowing us to learn value functions at
a significantly higher resolution (i.e., bases per axis) in this example
than is possible with the full approach.

In addition to considering the total precomputation time required
it is useful to examine the breakdown of how this time is spent.
This is shown in the bottom of Figure 5 for the four-dimensional
pursuit/evasion game. For the full-value-function approach, we
see a large spike in the running time where the time required to
solve the least squares system with LSQR begins to dominate (see
Appendix A). This jump is due to the size of the problem increasing
beyond the point where we are able to cache the matrix used in this
computation. Since the nested-PCA method is far more compact
in its representation this is not an issue, and most of the time is
spent solving for the policies of the players using the technique in
Section 5.3.

When using the nested-PCA method for learning a value function
there is potential for some loss of accuracy. We examine the magni-
tude of this loss in learning value functions for both a single-agent
MDP and a two-player Markov game. For the MDP we choose the
two-dimensional inverted pendulum problem used as an example in
Section 6.2.1 and for the Markov game we use the aforementioned
pursuit/evasion game with a four-dimensional state space. A plot
of the accuracy for these two problems is shown in Figure 6. For
the inverted pendulum problem both methods quickly converge to
the correct value function. In the four-dimensional game, however,
nested-PCA levels off in accuracy due to the errors inherent in the
dimension-by-dimension reduction. Despite these remaining inac-
curacies, we find the value functions generated with this technique
still perform relatively well in practice as they generally capture
the most important features of the value function, providing useful
controllers in games which are intractable with the full approach.
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7. BIASING FOR SUBOPTIMAL OPPONENTS

The framework described thus far is based on the assumption that
the opponent is acting optimally. This is often not the case, and may
pose an undesirable restriction for use in computer games or other
applications. Human players, particularly novices, do not play ra-
tionally and instead exhibit certain biases. The optimal play against
such a biased opponent will in general differ from the optimal play
against a fully rational opponent. We show a method for incorporat-
ing such suboptimalities into our framework. This not only allows a
richer model of the opponent, but allows turn-based and stochastic
turn-based controllers as special cases.

We use this ability to model a suboptimal opponent primarily to
compare against turn-based methods, but it also has the potential
to learn an opponent model from traces of user game play. Such a
methods are known as opponent modeling and a form of this has
been applied to Markov games before [Uther and Veloso 1997].
Our method differs in that it is somewhat more general and is not
integrated as deeply into the value function learning method. We
feel this is an advantage in the higher-dimensional and continuous
spaces we encounter as it allows a greater variety of techniques and
heuristics for learning a bias model from data. We do not address
the problem of learning a user’s biases from game play data here,
and only discuss how to incorporate a prespecified model of such
biases into our controller framework.

We represent an opponent’s bias via a function Mb(x) which
yields a left stochastic square matrix at each point in state space.
That is, each column in this matrix should be a valid probability
vector. The number of rows and columns in Mb(x) should also each
be equal to the number of actions in O(x).

The interpretation of this bias matrix is that if π is the rational
policy at some point x in the state space, then Mb(x)π gives the sub-
optimal policy which the opponent is assumed to choose at x. We
can then solve for the agent’s optimal policy at x with the opponent’s
suboptimality taken into account with a simple modification to
Eq. (2), obtained by replacing R(x) with R̃(x) where

R̃(x) = Mb(x)R(x). (6)

Although there are many possible ways to define Mb, including
learning a model from examples of user play, one particularly simple
and useful one is to model Mb as a matrix of the form

Mb(x) = ρ(x)I + (1 − ρ(x)) [ζs(x) · · · ζs(x)],

where ζs(x) is a function which yields a vector of probabilities over
O(x) and ρ(x) is a constant between zero and one determining the
“predictability” of the opponent. If we choose ρ(x) = 1 then we
arrive at a Markov game optimal controller. On the other hand if
we choose ρ(x) = 0 we can reproduce a turn-based controller by
letting ζs(x) be zero except at the action which would be chosen
by the first player. Or, for instance, we can model an opponent
which only turns to the left by setting ζs(x) to only be nonzero
on the indices corresponding to left-turning actions. If we wish the
opponent to represent a turn-based player with some randomness
added, this can also be easily incorporated by appropriately defining
ζs(x) to be nonzero on the indices corresponding to the actions to
be selected between. We should note that if ρ(x) = 0 the agent’s
policy is always deterministic, and so the Markov game aspects
of the controller disappear and the resulting animations are often
unconvincing.

