
Adaptive Layout for Dynamically Aggregated Documents

Evan Schrier1 Mira Dontcheva1 Charles Jacobs2 Geraldine Wade3 David Salesin1,4

1Computer Science & Engineering
University of Washington
Seattle, WA 98105-4615

evans0@msn.com, mirad@cs.washington.edu

2Microsoft Research, 3Microsoft
One Microsoft Way

Redmond, WA 98052-6399
{cjacobs, gwade}@microsoft.com

4Adobe Systems
801 N. 34th Street
Seattle, WA 98103
salesin@adobe.com

ABSTRACT
We present a system for designing and displaying grid-based
document designs that adapt to many different viewing con-
ditions and content selections. Our system can display tradi-
tional, static documents, or it can assemble dynamic docu-
ments “on the fly” from many disparate sources via the In-
ternet. Our adaptive layouts for aggregated documents are
inspired by traditional newspaper design. Furthermore, our
system allows documents to be interactive so that readers can
customize documents as they read them. Our system builds
on previous work on adaptive documents, using constraint-
based templates to specify content-independent page designs.
The new templates we describe are much more flexible in
their ability to adapt to different types of content and viewing
situations. This flexibility comes from allowing the individ-
ual components, or “elements,” of the templates to be mixed
and matched, according to the content being displayed. We
demonstrate our system with two example applications: an
interactive news reader for the New York Times, and an In-
ternet news aggregator based on MSN Newsbot.

ACM Classification H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General Terms Design, Human Factors

Author Keywords
Adaptive layout, grid-based layout, constraints, PDF, XML,
XSL, CSS.

INTRODUCTION
The Internet makes it possible to easily assemble documents
using information from many disparate sources. As a result,
these documents, which we call aggregated documents, are
becoming more and more common on the World Wide Web.
Today, we see these documents at news aggregators, search
engines, and RSS readers. However, aggregated documents
currently remain nothing more than a list of hyperlinks, text,
and images. We present a system that allows designers to
create rich page layouts that re-introduce the graphic designs

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
IUI’08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

Figure 1. Using templates that adapt to both content and display size
we present the New York Times RSS feed as a newspaper.

usually found in print media, and apply those designs to a
collection of content that is unknown at design time. Our
system also facilitates the design’s adaptation to the variety
of devices and screen dimensions available today.

For our layouts, we draw inspiration from newspaper design,
which provides an existing, well developed methodology for
displaying aggregated content, both efficiently and attrac-
tively. Arnold [2] describes newspaper design as the com-
bination of typography and layout for quick, accurate trans-
mission of information. As a result, typographic elements
such as fonts, spacing, columnation, and juxtaposition are
used to create compelling displays of content. In our work
we introduce these typographic elements to the design and
layout of digital aggregated documents (see Figure 1).

We build on prior work on adaptive grid-based document
layout (AGBDL) [15], which allows users to design grid-
based document layouts that adapt to different window di-
mensions. That work showed that high-quality, adaptive doc-
ument layout is possible through constraint-based layout
templates. In this work, we extend those adaptive, grid-based
layout ideas to the rendering of dynamically aggregated doc-
uments. We also present a novel interaction model for view-
ing and reading these documents rendered with our system.

The previous system [15] focused on high-quality layout of
content with a fixed document structure, such as content in
magazines. However, aggregated documents include infor-
mation from many different sources that do not have a fixed

structure. Because these documents are assembled dynami-
cally, we do not know the content that will be present; there-
fore, we cannot design specific layout templates ahead of
time. Even if we were to try to design templates ahead of
time, we would have to enumerate all possible content in all
possible combinations, resulting in an explosion of layout
templates.

In this paper we present a new template language for build-
ing templates that include multiple possibilities for display-
ing each piece of content, with rules for choosing between
them; a designer might have portrait images and landscape
images laid out differently, for example. These new tem-
plates can also include optional elements, which are dis-
played only if appropriate content is present. This new tem-
plate specification vastly increases the applicability of each
template, and the range of content that can be displayed
with a relatively small collection of templates. Furthermore,
the new templates are much easier to write because they
are specified with high-level primitives that instruct the sys-
tem to generate complex constraint systems automatically.
The new template language compares to the original as a
higher-level programming language compares to assembly
language. With our new template specification we are able
to display content with the style of the New York Times, as
shown in Figure 1, with just five templates. With the pre-
vious AGBDL system, this display would require over fifty
layout templates to handle all possible content.

As part of our system, we also present a set of interactions
for manipulating these documents. Users can now drag and
drop stories into different regions of the document. They can
page through individual stories without altering others, and
they can display hierarchical content such as newspaper sec-
tions side by side. In addition to adapting to a variety of
display sizes, our documents can adapt by flowing content
around overlapping windows of other applications, chang-
ing some basic assumptions about the desktop metaphor. We
believe our system is the first to include such functionality.

In summary, we present these new ideas:

• placing layout decisions on the individual elements of a
page, rather than on the page in its entirety, enabling much
richer combinations of elements;

• a new high-level language enabling an easier and more
concise template specification by designers who are not
programmers;

• “smart” overlapping windows, which reflow content around
other applications on the desktop;

• and novel user interactions that allow users to drag and
drop hyperlinked content, read content in context, and in-
teractively grow and shrink regions of interest.

