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Image-Based Remodeling
Alex Colburn, Aseem Agarwala, Aaron Hertzmann, Brian Curless, Michael F. Cohen

Abstract—Imagining what a proposed home remodel might look like without actually performing it is challenging. We present an
image-based remodeling methodology that allows real-time photorealistic visualization during both the modeling and remodeling
process of a home interior. Large-scale edits, like removing a wall or enlarging a window, are performed easily and in real-
time, with realistic results. Our interface supports the creation of concise, parameterized, and constrained geometry, as well as
remodeling directly from within the photographs. Real-time texturing of modified geometry is made possible by precomputing
view-dependent textures for all faces that are potentially visible to each original camera viewpoint, blending multiple viewpoints
and hole-filling when necessary. The resulting textures are stored and accessed efficiently enabling intuitive real-time realistic
visualization, modeling, and editing of the building interior.

Index Terms—Image-based rendering, modeling packages, visualization systems and software
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1 INTRODUCTION

R EMODELING a home is expensive, time-consuming,
and disruptive, and it is rarely practical to revise

or undo the changes. Unfortunately, it is also hard to
imagine what a proposed remodel might actually look
like; ideally, one would like a realistic visualization of a
proposed change to a home interior before any hammers
are swung. Professionals can use CAD programs to create
3D models, but considerable skill and time are required to
achieve photorealism. The alternative is to use image-based
modeling and rendering, which allow photorealistic virtual
environments from a few photographs. But how easy is it
to edit an image-based model? Can large-scale edits, like
removing a wall or enlarging a window, be performed easily
and in real-time, with realistic results?

At present, the answer is no. The most visually realistic IBR
systems combine geometric proxies with view-dependent
texture mapping that blend multiple photographs from
nearby viewpoints. If the geometry is too simple (planar
proxies, as in PhotoTourism [1]) or too unstructured (a
collection of polygons, as in Furukawa et al. [2]), there is
no easy and effective way to edit it. Simple texture-mapped
models are flat and unrealistic, while view-dependent tex-
ture mapping has no affordances for editing, since typically
a few input photographs are simply blended together to
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create a rendering. If you suddenly remove a wall, how
do you find the appropriate disoccluded bits of texture and
blend them in seamlessly, in real-time?

Performing large-scale geometric edits within a realistic
image-based virtual environment is an unsolved problem,
and is the focus of our paper. Using home interior architec-
tural modeling and remodeling as an example application,
we present a method for building models using photographs
in a manner that allows the geometry and texture to be
interactively remodeled. We focus on a representation for
both the geometry and the texture in a scene that allows
large-scale edits to be easily performed and rendered in
real time. Our interface supports the creation of concise,
parameterized, and constrained geometry, as well as remod-
eling directly from within the photographs. This frees the
user from the need to manually specify 3D coordinates or
maintain a consistent architectural model. View dependent
texture mapping minimizes visual distortions while allow-
ing the user to navigate within the home.

The user begins by collecting photographs of the interior,
which are processed with structure from motion (SfM) and
multi-view stereo (MVS) to estimate camera poses and a
semi-dense 3D point cloud. From these inputs, we provide
an interactive technique for quickly creating a geometric
model of the existing house. The original photographs pro-
vide photorealistic, view-dependent texture for rendering.
The user may then remodel by adding, removing, and mod-
ifying walls, windows and door openings directly within the
photographs. All edits are visualized in real-time, and can
be viewed from any direction. Actual photographs depict
natural lighting, and make the scene appear familiar since
existing objects and decoration such as furniture, plants,
and so on remain within the scene. The ability to remodel
directly within the context of photographs provides a means
to quickly experiment and understand the implications of
possible changes (Figure 1).

The work we present does include some simplifications and
trade-offs. Furniture, plants, etc. that are not explicitly mod-
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Fig. 1: After modeling an interior through the images, a user can start from an original viewpoint (left), click and drag
to pull back a wall between a living room and a bedroom (center left), and view the edited result (center right). Then,
the user navigates to visualize the edit from another viewpoint (right).

eled with geometry introduce some unavoidable artifacts
during navigation. We also assume for now that the majority
of walls are oriented in one of two orthogonal directions,
and that floors are level. Remodeling operations do not
currently support large scale additions of new rooms, but
rather focus on removal and additions within the existing
building footprint. We also leave interior design operations
such as lighting changes, furniture and cabinetry edits, and
material property edits (such as paint color) to future work.

2 RELATED WORK

Commercial tools are available to model existing home
interiors and to visualize proposed renovations. Professional
CAD software, such as Autodesk’s Revit, allow the creation
of parameterized and constrained models, so that changes
propagate through associated primitives, e.g., changing the
height of a wall affects adjoining walls. These systems
do not handle the natural lighting nor the clutter in ex-
isting structures and thus the resulting visualizations are
somewhat artificial. Our system of constraints and building
primitives are, however, inspired by these systems.

While CAD modeling requires significant expertise, simpler
tools such as Autodesk’s Homestyler are targeted at non-
experts and can be used to author attractive—but highly-
abstracted—floor plan renderings. These tools do not sup-
port the creation of photorealistic 3D models based on the
original environment.

Google SketchUp allows interactive modeling using pho-
tographs with the “Photomatch” feature. This feature is
designed to support modeling and visualization by project-
ing textures onto an existing scene. However, it does not
provide a good representation for remodeling. For example,
objects are split by occlusions during texture projection,
e.g., when a column interrupts a view of a wall. Split poly-
gons make subsequent editing extremely difficult. SketchUp
assumes a single, globally-defined texture-mapping, which
behaves poorly from novel viewpoints when using coarse
proxy geometry (e.g., for plants, furniture, and other clut-
ter), and when making edits to geometry. Combining mul-
tiple textures requires manually defining a common frame-
of-reference, and there is no support to have the rendered
texture respond to viewpoint changes. We illustrate these
and other issues with remodeling in SketchUp in Figure
2. In contrast, our system is designed to support efficient

editing and refinements to geometry, and renders with view-
dependent texture, thereby making the editing process both
simpler and more visually faithful to the real space.

