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ABSTRACT
We present a general automatic experimentation and hypoth-
esis generation framework that utilizes a large set of users to
explore the effects of different parts of an intervention pa-
rameter space on any objective function. We also incorporate
importance sampling, allowing us to run these automatic ex-
periments even if we cannot give out the exact intervention
distributions that we want. To show the utility of this frame-
work, we present an implementation in the domain of frac-
tions and numberlines, using an online educational game as
the source of players. Our system is able to automatically
explore the parameter space and generate hypotheses about
what types of numberlines lead to maximal short-term trans-
fer; testing on a separate dataset shows the most promising
hypotheses are valid. We briefly discuss our results in the
context of the wider educational literature, showing that one
of our results is not explained by current research on multiple
fraction representations, thus proving our ability to generate
potentially interesting hypotheses to test.
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INTRODUCTION
Many disciplines have experienced an explosion of data in the
past decade, transforming the way we do science [8]. Web-
based software has led to a similar increase in data for the
behavioral sciences. This is particularly exciting in these do-
mains, as subjects are often costly, difficult to recruit, and
may not be demographically diverse [15]. In the past, lack
of subjects has often meant only sparse coverage of experi-
mental spaces due. But now, for particular branches of the
behavioral sciences in which humans can both remotely per-
form interesting tasks and are willing to do so, the increase
in data means that we now have the potential to learn much
more about how humans interact with software. But to take
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full advantage of these users, we first need effective tools to
allow us to explore these new huge datasets.

To this end, we present an automatic experimentation and hy-
pothesis generation framework designed for these big data
scenarios. In the basic framework, the inputs are a target ob-
jective function on users, such as learning gains, and a set of
factors that form a parameter space of possible experimental
conditions, such as different learning interventions. We auto-
matically bin users into experimental conditions, identifying
the parameters with broadest impacts averaged across other
factors. It then recurses on the best parameter setting as mea-
sured by the objective function, and finds the best setting of
the remaining parameters, providing confidence intervals at
each stage. This means both that we automate much of the ex-
perimental process, and also provide a much more thorough
coverage of the hypothesis space. This frees the researcher
to perform tasks that humans do best: deep data analysis and
generation of hypothesis spaces for the system to explore.

Unfortunately, it is often the case that we do not possess full
control over the user experience. For example, software com-
panies may not want to expose many users to highly risky
experimental conditions. Or, in a more extreme case, we
may want to analyze already-collected data in a purely offline
manner. To deal with these situations, our full framework
uses importance sampling to simulate the desired user distri-
butions given data drawn from a different distribution. This
allows us to ask many different questions on already-collected
data, allowing us to fully utilize previously collected data.

We demonstrate the power of our proposed framework in the
educational domain, by implementing and running it offline
on an data set with a sampling distribution different than the
desired one. We show how our method can generate hypothe-
ses about which parameters and their settings are best for en-
couraging near-transfer, and confirm these hypotheses with
statistical tests on a completely different dataset. Some of
our results match current educational theories, but some do
not, suggesting further experiments to run either online or in
a classroom. Of course, our framework has important limita-
tions: for example, our greedy search may not explore effec-
tive parts of the hypothesis space in the presence of parameter
interactions, or the data may be so noisy that we require pro-
hibitive numbers of players to discover interesting informa-
tion. Still, our ability to automatically find interesting parts of
the hypotheses space suggests that this method may become
a useful tool in behavioral research.



RELATED WORK

Online experimentation
Major companies such as Microsoft [19] and Amazon [20]
have performed online experiments for years. For re-
searchers, Mechanical Turk has proven to be quite helpful to
many scientists looking for cheap, high-quality user data [18].
Games have also become an increasingly popular source for
behavioral data, and have been used to study the effects of op-
tional rewards [2] and tutorials [4]. More fine-grained meth-
ods, such as multi-armed bandits, have also been used in on-
line settings to maximize click through rates of search results
or article recommendations [25].

These web-based mass experimentation platforms have a
few key benefits. Mechanical Turk has been shown to pro-
vide inexpensive, reliable results and has a demographic
spread much wider than typical pools for social science re-
search [10]. In the games domain, the observed behavior is
“in the wild” [3], increasing external validity [33]. We build
on this work by proposing a framework that automatically
runs series of experiments depending on intermediate results,
and use importance sampling to estimate the results when the
sampling distribution does not match the desired one.

Scientific Discovery
Researchers in AI have been working for years to develop
systems capable of generating scientific knowledge. This
field, known as scientific discovery, has generated many
such systems aimed at automating different scientific behav-
iors [21]. For example, Lee et al. used a feedback loop be-
tween the RL rule induction program and expert knowledge
to identify potentially carcinogenic compounts [23]. Perhaps
the most comprehensive example of such a system is Robot
Scientist Adam, a fully automated robot capable of the full
loop of hypothesis generation, experimental design, and data
analysis in yeast genomics [17].

