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Abstract

State-of-the-art image classification methods require an
intensive learning/training stage (using SVM, Boosting,
etc.) In contrast, non-parametric Nearest-Neighbor (NN)
based image classifiers require no training time and have
other favorable properties. However, the large performance
gap between these two families of approaches rendered NN-
based image classifiers useless.

We claim that the effectiveness of non-parametric NN-
based image classification has been considerably under-
valued. We argue that two practices commonly used in im-
age classification methods, have led to the inferior perfor-
mance of NN-based image classifiers: (i) Quantization of
local image descriptors (used to generate “bags-of-words”,
codebooks). (ii) Computation of ‘Image-to-Image’ dis-
tance, instead of ‘Image-to-Class’ distance.

We propose a trivial NN-based classifier – NBNN,
(Naive-Bayes Nearest-Neighbor), which employs NN-
distances in the space of the local image descriptors (and
not in the space of images). NBNN computes direct ‘Image-
to-Class’ distances without descriptor quantization. We fur-
ther show that under the Naive-Bayes assumption, the theo-
retically optimal image classifier can be accurately approx-
imated by NBNN.

Although NBNN is extremely simple, efficient, and re-
quires no learning/training phase, its performance ranks
among the top leading learning-based image classifiers.
Empirical comparisons are shown on several challenging
databases (Caltech-101,Caltech-256 and Graz-01).

1. Introduction

The problem of image classification has drawn consider-
able attention in the Computer Vision community. The con-
centrated effort of the research community in the last few
years resulted in many novel approaches for image classifi-
cation, that progressed the field quickly in a few years. For
instance, in a course of three years, the classification rate
on the Caltech-101 database climbed from under20% in
2004 [8] to almost90% in 2007 [27].

Image classification methods can be roughly divided into
two broad families of approaches: (i)Learning-based

classifiers, that require an intensive learning/training phase
of the classifier parameters (e.g., parameters of SVM [6,
12, 13, 15, 16, 18, 20, 26, 27, 31], Boosting [24], paramet-
ric generative models [8, 10, 29], decision trees [5], frag-
ments and object parts [2, 9], etc.) These methods are
also known asparametric methods. The leading image
classifiers, to date, are learning-based classifiers, in par-
ticular SVM-based methods (e.g., [6, 20, 27]). (ii) Non-
parametric classifiers, that base their classification deci-
sion directly on the data, and requireno learning/training
of parameters. The most common non-parametric meth-
ods rely on Nearest-Neighbor (NN) distance estimation, re-
ferred to here as “NN-based classifiers”. A special case of
these is the “Nearest-Neighbor-Image” classifier (in short -
“NN-Image”), which classifies an image by the class of its
nearest (most similar) image in the database. Although this
is the most popular among the NN-based image classifiers,
it provides inferior performance relative to learning-based
methods [27].

Non-parametric classifiers have several very important
advantages that are not shared by most learning-based ap-
proaches: (i) Can naturally handle a huge number of classes.
(ii) Avoid overfitting of parameters, which is a central is-
sue in learning based approaches. (iii) Require no learn-
ing/training phase. Although training is often viewed as
a one-time preprocessing step, retraining of parameters in
large dynamic databases may take days, whereas chang-
ing classes/training-sets is instantaneous in non-parametric
classifiers.

Despite these advantages, the large performance gap
between non-parametric NN-image classifiers and state-
of-the-art learning-based approaches led to the percep-
tion that non-parametric image classification (in particular
NN-based image classification) is not useful. We claim
that the capabilities of non-parametric image classification
have been considerably under-valued. We argue that two
practices, that are commonly used in image classification,
lead to significant degradation in the performance of non-
parametric image classifiers:

(i) Descriptor quantization: Images are often repre-
sented by the collection of their local image descriptors
(e.g., SIFT [19], Geometric-Blur (GB) [30], image patches,
etc.) These are often quantized to generate relatively small
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“codebooks” (or “bags-of-words”), for obtaining compact
image representations. Quantization gives rise to a signifi-
cant dimensionality reduction, but also to significant degra-
dation in the discriminative power of descriptors. Such di-
mensionality reduction is essential for many learning-based
classifiers (for computational tractability, and for avoid-
ing overfitting). However, it isunnecessary and especially
harmfulin the case of non-parametric classification, that has
no training phase to compensate for this loss of information.
(ii) ‘Image-to-Image’ distanceis essential to Kernel meth-
ods (e.g., SVM). When used in NN-Image classifiers, it pro-
vides good image classification only when the query image
is similar to one of the database images, but does not gen-
eralize much beyond the labelled images. This limitation is
especially severe for classes with large diversity.

