
Video Textures

Arno Schödl1,2 Richard Szeliski2 David H. Salesin2,3 Irfan Essa1

1Georgia Institute of Technology 2Microsoft Research 3University of Washington

Abstract

This paper introduces a new type of medium, called a video texture,
which has qualities somewhere between those of a photograph and
a video. A video texture provides a continuous infinitely varying
stream of images. While the individual frames of a video texture
may be repeated from time to time, the video sequence as a whole is
never repeated exactly. Video textures can be used in place of digital
photos to infuse a static image with dynamic qualities and explicit
action. We present techniques for analyzing a video clip to extract
its structure, and for synthesizing a new, similar looking video of
arbitrary length. We combine video textures with view morphing
techniques to obtain 3D video textures. We also introduce video-
based animation, in which the synthesis of video textures can be
guided by a user through high-level interactive controls. Applica-
tions of video textures and their extensions include the display of
dynamic scenes on web pages, the creation of dynamic backdrops for
special effects and games, and the interactive control of video-based
animation.

CR Categories and Subject Descriptors:
H.5.1 [Information Interfaces]: Multimedia Information Systems—video
I.3.3 [Computer Graphics]: Picture/Image Generation—display algorithms
I.4.9 [Image Processing and Computer Vision]: Applications

Keywords: Animation, image-based rendering, morphing, multimedia, natural phe-

nomena, texture synthesis, video-based rendering, video-based animation, video sprites,

view morphing.

1 Introduction

A picture is worth a thousand words. And yet, there are many phe-
nomena, both natural and man-made, that are not adequately cap-
tured by a single static photo. A waterfall, a flickering flame, a flag
flapping in the breeze—each of these phenomena has an inherently
dynamic quality that a single image simply cannot portray.

The obvious alternative to static photography is video. But video
has its own drawbacks. If we want to store video on a computer or
some other storage device, we are forced to use a video clip of finite
duration. Hence, the video has a beginning, a middle, and an end.
The video becomes a very specific embodiment of a very specific
period of time. Although it captures the time-varying behavior of
the phenomenon at hand, the video lacks the “timeless” quality of
the photograph.

In this work, we propose a new type of medium, which is in many
ways intermediate between a photograph and a video. This new

medium, which we call a video texture, provides a continuous, in-
finitely varying stream of video images. (We use the term “video
texture” because of the strong analogy to image textures, which
usually repeat visual patterns in similar, quasi-periodic ways.) The
video texture is synthesized from a finite set of images by randomly
rearranging (and possibly blending) original frames from a source
video.

Video textures occupy an interesting niche between the static and
the dynamic realm. Whenever a photo is displayed on a computer
screen, a video texture might be used instead to infuse the image with
dynamic qualities. For example, a web page advertising a scenic
destination could use a video texture of a beach with palm trees
blowing in the wind rather than a static photograph. Or an actor
could provide a dynamic “head shot” with continuous movement on
his home page.Video textures could also find application as dynamic
backdrops or foreground elements for scenes composited from live
and synthetic elements, for example, in computer games.

The basic concept of a video texture can be extended in several
different ways to further increase its applicability. For backward
compatibility with existing video players and web browsers, finite
duration video loops can be created to play continuously without
any visible discontinuities. The original video can be split into in-
dependently moving regions, and each region can be analyzed and
rendered independently. We can also use computer vision techniques
to separate objects from the background and represent them as video
sprites, which can be rendered at arbitrary image locations. Multi-
ple video sprites or video texture regions can be combined into a
complex scene.

Video textures can also be combined with stereo matching and view
morphing techniques to produce three-dimensional video textures
that can be rendered from continually varying viewpoints. Most
interesting, perhaps, is the ability to put video textures under in-
teractive control—to drive them at a high level in real time. For
instance, by interactively specifying a preferred segment within a
source video, a jogger can be made to speed up and slow down
according to the position of an interactive slider. Alternatively, an
existing video clip can be shortened or lengthened by removing or
adding video texture in the middle. We call these forms of high-level
control video-based animation.

Creating video textures and applying them in all of these ways re-
quires solving a number of problems. The first difficulty is in locating
potential transition points in the video sequences, i.e., places where
the video can be looped back on itself in a minimally obtrusive way.A
second challenge is in finding a sequence of transitions that respects
the global structure of the video. Even though a given transition
may, itself, have minimal artifacts, it could lead to a portion of the
video from which there is no graceful exit, and therefore be a poor
transition to take. A third challenge is in smoothing visual discon-
tinuities at the transitions—we solve this problem using morphing
techniques. A fourth problem is in automatically factoring video
frames into different regions that can be analyzed and synthesized
independently. Furthermore, the various extensions described above
involve new, additional challenges: creating good, fixed-length cy-
cles; separating video texture elements from their backgrounds so
that they can be used as video sprites; applying view morphing to

video imagery; and generalizing the transition metrics to incorporate
real-time user input.

In some cases, our solutions to these problems are (in retrospect)
quite simple. We thus feel that the primary contribution of this paper
may lie not so much in the technical solutions to each of these indi-
vidual problems per se, but rather in the overall paradigm of reusing
video frames to create video textures, video sprites, and video-based
animation.

1.1 Related work

Increasingly, computer graphics is turning toward image-based mod-
eling and rendering techniques [7, 13], where images captured from
a scene or object are used as an integral part of the rendering pro-
cess, sometime obviating the need for geometry altogether [5]. As
Debevec points out [13], this trend parallels the one that occurred
in music synthesis a decade ago, when sample-based synthesis re-
placed more algorithmic approaches like frequency modulation. To
date, image-based rendering techniques have mostly been applied
to still scenes such as architecture [8, 18], although they have also
been used to cache and accelerate the renderings produced by con-
ventional graphics hardware [27, 32].

Our work generalizes image-based rendering to the temporal do-
main. It can thus be thought of as a kind of “video-based render-
ing.” A similar idea has been used in video games, in which hand-
generated video loops have been created to simulate natural phenom-
ena like fire or water. However, there has been little previous work on
automatically generating motion by reusing captured video. Proba-
bly the work most closely related to our own is “Video Rewrite” [3],
in which video sequences of a person’s mouth are extracted from
a training sequence of the person speaking and then reordered in
order to match the phoneme sequence of a new audio track. Related
3D view interpolation techniques have also been applied to multiple
video streams in the Virtualized Reality [16] and Immersive Video
[19] projects. Pollard et al. [23] introduced the term “video sprite”
for applying such techniques to an alpha-matted region of the video
rather than to the whole image. Finkelstein et al. [10] also used
alpha-matted video elements in their earlier multiresolution video
work, which they called “video clip-art.”

