
Example-Based Hinting of TrueType Fonts

Douglas E. Zongker1,2 Geraldine Wade1 David H. Salesin1,2

1Microsoft Corporation 2University of Washington

Abstract

Hinting in TrueType is a time-consuming manual process in which
a typographer creates a sequence of instructions for better fitting
the characters of a font to a grid of pixels. In this paper, we pro-
pose a new method for automatically hinting TrueType fonts by
transferring hints of one font to another. Given a hinted source font
and a target font without hints, our method matches the outlines
of corresponding glyphs in each font, and then translates all of the
individual hints for each glyph from the source to the target font.
It also translates the control value table (CVT) entries, which are
used to unify feature sizes across a font. The resulting hinted font
already provides a great improvement over the unhinted version.
More importantly, the translated hints, which preserve the sound,
hand-designed hinting structure of the original font, provide a very
good starting point for a professional typographer to complete and
fine-tune, saving time and increasing productivity. We demonstrate
our approach with examples of automatically hinted fonts at typical
display sizes and screen resolutions. We also provide estimates of
the time saved by a professional typographer in hinting new fonts
using this semi-automatic approach.
CR Categories:I.7.4 [Document and Text Processing]: Electronic Publishing

Keywords: automatic hinting, digital typography, gridfitting, shape matching

1 Introduction

The demand for high-quality hinted fonts is outstripping the ability
of digital typography houses to produce them. Hinting is a painstak-
ing manual process that can only be done well by a handful of
highly skilled professionals. It requires a blend of typographical
artistry with technological ability. In order to provide a full appre-
ciation of the hinting problem, we begin here with a review of how
digital fonts are scan-converted onto a raster display.

In digital typography, each character in a font is described by a set
of outlines, usually represented by splines. When the character is
rendered onto a grid of pixels, the outlines are scaled to the de-
sired size, and then each pixel whose center lies inside of an outline
is set to black. When fonts are displayed at sufficiently high reso-
lutions this approach works beautifully. But for sizes below about
150 ppem,1 severe aliasing problems can result when this naive out-
line filling process is applied, especially for delicate features such
as serifs. Figure 1 shows an example. The left image is generated
by the naive algorithm. This pixel pattern does not look much like
a lowercase ‘a’. A simpledropout controlmechanism added to the
fill algorithm turns on additional pixels to preserve the character’s
topology, resulting in the center image. The right image, though,
shows the work of an experienced hinter. The pixel pattern has been
subtly altered to both improve readability and better preserve the
character of the original outline.

1Hinters express font sizes inpixels per em, or ppem. This measure
counts the number of device pixels in the em of the font. In traditional ty-
pography, theemof a font was the height of the metal block of type. With
digital typography, there is no actual metal block to measure, but the digital
outlines are still expressed in coordinates relative to this hypothetical size.
Thepoint sizeof text refers to the size of its em expressed in points (a point
is 1/72 of an inch). Thus, “12-point text” corresponds to 12 ppem on a 72
dpi screen, or 100 ppem on a 600 dpi printer.

Figure 1 Outline for the Palatino Italic ‘a’, along with the pixel pattern gener-
ated by rasterizing the outlines for display of 18-point text on a 72 dpi device.
The left image shows the results of the naive fill algorithm. The middle image
shows the result of enabling the rasterizer’s dropout control mechanism. The
right image shows the results of hinting the character by hand.

The hinting process is not just about optimizing individual charac-
ters. The hinter must balance the needs of a single glyph with the
desire forconsistencyacross all the characters of a font. It is im-
portant, for example, to ensure that all the vertical stems of a font
are the same number of pixels wide at a given size. If the scal-
ing and rounding process produced one-pixel-wide stems on some
characters and two-pixel-wide stems on others, then a passage of
text would look blotchy and be difficult to read. The goal of the
hinter is to produce a smooth transition from very high sizes, where
merely filling the outlines suffices and hinting is unnecessary, down
to lower sizes, where legibility must be preserved even when that
means a departure from the outlines drawn by the original font de-
signer.

Although the ever-improving resolution of hardcopy devices is be-
ginning to approach the point at which hinting is not necessary, the
technology is not there yet: 10- or 12-point text on a 300 or even
600 dpi printer still needs hinting for best results. More importantly,
the increasing emphasis on reading text on-screen—from visions of
the “paperless office” to the emergence and proliferation of hand-
held computers and eBooks—means that more and more text is be-
ing viewed on devices in the 72–100 dpi range. Though resolutions
of these displays are improving as well, for the foreseeable future
hinting will be an absolute necessity in order to provide clear, legi-
ble text.