In this paper we propose a remarkably simple non-
parametric NN-based classifier, which requires no descrip-
tor quantization, and employs a direct “Image-to-Class” dis-
tance. We show that under the Naive-Bayes assumption1,
the theoretically optimal image classifiercan be accurately
approximated by this simple algorithm. For brevity, we re-
fer to this classifier as“NBNN” , which stands for “Naive-
Bayes Nearest-Neighbor”.

NBNN is embarrassingly simple: Given a query im-
age, compute all its local image descriptorsd1, ..., dn.
Search for the classC which minimizes the sum∑n

i=1 ‖ di − NNC(di) ‖2 (where NNC(di) is the NN-
descriptor ofdi in classC). Although NBNN is extremely
simple and requires no learning/training, its performance
ranks among the top leading learning-based image classi-
fiers. Empirical comparisons are shown on several chal-
lenging databases (Caltech-101,Caltech-256 and Graz-01).

The paper is organized as follows: Sec.2 discusses the
causes for the inferior performance of standard NN-based
image classifiers. Sec.3 provides the probabilistic formu-
lation and the derivation of the optimal Naive-Bayes image
classifier. In Sec.4 we show how the optimal Naive-Bayes
classifier can be accurately approximated with a very sim-
ple NN-based classifier (NBNN). Finally, Sec.5 provides
empirical evaluation and comparison to other methods.

2. What degrades NN-image classification?

Two practices commonly used in image classification
lead to significant degradation in the performance of non-
parametric image classifiers.

2.1. Quantization damages non-parametric classifiers

Descriptor quantization is often used to generate code-
books (or “bags-of-words”) for obtaining compact image
representations (e.g., compact histograms of quantized de-
scriptors). A large set of features/descriptors taken from

1Naive Bayes assumption: Image descriptors are i.i.d. given image class.

(a) (b) (c) (d)
Figure 1.Effects of descriptor quantization – Informative de-
scriptors have low database frequency, leading to high quan-
tization error. (a) An image from the Face class in Cal-
tech101. (b) Quantization error of densely computed image de-
scriptors (SIFT) using a large codebook (size6, 000) of Caltech-
101 (generated using [14]). Red = high error; Blue = low error.
The most informative descriptors (eye, nose, etc.) have the highest
quantization error. (c) Green marks the8% of the descriptors in
the image that are most frequent in the database (simple edges).
(d) Magenta marks the8% of the descriptors in the image that are
least frequent in the database (mostly facial features).

the data (typically hundreds of thousands of descriptors ex-
tracted from the training images), is quantized to a rather
small codebook (typically into200 − 1000 representative
descriptors). Lazebnik et al. [16] further proposed to add
rough quantized location information to the histogram rep-
resentation. Such coarsely-quantized descriptor codebooks
are necessary for practical use of SVM-based methods for
image classification [6, 16, 27]. Such quantized codebooks
were also used in the NN-image classification methods
compared to in [27].

However, the simplicity and compactness of such a quan-
tized codebook representation comes with a high cost: As
will be shown next, the amount of discriminative informa-
tion is considerably reduced due to the rough quantization.
Learning-based algorithms can compensate for some of this
information loss by their learning phase, leading to good
classification results. This, however, is not the case for sim-
ple non-parametric algorithms, since they have no training
phase to “undo” the quantization damage.

It is well known that highly frequent descriptors have low
quantization error, while rare descriptors have high quan-
tization error. However, the most frequent descriptors in
a large database of images (e.g., Caltech-101) comprise of
simple edges and cornersthat appear abundantly in all the
classes within the database, and therefore are least informa-
tive for classification (provide very low class discriminativ-
ity). In contrast, the most informative descriptors for clas-
sification are the ones found in one (or few) class, but are
rare in other classes. Thesediscriminative descriptors tend
to be rarein the database, hence get high quantization error.
This problem is exemplified in Fig.1 on a face image from
Caltech-101, even when using a relatively large codebook
of quantized descriptors.

As noted before [14, 26], when densely sampled im-
age descriptors are divided into fine bins, the bin-density
follows a power-law (also known as long-tail or heavy-tail
distributions). This implies that most descriptors are infre-
quent (i.e., found in low-density regions in the descriptor



space), therefore rather isolated. In other words, there are
almost no ‘clusters’ in the descriptor space. Consequently,
any clustering to a small number of clusters (even thou-
sands) will inevitably incur a very high quantization error
in most database descriptors. Thus,such long-tail descrip-
tor distribution is inherently inappropriate for quantization.

High quantization error leads to a drop in the discrimi-
native power of descriptors. Moreover,the more informa-
tive (discriminative) a descriptor is, the more severe the
degradation in its discriminativity. This is shown quan-
titatively in Fig. 2. The graph provides an evidence to
the severe drop in the discriminativity (informativeness) of
the (SIFT) descriptors in Caltech-101 as result of quanti-
zation. The descriptor discriminativity measure of [2, 26]
was used:p(d|C)/p(d|C), which measures how well a de-
scriptord discriminates between its classC and all other
classesC. We compare the average discriminativity of
all descriptors in all Caltech-101 classes after quantization:
p(dquant|C)/p(dquant|C), to their discriminativity before
quantization.