Video textures can also be thought of as a temporal extension of 2D
image texture synthesis. The multiscale-sampling techniques used
for texture synthesis [6, 9, 12] have in fact been directly extended
by Bar-Joseph into the space-time domain [1]. Bar-Joseph’s work
focuses on texture-type motions with limited semantic content such
as fire or water close-ups, which are well modeled by the hierarchy
of filter responses used for texture synthesis. Our approach can deal
with these kinds of phenomena, but also deals with much more struc-
tured motions such as repetitive human actions. In this context, some
of our analysis resembles earlier work in finding cycles in repetitive
motions and “rectifying” these cycles into truly periodic sequences
[20, 22, 25]. Our work also has some similarity to the “motion with-
out movement” technique [11], in which patterns in an image appear
to move continuously without changing their positions.

1.2 System overview

Given a small amount of “training video” (our input video clip),
how do we generate an infinite amount of similar looking video?
The general approach we follow in this paper is to find places in the
original video where a transition can be made to some other place
in the video clip without introducing noticeable discontinuities.

Our system is thus organized into three major components (Figure 1).

The first component of the system analyzes the input video to find
the good transition points, and stores these in a small data table that

Input video clip

Video structure

Analysis

Generate LoopsRandom Play

Frame #s Frame #s

Rendering

Video loop∞ Video

Video Player

∞ Video

Figure 1 System overview diagram. An input video clip is fed into the Analysis
component, which finds good transition points where the video can be looped
back on itself. These transitions (the Video structure) are fed to one of two
Synthesis components: either Random Play, which sequences the transitions
stochastically; or Generate Loops, which finds a set of transitions that together
create a single overall video loop of a given length. The Rendering component
takes the generated sequence of frames, together with the original video clip,
and produces either an infinite video texture sequence, or a video loop that can
be played indefinitely by a standard Video Player in “loop” mode.

becomes part of the video texture representation. This analysis com-
ponent may also optionally trim away parts of the input video that are
not needed, or segment the original video into independently mov-
ing pieces, in order to more easily analyze (and find the repetition
in) these individual regions.

The second component of our system synthesizes new video from
the analyzed video clip, by deciding in what order to play (or shuffle)
the original video frames (or pieces thereof). We have developed two
different approaches to perform this sequencing. The first approach
is random play, which uses a Monte-Carlo (stochastic) technique
to decide which frame should be played after a given frame, using
the table of frame-to-frame similarities computed by the analysis
algorithm. The second approach selects a small number of transitions
to take in such a way that the video is guaranteed to loop after a
specified number of frames. The resulting video loop can then be
played by a conventional video player in “loop” mode.

Once the set of frames to be played has been selected, the render-
ing component puts together the frames (or frame pieces) in a way
that is visually pleasing. This process may be as simple as just dis-
playing or outputting the original video frames, or it may involve
cross-fading or morphing across transitions and/or blending together
independently moving regions.

The remainder of this paper describes, in more detail, the represen-
tation used to capture the structure of video textures (Section 2), our
process for extracting this representation from source video (Sec-
tion 3), and for synthesizing the video texture (Section 4). The ren-
dering algorithms used to composite video sprites together and to
smooth over visual discontinuities are described next (Section 5).
The discussion of our basic results (Section 6) is followed by a
description of some further extensions (Section 7). These include
the extraction and rendering of video sprites, changing viewpoints
using image-based rendering techniques, and the creation of video-
based animation. The video clips associated with these results can be
viewed on the CD-ROM, DVD, and Video Conference Proceedings.
We conclude with a discussion of the potential of video textures and
some ideas for future research.

2 Representation

Our video textures are essentially Markov processes, with each state
corresponding to a single video frame, and the probabilities corre-
sponding to the likelihood of transitions from one frame to another.

In practice, we have found two alternate (and equivalent) representa-
tions to be useful for storing these video textures. One is as a matrix
of probabilities (Figure 3), in which each element Pi j of the matrix
describes the probability of transitioning from frame i to frame j.
The other is as a set of explicit links (Figure 6) from one frame i to
another j, along with an associated probability. The first representa-
tion is advantageous when the matrix is dense, as the indices do not
need to be stored explicitly. However, in most cases the set of allow-
able transitions is relatively sparse, and so the second representation
is preferred.

In many cases, better results can be achieved by splitting the original
video into regions and computing a video texture for each region
separately. As discussed in more detail in Section 7.3, we sometimes
also segment the video into different video sprite elements, each with
its own affiliated alpha channel and compute a video texture for each
sprite separately. In this case, additional information is stored along
with the links to describe how the relative position of the sprite is
changed as the link is crossed.

3 Analysis: Extracting the video texture

The first step in creating a video texture from an input video sequence
is to compute some measure of similarity between all pairs of frames
in the input sequence. In our current implementation, we use L2

distance, since it is simple and works well in practice.

Before computing these distances, we often equalize the brightness
in the image sequence (based on some background portions that
do not change) in order to remove visual discontinuities that would
otherwise appear when jumping between different parts of the input
video. If the camera also has a small amount of jitter (e.g., from being
handheld or shot in high wind conditions), we run video stabilization
software over the sequence.

Once the frame-to-frame distances have been computed, we store
them in the matrix

Di j = ‖Ii − Ij‖2, (1)

which denotes the L2 distance between each pair of images Ii and
Ij. During the new video synthesis, the basic idea will be to create
transitions from frame i to frame j anytime the successor of i is
similar to j—that is, whenever Di+1, j is small.

A simple way to do this is to map these distances to probabilities
through an exponential function,

Pi j ∝ exp (−Di+1, j/σ). (2)

All the probabilities for a given row of P are normalized so that∑
j Pi j = 1. At run time, the next frame to display after frame i

is selected according to the distribution of Pi j. The σ parameter
controls the mapping between L2 distance and relative probability
of taking a given transition. Smaller values of σ emphasize just the
very best transitions, while larger values ofσ allow for greater variety
at the cost of poorer transitions. We typically (but not always) set
σ to a small multiple of the average (non-zero) Di j values, so that
the likelihood of making a transition at a given frame is fairly low.

