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Abstract

Effective reduction of noise is generally dif cult because
of the possible tight coupling of noise with high-frequency
image structure. The problem is worse under low-light con-
ditions. In this paper, we propose slightly optically defec
ing the image in order to loosen this noise-image structure
coupling. This allows us to more effectively reduce noise
and subsequently restore the small defocus. We analyticall
show how this is possible, and demonstrate our technique
on a number of examples that include low-light images.

1. Introduction @) (b) ©)

Despite advances in camera technology, sensor noise re.'—: igure 1. Effective denoising through slight optical defsc (a)

. . - . input low-light image, (b) brightness enhanced input (withise
mains a major problem in photography, especially when enhanced as well), (c) restored image after noise and bhuval.
pictures are taken under low-light conditions or with a high

ISO setting. The characterization of noise is non-trivial S q q i d effecti hod for si
(see, for example, [27, 21]), as noise is a function of expo- econd, we describe a new and effective method for sin-

sure level, photon ux, and the electron-photon conversion gle_image noise estimation that is base_d on _the presence of
process. In addition, noise contains high-frequency com-()ptICaI defocgs. We analyze the relatlonshu_a between_de-
ponents that are quantitatively and at times visually indis focus gnd_no!se, and propose a novgl_metrlg er d_e ning
tinguishable from the inherent ne structures in natural im the noise likelihood. We useariable splittingoptimization

ages. Denoising these images using current techniques ei(based on local closed-form solutions in iterations) to re-

ther excessively smoothes out image detail or retains noisg'OVE Nnoise from the observed image. One result is ShO.W”
with the detail. in Figure 1; here, the underexposed image was captured in a

tdark room using a Nikon DSLR camera which was slightly
defocused. If we merely enhance brightness, noise is am-
pli ed as well.

Third, we analyze the performance of the proposed algo-

In this paper, we present a novel denoising technique tha
uses optical defocus to reduce signal-noise coupling from a
single input image. This is based on the observation that
image details are typically hard to separate from noise; we

simplify the denoising algorithm by reducing these image "thm in choosing a key parameter and quantitatively study
components optically. The ISO setting of the camera can th€ information gain with our new imaging technique. We

then be set high in our system to allow better shutter Speed_show that the information loss introduced by defocus is sev-
eral orders of magnitude smaller than the gain by remov-

Contributions This paper has three main contributions. ing noise. In addition, we are able to restore a reasonable
First, ourimaging system uses optical defocus to hide imageamount of underlying image structure.

details, which simpli es noise reduction. Extensive exper

ments indicate that blurry images hide the majority ofimage Assumptions We assume that the foreground objects are
details but does not necessarily lose all of them. Many of in focus after removing the defocus. Our goal is not to
the image structures can be recovered. Moreover, opticaldeblur the entire scene (especially when it has signi cant
defocus and noise production are two separate processes idepth variation). Our method estimates the defocus blur
image formation, which allows us to manipulate the former PSF through a calibration process by measuring the fore-
in order to simplify the reduction of the latter. ground depth using cameras.



Wavelet-based methods make use of the observation that
Plane of Focus multiscale subbands satisfy a highly kurtotic marginat dis
tribution (e.g., [11]). The method of Portilla et al. [26] aho
els the wavelet coef cients at adjacent positions and scale
as the product of two independent random variables and
uses the Gaussian scale mixture model for denoising. An-
other common assumption is the existence of regular texture
Figure 2. Optical defocusing. We adjust the lens to focus on a or repeated local appearance. In [34], “geometry tensors”

plane slightlyin front of the object of interest. were proposed for noise removal and texture preservation.
Non-local spatial domain denoising methods [3, 1, 7] rely
2. Related Work on repeated local appearance to restore the latent image.