We also demonstrate a new application of adaptive layouts
for advertising, an innovation that should make this style of
reading more commercially viable. Indeed, the research pro-
totype described in this paper was inspiration for the New
York Times commercial product, Times Reader.

RELATED WORK
There are many services on the Internet that dynamically ag-
gregate Web content. RSS feeds, which allow users to easily
stay up to date with favorite news or blog sites, have be-
come so common that RSS readers, which aggregate multi-
ple RSS feeds, are now regularly found in Web portals and
mail clients. Search engines also aggregate content when
they present users with search results for a query. Finally,
news aggregators crawl the Web and compose aggregated
documents that display current news around the world. All
of these aggregators display their aggregated documents into
simple lists using traditional HTML. We chose to imple-
ment our own layout renderer because we found HTML
too limiting. For example, in HTML, text cannot flow from
one element into another, making it difficult to create arti-
cles with more than one column. The recent CSS3 speci-
fication [22] includes multi-column layout within a single
element, but it does not allow for flow between arbitrary el-
ements, flow around image elements, and pagination. Using
our adaptive templates, we could provide a richer front-end
for RSS clients and news aggregators by simply translating
their XML output, as we do in the Newsbot example.

In the HCI community, researchers have explored a variety
of displays for aggregated documents. Kandogan and Shnei-
derman [17] built a specialized browser, Elastic Windows,
which allows users to interactively build a custom layout for
their Web browser by aggregating visited pages into a hier-
archical display. More recently, Chickenfoot [6] and Grease-
monkey [7] have allowed developers to write scripts that can
automate, aggregate, and customize user interactions with
specific websites. Dontcheva et al. [10] built a system that
aggregates individual pieces of content from multiple visited
websites. Their system displays these selected webpage fea-
tures in template-based layouts, providing interactive sum-
maries of relevant information from the browse session. In
subsequent work, Dontcheva et al. [11] have extended their
approach to create search templates that organize search
results using layout templates. To the best of our knowl-
edge, however, our system remains the only one that does
adaptive document layout for dynamically aggregated doc-
uments. Kamba et al. [16] introduced one of the first Web-
based adaptive newspapers, The Krakatoa Chronicle, which
supports many of the adaptations present in our system, but
does not have the ability to render modern grid-based lay-
outs.

One important property of our system is the separation of
content and style, which allows designs to accommodate un-
known content. This is not a new idea; in fact, several World-
Wide-Web Consortium (W3C) standards support this sepa-
ration, e.g., the Extensible Stylesheet Language (XSL) [1]
and Cascading Style Sheets (CSS) [18]. Borning et al. [8]
were the first to suggest applying constraint systems to the
layout of Web documents and applets. In their system, con-
straints were specified by both the author and the reader, and
the final layout was negotiated by priorities on individual
constraints. Constraint Cascading Style Sheets [3] built upon
this work and then proposed the addition of constraints to the
Scalable Vector Graphics language [21], which they called

Constraint Scalable Vector Graphics (CSVG) [4, 19]. CSVG
allowed constraints to control the properties of diagram com-
ponents. They also proposed extensions supporting better in-
teractivity and constraint-based animation. All of these tech-
niques control the layout of a single HTML webpage, while
ours can control the layout of content from a collection of
sources, integrating them into a single, possibly hierarchical
document.

There have been many systems that support the design and
construction of constraint-based graphical user interfaces,
Garnet [20] and subArctic [14] among others. These toolk-
its are generally designed for traditional, widget-based inter-
faces, rather than document-based interfaces such as ours.
Gajos and Weld [13] automatically generate adaptive inter-
faces in the SUPPLE system. Their approach is to find an
optimal arrangement of widgets to layout an interface that
meets the target device’s constraints and is estimated to be
easy to use by an objective standard. While document layout
is related to widget layout, it addresses a different task and
presents a different set of challenges.

BACKGROUND
Since dynamically aggregated documents vary in content
structure, we must maintain a clean separation between con-
tent and style. Towards this end, we further develop the rep-
resentation introduced in the AGBDL system. To provide the
necessary background for the rest of the paper, we first de-
scribe this representation.

Document structure
In our system, a document is represented as a set of par-
allel streams of content. For instance, the body text of an
article could be one of the streams in the document. Other
streams might contain figures, headlines, or sidebars. Within
a stream, an individual piece of content could be text, an
image, or a hierarchical collection of content. These hierar-
chical collections, or subdocuments, mirror the structure of
a document itself. Thus, a figure might be represented as a
subdocument containing separate streams for the image, ti-
tle, caption, and photo credit.

To specify stylistic properties like color, font size, and font
face, text can be tagged with a style name. This style name
is then looked up in a stylesheet, which maps style names to
actual style properties. The stylesheets themselves are pro-
vided by the layout templates, described below.

Content can be also be annotated with attributes that alter the
way it is treated during layout. For example, an image could
be marked with an “importance” attribute, and this attribute
can be used in computing the desired size of the image in the
final layout.