3.1 Preserving dynamics

Of course, video textures need to preserve more than just similarity
across frames: the dynamics of motion need to be preserved as well.
Consider, for example, a swinging pendulum (Figure 2). Each frame

i

j1 j2

Figure 2 Finding good transitions in a pendulum sequence. Frame i in the top
row matches both frames j1 and j2 of the bottom row very closely. However, of
these two possibilities, only frame j2 comes from a sequence with the correct
dynamics. The two possibilities are disambiguated by considering the sequence
of frames surrounding i, j1, and j2. Frames i − 1, i, and i + 1 match j2 − 1, j2,
and j2 + 1 but not j1 − 1, j1, and j1 + 1.

of the left-to-right swing will have a corresponding frame in the
right-to-left swing that looks very similar (indicated by the blue
arrow in Figure 2). However, transitioning from frame i in the left-
to-right swing to a frame that looks very similar to i + 1 in the
right-to-left swing will create an abrupt and unacceptable change in
the pendulum’s motion.

One possible way to overcome this problem might be to match veloc-
ities (e.g., using optical flow computed at each frame), in addition
to matching the visual similarity between frames. However, flow
computations can be quite brittle (they can be almost arbitrary in
the absence of texture), so we have opted for the following simpler
alternative.

We solve the problem of preserving dynamics by requiring that for
a frame to be classified as similar to some other frame, not only
the frames themselves, but also temporally adjacent frames within
some weighted window must be similar to each other. In other words,
we match subsequences instead of individual frames. Such a sub-
sequence match can be achieved by filtering the difference matrix
with a diagonal kernel with weights [w−m, . . . , wm−1],

D′
i j =

m−1∑

k=−m

wk Di+k, j+k . (3)

In practice, we use m = 1 or 2, corresponding to a 2- or 4-tap filter,
with binomial weights. (Making the filter even-length allows the
decision to transition from some frame i to some other frame j to be
determined as much by the similarity of i and j−1 as by the similarity
of i + 1 and j, removing any asymmetry in this decision.) After
filtering and computing the probabilities from the filtered difference
matrix, the undesired transitions no longer have high probability.

Figure 3 shows this behavior using two-dimensional images of the
Di j and Pi j tables for the pendulum sequence of Figure 2. (These
images bear some resemblance to those found in earlier papers on
the analysis of periodic motion [20, 22, 25].) Here, the new probabil-
ities P′

i j are computed from the dynamics-preserving distances D′
i j

in the same way as Pi j were computed from Di j (in equation (2)). In
the original unfiltered tables, the periodic nature of the pendulum is
readily visible, as is the tendency to match both forward and back-
ward swings. After filtering, only swings in the same direction are
matched. (The bright knots are where the pendulum pauses at the
ends of its swing, and hence has more self-similarity.) The accom-
panying video clips show how false jumps are eliminated.

Di j D′
i j

Pi j P′
i j

Figure 3 Unfiltered and filtered distance matrix and transition probabilities
for the clock pendulum sequence. While the filtering has only a moderate effect
on the distance table, the effect becomes pronounced when passed through the
exponential function. The filtered images are slightly smaller because the filter
kernel has to fit completely into the matrix and thus frames near the beginning
and the end are thrown away.

Figure 4 First and last frame of clock sequence with dead-end. A hand moves
into the field of view at the end. If only instantaneous transition costs are used,
the video texture will get stuck in the last frame.

3.2 Avoiding dead ends and anticipating the future

The decision rule we have described so far looks only at the local
cost of taking a given transition. It tries to match the appearance and
dynamics in the two frames, but gives no consideration to whether
the transition might, for example, lead to some portion of the video
from which there is no graceful exit—a “dead end,” in effect (Fig-
ure 4).

Much better results can be achieved by planning ahead—by trying
to predict the anticipated (increased) “future cost” of choosing a
given transition, given the future transitions that such a move might
necessitate.

More precisely, let D′′
i j be the anticipated future cost of a transition

from frame i − 1 to frame j, i.e., a cost that reflects the expected
average cost of future transitions. We define D′′

i j by summing over
all future anticipated costs,

D′′
i j = (D′

i j)
p + α

∑

k

P′′
j k D′′

j k . (4)

Here, p is a constant used to control the tradeoff between taking
multiple good (low-cost) transitions versus a single, poorer one.
(Higher p favors multiple good transitions; lower p favors a single
poorer one.) The constant α is used to control the relative weight
of future transitions in the metric. For convergence, we must choose
0 < α < 1 (in practice, we use 0. 99 ≤ α ≤ 0. 999). The probabil-

P′
i j P′′

i j

Figure 5 Probability matrices for clock sequence with dead end. The original
probability matrix causes the player to run to the end and get stuck. The new
matrix based on future costs causes the system to “jump out” early, before
getting stuck in the dead end.

ities P′′
j k are defined as before, but using D′′ instead of D′,

P′′
i j ∝ exp (−D′′

i+1, j/σ). (5)

The pair of equations (4) and (5) can be solved using a simple it-
erative algorithm, i.e., by alternating the evaluation of (4) and (5).
Unfortunately, this algorithm is slow to converge.

A faster variant on equation (4) can be derived by making the fol-
lowing observation. As σ → 0, the P′′

j k in equation (5) will tend to
1 for the best transition, and 0 otherwise. We can therefore replace
equation (4) with

D′′
i j = (D′

i j)
p + α min

k
D′′

j k . (6)

This equation is known in the reinforcement learning community as
Q-learning [15]. It corresponds to finding the best possible continu-
ation (path) through a graph with associated costs on edges, and has
been proven to always converge.

We can further increase the computational efficiency of the algorithm
by being selective about which rows in D′′

i j are updated at each
step. Heuristically speaking, the lowest cost path often involves a
transition from a frame near the end of the sequence, and the cost
of this transition has to be propagated forward. We initialize with
D′′

i j = (D′
i j)

p and define

mj = min
k

D′′
j k . (7)

Iterating from the last row to the first, we alternately compute

D′′
i j = (D′

i j)
p + α mj (8)

and update the corresponding mj entries using equation (7). We re-
peat these sweeps from back to front until the matrix entries stabi-
lize.