Although attempts have been made to design automated hinting
systems in the past [2, 5], even the best of these produce hints that
are good, but still not up to the standards of professional typogra-
phers. This previous work assumed that in order to be useful, an au-
tohinter had to be a monolithic, self-contained package: outlines in,
quality hints out. That is an admirable goal, and it may be achieved
someday. However, given the detailed, aesthetically-based nature



of the work, we think that it is currently more useful to view the
autohinter as one piece of a system that includes a human hinter.

The subject of this paper, then, is not a tool for automaticallygen-
erating hints so much as a tool for automaticallytranslatinghints
from one font to another. An important advantage of this approach
is that it preserves the basic strategy and structure of the original
hints, which were hand crafted by a professional typographer for
each individual glyph of the font. Generally, these translated hints
provide an excellent starting point for a human to fine-tune and ad-
just. We demonstrate our approach with examples of automatically
hinted fonts at typical display sizes and screen resolutions. We also
provide estimates of the time saved by a professional typographer
in hinting new fonts using this semi-automatic approach.

2 Background

There are two major font standards in widespread use today: Type 1
and TrueType. Type 1 fonts [1], often called “PostScript fonts,”
were developed by Adobe and are popular in the world of pub-
lishing. Printing applications were the target when this system was
developed, though utilities are now available to enable on-screen
display of Type 1 fonts. The TrueType format [3], originally devel-
oped by Apple, was intended to unify type on the screen and on
paper, and is used in both the Macintosh and Windows operating
systems. TrueType has something of a reputation for being of low
quality, but this is mostly due to the fact that TrueType was always
an open standard while Type 1 was not, and so the public domain
is flooded with a large number of poorly designed, unhinted True-
Type fonts. The TrueType standard does contain extensive facilities
for high-quality hinting, though, and more and more quality fonts
are now available in TrueType.

Though both formats represent characters as spline-based outlines,
the hinting styles are radically different. Hinting for Type 1 fonts
works by marking sections of the outline as corresponding to partic-
ular typographic features of the character—stems, bowls, counters,
and so on. It is the job of the rasterizer to take advantage of these
hintsabout the character shape to produce the best possible pattern
of pixels. This scheme has the advantage that enhancements to the
rasterizer can produce improvements to all fonts on the system, but
means that a designer of digital type cannot specify exactly what an
outline will look like when rendered at a given size.

The TrueType font technology takes a different approach. Instead of
leaving control over the glyph’s final appearance to the rasterizer,
a TrueType font contains explicit instructions about how particular
control points should be shifted to fit the pixel grid. These instruc-
tions take the form of aprogram in a special, TrueType-specific
bytecode language. Since both the behavior of each instruction and
the rasterizing algorithm are defined in the TrueType standard, the
designer of a TrueType font can predict exactly which pixels will be
turned on for a character at a given size, no matter what the output
device is.

In TrueType, each contour of an outline is specified with a sequence
of point positions. (See the outline curves of Figure 3 for some ex-
amples.) Each point is flagged as eitheron-curveor off-curve. True-
Type defines the outline as follows:

• Two successive on-curve points are connected with a straight line
segment.

• When an off-curve point falls between two on-curve points, the
three are treated as the control points for a quadratic B´ezier seg-
ment.

• When two adjacent off-curve points appear, the midpoint of the
segment connecting them is treated as an implicit on-curve point
between them, allowing reduction to the case above.

The glyph renderer starts by scaling the outlines to a particular size,
then executing the attached program to shift control points around

in a size-specific way before filling the altered outline. By itself, this
approach cannot produce the necessary consistency among differ-
ent characters of a font, or even between different parts of the same
character, since each action is necessarily local. Global synchro-
nization of outline alterations is achieved through use of thecontrol
value table, or CVT. This is a shared table of distances, which can
be referenced by instructions in each glyph’s program. When the
rendering is initialized for a given size, the values in the CVT are
scaled and rounded to the current grid size. Point movements can
then be constrained by CVT entries. For instance, a person writ-
ing hints for TrueType may decide to use CVT 81 to represent, say,
the width of vertical black stems in lowercase letters. He or she
will then write instruction sequences for all appropriate lowercase
letters, all referring to CVT entry 81, so that all the vertical black
stems at a given size will have the same width.