By starting with a collection of photographs, image-based
modeling techniques can create photo-realistic virtual envi-
ronments with little or no user effort. Automatic modeling
and rendering of photographed environments range from
systems like Photo Tourism [1], where simple planes are
used as geometric proxies for rendering novel viewpoints,
to automatic, dense, MVS reconstruction [3], [4], [5], [6],
[2]. However, most MVS techniques produce either point
clouds or unstructured meshes; such models are sufficient
for rendering but not editing, since they lack architectural
primitives that can be selected and manipulated, and also
lack the connectivity, structural representations, and con-
straints of easy-to-edit models.

A few methods automatically reconstruct higher-level prim-
itives. Dick et al. [7] reconstruct whole buildings by
optimizing a generative model of architectural primitives.
Müller et al. [8] use procedural shape grammars to re-
construct building façades composed of regular, repeating
structures. A few methods estimate room layouts of simple
volumetric primitives, from single images [9], [10]. Our
goal, instead, is user-controllable modeling; however, when
these automatic techniques become robust enough for gen-
eral use they should be compatible with our editing and
rendering techniques.

The other approach to creating image-based models is
interactive [11], [12], [13], [14], [15], [16]. The system
of Sinha et al. [17] is closest to ours, in that they allow
“in-image” modeling bootstrapped from an automatically-
reconstructed 3D point cloud. However, they focus on
reconstructing exteriors as collections of disconnected slabs
and polygons which are more challenging to edit than our
solid structures. Similarly, Nan et al. [18] interactively fit
solid architectural building blocks to 3D point cloud data
from LiDAR scans for large-scale urban reconstruction.
One advantage of interactive model construction is that
the primitives are often larger and more coherent, e.g., a
single polygon for a wall. Our interactive modeling system
borrows many ideas from these methods and adapts them to
building interiors. However, none of these previous systems
address the problem of authoring and rendering edits that
depart from the original structures being modeled, which
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Fig. 2: Comparison of Google Sketchup’s Photomatch using geometry exported from our system. Top row: Google
Sketchup, Bottom row: Our System. In the center images, the column was removed and a passage opened into a study.
Note how Sketchup breaks up polygons due to original occlusions in the image projections. This makes remodeling almost
impossible. Also note poor textures in revealed and new surfaces. Right: the same edit viewed from a different viewpoint.
Our view dependent texture automatically utilizes texture relevant to the new viewpoint.

(a)

(e)

(b)

(c) (d)

Fig. 3: (a)-(d) A corner composed of two walls is built interactively. (a) The canonical axes of the interior are refined to
align with a corner in a photograph; these axes are used for the entire model building process. (b) The user drags out
the corners of a wall face. A 3D rectangle is constructed and projected into the image in realtime; the 3D rectangle is
estimated based on the floor position and point cloud and automatically snapped to align with one of the canonical axes.
(c) A solid wall is added to the model using the default wall thickness. (d) The user can then extend the model, adding
walls as needed, ultimately constructing a complex wall unit. (e) A snapshot of the system’s interface. The current model
with the current view frustum and currently selected primitive highlighted in red is shown in the upper left, rendered
orthographically. A wireframe is rendered over the current photograph on the right. A strip of alternate photos is shown
on the bottom.
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is our focus.

A few previous authors have described methods for editing
image-based models. These efforts have focused on pixel
operations such as painting [19] and cloning [13], or larger
operations such as compositing and local deformations [20],
[21]. Carroll et al. [22] allow editing of perspective in a
single photograph of a building interior or exterior. To the
best of our knowledge, our technique is the first image-
based modeling system to support large-scale geometric
changes such as removing entire walls.

3 OVERVIEW

Interactive, real-time editing of geometry with view-
dependent texture mapping is not a trivial extension of
existing techniques. There are three main requirements for
such a system.

First, the geometry proxy used during rendering should
be concise, parameterized, constrained to architecturally
meaningful edits, and have affordances for manipulation.
The underlying geometric representation must support a
user being able to change the shape and position of geom-
etry without creating holes, while maintaining a consistent,
coherent model. At the same time, the texturing operations
must automatically follow the editing operation in an in-
tuitive manner. In other words, the geometry cannot be a
point cloud or unstructured mesh. We solve this problem
by creating a constrained solid geometric representation for
our model, and utilize homogeneous 3D texture coordinates
for all texture operations.

Secondly, we need a mechanism to render the scene in real-
time. Our textures must not only maintain the appearance
of the original geometry, but also provide a mechanism to
display all geometry that might be revealed during an edit
from any viewpoint. Since texture synthesis is currently
not feasible in a real-time system, we pre-compute view
dependent textures, and organize them in a manner that
limits bottlenecks caused by hardware memory transfer. We
also provide support for viewpoints not well represented
by any view-dependent texture, by computing a view-
independent texture to gracefully provide a degraded run-
time view when needed.

Finally, a user should have an interaction metaphor with
affordances that support modeling and remodeling without
a deep understanding of 3D structure. To this end, we
create an “in-image” modeling and remodeling interaction
metaphor. The user can easily click and drag to create
new walls, change existing walls, and perform basic tex-
ture modifications, without specifying 3D coordinates or
worrying about the underlying 3D point cloud or source
photographs. We discuss our solutions to each of these
problems in turn in the following sections.