Figure 5 shows the probability tables before and after applying the
future cost computation. The original probability matrix causes the
player to run to the end and get stuck. The new matrix based on
future costs causes the system to “jump out” early, before getting
stuck in the dead end.

3.3 Pruning the transitions

While the above techniques can be used to produce perfectly good
video textures, it is often desirable to prune the set of allowable
transitions, both to save on storage space, and to improve the quality
of the resulting video (suppressing non-optimal transitions).

We have examined two pruning paradigms:

1. Select only local maxima in the transition matrix for a given
source and/or destination frame.

2. Set all probabilities below some threshold to zero.

The first strategy finds just the “sweet spots” in the matrix of possi-
ble transitions between frames, since often a whole neighborhood of
frames has good and very similar transitions to some other neighbor-
hood of frames, and only the best such transition needs to be kept.
This can be combined with the second strategy, which is applied
after the first. Both strategies are generally applied after the future
cost computation has been done.

In the case of video loops, which are described in Section 4.1, we
use a slightly different pruning strategy. For video loops, we would
like to find sequences of frames that can be played continuously with
low average cost, defined as the sum of all the transition costs D′

i j,
divided by the total length of the sequence. It is straightforward to
show that the average cost of a sequence of transitions is just the
weighted average of the average costs of the transitions. Thus, for
video loops, after pruning all transitions that are not local minima in
the distance matrix, we compute the average cost for each transition,
and keep only the best few (typically around 20).

4 Synthesis: Sequencing the video texture

Once the analysis stage has identified good transitions for the video
texture, we need to decide in what order to play the video frames.
For this synthesis stage, we have developed two different algorithms:
random play and video loops.

Random play is very simple to describe. The video texture is begun
at any point before the last non-zero-probability transition. After
displaying frame i, the next frame j is selected according to Pi j. Note
that usually, Pi, i+1 is the largest probability, since D′

ii = 0 (however,
this is not necessarily true when using the anticipated future cost
D′′

i j, which is how the system avoids dead ends). This simple Monte-
Carlo approach creates video textures that never repeat exactly and
is useful in situations in which the video texture can be created on
the fly from the source material.

When a conventional digital video player is used to show video
textures, it is necessary to create video loops that do in fact repeat
with a fixed period. In this case the video texture can be played in
standard “loop mode” by such a player. Generating such loops with
the highest possible quality is actually a rather difficult problem, to
which we devote the rest of this section.

4.1 Video loops

Consider a loop with a single transition i → j, from source frame
i to destination frame j, which we call a primitive loop. In order
for the single transition to create a (non-trivial) cycle we must have
i ≥ j. Thus, the range of this loop is [j, i]. The cost of this loop is
the filtered distance between the two frames D′

i j.

One or more primitive loops can be combined to create additional
cyclic sequences, called compound loops. To add one (primitive or
compound) loop to another, their ranges must overlap. Otherwise,
there is no way to play the first loop after the second has played.
The resulting compound loop has a range that is the union of the
ranges of the two original loops, and a length and cost that is the
sum of the original lengths and costs. Compound loops may contain
several repeated instances of the same primitive loop, and can thus
be represented by a multiset, where the ordering of the loops is not
important.

Forward transitions i → j, where i + 1 < j, can be added into a
cycle as well. Although we have an algorithm that efficiently checks
whether a multiset of forward and backward jumps is playable, the
dynamic programming algorithm described below, which finds the

D(5) C(4) A(2) B(3)

1 2 3 4 5 6 7 8

length A(2) B(3) C(4) D(5)

1 B(3)
2 B2(6) D(5)
3 B3(9) C(4)
4 B4(12) D2(10)
5 A(2) B5(15) CD(9) CD(9)
6 AB(5) AB(5) C2(8) D3(15)

...

Figure 6 Dynamic programming table for finding optimal loops. Each entry
lists the best compound loop of a given length that includes the primitive loop
listed at the top of the column. Total costs are shown in parentheses.

lowest cost compound loop of a given length, does not work with for-
ward jumps, and we currently have no suitable extension. Our algo-
rithm for creating compound loops of minimal average cost therefore
considers only backward transitions (transitions i → j with i ≥ j).

In the remainder of this section we present the two algorithms we
need to generate optimal loops—that is, video loops with minimal
cost for a given sequence length. The first algorithm selects a set of
transitions that will be used to construct the video loop. The second
algorithm orders these transitions in a legal fashion—that is, in an
order that can be played without any additional transitions.

4.2 Selecting the set of transitions

The most straightforward way to find the best compound loop of a
given length L is to enumerate all multisets of transitions of total
length L, to select the legal ones (the compound loops whose ranges
form a continuous set), and to keep the best one. Unfortunately, this
process is exponential in the number of transitions considered.

Instead, we use a dynamic programming algorithm. Our algorithm
constructs a table of L rows, where L is the maximum loop length
being considered, and N columns, where N is the number of tran-
sitions, or primitive loops, being considered (see Figure 6). The
algorithm builds a list of the best compound loop of a given length
that contains at least one instance of the primitive loop listed at the
top of the column. Each cell in the table lists the transitions in the
compound loop and the compound loop’s total cost.

The algorithm works by walking through the table, updating cells
one row at a time. For each cell, it examines all compound loops of
shorter length in that same column, and tries to combine them with
compound loops from columns whose primitive loops have ranges
that overlap that of the column being considered. (This assures that
the created compound loops are actually playable, since the ranges
of the constituent compound loops must overlap.) For example, the
entry in row 5 column C is obtained by combining the entry in row 3
column C with the entry in row 2 column D, which is possible since
primitive loops C and D have ranges that overlap and have lengths
that sum to 5. The combination with the lowest total cost becomes
the new entry.

For each of the LN cells examined, the algorithm must combine at
most L − 1 compound loops from its column with at most N − 1
entries from the other columns. The total computational complexity
of the algorithm is therefore O(L2N2), with a space complexity of

O(LN). Note that the full descriptions of the compound loops need
not be stored during the computation phase: only backpointers to
the originating cells (constituent compound loops) are needed.

