
Multiresolution Painting and Compositing

Deborah F. Berman Jason T. Bartell David H. Salesin

Department of Computer Science and Engineering
University of Washington
Seattle, Washington 98195

Abstract

We describe a representation for multiresolution images—images
that have different resolutions in different places—and methods for
creating such images using painting and compositing operations.
These methods are very easy to implement, and they are efficient in
both memory and speed. Only the detail present at a particular res-
olution is stored, and the most common painting operations, “over”
and “erase,” require time proportional only to the number of pixels
displayed. We also show how fractional-level zooming can be im-
plemented in order to allow a user to display and edit portions of a
multiresolution image at any arbitrary size.

CR Categories and Subject Descriptors: I.3.2 [Computer Graph-
ics]: Picture/Image Generation — Display Algorithms; I.3.6 [Com-
puter Graphics]: Methodology and Techniques — Interaction Tech-
niques.

Additional Key Words: compositing, infinite-resolution, multires-
olution images, painting, wavelets, zooming.

1 Introduction

When editing images, it is important to be able to make sweeping
changes at a coarse resolution, as well as to do fine detail work
at high resolution. Ideally, the storage cost of the resulting image
should be proportional only to the amount of detail present at each
resolution; furthermore, the time complexity of the editing opera-
tions should be proportional only to the resolution at which the op-
eration is performed. In addition, the user should be able to zoom in
to the image to an arbitrary resolution, and to work at any convenient
scale.

In this paper, we describe a very simple image painting and com-
positing system that meets these goals in large part. The system
makes use of a Haar wavelet decomposition of the image, which
is stored in a sparse quadtree structure. This wavelet representation
has many advantages. First, the wavelet representation itself is con-
cise in that it contains the same number of wavelet coefficients as
there are pixels in the original image. Second, this representation
supports compositing more efficiently than image pyramids. Finally,
wavelets can also be used to achieve high compression rates on im-
ages [2]. By making use of a wavelet representation on-line, the
editing system can be used to operate on compressed images di-
rectly, without first having to uncompress and then recompress af-
terward, making it much more practical for handling large images
than a pyramid-based scheme.

The multiresolution images produced by our system can be thought
of as having different resolutions in different places. There are many
applications of these multiresolution images, including:

� Interactive paint systems, allowing an artist to work on a single
image at various resolutions.

� Texture mapping, allowing portions of a texture that will be seen
up close to be defined in more detail.

� Satellite and other image databases, allowing overlapping images
created at different resolutions to be coalesced into a single mul-
tiresolution image.

� Storing and viewing the results of “importance-driven” physical
simulations [9], which may be computed to different resolutions
in different places.

� Virtual reality, hypermedia, and games, allowing for image detail
to be explored interactively, using essentially unlimited degrees
of panning and zooming.

� Supporting the “infinite desktop” user-interface metaphor [5], in
which a single virtual “desktop” with infinite resolution is pre-
sented to the user.

The idea of using wavelets for multiresolution painting has also been
explored simultaneously but independently by Perlin and Velho [6].
The system we describe differs from theirs in many respects, the
most significant being the use of a Haar wavelet basis, support for
fractional-level zooming and editing and a variety of compositing
operations, and a different use of lazy evaluation in the algorithms
employed.

In Section 2, we describe our multiresolution painting and composit-
ing algorithm in detail. The algorithm is very simple, although its
derivation requires some fairly sophisticated mathematics, which is
deferred to Appendix A. In Section 3, we give examples of how the
system can be used. Finally, in Section 4, we suggest directions for
future work.

2 Algorithm

Here, we briefly describe a set of data structures and algorithms to
support multiresolution painting and compositing.

2.1 Definitions and data structures

Let
�

be a multiresolution image—that is, an image with different
resolutions in different places. One could think of

�
as an image

whose resolution varies adaptively according to need.

More formally, we will define
�

as a sum of piecewise-constant
functions

� j at different resolutions � j � � j . In this sense,
�

can be

thought of as having “infinite” resolution everywhere: a user zoom-
ing into

�
would see more detail as long as higher-resolution de-

tail is present; once this resolution is exceeded, the pixels of the
finest-resolution image would appear to grow as larger and larger
constant-colored squares.