We focus on the automatic selection of experiments and intro-
duce a new algorithm for choosing which ones to run. We dif-
fer in our source of data: automatically running experiments
on humans introduces many problems not present in a labo-
ratory setting. In some settings, such as education, there may
be many experimental variables: instruction duration, number
representation, ordering of concepts, problem type, hinting
systems, etc.. In addition, we often want to both find general
rules about how different factors affect student learning, but
also the specific settings that optimize rate of learning and
maximum transfer ability. We deal with both objectives with
a greedy search strategy designed to find the “good” parts of
the hypothesis space.

Educational Data Mining
Our example application runs experiments in the educational
domain to identify factors contributing to variation in learn-
ing, a common theme in the educational data mining com-
munity. Intelligent tutoring systems, especially cognitive tu-
tors [5], have been used for many experiments: for example,
Rau et al. [29] test the usefulness of multiple fraction rep-
resentations with self-explanation compared to single repre-
sentations. Or in the educational games domain, Lomas et

al. [26] used an educational game to run two large-scale ex-
periments with many conditions on the effect of challenge on
motivation and learning. We are not proposing a new tutor or
game, but rather a method that gathers or uses existing data
from some source (such as a tutor or game) to automatically
run experiments with many factors. To the best of our knowl-
edge, other EDM researchers have not proposed or used an
automatic method for choosing and running experiments in a
hypothesis space; nor have they used importance sampling to
run multiple experiments on the same dataset with a different
sampling distribution than desired.

BASIC FRAMEWORK
Here we present a simplified version of our framework, which
requires full control over how players are sampled and is de-
signed to run one experiment at a time. We will be investigat-
ing how varying the presentation of (fraction) number lines
affects users’ ability to answer future number lines. Fraction
number line problems typically take the form of a line rep-
resenting the reals, with at least two points marked for scale,
and ask where new fractions should be placed or what frac-
tion corresponds to some point. In the next section, we will
extend this framework with importance sampling to allow us
to run multiple analyses on the same dataset, and then present
an implemented version of it that was able to automatically
run parameter searches to find which types of number lines
lead to maximal near-transfer to new number line questions,
using data from an online educational game.

First, let’s consider how a researcher might run an experi-
ment.

1. The researcher hypothesizes about how one or more factors
might impact a variable of interest, ex. different fraction
representations or hinting systems might lead to different
performance on future number lines.

2. If subjects are expensive, she cannot test more than a few
of these factors simultaneously. Instead, she must decide
which factors are most interesting: perhaps she compares
a few different representations with no hinting systems.

3. She decides on an experimental procedure to test the role
of this factor on the variable of interest, including what-
ever assessments are necessary. Here, this will likely in-
volve the choice and refinement of existing number line
tests, whether or not the players should participate online
or come into the lab, and so on.

4. She runs the experiment, then collects and analyzes data.

5. Assuming the results become well-established and ac-
cepted, eventually another researcher may pick other fac-
tors to investigate, holding the already-studied ones con-
stant. For example, perhaps symbolic representations are
better in the initial experiment. Then the next experiment
might test the effects of different hinting systems for sym-
bolic fraction number lines.

From a research perspective, perhaps the most interesting part
of this process is data analysis and hypothesis generation.
The rest is needed to both gather data confirming or rejecting



the hypothesis, and to ensure that there is sufficient statistical
power even with a small number of subjects.

However, assume now that we have a constant stream of
new users: say, several thousand per day. Furthermore, as-
sume that they are interacting with a system under the ex-
perimenter’s full control and are willing to participate in the
experimental conditions and take any assessments necessary.
Then, there is no difficulty in finding subjects, and the ex-
perimenter does not have to be present to run experiments.
Furthermore, with so many users and control over the assign-
ment of players to conditions, we can test many experimental
conditions, not just a handful. Thus, the experimenter need
not carefully select factor levels: she can simply specify the
available factors and the system can explore them to identify
the ones that seem most informative. Finally, statistical anal-
ysis becomes easier with clean experimental designs, though
as we will show later we can continue to operate even if we
do not have full control over which interventions are chosen.

Of course, the total number of experiments possible is combi-
natorial in the number of factors, so it is necessary to choose a
search strategy. In this paper, we propose a greedy search: at
each step, we choose a parameter and its setting that leads to
the best performance when randomly selecting other parame-
ters, then recurse on the remaining parameters. This leads to
selecting parameters which are broadly effective at the top of
the experiment tree (due to the randomization of other param-
eters), but which quickly narrows (due to the greedy setting
of parameters with each step). This strategy is appropriate
in a domain such as education where we both want to cre-
ate generalizable knowledge about which dimensions of the
parameter space are most effective, and also optimize some
metric like learning gain. In other domains, such as psychol-
ogy, the goal may simply be to find the factors that cause the
largest differences between settings and so a different search
strategy may be needed.