All these single image methods work best for denoising
images with little or no ne texture. Unfortunately, itisme
dif cult to separate camera sensor noise from subtle image
Two-image/video denoising The temporalinformationin  structures. In this paper, we partially resolve this amitygu
video has been extensively used for denoising. For examplepy taking into account both noise and defocus blur.
g: dn (iﬂnglgaggp[:)]alj:shetgdsepnag:gg;?i(rjnee)oézlql\ljl:;tz\; E;ﬂgﬂ?esmgle image deblurring Another type of image artifacts
motion information. The technique of Bennett and McMil- caused by low lighting is motion blur.” Single image de-

. - . blurring methods [10, 15, 31] are capable of restoring im-
lan [2] enhanceg videos by locally deciding between spatial ages to a certain extent. These methods involve kernel esti-
or temporal ltering.

Th so techni f hanci hotos b mation and deconvolution. Non-blind deconvolution meth-
_eretare aiso ect nquues_t(r)]rgz anctlng photos t}t/' Pro°04s [22, 20, 38] assume that noise is relatively small, sb tha
CEssINg Wo images taken wi merent camera se IngS’general smoothness constraints are adequate. With the ex-
for example, with ash/no- ash (e.g., [25, 9]) or long/stor

exposure (e.q.. [16. 37]). In [25], the noise in the non- ception of [18], single image deblurring techniques uguall

ashed image is removed by bilateral ltering, where the do notwork well if noise is signi cant.
detail is obtained from the ashed image. Eisemann and
Durand [9] extracted coarse structure layer from the non-
ash image and enhanced it by adding detail and color in-  An image with noise can be expressedds= x + n,
formation from the ashed image. Jet al [16] captured  whereB °is the observed noisy imagejs the latent image,
blur/lunder-exposed image pairs and then transferred colofandn is noise.n is typically assumed to be signal indepen-
from the blur image to the under-exposed counterpart. Yuandent, i.e., it is caused by dark current, ampli er noise and
et al. [37] used a blur/noisy image pair; the output is con- the quantizer in the camera circuity [14, 21]. However, re-
structed using deconvolution with an estimated PSF. cent camera noise estimation work found that this simple
Methods that use multiple input images typically require formula does not suf ciently model the mechanism of an
pixels to be aligned over time. This is dif cult to achieve in image sensor where photon ux and the uncertainty of the
the presence of signi cant noise in a dynamic scene. electron-photon conversion process produce signal (or lu-

. . - . L minance) dependent noise. The total noise variarfcis
Single image denoising The most direct solution is to use . .
dependent on the gray-level variangg,, . It can be writ-

a I_ter. Po_pulgr m_ethoc_is |nv_olve bllateral_ltenng [33] @ tenas 2= 2_ +C 2[27], where 2 s the photon noise
anisotropic diffusion, either implemented in the form ofpa . gray . )

T . . ; variance andC is a weight. The existence of ne structures
tial differential equations (PDEs) [35, 34, 12] or derived in X (typical in real images) compounds the dif culty in ac-
from optimization using variational methods [30]. yp g P y

. ) A . curately estimating from B°.
Single image denoising is very challenging because the ™ 5 | "< |ution is to slightly defocus the image. During

problem is generally under-constrained. It requires mak-image capture, optical defocus is relatively independént o

ing additional assumptions on the image or noise. For ex-pixel noise generation [13, 36]. Thus, the image formation
ample, Roth and Black [29] modi ed the simple smooth- process can be expressed as

ness prior and introduced a high-order learning-basedémag
prior model, which is potentially capable of better model-
ing natural scenes. Liat al [21] constructed a Gaussian whereB andx are the observed and latent imageandn
conditional random eld to infer the clean image with the are respectively defocus PSF and noise. f) makes the
piecewise smoothness assumption. [28] is recent work usdmage structure less correlated with noise.

ing total variation regularization. An interactive deriogs Note that equations similar to (1) were proposed in
method was proposed in [5]. non-blind deconvolution [22, 31] as the image degradation

Representative techniques for denoising fall into multi-
image and single-image approaches.