Alternative methods have been proposed for generating
compact codebooks via informative feature selection [26,
2]. These approaches, however, discard all but a small set
of highly discriminative descriptors/features. In particular,
they discard all descriptors withlow-discriminativity. Al-
though individually such descriptors offer little discrimina-
tive power, there is ahuge numberof such descriptors [26].
When considered in unison, they offer significant discrimi-
native power (this is like having a huge ensemble of ‘very
weak classifiers’). This discriminative power is not ex-
ploited when using sparse informative feature selection.

In other words, both quantization and informative feature
selection on a long-tail distribution will incur a large infor-
mation loss. In contrast, we propose (Sec.4) an alternative
approach to efficiently approximate the descriptor distribu-
tion, without resorting to quantization or feature selection.
This is achieved by using NN-distances in descriptor space,
and is shown to be highly suitable for long-tail distributions.
Our NBNN algorithm, which employs this approximation,
can exploit the discriminative power of both (few) high and
(many) low informative descriptors.

In Sec.5 we empirically show that quantization is one
of the major sources for inferior performance in non-
parametric image classification. Unlike most reported NN-
image classifiers, the one reported in Berg et al. [30] re-
frained from descriptor quantization and used the raw un-
quantized image descriptors (Geometric Blur). Neverthe-
less, their NN-Image classifier still provided low perfor-
mance relative to their SVM-KNN method. We suggest that
the main reason for this gap is the use of “Image-to-Image”
distances, as explained next.

Figure 2.Effects of descriptor quantization – Severe drop in
descriptor discriminative power. We generated a scatter plot
of descriptor discriminative power before and after quantization
(for a very large sample set of SIFT descriptorsd in Caltech-101,
each for its respective classC). We then averaged this scatter plot
along the y-axis. This yields the “Average discriminative power
after quantization” (the RED graph). The display is in logarithmic
scale in both axes. NOTE: The more informative (discriminative)
a descriptord is, the larger the drop in its discriminative power.

2.2. Image-to-Image vs. Image-to-Class Distance

In this section we argue that “Image-to-Image” dis-
tance, which is fundamental to Kernel methods (e.g., SVM,
RVM), significantly limits the generalization capabilities of
non-parametric image classifiers when the number of la-
belled (‘training’) images is small.

NN-image classifiers provide good image classification
when the query image is similar to one of the labelled im-
ages in its class. Indeed, NN-image classifiers have proved
to be highly competitive in restricted image classification
domains (e.g., OCR and Texture Classification [30]), where
the number of labelled database images is very high relative
to the class complexity. From a theoretical point of view,
NN classification tends to the Bayes optimal classifier as
the sample size tends to infinity[7].

However, NN-image classifiers cannot generalize much
beyond the labelled image set. In many practical cases, the
number of “samples” (the number of training/labelled im-
ages) is very small relative to the class complexity (e.g.,
10 − 30 per class). When there are only few labelled im-
ages for classes with large variability in object shape and
appearance (as in the Ballet example of Fig.3), bad classi-
fication is obtained.

When images are represented by “bag-of-features” his-
tograms, “Image-to-image” distance becomes the ‘distance’
between two descriptor distributions of the two images
(which can be measured via histogram intersection, Chi-
square, or KL-divergence). “Image-to-Image” KL-distance
(divergence) involves measuring the average log-likelihood
of each descriptord ∈ I1 given the descriptor distribution
in I2 [28]. Consequently, NN-Image classifiers employ the
descriptor distribution of each individual imageI ∈ C sep-
arately. If, instead, we used the descriptor distribution of



Figure 3.“Image-to-Image” vs. “Image-to-Class” distance. A
Ballet class with large variability and small number (three) of ‘la-
belled’ images (bottom row). Even though the “Query-to-Image”
distance is large to each individual ‘labelled’ image, the “Query-
to-Class” distance is small.Top right image: For each descrip-
tor at each point inQ we show (in color) the ‘labelled’ image
which gave it the highest descriptor likelihood. It is evident that
the new query configuration is more likely given the three images,
than each individual image seperately. (Images taken from [4].)

the entire classC (using all imagesI ∈ C), we would
get better generalization capabilities than by employing in-
dividual “Image-to-Image” measurements. Such a direct
“Image-to-Class” distance can be obtained by computing
the KL-distance between the descriptor distributions ofQ
andC. As can be seen in Fig.3, even though the “Query-
to-Image” KL-distance is large for all the ‘labelled’ images
in the Ballet class, the “Query-to-Class” KL-distance may
still be small, enabling correct classification. Inferring new
image configurations by “composing pieces” from a set of
other images was previously shown useful in [17, 4].