We formalize our framework in the following way. The ex-
perimenter specifies a parameter space P she is interested
in exploring. The parameters that make up this space corre-
spond to factors, in standard statistical parlance. Restricting
ourselves to categorical variables for the time being, each pa-
rameter pi ∈ P has kpi settings spij , j = 1 . . . kpi , which
correspond to factor levels. In addition, she specifies an ex-
perimental set E, E ⊂ P : these are parameters she wants
the system to investigate. Letting our population of players
be represented as X , she also provides an objective function
f : X → R that produces a real value for each user.

Our algorithm can be thought of as a greedy depth-first search
over the experimental set E, marginalizing over the parame-
ters P − E. We describe it as follows.

• First, we test each setting of each parameter. To test a set-
ting means to randomly assign some number of players N
to an experimental condition with pi = sij and with all
remaining variables P − pi set randomly.

• Each experimental condition Cq is specified exactly by a
parameter pq ∈ E and its setting spqjq . Since there is
one condition for each parameter setting, we have q =

p1 p2

p2 p2 p2 p1p1

Figure 1. An illustration of the tree built by our algorithm with two
parameters, p1 and p2. We first explore all individual parameter settings
at the top of the tree, holding one parameter fixed to some value and
randomizing over the other parameter. We order the nodes by function
value and recurse, so that we hold p2 to its best setting and vary p1. In
this work we stop once all nodes have been set for the first time, though
with an exponential number of users we could explore all nodes.

1 . . .
∑

p∈E kp. Let Xq be the set of players assigned to
Cq . Let Fq = 1

N

∑
x∈Xq

f(x).

• Once each condition has N players, we order the Cq from
greatest to least by their associated objective values, Fq .
We store the best node seen so far as B. We recurse on
each condition in order, with parameter space P − pq , ex-
perimental set E − pq , objective function f , and setting
pq = spqjq .

Our algorithm is intuitively simple to understand. Its goal at
each step is to order the parameter and associated parame-
ter setting by how broadly positive of an impact they have,
marginalizing over all remaining parameters in the parameter
space. It then sets the best parameter to its best setting and
repeats the process with all remaining parameters until it hits
the bottom and has to backtrack to the next best parameter
setting. Given enough players, the algorithm will eventually
test all experimental conditions.

P − E can be thought of as the generalization space of the
results; none of these parameters are directly set, but they
are always randomly selected at each stage. The generaliza-
tion power of most standard studies is often both implicit and
minimal, in the effort to control as many variables as possi-
ble. But in our framework it is made explicit, and as we will
see later can reasonably be quite large, since we can muster
so many players.

The algorithm can be stopped at any point, giving the experi-
menter a partial experimental tree and the current-best node,
B. A common stopping choice might be to have it stop once
it reaches the bottom for the first time, resulting in the greedy
selection of good parameter settings. In this case, if kpi

≤ K
and |E| =M , the number of experiments the system will run
is O(KM2). Unfortunately, if there are particularly nasty in-
teractions between parameters, nothing short of a full search
of the experiment parameter space and its associatedO(KM )
runtime is guaranteed to find the globally optimal setting. An
easy solution is for the experimenter to combine parameters
likely to interact into a single parameter with many settings.
Or, if we are assume that there are no more than J-way inter-
actions between parameters, we could allow the algorithm to
explore all combinations of parameters of size J at each level,
resulting in approximately O(K(MJ )(MJ )2) experiments. N,



the number of players assigned to each condition, must be
chosen carefully to make good decisions in reasonable time.

FULL FRAMEWORK WITH IMPORTANCE SAMPLING
We are primarily interested in using games and online learn-
ing software. In these systems, we have the advantage that
users are inexpensive, but the disadvantage that we may not
have full control over our player sampling process. For ex-
ample, game design constraints may make it difficult to give
highly randomized interventions: a game with completely
random levels may not be very fun to play. We also wish
to be able to function in an offline setting in order to re-use
existing datasets or if it is difficult to choose parameters for
each new player in an online fashion.

We deal with both problems by extending our basic frame-
work using importance sampling. Importance sampling is a
commonly-used technique (ex. [14]) that allows us to esti-
mate an expected function value from a desired distribution
of the arguments, even though we can only sample from a dif-
ferent distribution of the arguments. This is accomplished by
weighting our function evaluations. Specifically, let f(x) be
our objective function, p(x) our desired distribution, and q(x)
our actual distribution. Then Ep[f(x)] = Ep[f(x)

q(x)
q(x) ] =

Eq[f(x)
p(x)
q(x) ]. The last quantity is one we can estimate from

data with Fq = 1
N

∑
x∈Xq

f(x)p(x)q(x) , as long as we know both
the sample and target distributions, and gives us an unbiased
and consistent estimator. This technique allows us to run our
full framework in offline situations with soft constraints on
what interventions we can give to players, assuming that the
dataset has non-zero probability for all possible settings of
the experimental parameter set.