4 INTERACTIVE MODELING FROM IMAGES

The modeling process begins by first capturing a collec-
tion of photographs of the interior. Structure from motion
automatically recovers camera poses and a semi-dense
point cloud. The user then interactively creates a solid 3D
model working directly within the images. The 3D point
cloud, together with geometric constraints typical of home
interiors, are used to simplify the process for the user. The
geometric constraints include a common thickness for all
walls, and orthogonality of walls and floors; i.e., surface
normals are typically aligned with orthogonal, canonical
axes (sometimes called the “Manhattan World” assump-
tion). These constraints can be relaxed as needed to handle
non-axis-aligned features, such as tilted ceilings and angled
walls. We next provide more detail on each of these steps.

4.1 Capture and initial reconstruction

Images of the home interior are shot with an SLR and wide-
angle (typically, fish-eye) lens, with fixed focal length. We
capture images using a tripod with the camera oriented
in landscape mode, moving to many different viewpoints
to cover the space well. Photographing interiors well is
particularly difficult as the lighting in a home can vary
dramatically, from dimly lit interior rooms with artificial
light, to rooms with floor-to-ceiling windows lit by the sun,
to views out the windows themselves. While not required,
we get the best results by bracketing exposures (aperture
priority, fixed ISO-value and f-number). From these we can
recover HDR images in a linear radiometric space shared
across all viewpoints, using the recorded exposure settings
to scale pixel values suitably for each image. To minimize
appearance differences between views, we keep the artifi-
cial lighting constant (typically all lights turned on) during
capture. Natural lighting may still change during capture
due to variations in cloud cover or in the angle of the
sun; this variation is not problematic for SfM or MVS, but
later requires more sophisticated compositing techniques
when combining images, as discussed in Section 5. These
techniques also help to handle non-HDR images taken
under less controlled circumstances. The fisheye images
are reprojected to wide angle perspective images using the
nominal distortion parameters for that lens. Camera poses
and sparse scene points are then recovered by the Bundler
SfM tool [23]. Finally, we use PMVS [24] to recover semi-
dense scene points with normals.

4.1.1 Canonical axes, floor height, and wall thickness

An initial set of canonical axes is recovered with the method
of Furukawa et al. [25], which finds three cluster centers
of normal directions that are nearly orthogonal. We take
the “up” axis to be the axis most closely aligned with the
average of the camera up vectors. Cross products with the
other cluster directions generate the other two canonical
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axes spanning a horizontal world plane, call them “east-
west” and “north-south”. An initial floor height is deter-
mined from all points with orientation within 25 degrees
of the up direction. We compute distances of these points
to the horizontal world plane, perform k-means clustering
on these distances (k = 3), and take the distance of the
largest cluster to be the floor height.

The resulting canonical axes and floor height may not be
precisely aligned to the actual home interior. We provide
a simple interface for adjusting them. The user clicks on a
room corner at floor level in an image, and coordinate axes
are centered at the intersection of the viewing ray and the
floor and projected into the image (Figure 3a). The user
can then adjust the orientation of the object coordinates
until the axes align with the lines where the two walls
meet each other and the floor. Switching to another view
of the corner (from a significantly different viewpoint), the
user can adjust the floor height until it coincides with the
corner in this second view. Finally, the user can specify
the global wall thickness through direct measurement in an
image, e.g., across the width of a wall that terminates at a
passageway.

4.2 Modeling within the images

Given the camera poses, canonical axes, floor height and
wall thickness, the user is now ready to build interior
geometry directly within the images. To create a new wall,
the user chooses an image, clicks on a wall and drags
out a rectangle (Figure 3b). A rectangular portion of a
3D wall appears automatically aligned with one of the
canonical wall axes based on the predominance of point
cloud normals within the rectangle. The wall position is
also automatically determined by the predominant point
locations. The wall has thickness and sits squarely on the
floor plane (Figure 3e). Moving to any new image, the
newly created wall appears in place. Fine adjustments can
made to the wall position from the new view.

The user continues modeling by extending walls through
automatically-created affordances for dragging the ends of
walls to the corners of rooms. New wall segments can then
be added to turn a corner. The new walls are automatically
extended to include the solid intersection of the two walls
resulting in a constrained, functional intersection. Contin-
uing around a room often requires moving from image
to image to complete the room. Acceleration tools allow
the user to simply extend a wall to meet another already
existing wall and to close the loop in a room with a join
operation.

Walls can be split to create passageways, and holes can
be punched in walls to create windows and doors. The
doorway and window holes have affordances automatically
created for dragging the edges to adjust to match them to
images. Exterior windows auto-generate a separate thin slab
for the glass aligned with the outside for texturing. [The
modeling process can be seen in the accompanying video.]

Alongside the image being viewed, a flat-shaded, ortho-
graphic view of the 3D model is shown, with a frustum
icon denoting the viewpoint of the currently selected image.
Figure 3e illustrates the interface. As the model is updated
through the images, the 3D view updates as well; similarly,
the user may make simple adjustments to the model in the
3D view and see the updates propagated to the image view.
Note that the model does not need to be extremely precise
to give plausible visualizations of viewpoint motion and
remodeling, as we will see in Section 7.

4.2.1 Representation

Observing that most interiors are comprised of abutting
walls of common thickness that are oriented parallel or
perpendicular to one another, we initially model the ge-
ometry as a union of axis-aligned, fixed-thickness rectan-
gular solids. We represent this model as a set of polygon
meshes, each traversed and managed with a half-edge data
structure [26]. Each mesh is closed, yielding a solid model.
This provides a data structure for fast access to mesh
connectivity information for mesh editing operations, initial
texture creation, and runtime texture re-assignment. Edits
are constrained to those deemed architecturally meaningful.
Thus, for example, grabbing the edge of a doorway and
moving horizontally is interpreted as opening the doorway.
Or, grabbing the end of a wall and pulling along the wall
normal moves the whole wall which might also automati-
cally shorten or lengthen connecting walls.

