In Defense of Nearest-Neighbor Based Image Classification

Oren Boiman Eli Shechtman Michal Irani
The Weizmann Institute of Science Adobe Systems Inc. & The Weizmann Institute of Science
Rehovot, ISRAEL University of Washington Rehovot, ISRAEL
Abstract classifiers that require an intensive learning/training phase

of the classifier parameters (e.g., parameters of SEGM [

State-of-the-art image classification methods require an(12, (13,115, 16, 118,120, [26, 27, 31], Boosting 4], paramet-
intensive learning/training stage (using SVM, Boosting, ric generative models3[ 10, 29, decision treesq], frag-
etc.) In contrast, non-parametric Nearest-Neighbor (NN) ments and object part®,[[9], etc.) These methods are
based image classifiers require no training time and have also known agparametric methods The leading image
other favorable properties. However, the large performance classifiers, to date, are learning-based classifiers, in par-
gap between these two families of approaches rendered NNticular SVM-based methods (e.dq, |20, 27]). (i) Non-
based image classifiers useless. parametric classifiers that base their classification deci-

We claim that the effectiveness of non-parametric NN- sion directly on the data, and requine learning/training
based image classification has been considerably under-of parameters. The most common non-parametric meth-
valued. We argue that two practices commonly used in im-ods rely on Nearest-Neighbor (NN) distance estimation, re-
age classification methods, have led to the inferior perfor- ferred to here as “NN-based classifiers”. A special case of
mance of NN-based image classifiers: (i) Quantization of these is the “Nearest-Neighbor-Image” classifier (in short -
local image descriptors (used to generate “bags-of-words”, “NN-Image”), which classifies an image by the class of its
codebooks). (i) Computation of ‘Image-to-Image’ dis- nearest (most similar) image in the database. Although this
tance, instead of ‘Image-to-Class’ distance. is the most popular among the NN-based image classifiers,

We propose a trivial NN-based classifier — NBNN, it provides inferior performance relative to learning-based
(Naive-Bayes Nearest-Neighbor), which employs NN- methods27].

distances in the space of the local image descriptors (and  Non-parametric classifiers have several very important
not in the space of images). NBNN computes direct ‘image-advantages that are not shared by most learning-based ap-
tO'CIaSS’ distances WIthOUt descriptor quantization. We fur' proaches: (|) Can natura”y hand|e a huge number Of C|asses'
ther show that under the Naive-Bayes assumption, the theoyjj) Avoid overfitting of parameters, which is a central is-
retically optimal image classifier can be accurately approx- sye in learning based approaches. (iii) Require no learn-
imated by NBNN. ing/training phase. Although training is often viewed as
Although NBNN is extremely simple, efficient, and re- 3 one-time preprocessing step, retraining of parameters in
qUires no Iearning/training phase, its performance ranks |arge dynamic databases may take dayS, whereas Chang_

among the top leading learning-based image classifiers. ing classes/training-sets is instantaneous in non-parametric
Empirical comparisons are shown on several challenging ¢|assifiers.

databases (Caltech-101,Caltech-256 and Graz-01). Despite these advantages, the large performance gap

between non-parametric NN-image classifiers and state-
. of-the-art learning-based approaches led to the percep-
1. Introduction tion that non-parametric image classification (in particular

The problem of image classification has drawn consider- NN-based image classification) is not useful. We claim
able attention in the Computer Vision community. The con- that the capabilities of non-parametric image classification
centrated effort of the research community in the last few have been considerably under-valued. We argue that two
years resulted in many novel approaches for image classifiPractices, that are commonly used in image classification,
cation, that progressed the field quickly in a few years. For lead to significant degradation in the performance of non-
instance, in a course of three years, the classification rate?arametric image classifiers:
on the Caltech-101 database climbed from uri&s in (i) Descriptor quantization: Images are often repre-
2004 B] to almost90% in 2007 7. sented by the collection of their local image descriptors

Image classification methods can be roughly divided into (e.g., SIFTIL9], Geometric-Blur (GB)I80], image patches,
two broad families of approaches: (Dearning-based etc.) These are often quantized to generate relatively small