ASSESSMENT
We want to maximize player learning in our game. There
are two challenges. The first is that players may quit at any
time, so that an intervention may appear to be better just be-
cause it causes the least able players to quit. We deal with this
by having short interventions and assessments, and assigning
a score of 0 to players who quit before reaching the assess-
ment. The second is that we need to be able to measure player
knowledge. This is actually a major challenge: imagine the
number of players we would lose by embedding a paper-and-
pencil test in a free online game. In our implementation, we
mitigate this problem by both embedding the test in the game
itself, and only giving players a single question. For us, the
resulting increase in noise of the objective function is offset
by the large number of players we have. In other scenarios,
longer tests may be a better choice.

While this is not a standard testing approach, we can do this
because we are interested only in comparing expected assess-
ment scores between different experimental conditions. At
any particular stage, the population we are measuring, Xk

consists of players who were directed into some particular
condition Ck whose efficacy we wish to measure. The ex-
pected test score FCk

for any player x ∈ Xk for our ran-
domized test is obtained by simply averaging over the test
scores that we observe over all players, as long as players

are sampled independently and identically distributed (from
X). This approach bears some similarity to the one taken
in domain sampling theory [11], one of the classical testing
theories from psychometrics. We avoid many complications
because we do not need to estimate single-user scores, only
population-level ones, and our choice is justified because we
are sampling directly from the population of interest.

To get a sense of how reliable our results are, we would like
to establish confidence intervals for our assessment objective
function. This is a non-trivial task, given that there is no a-
priori knowledge of the objective function distribution, and
we re-weight our samples with importance sampling. If we
assume a stationary distribution of player scores, we can use
a general resampling method known as bootstrapping [12],
which repeatedly samples from our empirical data and cal-
culates a test statistic on these resampled batches to estimate
quantities relating to the original, unknown distribution. In
our case, the test statistic is the mean, and we are interested
in obtaining 95% confidence intervals of the mean. Since
we have no guarantee of the symmetry of our sample mean
around the true mean, we use the centered bootstrap per-
centile method [32]. Our framework does not depend on the
method of calculating confidence intervals, however, so for
certain classes of objective functions it may be considerably
faster to calculate these intervals with closed-form solutions
or more intelligent sampling methods.

EXAMPLE IMPLEMENTATION
Now that we have described our general automatic experi-
mentation framework, we demonstrate its power with a full
implementation in a specific setting, along with experimen-
tal results. Our platform is an educational game, with play-
ers gathered from a popular flash game website targeted at
schoolchildren and teachers [9]. Taken together, our impor-
tance sampling method and our randomized assessments over
populations will allow us to run the full system on a 2 x 2
x 4 x 4 experimental parameter space on a data set collected
previously for a different use. This will allow us to discover
what number line properties are most likely to lead to player
near-transfer on a second, randomized test number line.

Treefrog Treasure
Treefrog Treasure is a platformer game that involves jumping
through a jungle world and solving number line problems to
reach an end goal. The player must navigate sticky, bouncy,
and slippery surfaces and avoid hazardous lava to win succes-
sively more complex levels. Number line problems serve as
barriers that the player must solve by hitting the correct target
location, as shown in Figure 3. It has been played by over 5
million players worldwide.

Experimental Design
Our dataset was collected from June 3, 2013 to June 20, 2013.
Players went through several tutorial levels before reaching
the experiment levels. After cleaning our data, we had 34,197
players who made it past the tutorial.

We are trying to find the type of number line that leads to
greatest player performance on a randomized test number



Figure 2. A screenshot of Treefrog Treasure, our source of users. Players
navigate through a physics-based world, solving number line problems
along the way. Notice that the number line has full tick marks, pie chart
labels on the line, and a symbolic (ex. a

b
) target representation. In our

experiment, these are a few of the parameters we allow our system to
automatically explore to determine which types of number lines lead to
maximal near-transfer.

line. To do this, we consider each player as a sequence of
many pairs of number lines, and treat each pair as an experi-
mental unit. This gives us 361,738 pairs. This violates certain
assumptions about the independence of variables in classical
statistical tests, but greatly increases the amount of available
data. We will strictly adhere to the correct assumptions when
we validate our results on a new dataset, later, and we will see
that our major results continue to hold.