5 PRECOMPUTED VIEW-DEPENDENT TEX-
TURE

The heart of what makes our system effective for real-time
remodeling is the crafting of precomputed view-dependent
texture atlases. The goal is to provide the ability to view
the geometry with a photorealistic quality, while being able
to navigate and, more importantly, alter the geometry to
visually assess remodeling operations.

Our work draws on view-dependent texture mapping
(VDTM) [12], which renders new viewpoints as a weighted
blend of photographs taken from nearby viewpoints. Like
Photo Tourism [1], our user interface encourages the user
to be at or near the original viewpoints except when
transitioning between views. A key advantage of VDTM
is that rendering the original geometry from the point-of-
view of where an image was captured results in exactly the
original captured photograph.

However, conventional VDTM does not support live
changes to the scene geometry. For example, suppose that a
wall is removed, revealing the geometry behind. Since this
geometry was not visible, VDTM provides no guidance on
how to texture the revealed surface. One could generate
texture for the newly-visible geometry by searching for
other views of it among the input photographs. There
are a number of problems with this approach. For one,
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Fig. 4: A VDTA for a single viewpoint viewed from the side;
note that possibly dis-occluded textures are pre-computed.

there often is no single good view of the newly-visible
geometry, requiring blending or hole-filling to produce
realistic results. Second, searching the input images is
too costly for real-time rendering. Consider the viewpoint
rendered in Figure 6. This scene has low depth complexity,
yet the texture generated for the newly visible geometry in
the bottom image uses texture from 150 photos. The more
complex scene in Figure 4 uses data from 261 cameras. The
memory transfer rates of our test machine from the host to
the CPU is roughly 2500 MB per second (as measured by
oclBandwidthTest). If each images utilizes roughy 10 MB
of texture RAM, the memory transfer alone would take a
significant fraction of a second when assembling texture on
the fly. The full set of images would require more RAM
than the host’s memory.

5.1 View-Dependent Texture Atlases

To address these problems, for each view we create a
View-Dependent Texture Atlas (VDTA) as seen in Figure 4.
In addition to the VDTA for each view, we also create
a single, low resolution, global View-Independent Texture
Atlas (VITA), which is similar in size, form, and function
to the VDTA. The VITA fills in any texture gaps during
transitions between adjacent VDTAs.

Each VDTA stores a texture for all polygons that could
possibly be seen or revealed in that view—that is, all
faces within the view’s frustum. The textures are pre-
projected to the corresponding viewpoint (i.e., with perspec-
tive foreshortening). This avoids wasted texture resolution
on polygons that are highly oblique to the view. The
textures are packed into a set of buffers to preserve memory
coherence and to greatly reduce the number of unique
textures required.

We pack the textures using a classic greedy first-fit algo-
rithm [27]. The number of buffers is dependent on the
page size of the buffer. We choose a page size of 1024
× 1024 which typically results in 3 or 4 buffers for a given
view. We order the textures from largest to smallest, placing
them sequentially in the first empty block in which they fit,
continuing until all textures are placed. This simple scheme

Fig. 5: A viewpoint is rendered using the VDTA (top). The
bottom image is the same viewpoint using the VITA. Note
the perspective distortions, and flattened clutter

sufficiently obviates the need for frequent texture buffers
switches when rendering.

The VDTA has an associated list of faces textured in each
buffers, and a projection matrix that transforms for each
face’s 3D coordinates to image coordinates in the buffer.
This is simply the projection matrix of the original view-
point recovered by SfM translated and scaled to correspond
to the position in the packed texture.

Since the texture for any given face may be clipped by
the viewing frustum, we take care during rendering to only
use texture coordinates within the original field of view.
Validating texture coordinates uses a matrix multiply and
bounds checking between the texture coordinate and the
original viewpoint.

The texture atlases reduce the total number of runtime
texture buffers per viewpoint from hundreds to a few
combined texture buffers, while also reducing the total
memory requirements by half. Expensive runtime texture
swaps are reduced from hundreds per frame, to a few for
each active VDTA. Once computed, any face that might
become visible to any view, is rendered using only the
VDTAs from nearby views, with some possible fill-in by
the VITA. While texture atlases have been used before for
image-based rendering [28], these methods do not support
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Fig. 6: Remodel with central walls removed. Images used
to create the VDTA were captured on separate days under
different lighting conditions, without HDR exposure bracket
capture. The VDTA construction is robust to such lighting
changes.

real-time rendering of edits.

5.2 Synthesizing the View-Dependent Textures

Having computed an assignment of faces to texture buffers,
we still need to determine the appearance of each face. Each
face can combine three kinds of texture:
1. Original: texture contained in the photograph from this
viewpoint.
2. Warped: texture occluded from this viewpoint, but seen
in other photographs.
3. Synthesized: texture not seen from any viewpoint.
The following procedure is used to fill the view-dependent
texture atlas corresponding to each face.

5.2.1 Original Texture

Visibility of portions of a given face from the original
viewpoint is computed using an ID buffer. Any pixels that
are visible are copied directly from the original photograph.
However, pixels within five pixels of any significant depth
discontinuity are discarded. This prevents slight misalign-
ments of depth discontinuities from creating erroneous

mappings, such as a post being projected onto a wall far
behind it. The remaining pixels of visible portions of faces
are then filled from nearby viewpoints, or by hole-filling if
not seen by other cameras.