We prove (Sec.3) that under the Naive-Bayes assump-
tion, theoptimal distance to use in image classification is
the KL “Image-to-Class” distance, and not the commonly
used “Image-to-Image” distribution distances (KL,χ2, etc.)

3. Probabilistic Formulation

In this section we derive the optimal Naive-Bayes im-
age classifier, which is approximated by NBNN (Sec.4).
Given a new query (test) imageQ, we want to find its
classC. It is well known [7] that maximum-a-posteriori
(MAP) classifierminimizesthe average classification er-
ror: Ĉ = arg maxC p(C|Q). When the class priorp(C)
is uniform, the MAP classifier reduces to the Maximum-
Likelihood (ML) classifier:

Ĉ = arg max
C

p(C|Q) = arg max
C

p(Q|C).

Let d1, ..., dn denote all the descriptors of the query im-
ageQ. We assume the simplest (generative) probabilistic
model, which is the Naive-Bayes assumption (that the de-
scriptorsd1, ..., dn of Q are i.i.d. given its classC), namely:

p(Q|C) = p(d1, .., dn|C) =
n∏

i=1

p(di|C)

Taking the log probability of the ML decision rule we get:

Ĉ = arg max
C

log(p(C|Q)) = arg max
C

1
n

n∑

i=1

log p(di|C)

(1)
The simple classifier implied by Eq. (1) is theoptimal clas-
sification algorithmunder the Naive-Bayes assumption. In
Sec4 we show how this simple classifier can be accurately
approximated using a non-parametric NN-based algorithm
(without descriptor quantization).

Naive-Bayes classifier⇔ Minimum “Image-to-Class”
KL-Distance: In Sec.2.2we discussed the generalization
benefits of using an “Image-to-Class” distance. We next
show that the above MAP classifier of Eq. (1) is equivalent
to minimizing “Query-to-Class” KL-distances.

Eq. (1) can be rewritten as:

Ĉ = arg max
C

∑

d

p(d|Q) log p(d|C)

where we sum over all possible descriptorsd. We can sub-
tract a constant term independent ofC from the right hand
side of the above equation, without affectinĝC. By sub-
tracting

∑
d p(d|Q) log p(d|Q), we get:

Ĉ = arg max
C

(
∑

d∈D

p(d|Q) log
p(d|C)
p(d|Q)

)

= arg min
C

( KL(p(d|Q)‖p(d|C)) ) (2)

where KL(·‖·) is the KL-distance (divergence) between
two probability distributions. In other words, under the
Naive-Bayes assumption,the optimal MAP classifiermini-
mizes a “Query-to-Class” KL-distance between the descrip-
tor distributions of the queryQ and the classC.

A similar relation between Naive-Bayes classification
and KL-distance was used in [28] for texture classifica-
tion, yet between pairs of images (i.e., “Image-to-Image”
distances and not “Image-to-Class” distances). Distances
between descriptor distributions for the purpose of classifi-
cation have also been used by others [6, 16, 20, 27, 30], but
again – betweenpairs of images.

4. The Approximation Algorithm Using NN

In this section we present the “NBNN” classifier, which
accurately approximates the optimal MAP Naive-Bayes im-
age classifier of Sec.3.

Non-Parametric Descriptor Density Estimation:
The optimal MAP Naive-Bayes image classifier of Eq. (1)
requires computing the probability densityp(d|C) of de-
scriptord in a classC. Because the number of local descrip-
tors in an image database ishuge(on the order of the num-
ber of pixels in the database), a Parzen density estimation



provides an accurate non-parametric approximation of the
continuous descriptor probability densityp(d|C) [7]. Let
dC
1 , .., dC

L denote all the descriptors obtained from all the
images contained in classC. Then the Parzen likelihood
estimationp̂(d|C) is:

p̂(d|C) =
1
L

L∑

j=1

K(d− dC
j ) (3)

where K(.) is the Parzen kernel function (which is
non-negative and integrates to 1; typically a Gaussian:
K(d− dC

j ) = exp(− 1
2σ2 ‖ d− dC

j ‖2)). As L approaches
infinity, andσ (the width ofK(.)) reduces accordingly,̂p
converges to the true densityp(d|C) [7].

In principle, to obtain high accuracy,all the database de-
scriptorsshould be used in the density estimation of Eq. (3).
While feasible, this is computationally time-consuming
(since it requires computing the distance(d − dC

j ) for all
descriptordC

j (j = 1..L) in each class). We next show
an efficient and accurate nearest-neighbor approximation of
this Parzen estimator.