We chose number lines in general as they are a popular peda-
gogical tool, and a fair amount of evidence exists suggesting
that much whole and rational number knowledge is organized
around a mental number line [6], [30]. Our experimental pa-
rameters alter the way number lines are presented, and can
be seen in Table 1. We chose these parameters because they
have all been the subject of previous research and are subject
to varying amounts of controversy. Tick marks may allow
students to find fractions directly through a double-counting
method [22]. Hints are often considered necessary by educa-
tors [16], but can have negative effects when students “game”
them [7]. Finally, there are many ways to represent fractions:
pie charts and other area models, operators and linear mod-
els [27], magnitudes [30], standard symbolic notation, and so
on. Showing multiple representations to students is widely
thought to be useful, but may actually be worse than a single
representation in some circumstances [29].

The parameter settings of the first number line in each pair
constitutes the experimental condition. The full parameter
set can be seen in Table 1. Our experimental set consists of
Ticks, Animations, Backoff Hints, Target Representation, and
Label Representation. We suspect that Target and Label rep-
resentations are likely to interact, so we treat them as a sin-
gle parameter, Representation, with four settings for Target
and Label: Symbolic/Symbolic, Symbolic/Pie, Pie/Symbolic,
Pie/Pie. This means that our results are meant to hold for dif-

Figure 3. The animation condition on the left shows the player how to
divide up the number line. The backoff condition in the middle fills in
labels and eventually tells the player where to hit. The ticks condition
on the right either divide up the number line into segments when ticks
are present, or leave it empty besides the 0 and 1 labels when ticks are
absent.

ferent Fraction and Initial Labels values, which are always
randomly chosen.

We show the results of our system on two objective functions.

1. Correctness 1.0 if the player answers the second number
line correctly on the first try, 0.0 if they answer incor-
rectly or quit/restart before reaching it. This corresponds
to fraction-placement ability.

2. Persistence 1.0 if the player eventually answers the second
number line, 0.0 if they fail to answer it or quit/restart be-
fore reaching it. This corresponds to fraction-placement
persistence.

Correcting sampling distributions
We want the number line parameter settings to be selected
uniformly at random. Thus, if one experimental condition
had a better objective function value than another, it would
mean that some particular settings for the first number line
(marginalized over the specific Fraction and Initial Label set)
increased player performance across our randomized second
number line.

Unfortunately, the dataset was collected for a different pur-
pose, so the actual distribution is different than our distribu-
tion of interest. In this dataset, number lines are linked, two
at a time. More specifically, the first two number lines always
share the same value of Ticks, Animations, Backoff Hints,
Target Representation, Label Representation, Initial Labels,
and the Fraction denominator d. These are chosen uniformly
at random. Then each number line in the pair has the Frac-
tion numerator selected uniformly at random from 1 to d− 1.
Likewise, the second pair’s parameters are selected (indepen-
dently) using the same process, and so on.

This has several implications. The first is that certain frac-
tions are over-represented relative to the desired uniform dis-
tribution over fractions. For example, 1

2 is much more likely
to be selected than 1

9 . The second is that half of our generated
pairs will match on all parameters except the Fraction nu-
merator due to the parameter pairing, and the other half will
be independently and randomly generated from the process
above.

As suggested above, we can use importance sampling to ad-
dress these problems. This will up-weight the undersampled
cross-pair links (second and third, fourth and fifth, etc.), and



Parameter Settings Interpretation
Fraction Any a

b ∈ (0, 1), b ≤ 9 The target fraction the player must hit
Ticks Present, Absent For target a

b , we can display tick marks for each fraction n
b .

Animations Present, Absent If the player misses a target a
b , they might receive an lengthy pie chart

animation showing how to divide up the number line into b parts.
Initial Labels [0,1] For target a

b , the proportion of labels of n
b fractions shown at the start.

Backoff Hints 1, 2, 3, 4 The number of misses for target a
b before the progressive hinting system

fills in all labels for n
b and displays the correct answer.

Target Representation Symbolic, Pie How the target fraction is displayed.
Label Representation Symbolic, Pie How fraction labels on the number line are displayed.

Table 1. The parameter space for our experiment.

down-weight the oversampled intra-pair links (first and sec-
ond, third and fourth, etc.). For any experimental condition
Ck, we have a set of parameters that are already set to some
known value, and a set of parameters that should be uniformly
random. This gives us the desired sampling distribution over
the first number line. Since we also know that our desired
objective function is some measure of performance on an in-
dependent, uniformly random second number line, this speci-
fies the full desired distribution over pairs. But since we know
the original distribution used to generate the data, we simply
use importance sampling as above to reweight each objective
function valuation in our dataset to calculate Vk, the expected
player score under our desired distribution.

Results
Since we have at least one player in every experimental condi-
tion, it’s possible to finish the depth-first search and generate
the full experimental tree. However, even just the bottom of
the tree contains 64 possible parameter setting combinations,
making it difficult to show the full set of results. Instead, we
show the parameters the algorithm greedily selected and its
evaluation of the objective function for each of the different
settings, stopping once it has set each parameter.