5.2.2 Warped Texture from Other Views

Filling pixels occluded from the original viewpoint but
visible in others requires solving two problems. First, we
need to choose which other viewpoints to copy texture
from. Second, we need to modify the copied content to
blend seamlessly with the original view. The latter step is
required because small lighting changes, non-Lambertian
effects, and vignetting can lead to differences in appearance
between different photographs of the same geometry.

As with the original view, candidates for views to fill-in
occluded pixels are determined by projecting the occluded
pixels into the ID buffers from each candidate view. If the
ID matches (and is sufficiently far from a depth disconti-
nuity) then this view becomes a candidate for fill-in. Of the
possible candidates, we choose the best one by leveraging
the criteria used by Unstructured Lumigraph Rendering
(ULR) [29]. Pixels are filled from a viewpoint that is similar
in 3D location and view direction of the original view, and
with a pixel coordinate towards the center of the image to
avoid vignetting and other distortions. We use these criteria
to select the single best candidate for each occluded pixel.

To solve the second problem, we composite using both the
texture from the selected viewpoint and the corresponding
texture gradients through the use of gradient-domain blend-
ing [30]. A weighted least-squares problem is solved where
the occluded pixels’ RGB values are variables. Original
viewpoint pixels act as hard boundary constraints.

We iterate over each viewpoint that has been selected
to be best for at least one pixel and render the face
into a buffer. Each best pixel contributes a weak data
constraint: the final composited color should be close to
the rendered color from that viewpoint. Each pair of best
neighboring pixels, and each adjacent best and non-best pair
of neighboring pixels, contribute a gradient constraint: the
difference between neighboring composited pixels should
equal the difference between the pair of rendered pixels.
The weak data constraints are weighted by a factor of 10−5

relative to the boundary and gradients constraints.

As noted by Bhat et al. [31], outlier gradients can
cause bleeding artifacts when compositing in the gradient-
domain. We suppress the influence of large gradients; if the
gradient is larger than 0.1, we down-weight the constraint
by a factor of 10−5. Finally, we solve the the weighted least
squares problem to create a composite.

5.2.3 Synthesized Hole Filling

Some pixels are not seen from any original photograph.
These pixels are filled with a gradient-domain blend [30],
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[31] using the average color of the face as a weak con-
straint. More sophisticated hole filling methods could also
be used, but is left for future work.

The above process is repeated for each viewpoint, begin-
ning with the original view, then other views to fill in, and
finally hole filling. This completes the off-line construction
of the VDTAs.

5.3 View-Independent Texture Atlas

Creating the single view-independent texture atlas (VITA)
proceeds in a similar fashion to the VDTAs with two
exceptions. Since there is no preferred view direction,
each surface is projected orthogonally before packing and
texturing. There are also no original (preferred) textures, so
all texture pixels are derived from either a warped texture
or hole filling. Best views for each pixel are selected with
the same unstructured lumigraph weighting, resulting in a
view that is most orthogonal to the surface, and closer to
the surface. Pixels from competing views are blended using
the gradient domain blending as before but with no hard
boundary constraints. The weak data terms from each view
provide the anchor for the optimization. As before, any
pixels not seen from any view are filled with synthesized
hole fill.

5.4 Texturing New Surfaces

Finally, we also need to be able to texture newly-created
surfaces resulting from remodeling operations. These occur
both when a completely new wall is added, but also when
a new doorway is cut through an existing wall, since
new, small, wall-thickness faces are created to complete
the passageway. If the newly created face has co-planar
faces, we extend the texture associated with the coplanar
face by simply repeating the neighboring texture edge. For
example, if one of the walls of an outside corner (Figure 7)
is extended, the texture on the edge of the co-linear wall is
simply stretched to fill the new wall. New surfaces without
a co-planar surface are given a default wall color. The user
may override the initial texture by copying texture from
a selected rectangular patch on an existing wall. Newly
created textures are treated as view-independent and thus
share the same texture across all views. This can cause
minor artifacts when moving between views, but provides
a good balance between visual fidelity and minimizing the
need for user intervention.

6 RENDERING

Given the geometric model and the complete set of VDTAs,
we can render from any vantage point in real-time, regard-
less of which faces are revealed. Rendering is performed at
interactive frame rates using a combination of OpenGL and
GLSL shaders. The geometry is textured from our VDTA
iterating over each texture buffer. We load each texture

buffer, and render only those faces associated with the
buffer. Using a pixel shader, the homogeneous 3D texture
coordinates of our model are transformed to 2D texture
coordinates by multiplying the coordinate at each pixel by
the texture matrix of the source texture taking care to avoid
out of bounds projections. There are two boundary tests that
must be performed. First, we discard texture coordinates
projected outside of the original viewpoint. Secondly, we
discard texture coordinates projected outside of the texture
matrix.

When rendering from an original viewpoint, only the VDTA
from that view is required. When navigating between
viewpoints, the scene is rendered three times using VDTAs
for the source and destination camera views, and the VITA
to three off-screen buffers. The VDTAs are linearly blended
to form a smooth transition, and the VITA is only used to
fill any remaining holes.

The pixel shader adjusts the texture for exposure compen-
sation. By default, the values are scaled to set the saturation
point to be the same as the camera’s auto-exposure would.
A GUI is provided to override this for for manual exposure
if desired.

7 REMODELING

Once the initial modeling is complete and VDTAs com-
puted, the user can navigate through the model, change
the virtual camera exposure, and remodel the structure by
adding/removing walls, or adding and expanding/shrinking
openings. All changes to the viewpoint and model are ren-
dered in real time. Most importantly, the geometric model
and texture atlases support rendering during remodeling
operations.