Fig. 7. Screen shots of our tag and sword controllers in action.

8. RESULTS

We have tested our framework on several simple games and on
character controllers for tag and sword fighting. We have found that
these techniques are sufficient both to learn value functions for these
games and to animate the characters in real time. In these games we
have observed intelligent nondeterministic behaviors and the use
of moves such as feints and quick-steps which decrease a player’s
predictability.

It is unfortunately impossible to perform a direct numeric
comparison between our method and previous approaches, as
they are based on different models of character interaction (i.e.,
simultaneous versus turn-based). We instead provide this evaluation
qualitatively. We have found in both games that our technique added
a significant amount of randomness to the observed policies while
retaining intelligent-looking behavior. We illustrate this random-
ness in the tag game where it is easy to visualize (Figure 8). We have
also tested the tag and sword games with a turn-based controller
and found that the resulting controller appears very unintelligent
since the actual mechanics of the game allow for concurrent actions
by the two players. We have also tested a randomized variation of
a turn-based controller which selects randomly between the three
actions with the highest value. This randomized controller exhibits
nondeterminism, but is not intelligent in its usage, and in practice
often appears less believable than the deterministic controller due
to its selection of visually suboptimal actions. In addition we have
tested both games using only the reward function (instead of the
value function) and find that the results appear significantly less
believable. Readers are encouraged to view the video accompa-
nying this article, that can be accessed through the ACM Digital
Library, to make these qualitative judgments for themselves.

8.1 Tag

We have designed a Markov game controller for a game in which
one player attempts to tag another, shown in Figure 7. The characters
have a variety of motions available, including walks, runs, quick-
steps, tackles, and dodges, all of which are parametrized by angle.
Each motion consists of a single step or a portion of a step, and we
blend each motion into the next using a combination of interpolation
and a postprocessing phase to smooth out changes in momentum.
This allows our model to be as reactive as possible while still
producing visually pleasing results.

We construct the reward function for this game as a sum of four
components, requiring approximately 80 lines of C++ to define:

(1) the agent should desire to be near the opponent;
(2) if the agent is tackling they want their hands near the opponent;
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Fig. 8. Colorplots showing states with low versus high amounts of nonde-
terminism, shown from purple to red, respectively, as functions of the agent’s
position. The color is calculated as a function of the average weighted devi-
ation of the two-dimensional positions of the agent’s optimal policy at each
possible two-dimensional position of the agent. The weights in this average
are the probabilities with which each action was taken. The lower right
shows the characters in walking states while the others show running states
at different agent orientations. Our method automatically determines rich
nondeterminism structures and that when walking, the players are moving
too slowly for nondeterminism to be of use.

(3) a tackle is less effective if the opponent is dodging;

(4) dodges and tackles are not useful if the characters are far away.

The state space for this game consists of the relative transla-
tions and rotation of the two characters and their respective motion
nodes, giving a five-dimensional space. The value function for this
method is constructed from the outer product of third-degree B-
spline bases along the x, z, and θ dimensions and discrete bases
along the dimensions representing the indices of the PMG nodes of
the characters. We use a discount factor of γ = 0.8. The problem
is large enough that even after significant effort we were unable to
learn a value function using standard techniques. Using our nested-
PCA method, however, we were able to generate effective value
functions reasonably efficiently. The total numbers of underlying
basis functions along each axis in our final value function is 32,
32, 16, 18, and 20 for the dimensions of x, z, theta, agent node,
and opponent node, respectively, and were learned using the dimen-
sion ordering (x, z), θ, (agent node, opponent node). Learning this
value function required approximately eight hours using 64 paral-
lel processes on a cluster of 30 machines (dual quad-core, 2.27 to
2.66 GHz). Despite the fact that the full outer product of the axis
bases would yield 5898240 basis functions, the largest number of
basis functions ever used in the PCA-slice solution process was
only around 10000. Despite never solving a single large-scale value
function problem, the result exhibits a high degree of detail and
creates convincing animations, showing such behaviors as leading

an opponent in one direction and then quickly changing directions
to avoid the tag.