We store the multiresolution image
�

in a sparse quadtree struc-
ture Q. The nodes of Q have the usual correspondence with por-
tions of the image: the root of Q, at level 0, corresponds to the en-
tire image; the root’s four children, at level 1, correspond to the im-
age’s four quadrants; and so on, down the tree. Thus, each level j of
quadtree Q corresponds to a scaled version of multiresolution image�

at resolution � j � � j. Note that, by the usual convention, “higher”
levels of the quadtree correspond to lower-resolution versions of the
image, and vice versa.

Each node of the quadtree contains the following information:

type QuadTreeNode � record
di: array i �������	��
 of RGBA� : real
child � i
 : array i ���������
 of pointer to QuadTreeNode

end record

The di values in the QuadTreeNode structure describe how the col-
ors of the children deviate from the color of the parent node. We
will call these di values the detail coefficients. These coefficients al-
low us to compute the RGBA colors of the four children, given the
color of the parent, as described in Section 2.2.1. We will refer to
the “alpha” component of a color c or detail coefficient di as c � � or
di � � . The � value represents the transparency of the node, initialized
to 1. The � values are used to optimize the painting and compositing
algorithm, as explained later. The child � i
 fields are pointers to the
four children nodes. Some of these may be null. To optimize stor-
age, the child � i
 fields can alternatively be represented by a single
pointer to an array of four children.

Note that each node N of the tree corresponds to a particular re-
gion of the display. We will denote this region by A � N � . The value
A � N � is determined implicitly by the structure of the quadtree and
the particular view, and does not need to be represented explicitly in
N. Except when displaying at fractional levels (Section 2.4), there
is a one-to-one correspondence between pixels on the display and
nodes at some level j in the quadtree.

The quadtree itself is given by:

type QuadTree � record
c: RGBA
root: pointer to QuadTreeNode

end record

The c value in the quadtree structure supplies the color of the root
node; it corresponds to an average of all the colors in the image

�
.

The quadtree is sparse in that it contains no leaves with detail co-
efficients that are all 0. Thus, the constant portions of the image at
any particular resolution are represented implicitly. This convention
allows us to support infinite resolutions in a finite structure. It also
allows us to explicitly represent high-resolution details only where
they actually appear in the image.

2.2 The algorithm

Multiresolution painting is easy to implement. The main loop in-
volves three steps: Display, Painting, and Update.

2.2.1 Display

An image at resolution � j � � j is displayed by calling the following
recursive Display routine once, passing it the root and color of the
overall quadtree:

procedure Display � N � QuadTreeNode � c � RGBA � :
c ��� c � d ��� d ��� d �
c � � c � d � � d � � d �
c � � c � d � � d � � d �
c � � c � d �!� d ��� d �
for i � � to do

if N is a leaf or N is at level j � � then
Draw ci over the region A � child � i
 �

else
Display � child � i
"� ci �

end if
end for

end procedure

For clarity, the pseudocode above recurses to level j � � for the
entire image; in reality, it should only recurse within the bounds
of the portion of the image that fits in the display window. Note
that if m pixels are displayed, the entire display operation takes just
O � m � time. (More precisely, the operation requires O � m � j � time;
however, since j # m in almost any practical situation, we will
ignore this dependency on j in the analyses that follow.)

2.2.2 Painting

Painting is implemented by compositing the newly-painted fore-
ground buffer $ with the background buffer % produced by Display,
to create a new result image & . We support several binary com-
positing operations: “over,” which places new paint wherever it is
applied; “under,” which places paint only where the background is
transparent; and “in,” which places paint only where the background
is already painted. We also support a unary “erase” operation, which
removes paint from the background. The compositing algebra was
originally described by Porter and Duff [7], and first described in
the context of digital painting by Salesin and Barzel [8].

No special routines are required to implement painting itself. The
only difference with ordinary painting is that in addition to the com-
posited result & , we must keep a separate copy of the foreground
buffer $, which contains all of the newly applied paint. This fore-
ground buffer is necessary for updating the quadtree, as described
in the next section. Ordinary painting proceeds until the user either
changes the painting operation (for example, from “over” to “un-
der”), or changes the view by panning or zooming. Either of these
operations triggers an “update.”

2.2.3 Update

The “update” operation is used to propagate the results of the paint-
ing operation to the rest of the multiresolution image, as represented
by the quadtree. The update involves two steps: decomposition, in
which the changesare propagated to all higher levels of the quadtree;
and extrapolation, in which the changes are propagated to all the
lower levels. We will consider each of these in turn.