As with the creation of the original model, remodeling
operations are carried out in the original views with a
similar set of tools. The user is able to click on a wall,
and then grab edges of the wall or any opening and
simply slide them to make the wall or opening larger
or smaller. As an opening is enlarged (as in Figure 1),
the room behind the wall is revealed by rendering those
faces previously occluded in the original view. Widening
a window (Figure 7) simply stretches the outdoor texture
on that window since we have no additional textured
geometry for the outdoors. Textures on walls are similarly
stretched by locking the vertex texture coordinates as is. In
some situations it is preferable to avoid a stretched texture
appearance by cropping the texture. In this case the texture
coordinates are updated during editing and constrained to
the texture limits, (Figure 7, fourth row). As expected, all
geometry changes are global and thus appear in all camera
views.

7.1 Navigation

In addition to simply switching between original views
as displayed in the filmstrip in Figure 3, the user can
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change the view more continuously. We support two modes.
In the first mode, using the GUI or keyboard, the user
can move left/right and forward/back, or turn the view
direction left/right and up/down, and zoom in/out. Trans-
lational motion introduces parallax which accentuates the
3D nature of the model enhancing the visualization. This is
made possible by the fully-textured layered model. Newly
revealed surfaces, for example through doorways appear
naturally. Because the details such as furniture are not fully
modeled, parallax does cause some artifacts.

The second mode involves moves from one original source
view to a final destination view. The textures are interpo-
lated between these two views as described in Section 6.
Fly through paths are automatically created by interpolating
between intermediary viewpoints with a similar motivation
to that done in [2] and [32]. The idea is that the picture
takers intuitively select good positions from which to view
the scene. To determine the path from source to destination
we construct a graph with a vertex for each original
viewpoint. Each vertex has an edge to another vertex if a
line segment between the camera centers does not intersect
the model. We set the edge weight wAB between two views,
A and B, to

wAB = 1+dAB +α
θAB

dAB

where the 1 penalizes additional path segments, dAB is the
Euclidean distance between the camera centers, and θAB
is the angle between the optical axes of the cameras. We
set α = 2/π . We then solve for the shortest path between
source and destination using Dijkstra’s method.

When traversing the path, we treat each node, except the
endpoints, as a virtual camera with camera center the same
as the original viewpoint’s, but the optical axis pointing
in the direction from the that node’s camera center to the
next node’s camera center. We then linearly interpolate the
camera centers and optical axes when moving from node
to node. An extra node is inserted along the edge leaving
the source and another along the edge arriving at the desti-
nation, positioned so that it takes one second to ease out of
the starting orientation and 0.5 second to ease into the final
orientation. Thus, the camera orientation begins with the
source orientation and over one second interpolates to point
along the path. One half second before the destination is
reached, the orientation begins to interpolation between the
path direction and destination camera orientation, ending
finally on the destination camera position and orientation.

8 RESULTS

We have used our image-based remodeling technique on
three house interiors. [The most effective way to see the
usage and results is through the accompanying video.] Each
photograph set was captured with a Canon EOS 10D and
Sigma fisheye lens. The first two sets were captured with
three bracketed images separated by two stops.

The first data set seen in Figure 3 has 143 viewpoints,
and requires 15 minutes of interaction to yield a model
of 223 faces. This is followed by about 30 minutes of
processing time on an 18-node cluster to produce the
VDTAs. The input photographs comprise 2.5GB of camera
RAW files, processed into 1.3 GB of HDR files in EXR
format, resulting in 1.1GB of VDTA files, also in EXR
format.

The second data set visualized in Figures 1, 4, and 7 has
462 camera viewpoints, and required about 45 minutes of
interaction to produce a model of 661 faces, modeling 8
rooms, followed by 2 hours of processing to produce the
VDTAs. The input photographs were processed to 2GB of
HDR files, resulting in 5.2GB of VDTA files.

The third data set shown in Figure 6 has 326 viewpoints,
captured on separate days under different lighting condi-
tions without bracketed exposures. It required 30 minutes
of interaction to model 5 rooms with 438 faces, followed
by 1.5 hours of preprocessing to produce the VDTAs. The
input photographs were processed to 1.7GB of HDR files,
resulting in 2.84GB of VDTA files.

Rendering during modeling, remodeling, and navigation
proceeds at 50 frames/second. Remodeling operations can
be seen in Figures 1, 6, and 7. These operations include
widening doors, removing support beams, removing and
adding walls, and resizing a window.

9 USER FEEDBACK

We conducted an informal study to solicit feedback on
the use of the system for remodeling. We included five
subjects, with professional experience ranging from two
professional architects and designers with extensive CAD
experience to three novice modelers including the home-
owner of one model. Each subject was asked to navigate
through viewpoints in a house, and then to perform several
remodeling operations on a pre-constructed model. These
included expanding a doorway as well as punching a hole
in a wall between rooms. Note we did not ask the subjects
to construct the initial model from photographs although
we did show them how the models were constructed. We
were most interested in the perceived benefits of the image
based remodeling visualization.

The subjects universally said that they experienced a sense
of being in the house. They all felt that they knew what
the house was like, even if they had never been there
before. The realistic image based rendering enhanced their
belief that they understood the result of a remodel. The
owner of one house expressed an emotional response to
the remodel operations. She said that “seeing real photos
of my stuff added realism, and made the remodel seem
more predictable.” The architects liked the fact that a
coarse model could be built quickly and was usable for
rapid prototyping, exploring ideas, and visualizing changes.
They thought our system could save time and effort by
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Fig. 7: Three remodeling results. First column: original viewpoint. Second column: remodeled geometry. Third column:
same remodel from different viewpoint. First row: opening a wall to connect two rooms. Second row: expanding a window
vertically. Third row: adding a wall segment. Fourth row: creating a cutout.

reducing the level of detail required in traditional models,
details that are never used except to provide more realism.
They wished the results could be integrated or exported
to traditional CAD systems for further refinement and
architectural notation and standards support. None of the
users noticed the lack of relighting when asked.