“codebooks” (or “bags-of-words”), for obtaining compact
image representations. Quantization gives rise to a signifi-
cant dimensionality reduction, but also to significant degra-
dation in the discriminative power of descriptors. Such di-
mensionality reduction is essential for many learning-based
classifiers (for computational tractability, and for avoid- @)

© ()

(b)

ing overfitting). However, it isinnecessary and especially Figure 1.Effects of descriptor quantization — Informative de-

; _ ; PP scriptors have low database frequency, leading to high quan-
harmfulin the case of non-parametric classification, that hastization arror (a) An image from the Face class in Cal-

no training phase to compensate for this loss of information. tech101. (b) Quantization error of densely computed image de-
(i) ‘Image-to-Image’ distancés essential to Kernel meth-  scriptors (SIFT) using a large codebook (size@00) of Caltech-

i _ i i _ 101 (generated usinglf]). Red = high error; Blue = low error.
ods (e.g., SVM). When used in NN-Image classifiers, it pro The most informative descriptors (eye, nose, etc.) have the highest

vides good image classification only when the query image quantization error. (c) Green marks th#% of the descriptors in
is similar to one of the database images, but does not genthe image that are most frequent in the database (simple edges).

eralize much beyond the labelled images. This limitation is (d) Magenta marks the of the descriptors in the image that are
. . . . least frequent in the database (mostly facial features).
especially severe for classes with large diversity.

In this. paper we propose a re_markably simple NON" the data (typically hundreds of thousands of descriptors ex-
parametric NN-based classifier, which requires no descnp—tracted from the training images), is quantized to a rather

torquarl;t\llzatlrc])n, ar;d emp(;oys;’:ldll:leqt “Ir;age-to-CIasf’@s— small codebook (typically int@00 — 1000 representative
tance. We show that under the Nalve-Bayes assumption yeqqriniors). Lazebnik et allL§] further proposed to add

the thepretically opt_ima_ll image cla_ssifiean be acc_:urately rough gquantized location information to the histogram rep-
?pproxrl]r_nat:ed b¥ this S|mple”algof:!tr;]m. Fodr bfrev!:cy, WETe" resentation. Such coarsely-quantized descriptor codebooks
Be rto t'\lls c aSS|'\||er ahSlt:lB'I,\IN » which stands for “Naive- are necessary for practical use of SVM-based methods for
ayes egrest—belg or .I imple: . , image classificatiorig, [16,127]. Such quantized codebooks
NBNN Is em arrassingly simple- G|v_en a query Im- \yere also used in the NN-image classification methods
age, compute all its local image descriptats, ..., d,. compared to in27]
Search for the classy which minimizes the sum However, the simplicity and compactness of such a quan-

n . N (12 N i R
gji:l.H tdZ f(';'\.IC(Tll) ”C (V'X\rllire T]I\ﬁ(Bdlil)N IS thte NNl tized codebook representation comes with a high cost: As
escriptor ofd; in classC). oug IS eXreMely il be shown next, the amount of discriminative informa-

simple and requires no Ie'arnmg/trgmmg, Its performance' tion is considerably reduced due to the rough quantization.
ranks among the top leading learning-based image classi-

. . . Learning-based algorithms can compensate for some of this
fiers. Empirical comparisons are shown on several chal-

; information loss by their learning phase, leading to good
Ien_?;]neg d:tgfa:i? (;:na.ltggheé?éflgalé?cgéﬁgcagiir?ﬁéo1)'classification results. This, however, is not the case for sim-
causesﬁ‘o?theI infegriorIZ erformancvé 6f stanldalrjd NN—basedple non-parametric algorithms, since they have no training
. e perto o phase to “undo” the quantization damage.
image classifiers. Se@. provides the probabilistic formu- . . .
lation and the derivation of the optimal Naive-Bayes image I IS we_II known that hlghly frequen_t descriptors have low
classifier. In SecZwe show how the optimal Naive-Bayes guantization error, while rare descriptors have high quan-

classifier can be accurately approximated with a very sim- gzlztr'og ;;:ZBaSZO(\;\;eiﬁ;’ (tehse(SOSth;eit%léirji gﬁsgg'atorrissénof
ple NN-based classifier (NBNN). Finally, Se& provides 9 9 9. b

empirical evaluation and comparison to other methods. simple edge; and cornetsat appear abundantly in a]l the
classes within the database, and therefore are least informa-