The results are shown in Figure 4. This is only a narrow,
greedy slice of each experimental tree. At each stage, our al-
gorithm finds the single parameter setting that maximizes the
objective function, while averaging over all other parameters.
It then sets this parameter to the best setting and repeats this
process with the remaining parameters. Thus the Represen-
tation pie/pie setting is the broadest, best parameter setting
among the entire experimental set in the correctness tree in
Figure 4(a), the Backoff Hints 3 result is the broadest, best
parameter setting only when the Representation is given to be
pie/pie, and so on.

The confidence intervals given at each level of the tree grow
wider as we go down. This is because data becomes sparser
at each level, since we do not have control over the sampling
distribution. In the basic online framework, the system would
instead direct players to the condition in question, decreasing
the amount of data near the top and increasing it near the bot-
tom. Based on the amount of overlap present, we can guess
that the results of the top and possibly second layer are rea-
sonably trustworthy, but that we should be increasingly sus-
picious as we test more specific conditions.

An important question is whether the greedy method finds
reasonable settings, in practice. We can of course construct
examples such that for any deterministic strategy, the algo-
rithm must perform an exponential search to find the best
settings. This can be quite bad for large parameter spaces,
though it is probably unlikely in practice. Since our original
dataset contains samples from all over the experimental tree,
we can exhaustively search all possible experimental condi-
tions at each depth to see when the greedy search diverges.
Our greedy selection of the correctness diverges from the
global optimum on the third and fourth levels with average
score 0.460 and 0.474, respectively. These values are well-
within the greedy selection’s confidence intervals as seen in
Figure 4(a). Our greedy selection of in the persistence condi-
tion finds the globally best selection at each level of the tree.
Thus we conclude that greedy selection is reliable in this par-
ticular domain, especially at the top of the tree where data are
plentiful and only a few parameters are set.

Validation
Our results so far could be useful to a game designer, with ap-
propriate validation on new players to avoid overfitting. How-
ever, we would like even more: we want our framework to
suggest important parameters and likely-effective settings for
further experimentation, or even to generate research results
outright. Unfortunately, our methodology makes a number of
assumptions that make standard statistical tests inapplicable,
and runs so many experiments that it is virtually guaranteed
to find spurious results. We can, however, use our results to
generate hypotheses that are testable on a new dataset.

We use a second dataset, again sampled according to the same
distribution as the original. This dataset consists of 9,675
players of Treefrog Treasure from June 20, 2013 to July 9,
2013. We did not use this dataset to help us develop our sys-
tem, hence it is similar to the final test dataset common in
supervised machine learning.

Recall that the first two number lines share most parame-
ters, including all of our experimental parameters, so they can
serve as our experimental condition. All other parameters are
chosen independently of the experimental ones, so the condi-
tions are comparable. The third number line is itself chosen
randomly and independently from the first two, and can serve
as our assessment.



(a) Correctness (b) Persistence

Figure 4. A greedy slice of the experimental space explored, for two objective functions. Objective function evaluations are given with 95% confidence
intervals, given by the centered bootstrap percentile method. Our algorithm conditions on more parameters as we go deeper down the tree, so that the
results at the bottom have all experimental parameter values set according to their best observed settings. In addition, we will later statistically test the
results on a separate dataset. * marks results that will be marginally significant, p < 0.10. ** marks results that will be significant, p < 0.05.

Thus, for any combination of parameter settings, we can ask
whether players given number lines matching those criteria
on the first two number lines performed better on the third
than everyone else, a cross-sectional sampling scheme. We
collect only one datapoint from each player, allowing us to
meet the independence of samples criteria. Since both our
objective functions are of the form “Pass” or “Fail”, repre-
sented as 1.0 and 0.0 respectively, we use the χ2 two sample
test in each case. Other types of objective functions will in
general have different appropriate tests, such as ANOVA or
Mann-Whitney U.

Each experimental tree generates a large number of poten-
tial hypotheses; we will simply focus on the most basic ones,
which is whether the chosen parameter settings lead to in-
creasingly “good” outcomes as we go down the tree. Each
comparison will be performance of players with the settings
of the experimental parameters at that point, as compared to
everyone else. The results are shown in Tables 2 and 3.

Remember that the wide confidence intervals at the deep
ranges of the tree with many parameters set led us to suspect
those results. Indeed, our statistical tests confirm this fact: we
achieve significantly or marginally significantly better perfor-
mance following our automatically-generated results at the
top two layers, but mostly do not see significant effects on the

bottom two. Thus our validation results are not surprising,
and underscore the need for a validation set when running the
system offline to avoid overfitting.

Finally, the effects may seem relatively weak, with a 2.4%
increase from using the pie/pie representation on correctness.
However, this is because we are measuring differences of in-
terventions consisting of two numberlines and no explicit in-
struction. If a 10% difference in test scores after thirty min-
utes of instruction is good, then a 2% improvement after one
minute may be reasonable. The extension of effective short
interventions to effective long interventions is not trivial, and
is left to future work.