Let j be the level at which the user has been painting, and let cr � x � y �
be the color of each modified pixel in the result image & . A decom-
position of the entire image is performed by calling the following
Decompose function once, passing the root of the quadtree Q � root
as an argument, and storing the result in Q � c:

function Decompose � N � QuadTreeNode � :
if N is at level j then

return cr � x � y �
end if
for i � � to do

ci � Decompose � child � i
 �
end for
d ��� � c �!� c ��� c � � c � � �
d � � � c � � c � � c � � c � � �
d � � � c �!� c � � c � � c � � �
return � c � � c � � c � � c � � �

end function

For clarity, the pseudocode above assumes that the sparse quadtree
Q already contains all of the nodes corresponding to the pixels in
the result image & ; however, if & has been painted at a higher reso-
lution than the existing image, then new nodes may have to be allo-
cated and added to Q as part of the traversal. Furthermore, for effi-
ciency, the Decompose function should be modified to only recurse
in regions of the multiresolution image where changes have actually
been made. Note that if the portion of the image being edited has m
pixels, then the entire decomposition operation takes O � m � time.

Extrapolation is a bit more complicated, and depends on the partic-
ular compositing operation used. For binary painting operations, let
cf � x � y � be the color of the foreground image $ at each pixel � x � y � ,
and let cf � �!� x � y � be the pixel’s alpha (opacity) value. For the “erase”
operation, let ��� x � y � be the opacity of the eraser at each pixel. Ex-
trapolation can then be performed by calling the following routine
for the node N corresponding to each modified pixel � x � y � of the
edited image:

procedure Extrapolate � N � QuadTreeNode � :
for i � � to � do

switch on the compositing operation
case “over”:

di � di � � � � cf � �!� x � y � �
case “under”:

di � di � di � � � cf � x � y �
case “in”:

di � di � � � � cf � �!� x � y � � � di � � � cf � x � y �
case “erase”:

di � di � � � ����� x � y � �
end switch

end for
if N is not a leaf then

for i � � to do
Extrapolate � child � i
 �

end for
end if

end procedure

Note that the extrapolation procedure takes time proportional to the
amount of detail that appears “below” the modified parts of the im-
age. In order to optimize this operation, at least for the most common
cases of painting “over” and erasing, we can use a form of lazy eval-
uation. First, observe that the two formulas for “over” and “erase”
in the pseudocode above merely multiply the existing detail coef-
ficients by some constant, which we will call � � x � y � . (For painting
“over,” � � x � y ��� � � cf � �!� x � y � ; for erasing, � � x � y �!� � ����� x � y � .)
Thus, for these two operations, rather than calling the Extrapolate
procedure for each node N, we can instead just multiply the value
N � � stored at the node by � � x � y � . Later, if and when the di values for
a node N are actually required, they can be lazily updated by mul-
tiplying each N � di with the � values of all of the node’s ancestors.
This product is easily performed as part of the recursive evaluation.

This very simple form of lazy evaluation is a by-product of the un-
derlying wavelet representation for the image, since the detail co-
efficients at higher resolutions depend only on the product of the
opacities of all the paint applied and removed at lower resolutions.
Any sort of lazy evaluation method would be much more compli-
cated with image pyramids, since the high-resolution colors have a
much more complex dependence on the colors of the paint applied
and removed at lower resolutions. Note also that color correction, an
important image operation, is a special case of compositing “over,”
and so can be performed on an arbitrarily high-resolution image in
time proportional only to the resolution actually displayed.

2.3 Boundary conditions

Treating boundary conditions correctly introduces a slight compli-
cation to the update and display algorithms described in the sec-
tions above. The difficulty is that the Decompose function needs to
have available to it the colors of the children of every node N that
it traverses. However, some of these child nodes correspond to re-
gions that are outside the boundary of the window in which the user
has just painted, and therefore are not directly available to the rou-
tine. The obvious solution is to store color information in addition
to the detail coefficients at every node of the quadtree; however,
this approach would more than double the storage requirements of
the quadtree, as well as introduce the extra overhead of maintaining
redundant representations. Instead, we keep a temporary auxiliary
quadtree structure of just the colors necessary for the decomposi-
tion; this structure can be filled in during the Display operation at
little extra cost. The size of this auxiliary structure is just O � m � .