. e - tive for classification (provide very low class discriminativ-
- ? . . . .
2. What degrades NN-image classification? ity). In contrast, the most informative descriptors for clas-

Two practices commonly used in image classification Sification are the ones found in one (or few) class, but are
lead to Signiﬁcant degradation in the performance of non- rare in Other C|aSSGS. ThedBCI’Imlnatlve deSCI‘IDIOI’S tend
parametric image classifiers. to be rarein the database, hence get high quantization error.

This problem is exemplified in Fid on a face image from

2.1. Quantization damages non-parametric classifiers Caltech-101, even when using a relatively large codebook
. L of quantized descriptors.
Descriptor quantization is often used to generate code- .

W i o ) As noted before/14, 26], when densely sampled im-
books (or “bags-of-words”) for obtaining compact image : . . ' . . .

: . . age descriptors are divided into fine bins, the bin-density
representations (e.g., compact histograms of quantized de;

scriptors). A large set of features/descriptors taken from follows a power-law (also known as long-tail or heavy-tail
P ' 9 P distributions). This implies that most descriptors are infre-

INaive Bayes assumption: Image descriptors are i.i.d. given image claguent (i.e., found in low-density regions in the descriptor




space), therefore rather isolated. In other words, there are o
almost no ‘clusters’ in the descriptor space. Consequently, Hoesiy o %
any clustering to a small number of clusters (even thou- discriminativity 5
sands) will inevitably incur a very high quantization error after @ «g‘
in most database descriptors. Thsigch long-tail descrip- quantization =
tor distribution is inherently inappropriate for quantization p(a’ |C) *Dz E
quant =
High quantization error leads to a drop in the discrimi- p(d |€) e -g‘
native power of descriptors. Moreovehe more informa- e L A
tive (discriminative) a descriptor is, the more severe the YR e W W
degradation in its discriminativity This is shown quan- Diseriminstivity pld|C)
titatively in Fig.2. The graph provides an evidence to p\d|C

the severe drop in the discriminativity (informativeness) of gigure t2-ng_eCt$ of dte_SCfiptor quar\%zation - tsgvere dtrtop ir|1 .

: ; ) ._ descriptor discriminative power. e generated a scatter plo
the_ (SIFT) descnp_tors |n_ Ca_tlte_ch 101 as result of quanti of descriptor discriminative power before and after quantization
zation. The descriptor discriminativity measure [2f 26] (for a very large sample set of SIFT descriptdrim Caltech-101,
was usedp(d|C)/p(d|C), which measures how well a de- each for its respective clags). We then averaged this scatter plot

; Senrin ; along the y-axis. This yields the “Average discriminative power
scriptor d discriminates between its clags and all other after quantization” (the RED graph). The display is in logarithmic

Classesé. We compare the average discriminativity of scale in both axes. NOTE: The more informative (discriminative)
all descriptors in all Caltech-101 classes after quantization:a descriptord is, the larger the drop in its discriminative power.

P(dguant|C)/p(dquant|C), to their discriminativity before
quantization. 2.2. Image-to-Image vs. Image-to-Class Distance

Alternative methods have been proposed for generating In this section we argue that “Image-to-Image” dis-
compact codebooks via informative feature selectipf) [  tance, which is fundamental to Kernel methods (e.g., SVM,
2]. These approaches, however, discard all but a small seRVM), significantly limits the generalization capabilities of
of highly discriminative descriptors/features. In particular, non-parametric image classifiers when the number of la-

they discard all descriptors witlow-discriminativity Al- belled (‘training’) images is small.
though individually such descriptors offer little discrimina- NN-image classifiers provide good image classification
tive power, there is Auge numbeof such descriptors2g). when the query image is similar to one of the labelled im-