10 DISCUSSION

We have demonstrated a new interface for home modeling
and remodeling using a through-the-photograph methodol-
ogy. A synthesis of computer vision technology, texture
atlas construction, and user-interface results in a system
that provides an intuitive way to realistically visualize
remodeling ideas in real-time as one edits the geometry.
We have demonstrated how models can be constructed

efficiently, and textured in a way that enables visually
plausible re-editing. Pre-computation of view dependent
texture atlases allows visualization of edits in real-time.

Although capturing large sets of images can be somewhat
tedious, and the pre-computation is expensive, we are
confident the advantages of freeing the user from having
to model in an abstract space, coupled with the real-time
realistic visualization provides significant advantages over
current alternatives.

Our technique has a number of current limitations. Since we
do not model all the geometry precisely, there are rendering
artifacts, most commonly in the rendering of household
objects such as furniture and plants. Architectural details
such as baseboards and window or door trim are also
not modeled. We hope to leverage deeper architectural
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knowledge to help complete such details.

We do not currently support relighting, however our system
has many advantages that can make this operation possible.
For example, our HDR images provide environment (i.e.,
illumination) maps capable of acting as light sources. These
maps plus the geometry can help separate lighting from
material properties. While lighting inconsistencies due to
remodeling edits were not apparent to our small sample of
users, this is an interesting problem for future work. Dif-
fuse component relighting can be approximated by simply
comparing the virtual views from a surface point before
and after an edit. Specular components can be similarly
approximated but require sensitivity to incident and outgo-
ing lighting directions. In general, the full global relighting
problem is more complex, however the work of Yu et al. on
inverse global illumination [33], Ramamoorthi et al. [34] on
inverse rendering, and Romeiro et al. on blind reflectometry
[35] provides some guidance and inspiration for our future
work.

Finally, it would be helpful to support larger-scale edits
such as adding a complete new room extension. This will
require building a hybrid system that supports both image-
based rendering where possible and more conventional
modeling and rendering elsewhere. Again, we expect to
leverage the captured imagery to aid in the description of
the new geometry. An important question is how to visually
represent large-scale additions. Should the addition be a
blend of a stylized architectural rendering with the existing
imagery, or should the addition visually mimic the existing
structures in a seamless manner?

Achieving a visually seamless mix of novel geometry and
image based rendering is an interesting problem. First, the
material properties and texture of the new geometry must
match the appearance of the existing geometry. Secondly,
the lighting model must be consistent across the existing
and new models. Recent work using incident light fields by
Unger et al. [36] and work using user annotations by Karsch
et al. [37] demonstrate how well one may integrate artificial
objects into image based rendering environments within
complex light fields. However the artificial geometry does
not yet take on visual characteristics of the environment.
We would like to explore extracting incident light fields
from our existing data and apply them as light sources for
novel geometry.

We believe that the techniques we have demonstrated to
date can be extended into a complete system for visualiz-
ing remodels. Also, allowing users to edit directly within
images should open such applications to a much wider set
of users.

ACKNOWLEDGMENTS

The authors would like to thank Noah Snavely and Yasu
Furukawa for their invaluable advise, Bundler, and PMVS2
software.

REFERENCES

[1] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: exploring
photo collections in 3d,” in ACM SIGGRAPH 2006 Papers, ser.
SIGGRAPH ’06. New York, NY, USA: ACM, 2006, pp. 835–846.
[Online]. Available: http://doi.acm.org/10.1145/1179352.1141964

[2] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Reconstruct-
ing building interiors from images,” in ICCV, 2009, 29 2009-oct. 2
2009, pp. 80 –87.

[3] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Ver-
biest, K. Cornelis, J. Tops, and R. Koch, “Visual
modeling with a hand-held camera,” Int. J. Comput. Vision,
vol. 59, pp. 207–232, September 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?id=986694.986705

[4] N. Cornelis, B. Leibe, K. Cornelis, and L. Gool, “3d urban
scene modeling integrating recognition and reconstruction,” Int.
J. Comput. Vision, vol. 78, pp. 121–141, July 2008. [Online].
Available: http://portal.acm.org/citation.cfm?id=1355822.1355831

[5] G. Bahmutov, V. Popescu, and M. Mudure, “Efficient large
scale acquisition of building interiors,” in ACM SIGGRAPH 2006
Sketches, ser. SIGGRAPH ’06. New York, NY, USA: ACM, 2006.
[Online]. Available: http://doi.acm.org/10.1145/1179849.1180008

[6] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. Seitz, “Multi-
view stereo for community photo collections,” in ICCV 2007., oct.
2007, pp. 1 –8.

[7] A. R. Dick, P. H. S. Torr, and R. Cipolla, “Modelling and
interpretation of architecture from several images,” Int. J. Comput.
Vision, vol. 60, pp. 111–134, November 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?id=993451.996343

[8] P. Müller, G. Zeng, P. Wonka, and L. Van Gool, “Image-based
procedural modeling of facades,” in ACM SIGGRAPH 2007 papers,
ser. SIGGRAPH ’07. New York, NY, USA: ACM, 2007. [Online].
Available: http://doi.acm.org/10.1145/1275808.1276484

[9] V. Hedau, D. Hoiem, and D. Forsyth, “Recovering the spatial layout
of cluttered rooms,” in ICCV 2009, 29 2009-oct. 2 2009, pp. 1849
–1856.

[10] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade, “Estimating
spatial layout of rooms using volumetric reasoning about objects
and surfaces,” NIPS 2010, vol. 24, Nov 2010.