2.4 Display and editing at fractional resolutions

So far, we have assumed a one-to-one correspondence between the
nodes of the quadtree at level j and the pixels of the image at res-
olution � j � � j. Since the levels of the quadtree are discrete, this
definition only provides for discrete levels of zooming in which the
resolution doubles at each level.

From a user-interface point of view, it would be better to be able to
zoom in continuously on the multiresolution image being edited. A
kind of fractional-level zooming can be defined by considering how
the square region A � N � corresponding to a given node N at level j
in the quadtree would grow as a user zoomed in continuously from
level j to j � � to j � � . The size of A � N � would increase exponentially
from width � to � to on the display. Thus, when displaying at a
fractional level j � t, for some t between � and � , we would like
A � N � to have size � t � � t.

On workstations that provide antialiased polygon drawing, this frac-
tional zooming is implemented quite simply by drawing each node
N as a single square of the proper fractional size. On less expensive
workstations that support only integer-sized polygons efficiently, a
slightly less pleasing but still adequate display can be achieved by
rounding each rendered square to the nearest pixel. In either case,
the only change to the Display routine is to bottom out the recursion
whenever N is at level � j � t � �	� instead of at level j � � , and to let
the region A � child � i
 � correspond to the appropriate fractional size.

Of course, from a user’s standpoint, if it is possible to display an
image at any level j � t, then it should also be possible to edit it at
that level. This fractional-level editing is also easy to support. To
update the quadtree representation, we simply rescale the buffer of
newly painted changes $ to the size of the next higher integer level,
as if the user had painted the changes at level j � � ; the scaling factor
required is � ��
 t. We can then perform the same update as before,
starting from level j � � .

3 Results

Figure 1 demonstrates our system with three examples.

In the first example (a)–(d), the user zooms into an image of Mona
Lisa (a) and paints on some eye shadow and lipstick at higher reso-
lution (b). To add a glint in the eye, the user zooms in slightly closer
(c). Note that any (continuous) level of zooming is supported, so the
user need not know anything about the underlying representation,
which is actually discrete. The retouched image is then displayed at
the original resolution (d).

In the second example (e)–(h), the user paints a tree at multiple res-
olutions, using different kinds of compositing operations. Most of
the tree was painted at a coarse resolution. In the first frame (e),
the user zooms way into the upper left corner of the tree and paints
some leaves. In the second frame (f), the user zooms out to a coarser
scale and changes the color of the leaves, using an “in” brush that
only paints where paint has previously been applied. In the third
frame (g), the user zooms out to a very coarse resolution and quickly
roughs in the sky and grass, using an “under” brush that only de-
posits color where no paint already appears. Note that even though
the sky color is applied coarsely, the new paint respects all of the
high-resolution detail originally present in the image (h).

In the third example (i)–(l), we have created a single multiresolu-
tion image out of six successive images from the book, Powers of
Ten [4], by compositing the images together at different scales. In
the book, each of the images is a 10 � higher-resolution version of
the central portion of its predecessor. In our multiresolution sys-
tem, these six images become a single image with a 10 � range of
scale. (Note that representing power-of-10 images in our power-of-
2 quadtree requires the fractional-level editing capability.) The first
frame (i) shows a close-up of the innermost detail. The second frame
(j) shows the image after zooming out by a factor of 100,000. In the
third frame (k), the user retouches the low-resolution image using
an “over” brush to give the impression of smog. This smog affects
all of the closer views without eliminating any of the detail present,
as demonstrated in the final frame (l).

4 Future work

There are many directions for future research, including:

Compression. Wavelet image transforms are most commonly used
for image compression [2]. Our system already performs a sim-
ple kind of lossless compression by pruning any branches of the
quadtree whose detail coefficients are all 0. We would also like to
incorporate lossy image compression as part of our system. As a
further extension, this compression could be applied interactively,
with the user selecting increased compression ratios in the less vital
parts of the image.

Progressive refinement. Another advantage of the wavelet repre-
sentation is that it provides a natural ordering of the detail coeffi-
cients with respect to either L � (least squares) or L

�
(max error)

metrics. For example, the best L � approximation to an image us-
ing m coefficients is given by the largest m detail coefficients, as-
suming proper normalization of the basis functions. These largest
coefficients, drawn as flat-shaded rectangles using polygon render-
ing and accumulation hardware, could be used to provide a fast in-
dication of the image during interactive panning and zooming. The
image could then be updated progressively from its most important
to least important details.