When considered in unison, they offer significant discrimi- ages in its class. Indeed, NN-image classifiers have proved
native power (this is like having a huge ensemble of ‘very to be highly competitive in restricted image classification
weak classifiers’). This discriminative power is not ex- domains (e.g., OCR and Texture Classificat®]), where
ploited when using sparse informative feature selection.  the number of labelled database images is very high relative
h ds. both L dinf ve f to the class complexity. From a theoretical point of view,
Iln O,t erworl S, bot .ltzqan.tlljza.tlon a?l 11N orm;’:ttlve g?ture NN classification tends to the Bayes optimal classifier as
se gctlon on a long-tail distribution wi |pcur a large infor- 4 sample size tends to infin[].
mation loss. In contrast, we propose (Sé)can alternative . o :
g . . N However, NN-image classifiers cannot generalize much
approach to efficiently approximate the descriptor distribu- . .
: . . N . beyond the labelled image set. In many practical cases, the
tion, without resorting to quantization or feature selection. B N - .
L ; . . . : number of “samples” (the number of training/labelled im-
This is achieved by using NN-distances in descriptor space, . ; .
. . . A ages) is very small relative to the class complexity (e.g.,
and is shown to be highly suitable for long-tail distributions. ;
: ; : . 10 — 30 per class). When there are only few labelled im-
Our NBNN algorithm, which employs this approximation, : R .
ages for classes with large variability in object shape and

can exploit t_he d|scr!m|nat|ve_power of both (few) high and appearance (as in the Ballet example of B)g.bad classi-
(many) low informative descriptors. S .
fication is obtained.

In Sec.5 we empirically show that quantization is one When images are represented by “bag-of-features” his-
of the major sources for inferior performance in non- tograms, “Image-to-image” distance becomes the ‘distance’
parametric image classification. Unlike most reported NN- between two descriptor distributions of the two images
image classifiers, the one reported in Berg et/al] fe- (which can be measured via histogram intersection, Chi-
frained from descriptor quantization and used the raw un- square, or KL-divergence). “Image-to-Image” KL-distance
qguantized image descriptors (Geometric Blur). Neverthe- (divergence) involves measuring the average log-likelihood
less, their NN-Image classifier still provided low perfor- of each descriptod € I; given the descriptor distribution
mance relative to their SVM-KNN method. We suggest that in I [28]. Consequently, NN-Image classifiers employ the
the main reason for this gap is the use of “Image-to-Image” descriptor distribution of each individual image= C sep-
distances, as explained next. arately. If, instead, we used the descriptor distribution of



KL(p,|p)=17.54 KL(p,|p,)=18.20

KL(p, | p,)=14.56

Figure 3."Image-to-Image” vs. “Image-to-Class” distance. A
Ballet class with large variability and small number (three) of ‘la-
belled’ images (bottom row). Even though the “Query-to-Image”
distance is large to each individual ‘labelled’ image, the “Query-
to-Class” distance is small.Top right image: For each descrip-

tor at each point inQ we show (in color) the ‘labelled’ image
which gave it the highest descriptor likelihood. It is evident that
the new query configuration is more likely given the three images,
than each individual image seperately. (Images taken f@o [

the entire classC' (using all images/ € C), we would
get better generalization capabilities than by employing in-
dividual “Image-to-Image” measurements. Such a direct
“Image-to-Class” distance can be obtained by computing
the KL-distance between the descriptor distributiong)of
andC. As can be seen in Fi@, even though the “Query-
to-Image” KL-distance is large for all the ‘labelled’ images
in the Ballet class, the “Query-to-Class” KL-distance may
still be small, enabling correct classification. Inferring new
image configurations by “composing pieces” from a set of
other images was previously shown usefull, [4].

We prove (Sec3) that under the Naive-Bayes assump-
tion, theoptimal distance to use in image classification is
the KL “Image-to-Class” distance, and not the commonly
used “Image-to-Image” distribution distances (Kl2, etc.)

3. Probabilistic Formulation

In this section we derive the optimal Naive-Bayes im-
age classifier, which is approximated by NBNN (Ség.
Given a new query (test) imagg@, we want to find its
classC. It is well known [7] that maximum-a-posteriori
(MAP) classifierminimizesthe average classification er-
ror: C' = argmaxc p(C|Q). When the class prigp(C)
is uniform, the MAP classifier reduces to the Maximum-
Likelihood (ML) classifier:

€ = argmaxp(C|Q) = arg max p(Q|C).