Layout templates
A document’s visual style is encoded as a set of templates.
Each template organizes a collection of content at a range
of display sizes. Figure 2 shows a template that displays a
headline, an image, and some body text. Each template is
composed of elements that display content or other visual

Figure 2. A template with its elements outlined in blue. Content can
flow from one element to another. We use a layering paradigm to flow
the text around the image.

features, constraints that define relationships between ele-
ments, and preconditions that characterize the suitability of
the template for the particular content. A template can also
reference a stylesheet that is used to map style tags into con-
crete style properties.

Elements
The basic building blocks of a page layout are elements: rect-
angular regions that are arranged on the page and filled with
content. Each element receives content from one of the docu-
ment streams. More than one element may consume content
from the same stream, in which case the content flows from
one element into the next. For example, the two-column lay-
out in Figure 2 has two elements, each corresponding to a
column. Text flows from the element on the left into the el-
ement on the right. To place the image on the page and flow
the text around it, we use a layering paradigm. A page can
be represented as a 2 1

2 -D scene, where each element also
has a z-order. Elements that have a higher z-order sit atop
lower elements, and the area of the higher elements (in this
case, the image) is subtracted from the area of the elements
underneath (the text).

Since content can be hierarchically organized into subdoc-
uments, templates can also be hierarchical. Elements that
are filled by subdocuments can specify a set of templates
to format the hierarchical collection of content displayed by
that element. When rendering the page, the layout engine
chooses the template that best fits the particular subdocu-
ment.

In order to allow text styling to vary across the different parts
of the page, each element may reference its own stylesheet.
Styles present in an element’s stylesheet override the styles
found in the template’s stylesheet.

Constraints
The size and placement of each element in a template is de-
termined by the evaluation of a set of interdependent con-
straints that form a directed acyclic graph. In Figure 2, the
title is constrained to begin at the top of the page and al-

lowed to grow as tall as required in order to fit the title text.
The body elements are constrained to begin at the bottom of
the title element, and to end at the bottom of the page. The
image element is constrained to the middle of the body text.
In our implementation, the constraint system is comprised of
a pool of constraint variables whose values are computed by
a mathematical expression in terms of the other constraint
variables. This configuration is known as a one-way con-
straint system.

A template’s constraint variables include both input and out-
put variables. The input variables correspond to the context
of the layout template, such as the page dimensions. The out-
put variables correspond to the bounding rectangle for each
element and the overall template score, which allows a tem-
plate to express its fitness in terms of the inputs. If content
is tagged with attributes, those values are reflected as addi-
tional variables in the constraint system.

Choosing templates: preconditions and scoring
In order to render a particular document, the system must
choose an appropriate set of templates. It can make this
choice using preconditions or a template’s overall score. Pre-
conditions define when a template is valid. Content precon-
ditions specify content availability requirements, e.g., “there
must be at least one item in the figure stream for this template
to be considered.” Value preconditions express a valid range
for one of the constraint variables, e.g., “the page width must
be between 400 and 600 points.” If multiple templates are
valid, the layout engine uses the output score to select the
best fitting template. Typically a template will produce a low
score if the constraints that place the elements are unable to
produce a good layout. For example, if a figure is so tall that
it doesn’t fit on the page, the score might be negative.

The document content and layout templates feed into a docu-
ment paginator and layout engine to produce a collection of
potential page layouts. The paginator can optionally glob-
ally optimize the layout by slightly under-filling pages and
altering template choices. We use a simpler, ”First-Fit” pag-
inator for the examples in this paper. For more details on this
process, please see a description of AGBDL [15].

LAYOUT TEMPLATE SPECIFICATION
The principal challenge behind adaptive document layout for
dynamically aggregated content lies in the design of layout
templates that are flexible to many different assortments of
content. Since a designer cannot be expected to design tem-
plates for all possible content combinations, template prim-
itives must allow for variable content without explicit enu-
meration. Designers must also be able to incorporate layout
preferences and conditions with minimal effort. Finally, the
layout engine must be able to make reasonable choices about
content display without intervention. To achieve these goals,
we move design decisions to the element level from the
overall template level and propose a set of high-level tem-
plate primitives that are able to position and size available
content appropriately. The new primitives we propose here
include: conditional elements, which automatically choose
whether to appear in a given layout based upon the availabil-

ity of content and any other arbitrary constraints; conditional
groups, which choose a single element from a group of pos-
sible elements, also based upon content and constraints; and
adaptive grids, which automatically choose column count,
sizes and margins. The constraint system always sizes and
locates any elements that appear on a page.

Conditional elements
As described in the previous section, the layout engine se-
lects layout templates using preconditions that express when
a specific template is valid. Preconditions can be defined
with respect to content, such as the availability of an image,
or with respect to attribute values, such as the possible range
of page sizes. In AGBDL, preconditions were used to in-
validate entire templates from consideration. Thus, separate
templates were necessary for different configurations of con-
tent, such as news articles with one, two, or three images. In
this work, in order to make the layout templates adapt to the
variable structure of the available content, we add precon-
ditions to the individual display elements and call such ele-
ments conditional elements. Conditional elements can have
content and value preconditions. Indeed, placing a content
precondition on an element that consumes content, requir-
ing that some content be available, is so natural and useful
that we made it implicit. Only one template is now necessary
to properly display multiple articles, regardless of the num-
ber and orientation of images or the existence of a headline.
Figure 3 shows three different articles rendered by the same
layout template. Value preconditions can specify the mini-
mum or maximum page size for which an element should be
displayed.