3. Noise Analysis

B=(x f)+n; 1)
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o1 [T o whereF is the matrix form of the PSF. de nes the

oo /‘\ \ M‘ I '\ o | o1 * ‘L vectorization operator which stacks all values in a raster-
oaf | Uw | U o /W / ° “WWWW \f{l M‘ scanning order. Here andB are respectively the vector-
‘ U \‘ 0z \/’ 4 izedx andB. For the rest of this papeF ! and X are
i S e oy A s L M used interchangeably to denote the inversg of
When used as is, Eq. (2) is very sensitive to noise be-

(@) (b) (€) o :

s . cause of magni cation by the denominatér F. To deal
with this problem, a common practice is to increase the di-
agonal values of T F to stabilize the matrix inverse. Thus
Eq. (2) is modi ed to

4 4
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Figure 3. Reducing signal-noise coupling. (a) Input clegna, wherel is the identity matrix with the same dimension of
(b) Gaussian ltered version of (a), (c) noise, (d) log-migdes B, and parameter controls the regularization strength.
of the un Itered signals with (red curve) and without (blugree) With this modi cation, we now analyze how the esti-

noise in the frequency domain. Both of them contain high fre- matedx( ) using Eq. (3) deviates from the ground truth la-

quency components. (e) Log-magnitudes of the ltered dgna tentimagex . This theoretical analysis will provide impor-

with (red curve) and without (blue curve) noise in the fresiie  tant insights on how image noise in uences the defocused

domain. Their distributions are different. image formation, which in turn leads to a novel formula for
accurate noise estimation. We write

model. However, these deconvolution methods cannot han- () x = FT B FT B n)

dle large noise. We have experimented with these methods FTF + | FTF

to directly deblur our captured images with large regukariz _ F'n N I x @)
tion weights to overcome noise, and found either excessive FTF + | FTF+ 1~

removal of texture details or ampli cation of noise. 1
Figure 3 shows (in 1D) how blur loosens the signal-noise X canbe exp.rejssed Bs .(B. n_) be_lsed on Eq. (1.)' Herg
coupling. The red and blue curves in Figure 3(d) are plots the commutativity of multiplication in the ﬁenomlnator is
of the log-magnitudes of the clean and noise-corrupted sig-nOt aconcem becauS(_a bl F + | andFTF are sym-
nals respectively in the frequency domain. They share many_memc‘ Eq. _(4) conta_lns tWO. terms. The rst denotes the
high frequency components that are not easily separable!n uence of image n0|se,_wh|Ie the second represents the
However, if the signal is pre- Itered, as shown in (b), adglin gffect of structure smooth_mg. Note thgt the ground tvu_th
noise to it signi cantly changes its frequency distributio IS un_known. SO introducing I_Eq. (4) is only o establish a
(shown in Figure 3(e)). The distribution difference implie metric to properlyneas_urghe Inuence of NoIse. .
away to remove substantial noise from signal. Ourtp;ro.posed metric is the partial derivative ofwith
If noise can primarily be removed, we then digitally re- respectio -
move the slight optical blur through deconvolution. There- @ _ im i(x( F ) x) x() %)
cent deblurring work (e.g., [38, 19]) and our analysis (Sec- @ 1o
tion 5) show that deconvolving an image can recovered 1 F'n ( + )x

many details even though they are barely noticeable. - “m o FTE+ + T EFF7 =
F'n X
4. Noise Estimation with Focal Blur FTF + FTF+
. . . : = h(F; )n h(F; )Fx; ®)
In this section, we describe our novel method to estimate
noise from a single defocused image (after which we can where
get the latent image by subtraction). h(F; )= FT ) 6)
T FTEE TR )
4.1. Noise Estimation with a Convolution Model We further compute the squarkd norm Of% as
Following Eqg. (1), a simple method to remove defocus )
blur while assuming small noise contamination would be to & = kh(F; )n+ h(F; )Fx k§: (7)
solve @ ,
x=F !B= F' B ) We now explain that % ; is a new noise likelihood be-

FTF cause it monotonically increases with noise variance.
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Figure 5. Denoising with slight defocus blur. (a) Input ireagith
for oot 002 Do oo 008 0ot a high level of noise and slight out-of-focus. (b) The deimgjs
result after convergence in 8 iterations. (c) Ground trdthirbd
(@ =20% (b) image. (d) Our nal deconvolution result.