Let dy,...,d,, denote all the descriptors of the query im-
age(®. We assume the simplest (generative) probabilistic

model, which is the Naive-Bayes assumption (that the de-

scriptorsdy, ..., d,, of Q are i.i.d. given its clas§’), namely:

p(QIC) = p(dy, .., dn|C) = [ p(di|C)
=1
Taking the log probability of the ML decision rule we get:

1 n
= argmax — ; log p(d;|C)
1)

The simple classifier implied by Edl)is theoptimal clas-
sification algorithmunder the Naive-Bayes assumption. In
Sec4 we show how this simple classifier can be accurately
approximated using a non-parametric NN-based algorithm
(without descriptor quantization).

C =arg mcaxlog(p(C|Q))

Naive-Bayes classifier< Minimum “Image-to-Class”
KL-Distance: In Secl2.2we discussed the generalization
benefits of using an “Image-to-Class” distance. We next
show that the above MAP classifier of E) (s equivalent
to minimizing “Query-to-Class” KL-distances.

Eq. (1) can be rewritten as:

C = argmax zd:p(de) log p(d|C)

where we sum over all possible descriptdrdie can sub-
tract a constant term independent(dffrom the right hand
side of the above equation, without affectiGy By sub-
tracting) , p(d|Q) log p(d|Q), we get:

p(d|C)
¢ = argmax( ;p(de) log 1)

argmin( KL(p(dQ)[Ip(d|C)) )

)

= 2
where K L(-||-) is the KL-distance (divergence) between
two probability distributions. In other words, under the
Naive-Bayes assumptiothe optimal MAP classifiemini-
mizes a “Query-to-Class” KL-distance between the descrip-
tor distributions of the querg) and the clas§’.

A similar relation between Naive-Bayes classification
and KL-distance was used i2d] for texture classifica-
tion, yet between pairs of images (i.e., “Image-to-Image”
distances and not “Image-to-Class” distances). Distances
between descriptor distributions for the purpose of classifi-
cation have also been used by oth@&;slk, 20,127, 130], but
again — betweepairs of images

4. The Approximation Algorithm Using NN

In this section we present the “NBNN” classifier, which
accurately approximates the optimal MAP Naive-Bayes im-
age classifier of Se.

Non-Parametric Descriptor Density Estimation:

The optimal MAP Naive-Bayes image classifier of Ef). (
requires computing the probability densityd|C) of de-
scriptord in a class”'. Because the number of local descrip-
tors in an image databasehage(on the order of the num-
ber of pixels in the database), a Parzen density estimation



provides an accurate non-parametric approximation of tl
continuous descriptor probability densityd|C) [7]. Let

d{,..,d$ denote all the descriptors obtained from all the
images contained in clags. Then the Parzen likelihood

estimationp(d|C) is:
ZK d—dS)

p(d|C) =
where K(.) is the Parzen kernel function (which is
non-negative and integrates to 1; typically a Gaussiau.

K(d—d§) = exp(—5=| d —dS ||?)). As L approaches
infinity, anda (the width of K(. )) reduces accordingly
converges to the true densityd|C') [7].

In principle, to obtain high accuracgil the database de-
scriptorsshould be used in the density estimation of [3). (
While feasible, this is computationally time-consuming
(since it requires computing the distange— djc) for all
descrlptordc (j 1..L) in each class). We next show

3

Average ) K
discriminativity Do (d|C)
after: Do d|C)
m— Quant.
= -NN ;
20-NN P (d|C)
pwld|C) » Pl C)
( .
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Figure 4.NN descriptor estimation preserves descriptor den-
sity distribution and discriminativity. (a) A scatter plot of
the 1-NN probability density distributiorpNN(d|C) vs. the true

distribution p(d|C'). Brightness corresponds to the concentration
of points in the scatter plot. The plot shows thalN distribu-

tion provides a very accurate approximation of the true distribu-
tion. (b) 20-NN descriptor approximation (Green graph) amd

NN descriptor approximation (Blue graph) preserve quite well the
discriminative power of descriptors. In contrast, descriptor quan-
tization (Red graph) severely reduces discriminative power of de-

an efficient and accurate nearest-neighbor approximation ofScfiptors. Displays are in logarithmic scale in all axes.

this Parzen estimator.