In AGBDL, every constraint in the layout template had to be
specified by the author. To make positioning of elements eas-
ier, we modified the element specification to let a designer
specify that an element, such as an image, should always ap-
pear fixed at a particular point on the y-axis, or under another
element, and always have a specific aspect ratio. The system
now generates the necessary constraint system for the de-
signer, which computes the appropriate dimensions and ele-
ment positions.

Conditional groups
In addition to constraining elements, the designer can also
define conditional groups. A conditional group defines a set
of elements of which only one will be used in a given lay-
out. A conditional group is used in the template in Figure 3
to choose from a two-column, one-column, or half-column
element depending upon both the aspect ration of the image
and the width of the columns. The designer can specify a
conditional group containing a layout element for each ori-
entation along with a policy for selecting the most appropri-
ate element. The policies our system currently includes are
best-fit, first-fit, and first-good-fit. A best-fit group will select
the element that produces the best score. A first-fit group
will select the first element for which content is available.
Finally, a first-good-fit group selects the first element it ex-
amines with a non-negative score.

Figure 3. We can render articles with a variable number of images and image aspect ratios using only one layout template, by placing the possible
image locations in a conditional group.

Adaptive grids
Many in the design community [9] believe that long lines of
text degrade readability; thus, as the width of an element or
page expands, adding more columns improves a document’s
readability. In AGBDL, dynamic growth of columns was im-
plemented by defining templates for multiple-column lay-
outs and switching to a template with more columns when
the page grew beyond a certain width. However, creating
templates for different numbers of columns along with tem-
plates for different combinations of content leads to a com-
binatorial explosion in the number of templates necessary to
handle different content and viewing situations.

To alleviate this growth in the number of templates, we de-
fine an adaptive column grid. The grid divides the page into
columns based on parameters provided by the designer. De-
pending on the page width and the grid specification, the
system determines the number of columns to use, and sizes
the columns, margins, and gutters whenever the template is
rendered.

By default, the system will generate as many columns as
possible of at least the minimum width specified in the tem-
plate. Alternatively, the designer can specify that the system
include as few columns as possible without going over the
maximum width specified. The individual columns in a grid
can also be configured to a fixed width, combining fixed- and
variable-width columns of different widths and proportions.
When the page is resized, columns will be added in left-to-
right order as the page gets wider, and will be dropped from
right to left when the width decreases. The designer may,
however, change the order in which columns are added and
dropped by assigning priority values to each column.

Example
We illustrate the interaction between different primitives in
the context of an example template. A complete description
of the template language for specifying rich displays for ag-
gregated documents is beyond the scope of this paper. This
is a code fragment that shows an adaptive grid and a best-fit
group.

<template id="sample">

<!--- adaptive grid -->
<grid type="variable" margins="5">
<adaptive minColumnWidth="210" maxColumns="4"/>

</grid>

<elements>

<!--- conditional element -->
<element id="body" column="col1,col2" under="headline">
<content src="bodyText"/>

</element>

<!--- best-fit conditional group -->
<group id="photoGroup" type="bestfit">
<element id="photo" template="imageTemplate">
<content src="image"/>

<instance column="col1" bottom="page.bottom">
<pass-constraint var="target.aspect"

value="portrait"/>
</instance>

<instance column="col1-col2" bottom="page.bottom">
<pass-constraint var="target.aspect"

value="landscape"/>
</instance>

<constraint var="photo.score"
value="photo.template.score"/>

</element>
</group>

</elements>
</template>

This template specifies an adaptive grid with up to four
columns of at least 210 points width. It then defines a con-
ditional element and a best-fit conditional group. The group
contains one element description for an image, which uses
a template, imageTemplate, to lay out the content. The lay-
out template imageTemplate includes a bitmap and a cap-
tion stream. The best-fit group specifies two possibilities,
listed as instances of the element. The first instance occupies
the first column and the second instance spans the first two
columns. We pass each instance a parameter, target.aspect,
to calculate a layout goodness score. The first instance gen-
erates a positive score if it is a portrait image, and the second
instance generates a positive score if it is a landscape im-
age. A constraint with the name of the element and a suffix
“score”, in this case photo.score, evaluates the best-fit. Here
it is defined to be the score generated by the template that
lays out the element.

HIERARCHICAL DOCUMENTS
When entire articles are encapsulated in an aggregated doc-
ument, it becomes hierarchical in nature. News aggregators
can have deep hierarchies as they include different sections,
such as “World”, “National”, “Health”, etc. As we described
previously, a document can include other documents, which
we call subdocuments, thus creating a hierarchy. Each of
these subdocuments will have its own templates, and each
one can be recursively paginated and displayed in an ele-
ment of the parent document’s template. But the layout of
each subdocument may also be affected by the overall layout
of the parent document. To allow for the interaction between
elements at different levels in the hierarchy, we allow the
designer to pass input and output variables between a parent
and a child template.