The NBNN Algorithm:
Due to the long-tail characteristic of descriptor distribu-
tions, almost all of the descriptors are rather isolated in the
descriptor space, therefore very far from most descriptors
in the database. Consequently, all of the terms in the sum-
mation of Eq. (3), except for a few, will be negligible (K
exponentially decreases with distance) . Thus we can accu-
rately approximate the summation in Eq. (3) using the (few)
r largest elements in the sum. Theser largest elements cor-
respond to ther nearest neighborsof a descriptord ∈ Q
within the class descriptorsdC

1 , .., dC
L ∈ C:

p
NN

(d|C) =
1
L

r∑

d=1

K(d− dC

NNj

) (4)

Note that the approximation of Eq. (4) alwaysbounds
from belowthe complete Parzen window estimate of Eq. (3).

Fig. 4 shows the accuracy of such NN approximation of
the distributionp(d|C). Even when using a very small num-
ber of nearest neighbors (as small asr = 1, a singlenear-
est neighbor descriptor for eachd in each classC), a very
accurate approximationp

NN
(d|C) of the complete Parzen

window estimate is obtained (see Fig.4.a). Moreover, NN
descriptor approximationhardly reduces the discriminative
power of descriptors(see Fig.4.b). This is in contrast to
the severe drop in discriminativity of descriptors due to de-
scriptor quantization.

We have indeed found very small differences in the ac-
tual classification results when changingr from 1 to 1000
nearest neighbors. The case ofr = 1 is especially conve-
nient to use, sincelog p(d|C) obtains a very simple form:
logP (Q|C) ∝ −∑n

i=1 ‖ di − NNC(di) ‖2 and there is no
longer a dependence on the variance of the Gaussian kernel
K. This simple form of the classifier was used in all the
experimental results reported in Sec.5.

(a) (b)

Figure 4.NN descriptor estimation preserves descriptor den-
sity distribution and discriminativity. (a) A scatter plot of
the1-NN probability density distributionpNN(d|C) vs. the true
distributionp(d|C). Brightness corresponds to the concentration
of points in the scatter plot. The plot shows that1-NN distribu-
tion provides a very accurate approximation of the true distribu-
tion. (b) 20-NN descriptor approximation (Green graph) and1-
NN descriptor approximation (Blue graph) preserve quite well the
discriminative power of descriptors. In contrast, descriptor quan-
tization (Red graph) severely reduces discriminative power of de-
scriptors. Displays are in logarithmic scale in all axes.

The resulting Naive-Bayes NN image classifier (NBNN)
can therefore be summarized as follows:

The NBNN Algorithm:
1. Compute descriptorsd1, ..., dn of the query imageQ.
2. ∀di ∀C compute the NN ofdi in C: NNC(di).
3. Ĉ = arg minC

∑n
i=1 ‖ di − NNC(di) ‖2.

Despite its simplicity, this algorithm accurately approx-
imates the theoretically optimal Naive-Bayes classifier,
requires no learning/training, and is efficient.

Combining Several Types of Descriptors: Recent
approaches to image classification [5, 6, 20, 27] have
demonstrated that combining several types of descriptors
in a single classifier can significantly boost the classi-
fication performance. In our case, when multiple (t)
descriptor types are used, we represent each point in
each image usingt descriptors. Using a Naive Bayes
assumption on all the descriptors of all types yields a
very simple extension of the NBNN algorithm above.
The decision rule linearly combines the contribution
of each of thet descriptor types. Namely, Step (3) in
the above single-descriptor-type NBNN is replaced by:
Ĉ = arg minC

∑t
j=1 wj ·

∑n
i=1 ‖ dj

i − NNC(dj
i ) ‖2,

wheredj
i is the i-th query descriptor of typej, andwj are

determined by the variance of the Parzen Gaussian kernel
Kj corresponding to descriptor typej. Unlike [5, 6, 20, 27],
who learn weightswj per descriptor-type per class, ourwj

are fixed and shared by all classes.

Computational Complexity & Runtime: We use the ef-
ficient approximate-r-nearest-neighbors algorithm and KD-
tree implementation of [23]. The expected time for a NN-
search is logarithmic in the number of elements stored in
the KD-tree [1]. Note that the KD-tree data structure is



used only for efficiency of NN-search. It requires no learn-
ing/training of parameters. This pre-processing step has a
low complexity (O(N log N) in the number of elementsN )
and has a low runtime (e.g., a total of a few seconds for con-
structing all the KD-trees for all the classes in Caltech-101).

Let nlabel be the number of labelled (‘training’) images
per class,nC the number of classes andnD the number of
descriptors per image. Each KD-tree containsnlabel ·nD de-
scriptors. Each of thenD query descriptors searches within
nC KD-trees. Thus, the time complexity for one query im-
age isO(nC ·nD ·log(nlabel · nD)) = O(nC ·nD ·log(nD))
(since usuallynlabel ¿ nD). There is no training time in
our case, except for the fast preprocessing of the KD-tree.