The NBNN Algorithm:

Due to the long-tail characteristic of descriptor distribu-
tions, almost all of the descriptors are rather isolated in the
descriptor space, therefore very far from most descriptors
in the database. Consequently, all of the terms in the sum-
mation of Eq. B), except for a few, will be negligible/{
exponentially decreases with distance) . Thus we can accu-
rately approximate the summation in E&) (ising the (few)

r largest elements in the sum. Thedargest elements cor-
respond to the: nearest neighborsf a descriptord € Q
within the class descriptodf ,d$ € C:

LZKd din @)

Note that the apprOX|mat|on of Ecm)(alwaysbounds
from belowthe complete Parzen window estimate of 3). (

Fig.d shows the accuracy of such NN approximation of
the distributiorp(d|C). Even when using a very small num-
ber of nearest neighbors (as smallras: 1, asinglenear-
est neighbor descriptor for eadhin each clasg’), a very
accurate approximatiopNN(d\C) of the complete Parzen
window estimate is obtained (see Filya). Moreover, NN
descriptor approximatiohardly reduces the discriminative
power of descriptorgsee Figl4.b). This is in contrast to
the severe drop in discriminativity of descriptors due to de-
scriptor quantization.

We have indeed found very small differences in the ac-
tual classification results when changindgrom 1 to 1000
nearest neighbors. The caserof 1 is especially conve-
nient to use, sincég p(d|C) obtains a very simple form:
logP(Q|C) < — 3", || di — NN¢(d;) ||* and there is no

pyn (@C) =

The resulting Naive-Bayes NN image classifier (NBNN)
can therefore be summarized as follows:

The NBNN Algorithm:
1. Compute descriptoré,, ..., d,, of the query imagé).
2. Vd; VC compute the NN oti inC: NNC(d ).

3. C =argming 31" | || di — NN¢(d;) ||

Despite its simplicity, this algorithm accurately approx-
imates the theoretically optimal Naive-Bayes classifier,
requires no learning/training, and is efficient.

Combining Several Types of Descriptors: Recent
approaches to image classificatidh, [6, 20, 27] have
demonstrated that combining several types of descriptors
in a single classifier can significantly boost the classi-
fication performance. In our case, when multipg (
descriptor types are used, we represent each point in
each image using descriptors. Using a Naive Bayes
assumption on all the descriptors of all types yields a
very simple extension of the NBNN algorithm above.
The decision rule linearly combines the contribution
of each of thet descriptor types. Namely, Step (3) in
the above single- descrlptor type NBNN is replaced by:
C = argmlnczj Lwi -S| @ — NNe(d)) |12,
whered{ is the i-th query descnptor of typg andw; are
determined by the variance of the Parzen Gaussian kernel
K ; corresponding to descriptor tygeUnlike [5,16,120,127],

who learn weightsv; per descriptor-type per class, auy

are fixed and shared by all classes.

Computational Complexity & Runtime: We use the ef-
ficient approximate—nearest-neighbors algorithm and KD-

longer a dependence on the variance of the Gaussian kerndlee implementation 0i43]. The expected time for a NN-

K. This simple form of the classifier was used in all the
experimental results reported in SEc.

search is logarithmic in the number of elements stored in
the KD-tree [[[]. Note that the KD-tree data structure is



used only for efficiency of NN-search. It requires no learn- NN-based method Performance

ing/training of parameters. This pre-processing step has a SPM NN Image27] 42.1+ 0.81%
low complexity O (N log N) in the number of element¥) GBDist NN Image/P7] 45.2+ 0.96%
and has a low runtime (e.g., a total of a few seconds for con- GB Vote NN 3] 52%
structing all the KD-trees for all the classes in Caltech-101). SVM-KNN [130] 59.1+ 0.56%
Let nyqape; be the number of labelled (‘training’) images NBNN (1 Desc) 65.04 1.14%
per classpc the number of classes amg) the number of NBNN (5 Desc) 72.8+ 0.39%