Figure 4. An example to justify the noise metri% z @ A
blurreczi image with signi cant noise. (b)% z w.r.t. noise vari- where weightw = 1:0 in our experiments. To optimize
ance “.

E1(n9, we use thevariable splitting optimization tech-
nique. The idea is to split the variabie into a pair of
New Noise Metric Analysis We can show (details in  variables §°andn®), used respectively in the two terms in

[32]) that , (11), such that minimizing the sum of the two terms under
@ 2KH(f: )2 + C: ®) the constraint that®= n® is essentially equivalent to solv-
2 o ing the original problem.

with 2 being the noise variance amjzbeing aconstant.  Optimization Eq. (11) is thus reformulated as
Eq. (8) has an important property% , increases mono- . ,
tonically with 2. This makes it a good metric for evaluat- E(n5n®) = h(F; (B ns),
ing how noisy a blurred image is. We empirically validate +wkn% + kn° n°k3; (12)
this property by generating 10 blurred images. They are

added with different degrees of noise. One of them is shown Where the weight determines how similan®andn® are.
in Figure 4(a) with noise standard deviations 20%. We  An iterative approachis used to updafeandn®separately.

@ 2 : : . [Updating n9|
then compute 6 2 for each image and plot their values in By removing all terms independentnf, we get

Figure 4(b). As expected,% 2 monotonically increases
with 2. E® = wkn%+ kn® nski: (13)
Thus, the function % ? is a reasonable measure of

how well noise is removecf and of how the remaining im- Its closed-form solution is

age satis es the convolution model de ned with the kernel E max 2" Y.0 - s 0
f. Letn andn®denote the ground truth noise and noise n’= , §+ B (14)
(somehow) estimated frol, respectively. The remaining © min =520 ; nf<0
noisen in image is thus
. . wherei indexes the pixels.
n=n n"=B Fx n- 9 [Updating ns]
o . . 2 Similarly, removing all terms independentmf yields

Substitutingn into Eq. (7) and denotingo(n9 = % 5
yield E°(n®)= h(F; )(B n%) 2+ kn® neki:

Eo(n% = h(F; )(B n9 2: (10) It can be rewritten in the frequency domain as

Eo(n9 indicates how good the noise estimafés by eval- ~ E°(n®)= kH(f; ) (F(B) F (n®)ki+ kF(n)F (n®)ki:
uating the strength of the remaining noise n®in the _ _ . (15)
imageB. x cancels out in Eq. (10) and thus does not need A closed-form solution also exists by computing the partial

to be known beforehand. With the monotone property of derivative with respect ta® and setting it to ze:o:
% iwith respect to the level of noise, we ugg(n° as . O FMY+H@E ) H®E ) F (B)'
the likelihood in de ning a new objective function. n®=F " m m (f'_ ) © o (18)

Energy function Likelihood (10) is combined with a sim- ) 0 . )
ple regularization ternkn% to avoid the trivial solution ~ Updatingn®andn® iterates until convergence (no more

n®= B. The total energ(n9 is written as than 15 iterations generally). Because each step has a
o closed-form solution, the computation is much more ef -
Ei(nY = Eo(n%+ wkn% cient compared to conventional gradient descent. The en-

= h(F;, (B n9 §+ wkn%; 11 ergy is guaranteed to monotonically decrease.