For example, the run time of NBNN on Caltech-101 for
classifying an image with densely sampled SIFT descriptors
andnlabel = 30, takes1.6 sec. per class.

5. Results and Experiments

In this section we experimented with NBNN, and com-
pared its performance to other classifiers (learning-based
and NN-based). Implementation details are provided in
Sec.5.1. Sec.5.2 provides performance comparisons on
Caltech-101, Caltech-256 and Graz-01. It shows that al-
though our NBNN classifier is extremely simple and re-
quires no learning/training, its performance ranks among
the top leading learning-based image classifiers. Sec5.3
further demonstrates experimentally the damaging effects
of using descriptor-quantization or “image-to-image” dis-
tances in a non-parametric classifier.

5.1. Implementation

We tested our NBNN algorithm with asingle descriptor-
type(SIFT), and with a combination of5 descriptor-types:
1. The SIFT descriptor ([19]).
2 + 3. Simple Luminance & Color Descriptors: We
use log-polar sampling of raw image patches, and take
the luminance part(L* from a CIELAB color space) as a
luminance descriptor, and thechromatic part(a*b*) as a
color descriptor. Both are normalized to unit length.
4. Shape descriptor: We extended the Shape-Context
descriptor [22] to containedge-orientation histogramsin
its log-polar bins. This descriptor is applied to texture-
invariant edge maps [21], and is normalized to unit length.
5. The Self-Similarity descriptor of [25].

The descriptors are densely computed for each image, at
five different spatial scales, enabling some scale invariance.
To further utilize rough spatial position (similar to [30, 16]),
we augment each descriptord with its locationl in the im-
age: d̃ = (d, αl). The resultingL2 distance between de-
scriptors,‖d̃1−d̃2‖2 = ‖d1−d2‖2+α2‖l1−l2‖2, combines
descriptor distance and location distance. (α was manu-

NN-based method Performance
SPM NN Image [27] 42.1± 0.81%
GBDist NN Image [27] 45.2± 0.96%
GB Vote NN [3] 52%
SVM-KNN [30] 59.1± 0.56%
NBNN (1 Desc) 65.0± 1.14%
NBNN (5 Desc) 72.8± 0.39%

Table 1.Comparing the performance of non-parametric NN-based
approaches on the Caltech-101 dataset (nlabel = 15). All the
listed methods do not require a learning phase.

ally set in our experiments. The same fixedα was used
for Caltech-101 and Caltech-256, andα = 0 for Graz-01.)

5.2. Experiments

Following common benchmarking procedures, we split
each class to randomly chosen disjoint sets of ‘training im-
ages’ and ‘test images’. In our NBNN algorithm, since there
is no training, we use the term ‘labelled images’ instead of
‘training images’. In learning-based methods, the training
images are fed to a learning process generating a classifier
for the test phase. In our case, there is no such learning
phase and the classifier is fixed for all image sets.

We denote bynlabel the number of ‘labelled images’
per class. We use commonly used numbers of labelled
(training) and test images: On Caltech-101 we randomly
selectednlabel = 1, 5, 15, 30 images per class and tested on
20 images per class. On Caltech-256 we randomly selected
nlabel = 1, 5, 10, 20, 30 images per class and tested on25
images per class. The entire procedure was repeated several
times (randomly selecting labelled and test sets) and each
time performance is computed as the mean recognition
rate per class. The benchmark procedure for Graz-01 is
somewhat different, and will be described later.

Caltech-101: This database [8] has 101 classes (animals,
furniture, vehicles, flowers, etc.) with high intra-class ap-
pearance and shape variability. We show three types of
comparisons on Caltech-101: (i) Comparing performance
of NBNN to other NN-based methods (Table1). (ii) Com-
paring NBNN with a single descriptor-type to other single-
descriptor-type image classifiers (both learning-based and
NN-based) (Fig.5.a). (iii) Comparing NBNN with mul-
tiple descriptor-types to other multi-descriptor-type image
classifiers (learning-based methods) (Fig.5.b).

Table 1 shows a performance comparison on Caltech-
101 for several NN-based methods. For this experiment
we used15 labelled images, in order to compare to num-
bers reported in the other works. Our single descrip-
tor NBNN algorithm (using SIFT) outperforms by a large
gap all NN-image methods. Moreover, it outperforms
‘SVM-KNN’ [ 30] (a hybrid between NN-based and SVM-
based, which was considered state-of-the-art until recently).