descriptors perimage. Each KD-tree contaipg.;-np de-
scriptors. Each of the , query descriptors searches within
nc KD-trees. Thus, the time complexity for one query im-
ageisO(n¢-np-log(niaper - np)) = O(ne-np-log(np))
(since usuallynjqper < np). There is no training time in - aJly set in our experiments. The same fixedvas used

our case, except for the fast preprocessing of the KD-tree. for Caltech-101 and Caltech-256, and= 0 for Graz-01.)
For example, the run time of NBNN on Caltech-101 for

classifying an image with densely sampled SIFT descriptors5.2. Experiments
andn;qpe; = 30, takesl.6 sec. per class.

Table 1.Comparing the performance of non-parametric NN-based
approaches on the Caltech-101 dataset.(e; = 15). All the
listed methods do not require a learning phase.

Following common benchmarking procedures, we split
. each class to randomly chosen disjoint sets of ‘training im-
5. Results and Experiments ages’ and ‘testimages’. In our NBNN algorithm, since there

In this section we experimented with NBNN, and com- is no training, we use the term ‘labelled images’ instead of

pared its performance to other classifiers (Iearning—basecltraming images’. In Iearqing-based methods., the training
and NN-based). Implementation details are provided in images are fed to a learning process generatmg a class!fler
Sec.5.1 Sec.5.2 provides performance comparisons on for the test phase. .I'n odr case, therg is no such leaming
Caltech-101, Caltech-256 and Graz-01. It shows that al_phase and the classifier is fixed for all image sets_.

though our NBNN classifier is extremely simple and re- Wel denote byniuper the nulmber gf |ab‘i||ed lanETQte)S” .
quires no learning/training, its performance ranks among Per class. we use commonly Us€d numbers ot labelle
the top leading learning-based image classifiers. [55&c (training) and test images: On Caltech-101 we randomly

further demonstrates experimentally the damaging effectssel,eCted”abel = 1,5,15, 30 images per class and tested on
of using descriptor-quantization or “image-to-image” dis- 20 images per class. O_n Caltech-256 we randomly selected
tances in a non-parametric classifier. Mabet = 1,5, 10, 20, 30 images per class and tested 2
images per class. The entire procedure was repeated several
times (randomly selecting labelled and test sets) and each
time performance is computed as the mean recognition
We tested our NBNN algorithm with single descriptor-  rate per class. The benchmark procedure for Graz-01 is
type(SIFT), and with a combination &f descriptor-types somewhat different, and will be described later.
1. The SIFT descriptor|([9]).
2+ 3. Simple Luminance & Color Descriptors: We Caltech-101: This database8] has 101 classes (animals,
use log-polar sampling of raw image patches, and takefurniture, vehicles, flowers, etc.) with high intra-class ap-
the luminance part(L* from a CIELAB color space) as a pearance and shape variability. We show three types of
luminance descriptor, and thehromatic part(a*b*) as a comparisons on Caltech-101: (i) Comparing performance

5.1. Implementation

color descriptor. Both are normalized to unit length. of NBNN to other NN-based methods (Taldle (ii) Com-
4. Shape descriptor: We extended the Shape-Contextparing NBNN with a single descriptor-type to other single-
descriptor [P2] to containedge-orientation histogramis descriptor-type image classifiers (both learning-based and

its log-polar bins. This descriptor is applied to texture- NN-based) (Fig5.a). (iii) Comparing NBNN with mul-
invariant edge map&[], and is normalized to unit length.  tiple descriptor-types to other multi-descriptor-type image
5. The Self-Similarity descriptor o2H]. classifiers (learning-based methods) (Eidp).
Table!l shows a performance comparison on Caltech-