We observe a variety of behaviors in the controller generated by
this method, including nondeterminism when appropriate in a real
game (i.e., when the players are close), as shown in Figure 8. The
motions of the two characters are also visibly synchronized, leading
to realistic interactions. We also observe emergent behaviors that
have analogs in human motion. In particular the dodging character
often performs a series of very quick footsteps when near the tack-
ler. This serves to increase unpredictability and the ability of the
character to quickly dodge left or right, allowing it to take advantage
of nondeterminism more effectively.

Using our opponent-biasing framework we have tested this
approach against opponents which act with greedy or randomized-
greedy algorithms. In this case the game-theoretic behavior auto-
matically reduces to minimax behavior, with the opponent min-
imizing the agent’s reward and the agent maximizing given the
opponent’s action. The pure-greedy opponent model gives purely
deterministic motions, which lack the variety and depth of those
exhibited by our Markov game controller. The randomized-greedy
approach behaves even worse in many respects, and often chooses
obviously incorrect motions rather than exhibiting intelligent
randomness.

8.2 Sword Fighting

We have also designed a Markov controller for a sword fighting
game. In this game, shown in Figure 7, each character attempts to
swing a sword and hit the other character while trying to prevent
the adversary from doing the same. The model has five attacks: an
overhead attack, a left-side attack, an uppercut from the left side, a
right-side attack, and an uppercut from the right side. Each attack
has a corresponding block that the adversary can execute to prevent
the attack from succeeding. If the block is not executed in time,
the attacking character can follow through to strike the adversary,
immediately ending the game. Both characters are able to attack
and block, but only one character is allowed to attack at a time. This
is analogous to systems of “right of way” in the scoring the sport of
fencing. In the event that both characters attempt to begin attacks
at the same time, the agent gets priority. Each character is also able
to execute a few feinting attacks that begin along a certain line of
attack and can either continue on that line or transition to another
line.

In this game, the value function is particularly critical because
the characters can only visualize outcomes that could occur within
a quarter of a second. Without advance preparation, this is often
not enough time for a character to defend against an impending at-
tack that will strike within this time threshold. Our value function,
through its consideration of future states, is able to synchronize the
actions of the two characters such that both are able to time their at-
tacks and blocks correctly. We choose a discount factor of γ = 0.5
and construct the value function using a B-spline basis over the
time within each character’s node and discrete bases over the IDs
of the nodes, resulting in 16 × 85 × 85 = 115600 basis func-
tions respectively. We were able to solve for a value function in
this case directly without using the nested-PCA method, although
it is near the limit of what we can solve using the simple ap-
proach. The precomputation time for this value function is approx-
imately six hours using 64 parallel processes on the same cluster
of 30 machines used for the tag game (dual quad-core, 2.27 to
2.66 GHz).

The resulting animations contain highly coupled intricate interac-
tions between the players as well as a great deal of nondeterminism.
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We also see the use of feints in these animations, where a character
begins one attack and then switches to another. It is important to
note that all such feints were synthesized from appropriate graph
transitions; feints were not themselves nodes in the graph. This
serves the same game-theoretic purpose as the quick-steps seen in
the tackle controller and helps to show that these natural behaviors
can occur under our approach.

We have also used our biasing approach to test the sword game
with a greedily optimizing opponent, automatically resulting in a
turn-based controller. This method works very poorly on the sword
game, significantly worse than we expected. The problem is that
since the agent knows the opponent’s policy, it can take imme-
diate advantage of it to avoid being blocked. The resulting ani-
mations are frequently a move or two in length and are highly
unconvincing.

9. APPLICABILITY TO OTHER GAMES

Since our technique cannot be applied to all possible games, we
feel it would be useful to describe what criteria make a game well
suited to our technique and which games our technique is not as
well suited for.

We have found that our method works well in situations where
two characters are interacting very closely. This is because the game
must have the property that for each move one player can make,
the other has a countermove in order to exhibit game-theoretic non-
determinism. This is best illustrated in the sword fighting example,
and in the tag example when the characters are close to each other.
For instances in which the characters are far away from each other,
or where there is a single obvious move to make, the optimal policy
will be deterministic. Although our approach can automatically
identify and handle such situations, if this is known to be the case
a priori then the game theory in Section 5 is not strictly necessary.
Nevertheless, situations where the characters interact closely in a
complicated manner are some of the most interesting and exciting
ones that arise in actual games, and our approach provides a valuable
tool for automatically analyzing them.