(a) (b)

Figure 5.Performance comparison on Caltech-101. (a) Single descriptor type methods:‘NBNN (1 Desc)’, ‘Griffin SPM’ [13], ‘SVM
KNN’ [30], ‘SPM’ [ 16], ‘PMK’ [ 12], ‘DHDP’ [ 29], ‘GB SVM’ (SVM with Geometric Blur) [27], ‘GB Vote NN’ [3], ‘GB NN’ (NN-
Image with Geometric Blur) [27], ‘SPM NN’ (NN-Image with Spatial Pyramids Match) [27]. (b) Multiple descriptor type methods:
‘NBNN (5 Desc)’, ‘Bosch Trees’ (with ROI Optimization) [5], ‘Bosch SVM’ [6], ‘LearnDist’ [ 11], ‘SKM’ [ 15], ‘Varma’ [ 27], ‘KTA’ [ 18].

Our multi-descriptor NBNN algorithm performs even better
(72.8% on 15 labelled images). ‘GB Vote NN’ [3] uses an
image-to-class NN-based voting scheme (without descrip-
tor quantization), but each descriptor votes only to asingle
(nearest) class, hence the inferior performance.

Fig. 5.a further shows that for a single descriptor-type,
our NBNN algorithmoutperforms all previously reported
learning-based methods. Note that results obtained by ‘GB
SVM’ (Varma et al. [27] using SVM with a single Geo-
metric Blur (GB) kernel), obtained results similar (slightly
worse) than our single-descriptor NBNN (but better than all
others). We suggest that the reason for their improved per-
formance relative to other methods is due to the fact that
they usedunquantized(GB) descriptors. Note that NBNN
obtained better performancewithout training, and with a
significantly lower runtime.

Fig. 5.b shows that when combining multiple descriptor-
types, NBNN compares in performance to ‘Bosch Trees
(ROI)’ [5], and performs better than all other previously
reported learning-based methods, with the exception of
‘Varma’ [27]. Note that unlike the other methods, we do
not learn class-adaptive combinations of descriptor types.

Caltech-256: This database [13] contains 256 categories
with higher intra-class variability than Caltech-101, and
higher object location variability within the image. Com-
parison of NBNN to other methods are displayed on Fig.6.
The large positional variability of objects in images of
Caltech-256 was effectively addressed by the ROI (Region
Of Interest) optimization of [5], leading to better perfor-
mance of ‘Bosch Trees (ROI)’ relative to NBNN for a small
number of training (labelled) images. However, due to the
generalization capabilities of NBNN (resulting from using
“image-to-class” distances – see Sec.2.2), the gap is closed
when the number of training (labelled) images reaches30.

Figure 6.Performance comparison on the Caltech-256 dataset.
Single descriptor-type: ‘NBNN (1 Desc)’, ‘Griffin SPM’ [13].
Multi-descriptor-type: ‘NBNN (5 Desc)’, ‘Bosch SVM’ [6],
‘Bosch Trees’ (with ROI Optimization) [5], ‘Varma’ [ 27]

Graz-01: The Graz-01 database [24] has two object-
classes (bikes and persons), and one background-class. It
is characterized by very high intra-class variations of scale,
3D orientations and location of the objects within the im-
age, and there is much more background clutter than in
the Caltech databases. The classification task in Graz-01
is Class vs. No-Class. We follow the experimental setup
of [16, 24, 31]: For each object (persons/bikes) we ran-
domly sample100 negative examples (of which50 images
are drawn from the background), and100 positive exam-
ples. The test set is similarly distributed. Table2 reports
the ROC equal error rate averaged over five runs. We com-
pare performance of NBNN against [16, 24, 31]. Although
NBNN is a non-parametric (no-learning) method, its per-



Class Opelt Zhang Lazebnik NBNN NBNN
[24] [31] [16] (1 Desc) (5 Desc)

Bikes 86.5 92.0 86.3±2.5 89.2±4.7 90.0±4.3
People 80.8 88.0 82.3±3.1 86.0±5.0 87.0±4.6

Table 2.Results on Graz-01

No Quant. With Quant.
“Image-to-Class” 70.4% 50.4%(-28.4%)
“Image-to-Image” 58.4%(-17%) -

Table 3.Impact of introducing descriptor quantization or “Image-
to-Image” distance into NBNN (using SIFT descriptor on Caltech-
101,nlabel = 30).

formance is better than the learning-based classifiers of [16]
(SVM-based) and [24] (Boosting based). NBNN performs
only slightly worse than the SVM-based classifier of [31].

5.3. Impact of Quantization & Image-to-Image Dist.

In Sec.2 we have argued that descriptor quantization
and “Image-to-Image” distance degrade the performance of
non-parametric image classifiers. Table3 displays the re-
sults of introducing either of them into NBNN (tested on
Caltech-101 withnlabel = 30). The baseline performance
of NBNN (1-Desc) with a SIFT descriptor is 70.4%. If we
replace the “Image-to-Class” KL-distance in NBNN with
an “Image-to-Image” KL-distance, the performance drops
to 58.4% (i.e., 17% drop in performance). To check the ef-
fect of quantization, the SIFT descriptors are quantized to a
codebook of 1000 words. This reduces the performance of
NBNN to 50.4% (i.e., 28.4% drop in performance).