[11] R. Cipolla and D. Robertson, “3d models of architectural
scenes from uncalibrated images and vanishing points,” in
Proceedings of the 10th International Conference on Image Analysis
and Processing, ser. ICIAP ’99. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 824–829. [Online]. Available:
http://portal.acm.org/citation.cfm?id=839281.840826

[12] P. E. Debevec, C. J. Taylor, and J. Malik, “Modeling and rendering
architecture from photographs: a hybrid geometry- and image-
based approach,” in Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, ser. SIGGRAPH ’96.
New York, NY, USA: ACM, 1996, pp. 11–20. [Online]. Available:
http://doi.acm.org/10.1145/237170.237191

[13] B. M. Oh, M. Chen, J. Dorsey, and F. Durand, “Image-based
modeling and photo editing,” in Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, ser.
SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 433–442.
[Online]. Available: http://doi.acm.org/10.1145/383259.383310

[14] A. Criminisi, I. Reid, and A. Zisserman, “Sin-
gle view metrology,” Int. J. Comput. Vision, vol. 40,
pp. 123–148, November 2000. [Online]. Available:
http://portal.acm.org/citation.cfm?id=365875.365888

[15] S. El-Hakim, E. Whiting, and L. Gonzo, “3d modeling with
reusable and integrated building blocks,” in The 7th Conference
on Optical 3-D Measurement Techniques, Jan 2005, pp. 3–5.
[Online]. Available: http://www.iit-iti.nrc-cnrc.gc.ca/iit-publications-
iti/docs/NRC-48228.pdf



12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. XX, NO. YY, MONTH 2012

[16] A. van den Hengel, A. Dick, T. Thormählen, B. Ward, and
P. H. S. Torr, “Videotrace: rapid interactive scene modelling
from video,” in ACM SIGGRAPH 2007 papers, ser. SIGGRAPH
’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1275808.1276485

[17] S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys,
“Interactive 3d architectural modeling from unordered photo
collections,” in ACM SIGGRAPH Asia 2008 papers, ser. SIGGRAPH
Asia ’08. New York, NY, USA: ACM, 2008, pp. 159:1–159:10.
[Online]. Available: http://doi.acm.org/10.1145/1457515.1409112

[18] L. Nan, A. Sharf, H. Zhang, D. Cohen-Or, and B. Chen,
“Smartboxes for interactive urban reconstruction,” in ACM
SIGGRAPH 2010 papers, ser. SIGGRAPH ’10. New York,
NY, USA: ACM, 2010, pp. 93:1–93:10. [Online]. Available:
http://doi.acm.org/10.1145/1833349.1778830

[19] S. M. Seitz and K. N. Kutulakos, “Plenoptic image editing,”
Int. J. Comput. Vision, vol. 48, pp. 115–129, July 2002. [Online].
Available: http://portal.acm.org/citation.cfm?id=598431.598504

[20] D. R. Horn and B. Chen, “Lightshop: interactive light field
manipulation and rendering,” in Proceedings of the 2007 symposium
on Interactive 3D graphics and games, ser. I3D ’07. New York,
NY, USA: ACM, 2007, pp. 121–128. [Online]. Available:
http://doi.acm.org/10.1145/1230100.1230121

[21] B. Chen, E. Ofek, H.-Y. Shum, and M. Levoy, “Interactive
deformation of light fields,” in Proceedings of the 2005 symposium
on Interactive 3D graphics and games, ser. I3D ’05. New York,
NY, USA: ACM, 2005, pp. 139–146. [Online]. Available:
http://doi.acm.org/10.1145/1053427.1053450

[22] R. Carroll, A. Agarwala, and M. Agrawala, “Image warps
for artistic perspective manipulation,” in ACM SIGGRAPH
2010 papers, ser. SIGGRAPH ’10. New York, NY,
USA: ACM, 2010, pp. 127:1–127:9. [Online]. Available:
http://doi.acm.org/10.1145/1833349.1778864

[23] N. Snavely, “Bundler: Structure from motion for unordered image
collections,” http://phototour.cs.washington.edu, 2008. [Online].
Available: http://phototour.cs.washington.edu/bundler/

[24] Y. Furukawa and J. Ponce, “Patch-based multi-view stereo
software,” http://grail.cs.washington.edu/software/pmvs/, 2009.
[Online]. Available: http://grail.cs.washington.edu/software/pmvs/

[25] Y. Furukawa, B. Curless, S. Seitz, and R. Szeliski, “Manhattan-world
stereo,” CVPR 2009, vol. 0, pp. 1422–1429, 2009.

[26] C. M. Eastman and S. F. Weiss, “Tree structures for
high dimensionality nearest neighbor searching,” Information
Systems, vol. 7, no. 2, pp. 115 – 122, 1982. [Online].
Available: http://www.sciencedirect.com/science/article/B6V0G-
48TD1M7-6H/2/34fd7dcac0ef3c2fa82a5eb688697662

[27] D. S. Johnson, “Approximation algorithms for combinatorial
problems,” in Proceedings of the fifth annual ACM symposium
on Theory of computing, ser. STOC ’73. New York,
NY, USA: ACM, 1973, pp. 38–49. [Online]. Available:
http://doi.acm.org/10.1145/800125.804034

[28] H. Buchholz and J. Dollner, “View-dependent rendering of mul-
tiresolution texture-atlases,” Visualization Conference, IEEE, vol. 0,
p. 28, 2005.

[29] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen,
“Unstructured lumigraph rendering,” in Proceedings of the 28th
annual conference on Computer graphics and interactive techniques,
ser. SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 425–
432. [Online]. Available: http://doi.acm.org/10.1145/383259.383309
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