The TrueType language is an assembly-style stack-based language.
The intent of the designers of TrueType was not to make typog-
raphers learn and write in the TrueType language itself, but rather
to facilitate the development of high-level languages and tools that
generate TrueType code. The Visual TrueType (VTT) package from
Microsoft [7] is such a tool. VTT provides a high-level language,
calledVTT Talk, for expressing relationships between points. VTT
Talk provides statements for expressing the following classes of
hints:

• Linkconstraints: the vertical or horizontal distance between a pair
of knots is constrained by an entry in the CVT.

• Dist constraints: the “natural” vertical or horizontal distance be-
tween a pair of knots is maintained, so that if one point is moved
the other moves in parallel.

• Interpolateconstraints: a knot’s fractional distance between two
parent knots is maintained.

• Anchors: specific knots can be rounded to the nearest gridline, or
to a gridline specified by a CVT entry.

These types of hints are demonstrated visually for two characters
from the Georgia Roman font in Figure 6. The VTT Talk hints are
compiled into a TrueType program stored in the font file. One ad-
vantage of working with VTT Talk is that each statement simply
asserts a relationship between two points, and there is little depen-
dence on the order of the statements. If one statement is omitted, the
meaning of the others is unchanged. In contrast, TrueType assem-
bler is a sequential language that maintains a fairly complex state.
Most instructions in TrueType have side effects that modify this
state. If we tried to translate the assembler code directly, and were
for some reason unable to translate a particular instruction—for in-
stance, due to a sufficiently large difference in the matched glyphs’
outlines—the effects of subsequent instructions could change en-
tirely.

Our approach is primarily motivated by the work of Hersch and Be-
trisey [4, 6]. In their method, hints are generated for each glyph by
matching its outline to a human-constructed generic model of that
character’s shape (for example, a generic uppercase roman ‘B’).
The model consists of two representations of the generic character
shape. Theskeletonmodel builds the character out of solid parts,
labeled as stems, bowls, serifs, and so on. Thecontourmodel is an
outline representation of the character, constructed to have as few
control points as possible while still spanning the space of possible
character shapes. The correspondences between the two models are
known, being specified by hand when the model is built. In their
method, the outlines of the glyph to be hinted are matched to the
corresponding contour model by a fairly complex process that takes
into account both global and local features. Points are classified by
their position relative to the baseline, cap-height and x-height lines,
and left and right sidebearings. Local features distinguishing points
are based on the curvature, direction, and orientation of the adjacent
curve segments. Once the correspondence between the unknown



Trebuchet Frutiger

Figure 2 Features used for matching on-curve points. Diamonds indicate cor-
ner points; circles indicate smooth points. Incoming and outgoing directions
are quantized to the eight compass directions, indicated with blue arrows. Lo-
cal extrema are shown with red triangles. Each point is also marked to indicate
whether the segments on each side are curved (solid lines) or straight (dashed
lines).

outline and the model outline is established, the known correspon-
dence between the model outline and the model skeleton can be
used to label parts of the unknown outline as belonging to signif-
icant features such as stems and serifs. From this labeling a set of
Type 1-style hints for the new outline can be derived.

3 Method

Hersch and Betrisey’s work requires a manually constructed model
in order to link points on the outline with the “semantic” features
needed for hinting. Hinting in TrueType does not require an ex-
plicit labeling of these features; this information is implicitly used
by the human typographer when deciding on a hinting strategy for
the character, but the end result expressed in the font is just a set
of relationships, or constraints, between control points. These con-
straints obviate the need for the skeleton model—once we find the
correspondence between a contour model and the outlines of the
target glyph, we can immediately produce hints for the target out-
line without transitively applying a second correspondence.

We’ve therefore reduced our needs to having a contour model with
control-point-level hints attached to it. A shortcut now becomes ob-
vious: use an already hinted TrueType font as the model! This has
a number of advantages over using a specialized model built ex-
pressly for the auto-hinter. First, we already have a wide variety
of fonts from which to choose as templates. Moreover, choosing
a template close to the target font will increase the likelihood of a
good match and consequently the quality of the resulting hints. This
raises the possibility of having the template font be selected from
the library automatically, or even choosing different template fonts
for different characters of the target. Another advantage of using
real hinted fonts as templates is that typographers, rather than com-
puter scientists, can build templates using tools they already know;
furthermore, each typographer can build templates to suit his or her
own hinting style.