User-interface paradigms. Multiresolution images can encode a
great deal of complexity. New user-interface paradigms may there-
fore be required for navigating them. One useful tool would indi-

cate the amount of detail present at different places of the image.
Another would provide some measure of context when zoomed far
into an image. For moving around, we would like to experiment with
a movement akin to “flying,” in which the user navigates through
a large multiresolution image by smoothly zooming out, panning
across, and zooming back in.

Automatic synthesis of detail. A fairly straightforward modifica-
tion to our system would allow it to generate more detail procedu-
rally whenever the user zoomed into an image, allowing for images
with essentially infinite detail, such as fractals.

3-D and video. We would like to extend this work to three dimen-
sions, allowing direct volumetric painting at arbitrary scales. We
would also like to investigate the possibilities of multiresolution
video, in which the temporal resolution of an animation might be
varied to provide detailed slow-motion sequences, or to provide a
low-bandwidth preview mechanism.

Antialiasing and higher-order wavelets. One drawback of the sim-
ple Haar-basis painting system described in this paper is that when
the user zooms into an area where there is no further detail, the pix-
els of the lower-resolution image are displayed as large constant-
colored squares. A number of possibilities exist for alleviating this
problem. One approach would be to perform some kind of filtering
on the displayed image so as to hide the pixel-replication artifacts;
however, the inconsistency between the internal and external repre-
sentations of the image that such an approach entails will likely be
problematic. A more intriguing alternative is to extend the painting
and compositing operations to higher-order wavelets, which might
be used to achieve higher-order continuity across the image under
any level of zooming. However, higher-order wavelets have a num-
ber of drawbacks as well. The supports of such wavelets are nec-
essarily overlapping and larger than those of Haar wavelets, lead-
ing to a considerably more complex implementation, which is also
likely to run at least an order of magnitude slower. More importantly,
defining an accurate and basis-independent compositing operation
appears to require that the wavelet basis be closed under products,
which is not true of any higher-order wavelet basis of which we are
aware. This requirement is discussed in more detail in Appendix A.

Acknowledgements

We would like to thank Tony DeRose for helpful discussions during
the development of these ideas. This work was supported by an NSF
National Young Investigator award (CCR-9357790), by the Univer-
sity of Washington Graduate Research and Royalty Research Funds
(75-1721 and 65-9731), by an Air Force Laboratory Graduate Fel-
lowship, and by industrial gifts from Adobe, Aldus, and Xerox.

References

[1] Charles K. Chui. Wavelet Analysis and its Applications, Volumes 1 and
2. Academic Press, Inc., San Diego, Califorinia, 1992.

[2] Ronald A. DeVore, Björn Jawerth, and Bradley J. Lucier. Image com-
pression through wavelet transform coding. IEEE Transactions on In-
formation Theory, 38(2):719–746, March 1992.

[3] Stephane Mallat and Sifen Zhong. Wavelet transform maxima and mul-
tiscale edges. In Ruskai et al., editor, Wavelets and Their Applications,
pages 67–104. Jones and Bartlett Publishers, Inc., Boston, 1992.

[4] Philip Morrison, Phylis Morrison, and The Office of Charles and Ray
Eames. Powers of Ten. Scientific American Library, New York, 1982.

[5] Ken Perlin and David Fox. Pad: An alternative approach to the user
interface. Proceedings of SIGGRAPH 93 (Anaheim, California, August
1-6, 1993). In Computer Graphics, Annual Conference Series, 1993,
pages 57–64.

[6] Ken Perlin and Luiz Velho. A wavelet representation for unbounded
resolution painting. Technical report, New York University, November
1992.

[7] Thomas Porter and Tom Duff. Compositing digital images. Proceed-
ings of SIGGRAPH ’84 (Minneapolis, Minnesota, July 23–27, 1984).
In Computer Graphics 18, 3 (July 1984), pages 253–259.

[8] David Salesin and Ronen Barzel. Two-bit graphics. IEEE Computer
Graphics and Applications, 6:36–42, 1986.

[9] Brian E. Smits, James R. Arvo, and David H. Salesin. An importance-
driven radiosity algorithm. Proceedings of SIGGRAPH ’92 (Chicago,
Illinois, July 26–31, 1992). In Computer Graphics 26, 2 (July 1992),
pages 273–282.