In order to better illustrate this, we provide a few examples of
games for which our technique is not the best choice because of
the lack of generated nondeterminism. The first game we tested for
this was a variation on the tag game with the lookahead time deter-
mining the player’s actions set to 0.1s instead of the normal 0.25s.
In this game the players can react quickly enough so that feints
and misdirections are not particularly useful and the resulting be-
haviors are entirely deterministic. The second game illustrating this
involves a “giant” character chasing a much smaller player. Since
the giant’s motion is slow compared to that of the smaller player, the
giant is unable to misdirect the other player and this game is often
fully deterministic. When it does exhibit nondeterminism it is also
not in any particularly meaningful way. Plots illustrating the non-
determinism in both of these cases are show in Figure 9. Although
our approach can still generate controllers for these methods, the
results are similar to those which would be produced by a turn-based
approach.

There are also some sorts of games for which our technique
cannot be applied at all. First, our approach is only suitable for two-
player games. Although it is possible to formulate games with more
than two players as game theory problems, solving for policies is
more involved and probably not yet well suited for use in real-time
character control. Furthermore, Markov games are inherently games
of perfect information, so they are not capable of modeling cases
where it is important that one player knows something the other does
not. In real life this is common (since we cannot see what is behind

Fig. 9. Plots of the level of nondeterminism for two games to which our
method degenerates to a turn-based approach. On the left a game of tag
where the players can replan very rapidly. On the right a game where a
slow-moving giant chases a smaller player.

us), but in video games the assumption of perfect information often
either holds directly or is a reasonable approximation.

A somewhat more subtle point is that we have only formulated our
approach for zero-sum two-player games. This means that the goals
of the players must be exactly opposite. Although this zero-sum
assumption is a good model of many of the character animation
problems that arise in competitive video games, it does make it
difficult to model instincts such as good sportsmanship and self-
preservation which require some goal beyond simply defeating the
opponent. In addition, designing the reward function for a single-
character controller can sometimes require tuning, and this is doubly
true in the case of Markov games since the policies of both players
are determined by the same reward function.

Finally, although the nested-PCA method for value function
learning allows us to increase the size of the state space that can
be used to define a game, it is still not possible to learn a value
function for games with very large state spaces. This makes our
approach best suited to short- or medium-term interactions between
characters. Intuitively, our approach allows us to take situations of a
comparable complexity to those previously used in single-character
MDP-based controllers and scale them up to two players. This
means that we cannot handle, for instance, two characters compet-
ing in a large and complicated arena with many moving obstacles.

10. CONCLUSION AND FUTURE WORK

We have presented a method for controlling characters interacting
within an adversarial context by applying principles from game
theory. The generated controllers display intelligent planning and a
nuanced use of nondeterminism, and can be adapted to take advan-
tage of an opponent’s specific idiosyncrasies. This leads to rich and
believable behaviors for virtual characters in competitive situations.

We use a precomputation phase to learn a value function which
allows a runtime controller to operate. In order to scale our method
to be practical in actual games we have developed a new method
for value function representation and learning. We have shown that
in the case of two-player adversarial games a Markov game formu-
lation is both a useful mathematical technique and can be made to
operate efficiently enough and solve problems of large enough scale
to be used in practice. Characters controlled in this manner show
convincing, varied motions and behave intelligently, using feints
and other techniques to attempt to best the opponent.

In our experience the two biggest difficulties in applying these
methods are in areas that are arguably orthogonal to the contribu-
tions of this article: designing the reward function and building the
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motion model. Since the players base their policies on the user-
defined reward function, any unrealistic features in this function
lead to unrealistic behaviors. There is no remedy for this other than
careful thought and perhaps some trial and error, but this effort must
be spent in designing the scoring function for any computer game,
so in many instances this does not require much additional effort.

In designing a motion model to be used for an adversarial con-
troller we have found that the continuity and the reactivity of the
model are difficult to balance correctly. That is, if we attempt to
achieve smoother motions we often reduce how quickly the model
allows characters to react and move in the process. Similarly, im-
proving the rate at which characters can respond causes the motions
to appear less smooth and realistic. This problem is not unique to
our method and is present in all real-time controllable characters.
Nevertheless we see it as one of the most fruitful avenues for future
research in this area.