The spatial pyramid match kernel of [16] measures
distances between histograms ofquantizedSIFT descrip-
tors, but within an SVM classifier. Their SVM learning
phase compensates for some of the information loss due
to quantization, raising classification performance up to
64.6%. However, comparison to the baseline performance
of NBNN (70.4%) implies that the information loss in-
curred by the descriptor quantization was larger than the
gain obtained by using SVM.

Acknowledgment: The authors would like to thank
Lena Gorelick for her many wise and valuable comments.
This work was funded in part by the Israel Science Founda-
tion and the Israeli Ministry of Science.

References
[1] S. Arya and H.-Y. A. Fu. Expected-case complexity of ap-

proximate nearest neighbor searching. InSymposium on Dis-
crete Algorithms, 2000.

[2] E. Bart and S. Ullman. Class-based matching of object parts.
In CVPR Workshop on Image and Video Registration, 2004.

[3] A. Berg. Shape matching and object recognition. InPh.D.
Thesis, Computer Science Division, Berkeley, 2005.

[4] O. Boiman and M. Irani. Similarity by composition. InNIPS,
2006.

[5] A. Bosch, A. Zisserman, and X. Munoz. Image classification
using random forests and ferns. InICCV, 2007.

[6] A. Bosch, A. Zisserman, and X. Munoz. Representing shape
with a spatial pyramid kernel. InCIVR, 2007.

[7] R. Duda, P. Hart, and D. Stork.Pattern Classification. Wiley,
New York, 2001.

[8] R. Fei-Fei, L.and Fergus and P. Perona. Learning generative
visual models from few training examples: an incremental
bayesian approach tested on 101 object categories. InCVPR
Workshop on Generative-Model Based Vision, 2004.

[9] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for
object recognition.IJCV, 61, 2005.

[10] R. Fergus, P. Perona, and A. Zisserman. Object class recog-
nition by unsupervised scale-invariant learning. InCVPR’03.

[11] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-
consistent local distance functions for shape-based image re-
trieval and classification. InICCV, 2007.

[12] K. Grauman and T. Darrell. The pyramid match kernel:
Discriminative classification with sets of image features. In
ICCV, 2005.

[13] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-
egory dataset. Technical report, CalTech, 2007.

[14] F. Jurie and B. Triggs. Creating efficient codebooks for vi-
sual recognition. InICCV, 2005.

[15] A. Kumar and C. Sminchisescu. Support kernel machines
for object recognition. InICCV, 2007.

[16] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. InIEEE Conference on Computer Vision
and Pattern Recognition, 2006.

[17] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-
egorization and segmentation with an implicit shape model.
In ECCV Workshop on Statistical Learning in CV, 2004.

[18] Y. Lin, T. Liu, and C. Fuh. Local ensemble kernel learning
for object category recognition. InCVPR, 2007.

[19] D. Lowe. Distinctive image features from scale-invariant
keypoints.IJCV, 60(2), 2004.

[20] M. Marszałek, C. Schmid, H. Harzallah, and J. van de Wei-
jer. Learning object representations for visual object class
recognition. InVisual Recognition Challange, 2007.

[21] C. M. J. Martin, D.R.; Fowlkes. Learning to detect natural
image boundaries using local brightness, color, and texture
cues.PAMI, 26(5), 2004.

[22] G. Mori, S. Belongie, and J. Malik. Efficient shape matching
using shape contexts.PAMI, 27(11), 2005.

[23] D. Mount and S. Arya. Ann: A library for approximate near-
est neighbor searching. InCGC 2nd Annual Workshop on
Comp. Geometry, 1997.

[24] A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Weak hy-
potheses and boosting for generic object detection and recog-
nition. In ECCV, 2004.

[25] E. Shechtman and M. Irani. Matching local self-similarities
across images and videos. InCVPR, 2007.

[26] T. Tuytelaars and C. Schmid. Vector quantizing feature space
with a regular lattice. InICCV, 2007.

[27] M. Varma and D. Ray. Learning the discriminative power-
invariance trade-off. InICCV, 2007.

[28] M. Varma and A. Zisserman. Unifying statistical texture
classification frameworks.IVC, 22(14), 2004.

[29] G. Wang, Y. Zhang, and L. Fei-Fei. Using dependent re-
gions for object categorization in a generative framework. In
CVPR, 2006.

[30] H. Zhang, A. Berg, M. Maire, and J. Malik. Svm-knn: Dis-
criminative nearest neighbor classification for visual cate-
gory recognition. InCVPR, 2006.

[31] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local
features and kernels for classification of texture and object
categories: A comprehensive study.IJCV, 73(2), 2007.