Input variables enable the top-level template to exercise con-
trol over the appearance of the subdocuments, while still let-
ting them handle most layout functions independently. Re-
turned values allow the parent template to determine if the
given subdocument is a good fit in a particular spot. They
can further be used to align other display elements with fea-
tures in the child’s layout. Any constraint in the parent or
child template can be passed as a parameter or returned as
a result from an adjacent template in the hierarchy. Some of
the input variables that we have explored include the number
of columns, the amount of padding, and flags for suppress-
ing images or borders. Some of the output variables we have
used are layout quality scores and alignment coordinates.

Another way a parent can influence the layout of a child tem-
plate is by passing it a stylesheet. A designer can override
a subdocument’s default stylesheet at the element instance.
For example, newspapers will typically use different fonts
for nearby headlines so that readers can easily distinguish
among them. In our New York Times front page examples
(see Figure 8), we avoid displaying abutting headlines in the
same style by passing a different stylesheet to adjacent story
elements.

For visual consistency, it is often desirable to have a subdoc-
ument conform to the grid underlying the parent document.
Once a grid is defined for the overall document, each ele-
ment that displays a subdocument can be passed the number
of columns that the element spans in the parent. This allows
the subdocuments to use the same number of columns in its
own layout, as does the layout in Figure 4. If the parent grid
is irregular, a more detailed specification can be provided.

Typically, a subdocument is laid out entirely within a single
element on the page. However, if the desired layout does not
confine the subdocument to a single rectangular region, the
designer may specify that different parts of the subdocument
be placed in separate elements on the page. For example, in
Figure 4 the large front-page image is in one element, and
the story that corresponds to that image is in another element
directly below the image.

By default, each element consumes content from a separate
subdocument, but the designer can constrain any number of

Figure 4. We use recursive masking to adapt subdocuments to overlap.
The right-hand story flows around the bottom story.

elements on the page to consume content from the same sub-
document. This can be useful when the desired layout of a
subdocument does not fit into a rectangular region on the
parent template. For example, in Figure 8 the large front-
page image is in one element, and the story that corresponds
to that image is in another element directly below the image.

A final consideration for displaying hierarchical documents
is handling overlapping elements. As described earlier, we
accommodate overlap in a single document by letting the de-
signer assign a z-order to the affected elements. The system
renders the element with the highest z-order first and cre-
ates an occlusion mask for the rendered region. Then it ren-
ders the remaining elements, adding to the mask as new re-
gions are rendered. We extended this algorithm to hierarchi-
cal documents by making the masking recursive and passing
the occupied regions of higher-layer elements down the hier-
archy. This allows the righthand story in Figure 4 to flow its
text around the overlapping story at the bottom of the page.
If a subdocument has multiple possible image locations, the
template can favor a location that is not occluded.

USER INTERACTION
In addition to adapting to different screen sizes and con-
stantly changing collections of aggregated content, electronic
documents should also be responsive to the reading needs of
the viewer. For example, the front page of a typical news-
paper seldom contains articles in their entirety. The stories
generally continue on an interior page, forcing the reader
to scan through the paper before finishing them. With our
system, users can read articles without scanning through the
entire newspaper. They can simply position the cursor over
the story of interest and click on the ”page down” button.
This will display the second page of the story in place of
the first. Alternatively, they can click on the headline or the
“continue” link, which will take them to a page featuring the
entire article, if it fits in the window. If it doesn’t fit, then they
will see a paginated view of the article, and they can use the
“page down” key again to see the additional pages. A third
possibility is to activate an “expand” link that will alter the

Figure 5. The user clicks on the upper left story. The story expands in
place and occupies a larger portion of the overall reading window. The
other stories are formatted accordingly.

layout on the front page, so that the story of interest has a
larger footprint on the page, making it more convenient to
read (and page through if necessary) in place (see Figure 5).
When expanding a section of a page, the system animates
the transition. A smooth, animated transition makes it clear
to the user what is being changed and where various features
on the page are moving. We implement animation by vary-
ing the constraints that size the elements over time. When
one story grows the other stories shrink to accommodate it.

While our system creates documents that look like print me-
dia, these documents still have digital qualities and include
digital elements such as hyperlinks. For example, the table
of contents is a list of hyperlinks. To follow hyperlinks, the
user can click on them in the conventional fashion. If the
link is in a subdocument, such as in an article displayed on
the front page, then the subdocument is typically replaced by
the linked content.

Alternatively, the document, which in our example is the
newspaper’s front page, can be replaced by the linked con-
tent, which is useful when the linked document is another
main page rather than a single article. The hyperlinked con-
tent can also replace different subdocuments. For example, a
table of contents can be set up to always load the hyperlinked
content in a specific location on the front page. The viewer
can also interactively specify where the hyperlinked content
should be displayed by dragging hyperlinks and dropping
them into a display element. The target element can be any
element on the page that displays another subdocument. A
user can also delete stories from the page that have already
been read and are not of interest.