4.3 Scheduling the primitive loops

After finding the list of primitive loops in the lowest cost compound
loop, the transitions have to be scheduled in some order so that they
form a valid compound loop. This is done as follows (we use the
scheduling of {ABCD} in this example):

1. Schedule the transition that starts at the very end of the sequence
as the very first transition to be taken. This would be A in our
example.

2. The removal of this transition i → j may break the remaining
primitive loops into one or more sets of continuous ranges. In
our example, the removal of A breaks the remaining loops into
two continuous-range sets {C, D} and {B}. Frame j is always
contained in the first such set and we schedule next any transition
from this set whose source frame occurs after j. In our example,
C is the only transition that meets these criteria.

3. Repeat the previous step, removing transitions i → j until there
are no more primitive loops left in the first range. In our example,
D would be removed next by this repeated step.

4. Schedule any primitive loop in each of the following disjoint
ranges, using the algorithm beginning at step 2. In our example,
B is the only primitive loop left.

5. Continue with step 2 until all primitive loops are removed.

In our example, the loops are scheduled in the order A, C, D, B.

The computational complexity of this algorithm is quadratic in the
number of transitions in the compound loop. The scheduling algo-
rithm can either be run in a deterministic fashion (e.g., taking the first
legal transition encountered), or in a stochastic fashion (randomly
selecting from the legally available transitions). The latter variant,
which utilizes transitions with precisely the same frequency as in
the compound loop, is an alternative to the Monte-Carlo sequencing
algorithm presented earlier.

5 Rendering

Although we favor transitions that introduce only small discontinu-
ities in the motion, there are cases where no unnoticeable transitions
are available in the sequence. This section describes techniques for
disguising discontinuities in the video texture, and for blending in-
dependently analyzed regions together.

Instead of simply jumping from one frame to another when a transi-
tion is made, the images of the sequence before and after the transi-
tion can be blended together with standard cross-fading: frames from
the sequence near the source of the transition are linearly faded out as
the frames from the sequence near the destination are faded in. The
fade is positioned so that it is halfway complete where the transition
was scheduled.

Although cross-fading of the transitions avoids abrupt image
changes, it temporarily blurs the image if there is a misalignment be-
tween the frames. The transition from sharp to blurry and back again
is sometimes noticeable. In some situations, this problem can be ad-
dressed by taking very frequent transitions so that several frames
are always being cross-faded together, maintaining a more or less
constant level of blur.

Our implementation of the cross-fading algorithm supports multi-
way cross-fades, i.e., more than two subsequences can be blended

together at a time. The algorithm computes a weighted average of
all frames participating in a multi-way fade,

B(x, y) =
∑

i

αi Ii(x, y), (9)

where the blending weights αi are derived from the shifted weighting
kernels associated with each participating frame, normalized such
that

∑
i αi = 1.

Another approach to reducing the blurriness of the transitions is to
morph the two sequences together, so that common features in the
two sets of frames are aligned. The method we use is based on the
de-ghosting algorithm described by Shum and Szeliski [29] and is
also related to automatic morphing techniques [2].

To perform the de-ghosting, we first compute the optical flow be-
tween each frame Ii participating in the multi-way morph and a
reference frame IR (the reference frame is the one that would have
been displayed in the absence of morphing or cross-fading). For
every pixel in IR, we find a consensus position for that pixel by tak-
ing a weighted average of its corresponding positions in all of the
frames Ii (including IR). Finally, we use a regular inverse warping
algorithm to resample the images such that all pixels end up at their
consensus positions. We then blend these images together.

When the video texture consists of several independently ana-
lyzed regions, the rendering algorithm blends these regions together
smoothly. We use the feathering approach commonly used for image
mosaics [31], where the contribution of a given region (our analysis
regions are typically overlapping) tapers gradually towards its edge.

6 Basic results

The accompanying video clips (available on the CD-ROM, DVD,
and Video Conference Proceedings) demonstrate several different
video textures produced by the methods described so far. Here, we
summarize these basic results; in the next section, we develop some
extensions to the basic algorithms and show some additional results.

Candle flame. A 33-second video of a can-
dle flame was turned into four different
video textures: one random play texture;
and three different video loops, each con-
taining three different primitive loops. One
of the video loops repeats every 426 frames.
The other two repeat every 241 frames;
these each use the same set of three primi-
tive loops, but are scheduled in a different
order. In the figure at right, the position of the frame currently being
displayed in the original video clip is denoted by the red bar. The red
curves show the possible transitions from one frame in the original
video clip to another, used by the random play texture.

Clock. This example shows the ne-
cessity for both the preservation of
dynamics and the future cost com-
putation. The input video sequence
shows a clock with a swinging pen-
dulum. Without considering dynam-
ics, a forward-swinging pendulum is
likely to match equally well with a
backward-swinging frame, causing unnatural jumps in the motion.
Adding in the temporal filtering solves this problem. At the end of
the input video, a hand moves into the frame. Without the future cost
computation, the video texture will reach a dead end, from which
no transition to the earlier video will work without a visual jump.
The future cost computation solves this problem by increasing the
probability of a transition before the hand comes into frame.

Flag.A 38-second video of a flying
flag was cyclified using the lowest
average cost loop contained in the
video. Video textures were created
using no fading, cross-fading, and
morphing. Cross-fading improves
the quality of the transition, at the
cost of a small amount of blurring.
Morphing works even better at re-
moving the jump without introducing blur, even though the align-
ment is one stripe off the geometrically correct alignment. The wrong
alignment that causes a fold to magically disappear during transition
is almost invisible to the unsuspecting observer.

Campfire. A 10-second video of
a campfire was cyclified using a
single transition. The transition is
hardly visible without crossfading,
but crossfading over four frames
hides it entirely. Although the con-
figuration of the flames never repli-
cates even approximately, the tran-
sition is well hidden by the high
temporal flicker.

Portrait. A 25-second video of a
woman posing for a portrait was
turned into a random-play video
texture with 20 transitions. Al-
though the frames across the tran-
sitions are already quite similar, the
morphing performs a subtle align-
ment of details, such as the eye po-
sitions, which hides the transitions
almost entirely. Such video textures could be useful in replacing the
static portraits that often appear on web pages.