3.1 Matching the outlines

Suppose now that we have two glyphs representing a single charac-
ter. One, thesource outline, will be the hinted character that we are
taking hints from. The goal is to translate those hints to refer to con-
trol points on thetarget outline.In the illustration here we’ll show
the process of translating hints from the lowercase ’a’ of Trebuchet
to the ’a’ of Frutiger.

Our algorithm attempts to match up explicit on-curve knots using
features such as contour direction and the presence of extrema. The
on-curve knots typically have far more significance to the shape
and extents of the contour. Once a match is computed between the

Trebuchet

A

B

C

D E

F

G

H

I

J

K

L

M

N

O

P

ab

c

d

e

f

Frutiger

A

B

C

D E
F

G

H

I

J

K

L

M

N
O-P

a
b

c

d

e

f

Figure 3 The final match for the two ‘a’ glyphs. On-curve knots are solid
dots; off-curve knots are open circles.

Times New Roman Italic

A

B

C

D

E

F
G

H
I

J

K

L
M

N

O

P

Q

R
S

T
UVW

X

a

b

c

d

Palatino Italic

W

X
A

B-C

D-E

F

G

H
I-J

K

L-M

N

O

P

Q

R-S-T
U-V

ab

c

d

Figure 4 Results of matching for a more complex pair of glyphs. No matches
involve off-curve knots in this example, so these knots are not shown.

on-curve knots, we attempt to pair up the remaining knots by sim-
ply counting the number of off-curve knots between each pair of
matched on-curve knots. If the numbers are equal, we pair the off-
curve knots based solely on their order. Only a very small fraction
of hints involve these off-curve knots, but we want to preserve as
many of the source hints as possible.

Many glyphs are defined by multiple contours, but there are no re-
strictions on what order the contours are listed in. Therefore, our
first task is to determine which contour goes with which in the two
glyphs. We do this be enumerating all the possibilities for a one-to-
one pairing of the contours. (The hinter rejects input outline pairs
with differing numbers of contours.) For each pairing we calculate
a score as follows. Suppose that the target character is scaled and
translated so that its bounding box is equal to that of the source
character. For each individual contour within the characters, we
sum together the absolute values of the differences between corre-
sponding sides of thecontourbounding boxes. This value, summed
over all the contours gives the score for the match, with the lowest
value being the best match. While this is a factorial-time algorithm,
we have not found the running time to be a problem—for the Latin
character sets we have been using it is rare to find a character with
more than five contours.

The next step, the heart of the algorithm, is to match up the knots
on each pair of contours. We begin by identifying a number of fea-
tures at each knot, and assigning a point score for matching that
feature:
1. Each knot has an incoming and an outgoingdirection, based

on the tangents of the curves touching that knot. The direction
is quantized to one of eight possibilities, corresponding to the
eight compass directions. A pair of knots is assigned from200
to −200 points based on the similarity of each direction. For
example, a knot with an incoming direction of “north,” gets200



points when matched with another “north” knot,100 points for a
“northeast” or “northwest” match,0 points for “east” or “west”,
−100 points for “southeast” or “southwest”, and−200 points
for matching “south” knot. This score is calculated for both in-
coming and outgoing direction.

2. Each knot can be flagged as a local minimum or maximum in
each of thex or y directions. A knot with one of these flags will
contribute150 points when matched with a knot with the same
flag, or−150 points when matched to the opposite flag. A knot
may not be an extremum at all in a given direction, in which case
any match will not produce a score for this category.

3. Finally, each knot has a flag to indicate whether the incom-
ing and outgoing lines are straight (within some tolerance) or
curved. Matching these flags produces a score of100 points, but
not matching them produces no penalty.

Figure 2 shows our two ‘a’ characters, marked with the features
used for matching.

To generate these matches, we pick an arbitrary starting knot on
each contour to be matched, and pair these knots. We then go
around the source contour, pairing each knot with the knot on the
target curve whose fractional arc length relative to the starting knot
is closest to that of the source knot. This generates a match with
one pair for each source knot. We can sum the local-feature score
of each pair to rate the quality of the overall match. We generate
a match using each knot on the target outline as the starting point.
The five matches with the highest local-feature scores go on to the
next stage.