Figure 5 shows one example. The input image shown in
(a) is defocus blurred with signi cant noise & 20%). The
nal denoising result is shown in Figures 5(b). Its PSNR is
as high as 33.83 (or MSE 5.19) compared to the ground
truth blurred image shown in Figure 5(c). The denoised im-
age will be further deconvolved to remove the slight blur
(details in Sections 5 and 6). The nal result shown in Fig-
ure 5(d) contains many details. It is notable that the o&bin
PSNR is onlyl4 before denoising.

4.2. Determining

The value of in the above formulas has a signi cant
impact in denoising. We can show that the following condi-
tion must be enforced:

kH(f; )k3>wk nki=k nk3; (17)
where n=n  n%n isthe ground truth noise, amf

is the noise estimate. The details of derivation can be found
in [32]. (17) indicates that a large value ofadversely af-
fects convergence aride maximum value of depends on

w and the noise estimation errovWe can show that the up-
per bound of is approximatelyv=kn k, (see the deriva-
tion in [32]). In our experiments, we assigra xed small
value10 “ to inhibit its negative in uence.

5. Deconvolution and Error Analysis

After noise removal, we deconvolve the image. In this

Expressing it in the frequency domain gives

_F'n ' FOFM _ __FM 5
FTF+ 1 ,  FEF(@f)+ FOFM+
where is the standard deviation of noise This shows
thatn is magni ed by a factor

\

u

# F(f)

J = (19)

F(F)F (f)+
We now estimate the magnitude df using different out-
of-focus PSFs. In our experiments, the value varies from
17:7 to 286. The quantization erron is generally mod-
eled as a uniform distribution in the ranpge0:5; 0:5), with

a standard deviation d¥:29. With these quantities, it can
be estimated that the reconstruction PSNR of the na've de-
convolution algorithm easily excee88. The MSE ranges
from 24 to 66. These quantities indicate that the error in-
troduced even using this simple deconvolution algorithm is
very small if the convolution model is satis ed. In compar-
ison, the input image has signi cant noise where the PSNR
is 14and the MSE i2:2 10°. Itis two orders of magnitude
larger than the deconvolution error. In our experiments, th
error introduced only from deconvolution is small enough
compared to the contribution of defocus blur to intensive
noise removal, as illustrated in Figure 5.

2

6. Implementation Details

Empirically, we rst perform photometric calibration [8]

section, we show that this process introduces error that isand then produce the defocus blur using the camera man-

insigni cant compared to image noise.

We analyze a na've algorithm characterized by Eq. (3),
which simply inverts the blur process through blur matrix
division. Its error estimate can generally be regardedas th
upper boundof errors produced by various deconvolution

ual focusing function to a slightly near point instead of the
ideal object plane, as depicted in Figure 2. To estimate the
PSF, we rst record the manual focusing distangefrom

the camera lens and the ideal object distamgeising the
range nder attached to the camera. We then apply the cali-

methods because almost all deconvolution methods, suctbration technique of [20] on; andu; to estimate the PSF.

as [38, 20, 31, 19], use more advanced techniques to regu
larize deblurring, and are thus capable of producing much
higher quality results. We show, compared to the scale of

- We constrain the size of the defocus blur kernel to be at
mostll 11 (pixels). We initialize the noise layer using the
method of Dabov et al. [6]. Because this method does not

image noise, even the upper bound of the deconvolution er-take the blur model into consideration, the noise estimate

ror is suf ciently small.

The deconvolution error is the difference between the re-
covered and ground truth latent images. For Eq. (3), the
error can be expressed as

FTn
FTE + |

I X
FTF+ 1

x( )

X (18)

wheren is mostly quantization error after noise removal.
Note that is used to stabilize deconvolution, and is usually
with very small value 10 # in our experiments). We can
therefore ignore the second term in Eq. (18), yielding

F'n 2

kx() FTE+ 1

X K :
2

contains errors. We then apply our method, as described
in Section 4, to optimize the noise map. After denoising,
we remove the slight defocus blur introduced optically us-
ing the executable for non-blind deconvolution [31]. The
denoising and deblurring steps alternate. Typically attmos
10 iterations are enough to produce a visually compelling
result. The running time is about 3 minutes for an image
with 800 600 pixels on a desktop PC with a Core2Duo
2.8GHz CPU.