A Deriving the equations

The multiresolution paint algorithm we have described is an appli-
cation of wavelets, a mathematical tool that has found a wide vari-
ety of applications in recent years, including image processing and
compression [1, 2, 3]. In this appendix, we briefly describe how our
algorithm fits into the larger context of wavelets, and we show how
the formulas of Section 2 can be derived.

Let Cn be a matrix of size � n � � n representing the pixel values of
an image. We can associate with Cn a function

� n � x � y � given by
� n � x � y � � � n � y � Cn � n � x � T

where
� n � x � is a row matrix of basis functions � � n� � x � � ����� ��� n� n � x �
 ,

called scaling functions. In our application, we use the Haar basis,
in which each scaling function � n

i � x � is given by� n
i � x � �

� � for ��� � nx � i � �
� otherwise

The wavelet transform allows us to decompose Cn into a lower-
resolution version Cn
 � and detail parts Dn
 �� , Dn
 �� , and Dn
 �� ,
using matrix multiplication as follows:

Cn
 � � An Cn � An � T (1)

Dn
 �� � An Cn � Bn � T (2)

Dn
 �� � Bn Cn � An � T (3)

Dn
 �� � Bn Cn � Bn � T (4)

In the Haar basis, the matrices An and Bn are given by:

An � ���	 � � � � � � � �
�
�
 �
� � � � � � � �
...

...
. . .

� �
�
�
 � � � � � �

���
Bn � ���	 � � � � � � � � �
�
�
 �

� � � � � � � � �
...

...
. . .

� �
�
�
 � � � � � � �

���
The detail coefficients di at level j in our algorithm are the entries of
the Dj

i matrix. Thus, equations (1)–(4) provide the expressions used
in the Decompose routine.

The four decomposed pieces can also be put back together again,
using two new matrices Pn and Qn:

Cn � Pn Cn
 � � Pn � T � Pn Dn
 �� � Qn � T
� Qn Dn
 �� � Pn � T � Qn Dn
 �� � Qn � T

This equation provides the expressions used in the Display routine.
In the Haar basis, these matrices are given by Pn � � � An � T and
Qn � � � Bn � T.

The original function
� n � x � y � can be expressed in terms of the lower-

resolution pixel values Cn
 � and detail coefficients Dn
 �
i using a

new set of basis functions � j � ��� j� � x � � ����� ��� j
m � x �
 , called wavelets,

as follows:
� n � x � y � � � n
 � � y � Cn
 � � n
 � � x � T (5)

� � n
 � � y � Dn
 �� � n
 � � x � T
��� n
 � � y � Dn
 �� � n
 � � x � T
��� n
 � � y � Dn
 �� � n
 � � x � T

In the Haar basis, there are m � � j wavelets in � j, and each � j
i � x �

is given by:� j
i � x � � � � for ��� � jx � i � � � �

� � for � � ��� � jx � i � �
� otherwise

Decomposing the first term
� n
 � � y � Cn
 � � n
 � � x � T of equation (5)

recursively allows us to represent a function
� n � x � y � in its wavelet

basis, given by the row matrix� ��� � �
�
�
 � n
 ��� �
In order to derive the expressions used for compositing detail coef-
ficients in the Extrapolate routine, we must begin by defining com-
positing operations on functions $, % , and & , built from the pixel
values Cf, Cb, and Cr of the foreground, background, and result im-
ages:

$ j � x � y � � � j � y � Cj
f

� j � x � T
% n � x � y � � � n � y � Cn

b
� n � x � T

& n � x � y � � � n � y � Cn
r
� n � x � T

Note that the foreground image has its highest-resolution compo-
nents in level j, the level at which the user is painting, whereas the
background and resulting images have components in a potentially
higher-resolution level n.

For example, the “over” operation can be defined on functions $,
% , and & as follows:

& n � x � y � � $ j � x � y � � � � ��$ j � �!� x � y � � � % n � x � y �
The expressions for compositing detail coefficients can be derived
by writing each function in its wavelet basis, multiplying out, and
regrouping terms. The derivation is tedious, but the final expressions
are quite simple, as the pseudocode for the Extrapolate routine at-
tests.

Note that compositing multiresolution images, as defined here at
least, requires taking products of basis functions. While the Haar ba-
sis is closed under products, we know of no other finite wavelet basis
that has this property. Proving or disproving the existence of non-
trivial finite wavelet bases that are closed under products is an in-
teresting (and, as far as we know, open) theoretical question, which
this research in compositing multiresolution images suggests.