Waterfall. This example of a wa-
terfall works less well. The origi-
nal 5 minute video sequence never
repeats itself, and yet, unlike the
campfire, there is a great deal
of continuity between the frames,
making it difficult to find any un-
noticeable transitions. Our best re-
sult was obtained by selecting a 6-
second source clip, and using cross-fading with frequent transitions
so that averaging is always performed across multiple subsequences
at once.Although the resulting video texture is blurrier than the orig-
inal video clip, the resulting imagery is still fairly convincing as a
waterfall.

Blowing grass. Here is another ex-
ample that does not work well as
a video texture. Like the waterfall
sequence, the original 43-second
video of blowing grass never re-
peats itself. Unlike the waterfall se-
quence, blurring several frames to-
gether does not produce acceptable
results. Our automatic morphing also fails to find accurate corre-
spondences in the video frames. The best we could do was to cross-
fade the transitions (using a 4-second clip as the source), which
creates occasional (and objectionable) blurring as the video texture
is played.

7 Extensions

In this section, we present several extensions to the basic idea
of video textures: sound synthesis, in which an audio track is re-
rendered along with the video texture; three-dimensional video tex-
tures, in which view interpolation techniques are applied to sim-
ulate 3D motion; motion factorization, in which the video frames
are factored into separate parts that are analyzed and synthesized
independently; and video-based animation, in which video texture
is modified under interactive control.

7.1 Sound synthesis

Adding sound to video textures is relatively straightforward. We
simply take the sound samples associated with each frame and play
them back with the video frames selected to be rendered.To mask any
popping effects, we use the same multi-way cross-fading algorithm
described in Section 5. The resulting sound tracks, at least in the
videos for which we have tried this (Waterfall and Bonfire), sound
very natural.

7.2 Three-dimensional video textures

Video textures can be combined with traditional image-based ren-
dering algorithms such as view interpolation [5, 18, 24] to obtain
three-dimensional video textures. These are similar to the 3D video-
based characters demonstrated in several video-based view interpo-
lation systems [16, 19, 23], except that they are based on synthetic
video textures instead of captured video clips.

3D Portrait.We created a three-dimensional video texture from three
videos of a smiling woman, taken simultaneously from three dif-
ferent viewing angles about 20 degrees apart. We used the center
camera to extract and synthesize the video texture, and the first
still from each camera to estimate a 3D depth map, shown here.
(As an alternative, we could have
used some other 3D image-based
modeling technique [21].) We then
masked out the background us-
ing background subtraction (a clear
shot of the background was taken
before filming began). To generate
each new frame in the 3D video ani-
mation, we mapped a portion of the
video texture onto the 3D surface, rendered it from a novel view-
point, and then combined it with the flat image of the background
warped to the correct location, using the algorithm described in [26].

7.3 Motion factorization

For certain kinds of more complex scenes, we can divide the original
video into independently moving parts, and analyze each one sep-
arately. This kind of motion factorization decreases the number of
frame samples necessary to synthesize an interesting video texture.
Interdependencies between different parts of the synthesized frames
could later be added with supplemental constraints.

The simplest form of motion factorization is to divide the frame into
independent regions of motion, either manually or automatically.

Swings. In this example, the video
of two children on swings is man-
ually divided into two halves: one
for each swing. These parts are
analyzed and synthesized indepen-
dently, then recombined into the fi-
nal video texture. The overall video
texture is significantly superior to
the best video texture that could be generated using the entire video
frame.

Balloons. For this example, we
developed an automatic segmen-
tation algorithm that separates the
original video stream into regions
that move independently. We first
compute the variance of each pixel
across time, threshold this image
to obtain connected regions of mo-
tion, and use connected component
labeling followed by a morphological dilation to obtain the five re-
gion labels (shown as color regions in this still). The independent
regions are then analyzed and synthesized separately, and then re-
combined using feathering.

Motion factorization can be further extended to extract independent
video sprites from a video sequence. For instance, we can use back-
ground subtraction or blue-screen matting [30] to identify connected
portions of the video image that change with time and to extract these
portions as foreground elements with alpha. To create a video sprite,
we first factor out the positional information by placing the element’s
centroid at the origin in each frame. We call this registering the ele-
ment. We also store the velocity of the sprite at each frame, defined as
the difference in the unregistered elements’centroid positions. In the
analysis phase the distance between frames is computed as a linear
combination of the registered elements’ colors, alphas, and moving
directions and speeds. The synthesis phase is performed by utilizing
the optimal transitions computed by the analysis and adding back in
the stored velocities across the transitions.

Fish. We used background subtrac-
tion to create a video sprite of a fish,
starting from 5 minutes of video of
a fish in a tank. Unfortunately, fish
are uncooperative test subjects who
frequently visit the walls of the fish
tank, where they are hard to extract
from the scene because of reflec-
tions in the glass. We therefore used as source material only those
pieces of video where the fish is swimming freely. (This requires
generalizing the future cost computation to handle the possibility of
multiple dead ends, but is otherwise straightforward.)

Using this technique, the fish swims freely in two-dimensional space.
Ideally, we would like to constrain its motion—for example, to the
boundaries of a fish tank. The next section describes approaches to
this problem.

7.4 Video-based animation

Instead of using visual smoothness as the only criterion for generat-
ing video, we can also add some user-controlled terms to the error
function in order to influence the selection of frames.

The simplest form of such user control is to interactively select the
set of frames S in the sequence that are used for synthesis. In this
case, we perform the analysis phase as before, optionally pruning the
list of transitions. In the synthesis stage, however, we recompute the
probabilities of the transitions, using a modified form of equation (5),
which takes into account the distance from the destination of the
transition to the set of user-specified frames S:

Pi j ∝ exp (−(D′′
i+1,j/σ + w distance(j, S))) (10)

Here, w trades off the weight of the user-control against the smooth-
ness of the transitions.

Runner. We took 3 minutes of
video of a runner on a treadmill,
starting at a slow jog and then grad-
ually speeding up to a fast run. As
the user moves a slider selecting
a certain region of the video (the
black region of the slider in the fig-
ure), the synthesis attempts to select frames that remain within that
region, while at the same time using only fairly smooth transitions
to jump forward or backward in time. The user can therefore control
the speed of the runner by moving the slider back and forth, and
the runner makes natural-looking transitions between the different
gaits.

We expect it will be possible to extend this type of parametric motion
control to other types of movements as well, thereby allowing much
greater directorial control in the post-processing phase of video pro-
duction.