Another useful area for future work is in extending these methods
to include nonzero-sum games. This would allow the agent’s goals
to differ from the opponents, and would allow semicooperative and
other complex behaviors. Extending our approach to handle more
than two characters, even whole teams, is another path that remains
to be tackled.

The grand vision which our approach is a step towards is to be
able to generate real-time controllers for almost any game in which
characters behave in intelligent and convincing ways, including
learning from past user behavior. For instance, after a user plays a
game for a short while we would like to automatically refine our
opponent-model for them and adapt our strategies in the same way
in which a human opponent might. We feel that the game-theoretic
approach provides a new, powerful, and rich method for addressing
problems related to controlling characters in games.

APPENDIX

A. LEAST-SQUARES VALUE FUNCTION
LEARNING

This description of the value function learning algorithm we employ
as a component of our PCA-slice method is relatively brief. Those
desiring a more detailed explanation should consult [Treuille et al.
2007] for an intuitive background on the idea or [Lagoudakis and
Parr 2002] for a more detailed description of the algorithm.

Given a game with state space S we learn a value function using
a least-squares policy iteration approach. First, we are given or
(randomly) generate a set of sample points x1, . . . , xn ∈ S and a set
of basis functions φ1, . . . , φm over S. We also implicitly construct
a basis matrix 
 such that 
i,j = φj (xi). We represent a value
function as a linear combination of the basis functions, and if w
is a vector giving the weights in this combination then the value
function at each sample point can be calculated by 
w.

We compute a set of blend weights, w, for our basis function by
initializing w = 0 and alternating two steps until convergence or a
maximum number of iterations is reached:

(1) Solve for the optimal policies for the agent and opponent, πa,i ,
πo,i , at each xi given w using equations 2 and 3.

(2) Recompute w holding each πa,i , πo,i fixed.

In step 2 we recompute the weight vector by attempting to
minimize the squared sum of the difference between V (xi) and
πT

o,iR(xi)πa,i over all the xi samples. These differences are known
as Bellman errors [Williams et al. 1993], and represent the dif-
ference between the value functions’s value at xi , and the value

expected by performing one-step lookahead with the optimal poli-
cies at xi . If these errors are zero at all points in the state space, then
πa,i and πo,i will be the correct optimal policies for each player
and V will be the true value function. Since we are learning an
approximate value function, the condition that the Bellman errors
be everywhere zero is approximated by minimizing the squares of
the Bellman errors over the xi points. This minimization can be
achieved by computing a least squares solution to the system:

r = (
 − γ P
) w

Where r is a vector such that ri gives the expected value of the
game’s reward function at xi under the policy πi , γ is the game’s
discount factor and P is a matrix such that:

Pi,j =
∑

y∈S,a,o

πa,i πo,i P(xi, a, o, y) φj (y)

We solve this least squares system using the LSQR algorithm
[Paige and Saunders 1982]. The policy iteration procedure termi-
nates when the residual error of this system converges or increases
from the previous iteration’s value. We note that this algorithm is
not guaranteed to converge for values of γ close to 1, although this
can be remedied by replacing the least-squares system with a linear
program as in [Treuille et al. 2007]. We choose the method given
here because we have found it to be significantly more computa-
tionally efficient than that in [Treuille et al. 2007], and have not
found the lack of guaranteed convergence to be a problem for any
of the Markov games and MDPs we have tested.

Another advantage of the approach given here over that in
[Treuille et al. 2007] is that it is simple to parallelize over a cluster
of computers. To achieve this parallelization on a cluster with k
cores, we split the x1, . . . , xn samples into k sets of roughly equal
size. Each core is then assigned one of these k sets. To parallelize
step 1, each core simply computes and locally stores the agent and
opponent policies at its assigned xi samples. Understanding the
parallelization of step 2 is only slightly more involved, and involves
noting that running LSQR on our least squares system only requires
the computation of the matrix-vector products (
 − γ P
) x and
(
 − γ P
)T y. Since each processor can compute the subset
of the rows of 
 − γ P
 corresponding to its assigned sample
points, these products can be parallelized by having each processor
compute either a sub-sequence of a sub-sum of the result, for the
two cases respectively.
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