In this final stage, we attempt to improve the scores of these five
best matches by small perturbations of the pairings. We remove
knot pairs with a negative local-feature score, look for matches for
unpaired source knots, and shift existing pairs to adjacent target
knots, all subject to the constraint that the match respect the order-
ing of knots around the contour: if knotB follows knot A in the
source contour, then the partner of knotB should not come before
the partner of knotA on the target contour. Once we’ve performed
this local improvement on each of the five top matches, we select
the match with the highest final score as our final match.

The results of this matching algorithm are shown in Figure 3. These
heuristics work well for a wide variety of character styles, including
roman, bold, and italic characters. A matching for a more complex
pair of glyphs is shown in Figure 4.

3.2 Hint translation

Having produced a match between the knots of the source character
outline and those of the target outline, we’re now ready to translate
the hints themselves. We parse the source font’s VTT Talk hints and
copy them to the target font, replacing knot numbers as appropriate
according to our match. If we do not have a match for a knot ref-
erenced in a particular statement, we simply copy the source state-
ment unchanged, but comment it out, to mark it as a place that may
need special attention by a person reviewing the font.

3.3 CVT translation

The CVT is a central feature of the TrueType hinting mechanism,
and no TrueType autohinting scheme would be complete without
addressing it. In VTT Talk, entries of the CVT are used via state-
ments such asYLink(14,0,87) , which says, in effect, “move
knot 0 up or down so that its vertical distance from knot 14 is equal
to CVT entry 87.” Our matcher allows us to translate the references
to specific knots to their analogues in the new font, and we can cer-
tainly keep using the same CVT entry numbers as in the original
font. The question is, whatvaluesdo we put in those entries? The
old entries tell us little, since they represent distances measured in
the source font, which may bear little or no relation to distances in
the target font.

Frutiger

Trebuchet

Figure 5 The top row shows characters from the font Trebuchet. The typog-
rapher has used CVT entry 87 to control the height of round, black features
in lowercase letters, indicated by the green links between control points. The
bottom row shows Frutiger, along with the uses of CVT entry 87 as transferred
from Trebuchet by our autohinter. Red lines indicate where hints were auto-
matically discarded because the natural distance between the points was too
different from the value in the CVT table.

glyph references to CVT entry 87
‘a’ 75∗ 143 143 156 156 164
‘b’ 111∗ 113∗ 156 156
‘c’ 156 156 160 172
‘d’ 111∗ 113∗ 156 156
‘e’ 156 156 193∗

‘f’ 155 156
‘g’ 45∗ 45∗ 111∗ 156 156 178
‘h’ 156

Table 1 Some of the references to CVT entry 87 when translating Trebuchet
hints to Frutiger. For each pair of points whose vertical distance is constrained
by this CVT entry, the natural distance between the points in the Frutiger
glyphs is listed. The value given to entry 87 is the median of these natural
distances, 156 units in this case. The starred values are outliers.

The solution comes from recognizing that the major reason the
CVT is used is to take a set of distances that areapproximately
the same in the outline, and force them to beexactlythe same num-
ber of pixels in the rendered bitmap. Since the goal is to provide
this consistency while changing the outlines as little as possible,
the CVT entry will generally contain some average value, which is
close to all the distances it is going to be used to constrain. We can
look at all the uses of a particular CVT entry to estimate what its
value should be.

Let’s look at how this works on our ‘a’ character. The person hinting
Trebuchet chose to use CVT entry 87 to represent the height of
round, black features in lowercase characters. Accordingly, most of
the lowercase letters that have round parts reference CVT 87, as we
see in the top row of Figure 5. The ‘a’ glyph alone uses entry 87 six
times—that is, there are six pairs of knots in the ‘a’ whose distance
is constrained by CVT entry 87.

Table 1 shows the “natural” distances between each of these pairs
in Trebuchet for characters ‘a’ through ‘h’. One pair of points in the
‘a’ is 75 units apart vertically in the unhinted outline, another is 143
units, and so on. To determine the overall value to place in the CVT
entry, we take the median of all these individual guesses, which
in this case is 156 units. The starred numbers in the listing indi-
cate those uses of the CVT entry where the natural outline distance
differs by more than 20% from the median value. We label these
outliers,and we remove (comment out) the hints corresponding to
these uses during the translation process, as they usually represent
cases where the shape of the target character differs enough from
that of the source character that the CVT constraint is inappropri-
ate. These commented-out constraints correspond to the red lines
in the lower row of Figure 5. Note that Trebuchet has a so-called
spectacle g,while Frutiger has amulti-story g.In this case, it is
likely that two the forms of the ‘g’ require entirely different hint-
ing strategies, since many of the hints of the source ‘g’ are simply
not appropriate for the target character shape. These inappropriate