Watering can. As another exam-
ple, we took a 15-second clip of
a watering can pouring water into
a birdbath. The central portion of
this video, which shows the wa-
ter pouring as a continuous stream,
makes a very good video texture.
We can therefore shorten or extend
the pouring sequence by using the
same technique as we did for the
runner, only advancing the slider automatically at a faster or slower
speed. Thus, the same mechanism can be used to achieve a natural-
looking time compression or dilation in a video sequence.

Mouse-controlled fish. Instead of di-
rectly specifying a preferred range of
frames, we can select frames based
on other criteria. For example, in or-
der to interactively guide the path of
the fish presented earlier with a mouse, we could give preference to
frames in which the fish’s video sprite has a certain desired velocity
vector.

In particular, if x is the current position of the fish, y the desired
position of the fish (say the mouse location), and vi the velocity at
frame i, then we can use the following distance function:

D′
i j = w1 ‖Ii − Ij‖2 + w2 E(vi, vj) + w3 E(y − x, vj) (11)

where w1, w2, w3 are user-specified weights, ‖Ii − Ij‖2 is a modified
image distance metric that takes into account the difference in the
two image sprites’ alpha channels, and E(v, v′) is a “velocity error
function”. In our current implementation, E is proportional to the
angle between v and v′.

In the runner example (Equation 10), in order to achieve interactive
performance we added the extra error term to D′′

i j directly, instead
of adding the term to D′

i j and re-running the precomputed future
cost computation. It turns out that this technique does not work so
well for directed movement: the system has trouble finding good
sequences on the fly that will avoid later bad transitions. To do this
right, a larger-scale anticipated future cost computation is required.
We therefore compute the future cost D′′

i j from D′
i j using the tech-

niques described in Section 3.2. Unfortunately, we have to do this
precomputation for all possible values of E. In practice, we perform
the precomputation for a set of eight different directions and dis-
cretize the user input to one of these directions on the fly, choosing
the precomputed probability table accordingly.

Fish tank. The final example
we show is a complete fish
tank, populated with artificial
fish sprites. The tank includes
two sets of bubbles, two inde-
pendently swaying plants, and a
small number of independently
moving fish. The fish can also be
scripted to follow a path (here, the SIGGRAPH “2000” logo), using
the same techniques described for the mouse-controlled fish.

8 Discussion and future work

In his 1966 science-fiction short story, “Light of Other Days,” Bob
Shaw describes a material called slow glass, which traps photons
coming into it, and emits them a year or two later [28]. Slow glass
can be exposed in scenic locations (such as a woodland lake) and
then placed on people’s walls, where it gives a three-dimensional
illusion of having a scenic view of your own.

Video textures (which were partially inspired by this story) share
some of the characteristic of slow glass, but also differ in important
ways. Like slow glass, they are an attempt to capture the inherent
dynamic characteristics of a scene. (Using a video camera array to
capture a time-varying light field [17] would be another approach,
but capturing enough data to play back for a year would be pro-
hibitively expensive.) Video textures attempt to capture the inherent
characteristics of a dynamic scene or event, without necessarily cap-
turing all of the stochastically-varying detail inherent in a particular
segment of time.

Video textures also have the potential to give the artist creative con-
trol over the appearance of the dynamic events they are depicting.
By capturing a wide variety of similar looking video that is periodic
or quasi-periodic, the user can then select which portions to use,
and blend smoothly between different parameter settings. The video
texture analysis and synthesis software takes care of making these
transitions smooth and creating segments of the desired duration.

How well do video textures work? For motions that are smooth and
repetitive or quasi-repetitive, such as the kids on the swing, the can-
dle flame, the swaying balloons, the runner, and the smiling woman,
the illusion works quite well. For complex stochastic phenomena
with little discernible structure, like the water pouring out of the
can, it also works well. We run into trouble when the phenomena
are complex but also highly structured, like the grass blowing in the
wind (we have also thus far failed at creating a convincing video
texture for waves on a beach). Other highly structured phenomena
like full-body human motion will also likely fail, unless we start
using some higher-level motion and structure analysis.

Our work suggests a number of important areas for future work:

Better distance metrics. To create video textures, we need a distance
metric that reliably quantifies the perceived discontinuity of a frame
transition. For most of our examples we used a simple L2 distance
between images. Finding better features and distance functions will
be crucial for improving the quality of video textures and for in-
creasing their applicability. We have some initial promising results
applying a wavelet-based distance metric [14] to some of our se-
quences. We have also improved the metric for the fish example by
modeling it as a linear combination of several features and learning
the coefficients from hand-labeled training transitions.

Better blending. To suppress residual visual discontinuities, we are
currently using blending and morphing. We would like to explore
techniques that allow for blending and morphing separately in dif-
ferent frequency bands both in space and time, perhaps using mul-
tiresolution splining techniques [4].

Maintaining variety. A significant problem with generating long
(infinite) sequences of video from the same set of frames is that, after
a while, the algorithm will find some optimal paths and more or less
play the same series of frames over and over again. This requires that
in addition to σ, which controls randomness, we define a parameter
that penalizes a lack of variety in the generated sequences. Such a
parameter would enforce that most (if not all) of the frames of the
given input sequence are sometimes played and probabilistically
vary the generated order of frames.

Better tools for creative control. Another important area of future
research will be the addition of more creative control over video tex-
tures. An alternative to interactively controlling the parameters in a
video animation would be to specify control points or keyframes as
in conventional keyframe animation. For this, we need to develop op-
timization techniques that generate smoothly playing video textures
that obey user-supplied constraints. Better video animation control
would enable us to generate complex scenes such as crowds; the
animation controller could also be enhanced to include behavioral
aspects such as flocking.

While many areas remain to be explored, we believe that video tex-
tures provide an interesting new medium with many potential appli-
cations, ranging from simple video portraits to realistic video syn-
thesis. Video textures are just one example of the more general class
of techniques we call video-based rendering. By re-using real-world
video footage (in a manner analogous to image-based rendering), we
can achieve a degree of photorealism and naturalness hard to match
with traditional computer graphics techniques. We hope that this
work will spur further research in this field, and that video textures,
along with video-based rendering in general, will ultimately become
an essential part of the repertoire of computer graphics techniques.