7. Quantitative Evaluation

The rst example shown in Figure 6 is to quantitatively
evaluate the effectiveness of our method given signi cant



(a) Input with blur (c) Ground truth of (a) (d) Our result o) (a (9) (h)

(b) Input without blur (e) Bilateral ltering using (b) (f)Neatimage” using (b) ® W
Figure 6. Quantitative evaluation. The input image (show(a)) is blurred with the PSF shown on bottom left. Signi t&CD noise
( = 20%) is also added. (b) Another input noisy image that is not lfbbarred. (c) The ground truth sharp image without noisé. (d
Our restoration result of (a), with PSNR 28.8. (e)-(f) Résuff bilateral Itering [9] and “Neatimage” [24] with PSNR&1.3 and 22.5,
respectively. (g)-(j) Close-ups of (c)-(f).
PSNR =10% =15%
File name | bilat | PDE | wavelet| Ours | bilat | PDE | wavelet| Ours
100080.jpg | 26.22 | 32.44 | 32.65 | 34.55| 28,51 | 31.15| 31.24 | 34.39
103041.jpg| 25.35| 29.90 | 29.91 | 31.53| 26.66 | 28.00| 28.39 | 31.07 PSNR
108041.jpg| 24.51 | 28.20 | 28.29 | 29.38| 24.99 | 25.90| 26.99 | 28.52 B bilat == PDE L wavelotmmm Ours
134008.jpg| 25.30 | 29.33 | 29.73 | 31.25| 26.26 | 27.55| 28.27 | 30.89
161062.jpg| 25.73 | 29.58 | 30.36 | 31.31| 27.04 | 28.11| 28.86 | 30.85 r ]
166081.jpg| 24.57 | 27.79 | 28.24 | 29.53| 25.74 | 26.34| 27.03 | 29.31
176039.jpg | 25.69 | 28.67 | 29.06 | 27.70| 25.36 | 26.46 | 27.22 | 29.23 I |
209070.jpg| 24.74 | 29.06 | 29.64 | 30.24 | 25.69 | 27.32| 27.99 | 29.77
22090.jpg | 25.59 | 29.46| 29.97 | 31.06 | 26.22 | 27.51| 28.30 | 30.25
246053jpg| 26.77 | 32.45| 31.53 | 34.34| 27.85| 30.07 | 29.67 | 33.19| 2° 10% 15%
247085.jpg| 24.76 | 28.51| 28.92 | 29.99 | 25.98 | 26.80| 27.50 | 29.69 Noise Level
353013.jpg| 25.29 | 28.35| 27.29 | 30.12 | 24.90 | 25.97| 25.77 | 29.13
mean 25.43 | 29.33| 29.54 | 31.06 | 26.22 | 27.43| 28.05 | 30.42

w
J1

w
o

Mean PSNR

N
[6)]

Table 1. Left: PSNRs of a set of the processed images for casopa Red-title images are shown in [32]. Our PSNRs areutatied
based on the nal deconvolution results. Right: histogrérthe mean PSNRs.

(@) (© (d) (9) (h)

(b) (e) ) 0] )
Figure 7. Image example. (a) The captured out-of-focus edeosed image. (b) Another captured in-focus noisy imaigie the same
exposure setting. (c) The intensity enhanced inpXtifrightness). It contains signi cant noise. (d) Our nakudt from (c) after denoising
and removing the blurriness. (e) The denoising result ofGhassian mixture wavelet method [26] with (b) as input. (figTdenoising
result of Rodriguez and Wohlberg [28] from an intensity erded version of (b). (g)-(j) Close-ups of (c)-(f).