The descriptors are densely computed for each image, afl01 for several NN-based methods. For this experiment
five different spatial scales, enabling some scale invariancewe used15 labelled images, in order to compare to num-
To further utilize rough spatial position (similar (80, /16]), bers reported in the other works. Our single descrip-
we augment each descriptémwith its location! in the im- tor NBNN algorithm (using SIFT) outperforms by a large
age:d = (d,al). The resultingL, distance between de- gap all NN-image methods. Moreover, it outperforms
scriptors)|d; —dy||? = ||di —da||*4+?||l; —I5||?, combines  ‘SVM-KNN'’ [ 30] (a hybrid between NN-based and SVM-
descriptor distance and location distancex Was manu-  based, which was considered state-of-the-art until recently).
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Figure 5.Performance comparison on Caltech-101. (a) Single descriptor type method®BNN (1 Desc)’, ‘Griffin SPM’[L3], ‘'SVM
KNN’ [[30], ‘SPM’ [I1€], ‘PMK’ [[12], ‘DHDP’ [129], ‘GB SVM’ (SVM with Geometric Blur)d7], ‘GB Vote NN’ [3], ‘GB NN’ (NN-
Image with Geometric Blur)47], ‘SPM NN’ (NN-Image with Spatial Pyramids Matchd{]. (b) Multiple descriptor type methods:
‘NBNN (5 Desc)’, ‘Bosch Trees’ (with ROI Optimizatioi®][ ‘Bosch SVM'’ [6], ‘LearnDist’ [[11], ‘SKM’ [[15], ‘Varma’ [[27], ‘KTA' [[18].

Our multi-descriptor NBNN algorithm performs even bette Caltech-256
(72.8% on 15 labelled images). ‘GB Vote NNJ] uses an

image-to-class NN-based voting scheme (without descri

tor quantization), but each descriptor votes only grale //
(nearest) class, hence the inferior performance. ,__50 /

Fig.5.a further shows that for a single descriptor-type §40 ) l_,,,-—k—-"""';_‘
our NBNN algorithmoutperforms all previously reported % /:;/______—-
learning-based method8slote that results obtained by ‘GB Eso & > e
SVM’ (Varma et al. P7] using SVM with a single Geo- % /
metric Blur (GB) kernel), obtained results similar (slightly 220 . == NBNN (5 Desc)
worse) than our single-descriptor NBNN (but better than a T4 NBNN( Desc)
others). We suggest that the reason for their improved pe 10 | 4 Bosch Troes (ROD
formance relative to other methods is due to the fact th —e— Griffin SPM
they usedunquantizedGB) descriptors. Note that NBNN ~ ° . o M 2‘0 2'5 "

obtained better performanaeeithout training and with a
significantly lower runtime

Fig.5.b shows that when combining multiple descriptor- Figure 6.Performance comparison on the Caltech-256 dataset.
types, NBNN compares in performance to ‘Bosch Trees ,\S/I'S%'_edgggrcigggy%’g?- IFI\IBBNNNN (%5D%Sgéc’)f3r"g'é‘s§5 Ngigljl'\/lﬁjﬁ
(ROI) [5], and performs better than all other previously gocch Trees’ (with ROI Optimization§], ‘Varma’ [27]
reported learning-based methods, with the exception of
‘Varma’ [27]. Note that unlike the other methods, we do
not learn class-adaptive combinations of descriptor types. Graz-01:  The Graz-01 databas®4] has two object-

classes (bikes and persons), and one background-class. It
Caltech-256: This databasell3] contains 256 categories is characterized by very high intra-class variations of scale,
with higher intra-class variability than Caltech-101, and 3D orientations and location of the objects within the im-
higher object location variability within the image. Com- age, and there is much more background clutter than in
parison of NBNN to other methods are displayed onBig. the Caltech databases. The classification task in Graz-01
The large positional variability of objects in images of is Class vs. No-Class. We follow the experimental setup
Caltech-256 was effectively addressed by the ROI (Regionof [16, 24, 131]: For each object (persons/bikes) we ran-
Of Interest) optimization off], leading to better perfor- domly samplel00 negative examples (of whick0 images
mance of ‘Bosch Trees (ROI)’ relative to NBNN for a small are drawn from the background), and0 positive exam-
number of training (labelled) images. However, due to the ples. The test set is similarly distributed. TaReeports
generalization capabilities of NBNN (resulting from using the ROC equal error rate averaged over five runs. We com-
“image-to-class” distances — see S&¢), the gap is closed  pare performance of NBNN againsid, 24, 31]. Although
when the number of training (labelled) images readtes NBNN is a non-parametric (no-learning) method, its per-

Number of training examples per class
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