References

[1] Z. Bar-Joseph. Statistical learning of multi-dimensional tex-
tures. Master’s thesis, The Hebrew University of Jerusalem,
June 1999.

[2] D. Beymer. Feature correspondence by interleaving shape
and texture computations. In IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’96),
pages 921–928, San Francisco, California, June 1996.

[3] C. Bregler, M. Covell, and M. Slaney. Video rewrite: Driv-
ing visual speech with audio. Computer Graphics (SIG-
GRAPH’97), pages 353–360, August 1997.

[4] P. J. Burt and E. H. Adelson. A multiresolution spline with ap-
plications to image mosaics. ACM Transactions on Graphics,
2(4):217–236, October 1983.

[5] S. E. Chen. QuickTime VR – an image-based approach to
virtual environment navigation. Computer Graphics (SIG-
GRAPH’95), pages 29–38, August 1995.

[6] J. De Bonet. Multiresolution sampling procedure for analysis
and synthesis of texture images. Computer Graphics (SIG-
GRAPH’97), pages 361–368, August 1997.

[7] P. Debevec et al., editors. Image-Based Modeling, Rendering,
and Lighting, SIGGRAPH’99 Course 39, August 1999.

[8] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry- and
image-based approach. Computer Graphics (SIGGRAPH’96),
pages 11–20, August 1996.

[9] A. A. Efros and T. K. Leung. Texture synthesis by non-
parametric sampling. In Seventh International Conference
on Computer Vision (ICCV’99), pages 1033–1038, Kerkyra,
Greece, September 1999.

[10] A. Finkelstein, C. E. Jacobs, and D. H. Salesin. Multiresolution
video. Proceedings of SIGGRAPH 96, pages 281–290, August
1996. ISBN 0-201-94800-1. Held in New Orleans, Louisiana.

[11] W. T. Freeman, E. H. Adelson, and D. J. Heeger. Motion
without movement. Computer Graphics (Proceedings of SIG-
GRAPH 91), 25(4):27–30, July 1991.

[12] D. J. Heeger and J. R. Bergen. Pyramid-based texture analy-
sis/synthesis. Proceedings of SIGGRAPH 95, pages 229–238,
August 1995.

[13] Workshop on Image-Based Modeling and Ren-
dering, Stanford University, March 1998.
http://graphics.stanford.edu/workshops/ibr98/.

[14] C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast multireso-
lution image querying. Proceedings of SIGGRAPH 95, pages
277–286, August 1995.

[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforce-
ment learning: A survey. Journal of Artificial Intelligence Re-
search, 4, 1996.

[16] T. Kanade, P. W. Rander, and P. J. Narayanan. Virtualized
reality: constructing virtual worlds from real scenes. IEEE
MultiMedia Magazine, 1(1):34–47, Jan-March 1997.

[17] M. Levoy and P. Hanrahan. Light field rendering. In Computer
Graphics Proceedings, Annual Conference Series, pages 31–
42, Proc. SIGGRAPH’96 (New Orleans), August 1996. ACM
SIGGRAPH.

[18] L. McMillan and G. Bishop. Plenoptic modeling: An
image-based rendering system. Computer Graphics (SIG-
GRAPH’95), pages 39–46, August 1995.

[19] S. Moezzi et al. Reality modeling and visualization from mul-
tiple video sequences. IEEE Computer Graphics and Appli-
cations, 16(6):58–63, November 1996.

[20] S. A. Niyogi and E. H. Adelson. Analyzing and recognizing
walking figures in xyt. In IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’94),
pages 469–474, Seattle, Washington, June 1994.

[21] F. Pighin, J. Hecker, D. Lischinski, D. H. Salesin, and
R. Szeliski. Synthesizing realistic facial expressions from pho-
tographs. In Computer Graphics (SIGGRAPH’98) Proceed-
ings, pages 75–84, Orlando, July 1998. ACM SIGGRAPH.

[22] R. Polana and R. C. Nelson. Detection and recognition of
periodic, nonrigid motion. International Journal of Computer
Vision, 23(3):261–282, 1997.

[23] S. Pollard et al. View synthesis by trinocular edge matching
and transfer. In British MachineVision Conference (BMVC98),
Southampton, England, September 1998.

[24] S. M. Seitz and C. M. Dyer. View morphing. In Computer
Graphics Proceedings, Annual Conference Series, pages 21–
30, Proc. SIGGRAPH’96 (New Orleans), August 1996. ACM
SIGGRAPH.

[25] S. M. Seitz and C. R. Dyer. View invariant analysis of cyclic
motion. International Journal of Computer Vision, 25(3):231–
251, December 1997.

[26] J. Shade, S. Gortler, L.-W. He, and R. Szeliski. Layered depth
images. In Computer Graphics (SIGGRAPH’98) Proceedings,
pages 231–242, Orlando, July 1998. ACM SIGGRAPH.

[27] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Sny-
der. Hierarchical images caching for accelerated walkthroughs
of complex environments. In Computer Graphics (SIG-
GRAPH’96) Proceedings, pages 75–82, Proc. SIGGRAPH’96
(New Orleans), August 1996. ACM SIGGRAPH.

[28] B. Shaw. Light of other days. In Other Days, Other Eyes. Ace
Books, NewYork, 1972. (also published in Analog and various
sci-fi anthologies).

[29] H.-Y. Shum and R. Szeliski. Construction of panoramic mo-
saics with global and local alignment. International Journal
of Computer Vision, 36(2):101–130, February 2000.

[30] A. R. Smith and J. F. Blinn. Blue screen matting. In Computer
Graphics Proceedings, Annual Conference Series, pages 259–
268, Proc. SIGGRAPH’96 (New Orleans),August 1996.ACM
SIGGRAPH.

[31] R. Szeliski and H.-Y. Shum. Creating full view panoramic im-
age mosaics and texture-mapped models. In Computer Graph-
ics (SIGGRAPH’97) Proceedings, pages 251–258, Los Ange-
les, August 1997. ACM SIGGRAPH.

[32] J. Torborg and J. T. Kajiya. Talisman: Commodity realtime 3D
graphics for the PC. In Computer Graphics Proceedings, An-
nual Conference Series, pages 353–363, Proc. SIGGRAPH’96
(New Orleans), August 1996. ACM SIGGRAPH.