DISCUSSION

Hypothesis Generation
Our primary purpose is to introduce an automatic experimen-
tation framework. To demonstrate its utility, we have shown
that we can use our implementation to discover interesting in-
formation and find potential educational hypotheses to further
explore. We certainly do not claim that our findings are highly
general, mature educational results. There are many caveats:
the intervention is extremely short, the measured task is near-
transfer onto a broadly randomized number line, the popula-
tion is drawn from an online educational game, and so on.



Representation Backoff Animations Ticks Mean Other mean Statistics
Hints

pie/pie Any Any Any 0.431 0.407 χ2(1, N = 9675) = 4.44, p = .0035
pie/pie 3 Any Any 0.447 0.410 χ2(1, N = 9675) = 3.13, p = .077
pie/pie 3 No Any 0.424 0.412 χ2(1, N = 9675) = 0.18, p = .669
pie/pie 3 No No 0.462 0.412 χ2(1, N = 9675) = 1.61, p = .204

Table 2. The results for correctness on the final validation set. The first line says that interventions with double pie charts are better than all others.
The second line says that interventions with double pie charts and level 3 backoff hints are better than all others, and so on.

Animations Ticks Representation Backoff Mean Other mean Statistics
Hints

No Any Any Any 0.890 0.864 χ2(1, N = 9675) = 14.18, p < .001
No Yes Any Any 0.896 0.870 χ2(1, N = 9675) = 11.84, p < .001
No Yes symbolic/pie Any 0.892 0.876 χ2(1, N = 9675) = 1.33, p = .249
No Yes symbolic/pie 3 0.877 0.877 χ2(1, N = 9675) < 0.001, p = 0.995

Table 3. The results for persistence on the final validation set.

That being said, our results suggest broader hypotheses that
could now be tested either in our framework, with lengthier
interventions and more comprehensive assessments, or in a
standard fashion in a school or lab setting. While the expert
specified the parameter space, she did not need to decide par-
ticular parameter settings that were likely to perform better
than others. This reduces our reliance on expert knowledge
and makes it less likely that we will miss important results
due to lack of extensive exploration.

As one example from our correctness results, we see that the
pie/pie representation is significantly better than any other
representation combination at improving player performance
on a huge variety of number lines with both symbolic and
pie chart representations for targets and labels. Educational
experts that we spoke with found this to be quite interesting,
since number lines almost always appear with symbolic no-
tation. Not only is this a statistically significant result on an
extremely rare representation combination that bears further
research on its own, it also has potential implications for mul-
tiple representations research in general.

To explain further, the early math educational literature gen-
erally supports the notion of multiple representations in sup-
porting learning [24], but only in certain circumstances.
Many students have difficulty converting back and forth be-
tween different representations [31]. One of the reasons mul-
tiple representations may sometimes not be beneficial are that
students simply opt to ignore presented number lines or in-
formative diagrams when they are given with no added ex-
planation [13]. In the fraction domain specifically, other re-
searchers have found that multiple graphical representations
may actually be harmful relative to single representations [1],
unless accompanied by a self-explanation prompt.

Although our intervention number lines do offer hints, our
number lines have no explanations nor prompts in the tradi-
tional sense. Yet using pie charts together with number lines
lead to superior performance on the test line, compared to us-
ing number lines using the standard symbolic notation. Thus
our system may have found an example where multiple rep-

resentations are useful, without the additional explanation or
support suggested by the literature.

We do not know why this is the case in our game, but one
explanation might be that understanding symbolic notation
may be more difficult than understanding pie charts, which at
least are seen outside of the classroom. Then players who are
not proficient with number lines may learn them faster or be
more willing to play only when they can map them to a more
familiar pie chart representation. The opposite possibility is
that players have overfit in the classroom to number lines with
symbolic notation. In this case, they would have difficulty an-
swering the test number line questions that involve pie charts,
and so the most profitable thing to practice would be the num-
ber line and pie chart combination. Though, we also note that
pie/symbolic and symbolic/pie conditions are worse as well;
perhaps the difficulty of mapping between three representa-
tions outweighs the potential benefits of seeing a pie chart
target with a standard, symbolically-labeled number line.

Regardless of the explanation, our system was able to au-
tomatically find and run an interesting experiment that we
would not have thought to try. The generated results were
confirmed on a separate dataset, and differ in key ways with
well-accepted literature, suggesting extensions to existing
theories and further research to be done. This demonstrates
the exploratory power of our method.