Figure 6 A visualization of the VTT Talk hints created by a professional hin-
ter for two characters of Georgia Roman.Link constraints are shown in green,
dist constraints in blue, andinterpolateconstraints in purple. Solid lines in-
dicatex-direction constraints, while dashed lines indicatey constraints.An-
chorsare indicated with small “wings” on the anchored knot.

success review & manual
rate cleanup hinting savings

source font target font (%) (min.) (min.) (%)
Sylfaen Sans Sylfaen Sans Bold 84% 5.9 9.4 37%
Georgia Italic Georgia Bold Italic 86% 6.7 7.9 15%
Georgia Roman Georgia Bold 93% 4.6 7.1 35%
Georgia Roman Bodoni 78% 3.3 3.3 0%
Georgia Roman Calisto 74% 3.0 4.3 30%
Georgia Roman Perpetua 76% 1.2 2.7 56%
Georgia Roman Revival 82% 1.3 2.3 43%

Table 2 Times for hinting a sample of representative characters, both starting
with the autohinted font and starting with no hints at all.

hints are automatically discarded by the outlier mechanism. Only
link constraints, which reference the CVT, are eliminated. Other
types of hints do not refer to the CVT, and so are never discarded
as long as there are matches for the points they constrain.

4 Results

Our program takes two TrueType fonts as input: a source font, from
which the hints are transferred; and a target font, which is hinted
by the program. The program takes under a minute to match the
outlines, translate the hints, and create the new CVT for a 256-
character font. Once the target font is hinted, it still needs to be re-
viewed by hand and corrected by an experienced typographer. Even
minor errors in the translated hints or CVT can take a considerable
amount of time to identify and correct, so the translation has to be
highly accurate in order to be useful.

Figure 7 shows how the set of manually-defined hints for two
glyphs from Georgia Roman, ‘R’ and ‘a’, have been automatically
transferred to five different fonts. Figures 8 and 9 compare the un-
hinted versions of Sylfaen Sans Bold and Georgia Bold, respec-
tively, to the versions hinted automatically, at 16, 17, and 19 ppem,
the most commonly used on-screen sizes. In these examples it is
clear that most of the objectionable artifacts in the unhinted ver-
sions have already been corrected by the automatic hinting. Note,
for instance, the improved ‘O’ shapes and the much more uniform
stem weights in both fonts. Still, the autohinted versions are not
perfect; note for instance where the bowl of the Georgia Bold ‘b’
has narrowed unacceptably, especially at lower sizes. Imperfections
like these will need to be corrected by hand.

We evaluated our method by using the program to transfer hints
between three pairs of fonts within the same family (Sylfaen Sans
Bold from Sylfaen Sans, Georgia Bold from Georgia, and Georgia
Bold Italic from Georgia Italic) as well as four target fonts from
a source font of a different font family (Bodoni, Calisto, Perpetua,
and Revival—all from Georgia). Table 2 summarizes the results of

Revival

Perpetua

Calisto

Bodoni

Georgia Bold

Revival

Perpetua

Calisto

Bodoni

Georgia Bold

Figure 7 Visualization of hints transferred from the Georgia Roman of Fig-
ure 6 to five other fonts.



Unhinted

Autohinted

Unhinted

Autohinted

19 ppem
(14 pt @ 96 dpi)

17 ppem
(13 pt @ 96 dpi)

16 ppem
(12 pt @ 96 dpi)

19 ppem
(14 pt @ 96 dpi)

17 ppem
(13 pt @ 96 dpi)

16 ppem
(12 pt @ 96 dpi)

Unhinted

Autohinted

HOHOOOOO123 five boxing wizards jumped quicklyHigh resolution

HOHOOOOO123 five boxing wizards jumped quickly

Unhinted

Autohinted

Unhinted

Autohinted

Unhinted

Autohinted

High resolution

Figure 8 Sylfaen Sans Bold (top), and Georgia Bold (bottom), each autohinted by transferring hints from the corresponding roman typeface.

these tests. In each case, just the alphanumeric glyphs were hinted.