In addition to flowing content recursively around content
elements, we have made it possible for our documents to
adapt to overlapping windows of other applications (see Fig-
ure 6). Text is reflowed in the available regions, and images
are relocated if the template allows for alternate locations.
We are able to achieve this flexible layout using the masking
we described in the previous section, by initializing the top-
level mask with the Windows client region of the document
viewer. Adapting to overlapping windows is functionality
that is well suited to the multitasking environments common
on the desktop today.

Figure 6. Our aggregated documents are sensitive to overlap and can
flow around any desktop window. The two articles are rendered with
the same template, which moves the photo in the left-most article out
of the lower-right corner where it would be occluded by the first article
and the filesystem folder.

IMPLEMENTATION
We implemented two versions of the system described in this
paper, one as a stand-alone client application and the second
as a server-side application that delivers HTML webpages.
The stand-alone application is far more responsive and pro-
vides a better interactive experience, whereas the Web server
allows documents to be viewed in any modern Web browser.
The main part of our system, the layout engine, is the same
for both systems. The only difference is that the server ver-
sion produces an HTML webpage instead of drawing text
and images to the screen. We decided against implementing
our work with DHTML because it is difficult to flow text
across page elements. Our layout engine implementation is
similar to that of AGBDL, described previously in [15]. In
this section, we describe the implementation of the new parts
of the system and then show results.

We gather the content for our aggregated documents us-
ing a variety of techniques. Most content streams provide
XML content, which we transform using XSLT (Extensible
Stylesheet Language Transformations), a language designed
to translate XML content. A manually authored translation
script provides rules that govern the transformation. Any ar-
bitrary XML data can be transformed into a document that
our system can display, provided a translation file exists.
Once a document is translated, it can be displayed as a stand-
alone document, or its content can be included in whole or
in part in another document.

High-level template primitives
This work adds many new, high-level primitives to the de-
sign template language that make it much easier to author
templates. In some cases, these new language features ease
the production of highly complicated constraint systems, and
are similar to macros that get translated into lower-level con-
straint “code.” In other cases, the new language features re-
flect fundamental new capabilities of the layout system.

Figure 7. Adaptive advertisements can be designed using our layout
templates. Two mock ads are displayed in different size elements.

The most complicated of the new template primitives is the
adaptive grid. When the grid is loaded, the system calculates
the transition thresholds where columns should be added and
removed. Since the designer has a lot of control over the
adaptation to various display widths, the system generates
a complicated constraint system that activates and sizes the
appropriate number of columns, as well as margins and gut-
ters. Columns that are inactive have their width collapsed to
zero so that other constraints that depend upon the column
are evaluated normally. Sometimes a perfect transition point
does not exist. For example, if the allowable column widths
are between 200 and 300 points, then there are some pages
(e.g., one that is 350 points wide) that are too big for one
column and too small for two. The best solution, we believe,
is to absorb any extra width into the margins and gutters,
which our system will do by default. Alternatively, the lay-
out can be left- or right-justified and all additional space is
left in one margin or the other.

While conditional groups could be implemented using con-
straint systems alone, a more efficient and powerful ap-
proach is to place support for them in the layout engine. The
system recognizes these structures, iterates through the given
layouts, and selects the appropriate element using the policy
defined by the designer and the constraint values generated
by the layouts. This also allows the element choice to depend
upon the results of a given layout, rather than just the initial
conditions.

RESULTS
To demonstrate our ideas, we have developed several ex-
ample applications. The applications include an adaptive
version of the online magazine, Slate; an interactive news-
reader for the New York Times; and a front-end for the news-
aggregator, MSN Newsbot. Figures 8 and 9 show examples
of the New York Times and MSN Newsbot applications. Ad-
ditionally, for the New York Times demonstration we created
a set of adaptive mock advertisements shown in Figure 7.
These mock ads are just subdocuments that contain the ad

content, along with templates specialized for that content.
These ads present a unified visual theme at a wide range of
sizes and aspect ratios. We see a lot of potential for this idea,
because print media advertising is often sold as a percent-
age of a page. Our technology allows this established model
to be carried into the online world where non-standard page
sizes are becoming more and more common.

Our New York Times application uses our new template sys-
tem and displays the stories of the website’s RSS feed as
a broadsheet newspaper. To gather the content we combine
the RSS feed of the website and a Web scraper that collects
the full content of each article from their website. The RSS
feed is translated using an XSLT transformation, while the
scraped article is converted to our document format using
a helper application. The New York Times application dis-
plays a set of one- to six- column layouts using only five
templates.

We built a Slate magazine application using the website’s
XML Web feed. We used the earlier AGBDL template sys-
tem, and it required 74 templates to display four different
basic designs; one-, two-, and three-column layouts and a
PDA layout. Each one of these templates was four to five
times larger than the New York Times templates. It was this
initial application that motivated our research in the adaptive
layout of dynamically aggregated documents and the devel-
opment of more powerful templates.