Finally, in this paper we have concentrated on parameters
in an educational game; however, our method should be ap-
plicable to other domains, as well. For example, in the e-
commerce domain, one could consider the parameter space of
page layouts, checkout strategies, and item recommendation
algorithm, with an objective function of clickthrough rate. Or
a polling experiment on Mechanical Turk might ask which
combinations of introduction, phrasing, question ordering re-
sult in the most consistent survey results. The key is to have a
constant stream of users, and the ability to choose parameter
settings for users and measure an outcome.

Limitations



Our work has important limitations. We wish to stress that
the results are only strictly applicable to the user population
they were generated from: in our case, players of our educa-
tional game. This can be mitigated in certain domains where
demographics can be collected. When this is not possible, it
may be best to treat the obtained results as hypotheses to test
for future experiments on the desired population.

Furthermore, the algorithm is only as effective as the param-
eter space specified by the experimenter. It is entirely possi-
ble that the given parameters have negligible impacts on the
objective function. In this case, the algorithm will greedily
select parameter settings that appear very close to the global
average, which may serve as a signal that a new parameter
space should be devised. Researchers with a solid grasp of
the underlying behavioral theories may be able to create more
effective parameter spaces.

We also caution that problems arise in certain platforms, es-
pecially when users are not invested in the system. In the
games domain, users can quit at any time; if a long inter-
vention is desired, changes in the objective function may be
caused by survivor bias induced by particular users leaving.
As an example, an extremely difficult number line might ap-
pear to have a strong test score, but only because it caused all
the players bad at answering number lines to quit. We con-
trol for this effect by having extremely short interventions so
that the probability of quitting is low, and giving players who
quit the lowest possible score. This protects us from spurious
results caused by biased patterns of quitting, but also (inten-
tionally) entangles learning and engagement. This issue is
much less prominent in Mechanical Turk or software being
used in schools by teachers, where the populations are more
invested in finishing the intervention.

Also, this approach is focused only on exploring hypothe-
ses related to the overall effects of system-controllable be-
haviors. Many factors such as age, gender, personality, per-
formance, etc. are not directly controlled by the system, but
are frequently studied in educational literature. For example,
this system cannot identify different groups of people which
need different interventions based on past performance. This
type of useful adaptivity is challenging to achieve with lim-
ited data, and is left for future work.

FUTURE WORK
This is a new domain, only made possible in the past few
years through the increasing use of the Internet. As such,
there is a tremendous number of possible ways our framework
could be extended or improved. We will list only a few of
them.

Our implementation currently only handles standard, categor-
ical factor experiments. This is not a fundamental limitation,
but there is more work to be done to handle ordinal or nu-
meric factors. Our system currently cannot deal with these
variables because it does not know how to find the ideal pa-
rameter setting to use in a continuous range. One solution is
to sample at random from numerical factors, then chop them
into ranges that best separate the data as in regression trees.
Another approach is to try using one of many well-known

optimization techniques which attempt to find the best value,
such as Covariance Matrix Adaptation.

As mentioned earlier, our search strategy in the space of ex-
perimental parameters is a staged, greedy selection designed
for both maximizing the objective function value and finding
which parameters are most important. This is appropriate in
an educational domain. However, there are many other pos-
sible search strategies maximizing other goals. For example,
a psychologist might care about variables causing the biggest
difference in behavior, in which case a better strategy might
be to choose parameters with greatest information gain, as
often done in decision trees [28]. In this paper our results
are taken from the offline case, where the search strategy is
less important, but when players are committed to conditions
online the search strategy is critical.

Future work includes investigating search strategies in the on-
line case. If the researcher’s interest is purely in mapping out
the hypothesis space, one could imagine a search strategy that
simply tries to find the most discriminative parameter at each
level of the tree, using some well-known metric like infor-
mation gain or Gini impurity. And departing from standard
techniques, we could imagine a system that does a soft search
over the parameter space to find the discriminative parts of
the experimental tree. There are many online algorithms from
the active learning and multi-arm bandit communities that at-
tempt to do similar things, which can potentially be adapted
to this framework.

CONCLUSION
Recent years have seen the emergence of large sources of
user data. In this paper, we take advantage of these new
data sources and propose a general, automated experimenta-
tion and hypothesis generation framework. This framework is
specifically designed to automatically explore large hypoth-
esis spaces in human behavioral research. Our importance
sampling component allows the system to be used offline and
when we have different distributions than the one of interest.

To show the usefulness of our framework, we implement it
using an educational game. Using already-collected data, our
system explores the hypothesis space for two alternative ob-
jective functions: maximizing player correctness and player
persistence on a highly randomized test numberline. We find
the most important parameters and their recommended set-
tings and show that the greedy selection does a good job
of finding the best settings at each level. We then confirm
just a few of the most promising generated hypotheses on a
already-collected, different data set. One of these hypotheses,
generated from an unusual method of representing fractions
on a number line, seems to be in opposition to recent work,
which indicates that our system is indeed capable of automat-
ically generating and testing interesting hypotheses that may
not have been otherwise discovered.
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