PSNR =10%

File name | Oth 1st Ours
100075.jpg| 28.14 | 28.96| 30.34
105053.jpg| 30.63| 31.95| 33.27
106025.jpg| 32.03| 34.22| 35.47
15088.jpg | 27.71| 28.76 | 30.80
22013.jpg | 27.14| 28.84| 29.06

. @ (b)
314016.jpg) 26.81| 27.83| 29.89 Figure 9. Image reconstructed with miscalibrated kernEfe in-
mean 28.34| 29.95] 30.75 putimage is in Fig. 7(c) with kernel size @f 7. (a) Usingll 11

Gaussian kernel (close-up view). (b) Usidilg 3 Gaussian kernel

Table 2. Part of the PSNRs compared to those in Table 2 of [21]. (close-up view)

Columns “0th” and “1st” show the statistics obtained usindeos

zero and one models (described in [21]), respectively.
sented in Table 2.

8. More Experimental Results

We now show two more examples where the input im-

& | ages are captured under low light and with the camera
@) (b) slightly defocused. Several other examples are included in

our technical report [32]. In Figure 7, we show an image

captured by a Nikon D200 camera. It is severely underex-

posed with signi cant noise. For comparison, we also took

a corresponding in-focus image (shown in Figure 7(b)) and
enhance it as input to other denoising methods. The results

are shown in (d)-(f), with close-ups in (h)-(j). It is notice

(© (d) able that our result retains the most details. Figure 8 shows
Figure 8. Coke example. (a) Image captured under low light. (  another example where the input image was taken under the
Image after intensity enhancement, with noise proportipraan- similar condition.

pli ed. (c) Result of noise removal. (d) Final result aftemnoving

defocus blur. .
9. Concluding Remarks

image noise. The input image (shown in Figure 6(a)) is
blurred (PSF shown on bottom left) followed by adding
large CCD noise [21] ( = 20%). Our image restoration
result is shown in Figure 6(d). In (e)-(f), we show the re-
sults from two other denoising algorithms with an unblurred
noisy image (shown in Figure 6(b)) as input.

We then collect the statistics of our denoising method
using a set of image examples. In this experiment, 16 im-
ages containing different types of objects and scenes werd.imitations Our technique is less effective in cases where
selected from the Berkeley segmentation data set [23]. Wedepth cannot be quanti ed (e.g., in macro photography).
blurred these input images by convolving them with small Our method tends to work best when both foreground and
defocus kernels estimated by Joshi et al. [17]. This processbackground are in the eld of view. Our technique also as-
was followed by adding white Gaussian noise, respectively sumes a certain style of photography where the nearest ob-
at 10% and 1954 levels. For nal result comparison, sev- ject is originally in focus (which is common); it removes
eral other denoising methods were also tested on the imagesnly a small amount of defocus. Finally, we assume the
with the same amount of noise (but without defocus blur). blur PSF is spatially-invariant. From our experiments, our
Details and visual comparisons are given in [32]. Part of the technique is tolerant towards moderate changes in the PSF
PSNRs are listed in Table 1. (distortions of less than 4 pixels). Fig. 9, we show examples

In addition, we compare our method with that of lat of what happens when the kernel is signi cantly misesti-
al. [21]. The PSNRs extracted from [21] are used for com- mated. A larger-than-correct kernel makes the result over-
parison. Again, our method uses blurred images with ad-sharpened but with less details (a) while a smaller-than-
ditive 1% AWGN while the noisy images in [21] do not  correct kernel makes the result look noisier (b). We will
undergo the blurring process. Part of the PSNRs are pre-address these issues as part of our future work.

We have presented a new denoising technique based on
optical defocus to reduce the signal-noise coupling. We
showed that the gains in noise reduction more than offset
the degradation in signal due to the defocus. We also in-
troduced a new metric for evaluating how noisy a blurred
image is. Experimental results were shown to validate our
technique and analysis.
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