The MSN Newsbot application makes database requests over
the Internet to retrieve current breaking news updates from
thousands of Web sources and displays them in an attractive
adaptive document. This application uses just two top-level
templates: one for a small-screen display, and one for all
other displays. Each of the stories and each navigation menu
of the MSN Newsbot application are subdocuments and use
one of a total of four possible subdocument templates.

There are still some major limitations of our system: 1)
we currently require designers to author templates in XML
code, which will be a barrier for some users; 2) we use a
one-way constraint solver for the layout engine (rather than
a more general solver such as Cassowary [5] that can han-
dle cycles in the dependency graph), which limits to some
extent the page designs that can be described; and 3) the
need to write a translation script to parse the raw content
from websites into a suitable format for our layout engine,
which requires some knowledge of the structure of the tar-
geted website.

The most common application that one-way constraints can-
not realize is column-balancing. Multi-column pages that are
not entirely full look best when all of the columns are the
same length. Since this is common in our domain, we imple-
mented a special primitive that performs iterative balancing
on a group of text elements.

FUTURE WORK
There are several ways we would like to expand the system
further. We plan to build a graphical template design tool,

Figure 8. We show the New York Times newsreader at two different sizes. The content is automatically fetched live from the RSS feed and displayed
using a single template. If the featured story includes a photo in landscape orientation and the browser window is wide enough, that photo is pulled
up above the story and placed over two columns. The stories appearing as headlines in the table of contents can be placed directly into any of the
story boxes interactively.

ideally one that could work alongside a text-based XML
editing tool so that templates could be created and edited
in either tool interchangeably.

The template language we have described contains a number
of high-level primitives that allow constraint systems to be
generated by the system for common situations in adaptive
page designs. We plan to identify more of these primitives to
make the language more powerful and the descriptions more
concise. For instance, we have an automated adaptive col-
umn grid, but there may be a similar useful construct in the
vertical dimension. We would also like to provide support
for letting users define new primitives to generate constraint
systems that they use repeatedly in their designs. We intend
to get feedback from designers to further refine the definition
language.

We hope to evaluate the interaction we propose with a user
study. We plan to explore more user interactions, such as
allowing a user to modify layouts by directly manipulating
boundaries of columns and elements. There is a trade-off,
however, between the degree of control a designer maintains
over the layouts and the latitude allowed the viewer. Finally,
we would like to investigate using a more general constraint
solver in the layout engine.

SUMMARY AND CONCLUSION
In this paper, we have presented a number of new ideas.
These include: 1) the placement of preconditions and design-
evaluation metrics on the individual elements of a page,
rather than on just the page in its entirety, thereby enabling
much richer combinations of page design elements without
elaborating each one as a separate template; 2) a new set of
high-level primitives that generate constraint systems auto-
matically given some parameters, thereby enabling a more
concise template specification by designers who are not pro-
grammers; 3) recursive masking for adaptation to multiple

desktop windows; 4) novel user interactions that allow users
to drag and drop hyperlinked content, read content in con-
text, and interactively grow and shrink regions of interest.
We also demonstrated a new application of adaptive lay-
outs for advertising (see Figure 7), an innovation that should
make this style of reading more commercially viable. How-
ever, the paper’s biggest contribution perhaps is in the suc-
cessful and non-obvious assembly of many smaller ideas
into a larger whole — the creation of an innovative, working
system that had not been possible before.

Virtually all commercial print media today use high-quality
grid-based designs, yet current electronic publication tools
support these designs only for documents that are static —
both in layout and content. Our system addresses this sit-
uation by allowing designs that adapt to different viewing
sizes, adapt to different dynamically aggregated content, and
can be interactively modified by the reader. As on-line read-
ing becomes more and more prevalent, these capabilities will
become increasingly important.

The work presented in this paper, we believe, may have
broad relevance in the larger field of user interface design.
First, on-line reading is, in and of itself, a user-interface is-
sue. Indeed, our adaptive layout templates embody the UI
for online reading. They dictate not only how the reading
material will appear to the user, but also how the user will
navigate through that material or customize the view. In
this regard, our templates define adaptive, graphical user in-
terfaces, and the template specification language provides
a tool for building them. Moreover, many of the ideas we
present may prove relevant beyond just reading: we expect
they may be useful for adaptive presentation of other dy-
namically created or assembled content as well—synthetic
UI controls, results of database searches, or numerical data
laid out as charts and graphs — to name a few.

Figure 9. We show the MSN Newsbot reader at two different sizes. At
the larger size, navigation menus appear on both the left- and right-
hand sides; at the PDA size, these appear on the left only. Images
are omitted from the navigation pane of the PDA-size layout. Each of
the navigation menus is a paginated document, which can be paged
through to see more stories.

ACKNOWLEDGEMENTS
We would like to thank Steven Drucker, Patrick Baudisch,
Dan Weld, and Wilmot Li for helping us with this paper.
Funding and research facilities were provided by Microsoft
Research, Adobe Systems, and the University of Washington
GRAIL lab.

REFERENCES
1. Adler, S., Extensible stylesheet language xsl:Version, 2000.