The “success rate” column gives the percentage of these 62 glyphs
in which the transferred hints basically worked. More specifically,
for a “successful” glyph, the overall appearance of the glyph con-
formed to the original outline at high sizes (38 ppem and above)
without any stretching or distortion, whereas below 38 ppem there
might be some cleaning up to do, but no major reshaping or rethink-
ing of the hints. If a glyph did not conform to its original outline at
high sizes or required major reshaping at low sizes, then it was con-
sidered “unsuccessful.” As can be seen from the table, the hinter had
a fairly high success rate by this measure, especially when hinting
characters within the same font family.

The next column gives an estimate of the number of minutes re-
quired for an experienced typographer to review the results of the
autohinter and clean up any problems in the transferred hints. The
figures in this column were estimated by performing this process on
some 3 to 11 representative glyphs in the target font. These same
glyphs were also manually hinted by the same typographer and the
times required reported in the following column. Finally, the right-
most column provides an estimate of the overall time savings pro-
vided by the example-based hinter.

Note that the very high success rate of the hinter translates into a
more moderate overall time savings, since even a perfectly-hinted
font requires time to review, and since a few small problems in the
hints can be time-consuming to correct. Still, these savings are sig-
nificant, considering that a full font of 256 characters can take on
the order of 20–40 hours for a skilled professional to produce.

5 Conclusion

We have adapted the earlier work of Hersch and Betrisey on auto-
matic hinting through shape matching to create a useful production
tool for hinting TrueType fonts. Instead of using hand-created tem-
plates for each character to be hinted, we use an existing, hinted
font as the template, allowing the hints of one font to be transferred
to another. This translation process includes estimation of the con-
trol value table entries used to unify feature sizes across a font. The
matching algorithm, while simple, works well for a wide variety of
character shapes, including serifed and italic fonts.

The hint transfer itself is somewhat less successful, owing primarily
to the different strategies used in hinting different styles of charac-
ters (e.g., modern serif vs. oldstyle serif). The technique is already
quite useful for transferring hints between members of the same
family (a roman to a bold, for instance). We expect that transfer-
ring hints between fonts of different families will become more and
more practical as more fonts are hinted with the VTT tool, so that
the hinter has a larger selection of source fonts to choose from and
can pick one that is more similar to the target font.

An important advantage of our approach over previous autohinters
is that it preserves the hand-crafted hinting strategy, built by a pro-
fessional typographer, in the newly hinted font. Thus, the translated
hints provide a good starting point and generally require only minor
cleanup and adjustment. With time, we expect this work to evolve
into a highly practical tool for speeding the creation of production-
quality digital fonts.

Acknowledgements

We are indebted to Michael Duggan, Greg Hitchcock, and Beat
Stamm of the Microsoft eBooks group for the many long discus-
sions about hinting, VTT, TrueType, and typography in general.

References
[1] Adobe Systems, Inc.Adobe Type 1 Font Format, March 1990.

[2] Sten F. Andler. Automatic generation of gridfitting hints for rasterization of
outline fonts or graphics. InProceedings of the International Conference on
Electronic Publishing, Document Manipulation, and Typography, pages 221–234,
September 1990.

[3] Apple Computer, Inc.The TrueType Font Format Specification, 1990. Version 1.0.

[4] Claude Bétrisey. Génération Automatique de Contraintes pour Caract`eres Ty-
pographiques `a l’Aide d’un Modèle Topologique. PhD thesis,́Ecole Polytechnique
Fédérale de Lausanne, 1993.

[5] Roger D. Hersch. Character generation under grid constraints. InProceedings of
SIGGRAPH 87, pages 243–252, July 1987.

[6] Roger D. Hersch and Claude B´etrisey. Model-based matching and hinting of fonts.
In Proceedings of SIGGRAPH 91, pages 71–80, July 1991.

[7] Beat Stamm. Visual TrueType: A graphical method for authoring font intelligence.
In R. D. Hersch, J. Andr´e, and H. Brown, editors,Electronic Publishing, Artistic
Imaging, and Digital Typography, pages 77–92, March/April 1998.


	Sections
	Abstract
	1 - Introduction
	2 - Background
	3 - Method
	3.1 - Matching the outlines
	3.2 - Hint translation
	3.3 - CVT translation
	4 - Results
	5 - Conclusion
	Acknowledgements
	References

	Figures
	1 - Pixel patterns
	2 - Features for matching
	3 - Match for sans serif 'a'
	4 - Match for serif 'd'
	5 - CVT usage
	6 - source font VTT talk hints
	7 - target fonts VTT talk hints
	8 - autohinted fonts