2. Arnold, E., Modern newspaper design, Harper & Row, Publishers,
New York, NY, 1969.

3. Badros, G. J., Borning, A., Marriott, K., and Stuckey, P. 1999.
Constraint cascading style sheets for the Web. In Proceedings of the
12th Annual ACM Symposium on User interface Software and
Technology (Asheville, North Carolina, United States, November 07 -
10, 1999). UIST ’99. ACM Press, New York, NY, 73-82.

4. Badros, G. J., Tirtowidjojo, J. J., Marriott, K., Meyer, B., Portnoy, W.,
and Borning, A. 2001. A constraint extension to scalable vector
graphics. In Proceedings of the 10th international Conference on
World Wide Web (Hong Kong, Hong Kong, May 01 - 05, 2001). WWW
’01. ACM Press, New York, NY, 489-498.

5. Badros, G. J., Borning, A., and Stuckey, P. J. 2001. The Cassowary
linear arithmetic constraint solving algorithm. In ACM Trans.
Comput.-Hum. Interact. 8, 4 (Dec. 2001), 267-306.

6. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C. 2005.
Automation and customization of rendered web pages. In Proceedings
of the 18th Annual ACM Symposium on User interface Software and

Technology (Seattle, WA, USA, October 23 - 26, 2005). UIST ’05.
ACM Press, New York, NY, 163-172.

7. Boodman, A. www.greasespot.net

8. Borning, A., Lin, R., and Marriott, K. 1997. Constraints for the web. In
Proceedings of the Fifth ACM international Conference on Multimedia
(Seattle, Washington, United States, November 09 - 13, 1997),
173-182.

9. Bringhurst, R., The Elements of Typographic Style. Hartley & Marks,
Publishers, Vancouver, BC, Canada, 1996.

10. Dontcheva, M., Drucker, S. M., Wade, G., Salesin, D., and Cohen, M.
F. 2006. Summarizing personal web browsing sessions. In Proceedings
of the 19th Annual ACM Symposium on User interface Software and
Technology (Montreux, Switzerland, October 15 - 18, 2006). UIST ’06.
ACM Press, New York, NY, 115-124.

11. Dontcheva, M., Drucker, S. M., Salesin, D., and Cohen, M. F. 2007.
Relations, Cards, and Search Templates: User-Guided Data Integration
and Layout. In Proceedings of the 20th Annual ACM Symposium on
User interface Software and Technology (Newport, Rhode Island,
October 7 - 10, 2007). UIST ’07. ACM Press, New York, NY.

12. Feiner, S. K. 1988. A grid-based approach to automating display
layout. In Proceedings on Graphics Interface ’88 (Edmonton, Alberta,
Canada). Canadian Information Processing Society, Toronto, Ont.,
Canada, 192-197.

13. Gajos, K. and Weld, D. S. 2004. SUPPLE: automatically generating
user interfaces. In Proceedings of the 9th international Conference on
intelligent User interfaces (Funchal, Madeira, Portugal, January 13 -
16, 2004). IUI ’04. ACM Press, New York, NY, 93-100.

14. Henry, T. R., Hudson, S. E., and Newell, G. L. 1990. Integrating
gesture and snapping into a user interface toolkit. In Proceedings of the
3rd Annual ACM SIGGRAPH Symposium on User interface Software
and Technology (Snowbird, Utah, United States, October 03 - 05,
1990).

15. Jacobs, C., Li, W., Schrier, E., Bargeron, D., and Salesin, D. 2003.
Adaptive grid-based document layout. In ACM SIGGRAPH 2003
Papers (San Diego, California, July 27 - 31, 2003). SIGGRAPH ’03.
ACM Press, New York, NY, 838-847.

16. Kamba, T., Bharat, K., Albers, M. 1995. The Krakatoa Chronicle - An
Interactive, Personalized, Newspaper on the Web. In Proceedings of
the Fourth International World Wide Web Conference, 159 170.
(Boston, MA, December 11-14, 1995.)

17. Kandogan, E. and Shneiderman, B. 1997. Elastic Windows: a
hierarchical multi-window World-Wide Web browser. In Proceedings
of the 10th Annual ACM Symposium on User interface Software and
Technology (Banff, Alberta, Canada, October 14 - 17, 1997).

18. Lie, H.W., and Box, B. 1996. Cascading style sheets, level 1. W3C
recommendation. http://www.w3.org/style/CSS/.

19. Marriott, K., Meyer, B., and Tardif, L. 2002. Fast and efficient
client-side adaptivity for SVG. In Proceedings of the 11th international
Conference on World Wide Web (Honolulu, Hawaii, USA, May 07 - 11,
2002).

20. Myers, B.A., Giuse, D., Dannenberg, R.B., Vander Zanden, B.,
Kosbie, D., Pervin, E., Mickish, A., and Marchal, P. Garnet:
Comprehensive Support for Graphical, Highly-Interactive User
Interfaces. IEEE Computer 23, 11 (November 1990), 71–85.

21. Quint, A. 2003. Scalable vector graphics In IEEE Multimedia, Vol.10,
Iss.3, July-Sept. 2003 Pages: 99- 102.

22. W3C CCS3 Working Draft, 6 June, 2007. Lie, H.K., editor.
http://www.w3.org/TR/css3-multicol.

