Interactive Arrangement of Botanical L-System Models

Joanna L. Power A.J. Bernheim Brush Przemyslaw Prusinkiéwicz David H. Salesin

University of Washington fUniversity of Calgary

Abstract Haradaet al., who invented a technique for interactive manipula-
tion of grammar-based models [15, 3].

In this paper, we explore the problem of interactively manipulat-
ing plant models without sacrificing their botanical accuracy. The
primary technical contribution of the paper is a method for interac-
tively manipulating plant structures using a inverse-kinematics op-
timization technigue. The branches of the plant are endowed with
flexural and torsional stiffnesses, and these are used in the IK opti-
mization. We demonstrate our approach with several examples of
plant models arranged in this fashion.

The remainder of the paper is organized as follows: Section 2 pro-
vides relevant background information on L-systems. Section 3 de-
scribesilsa and the arrangement process. Section 4 presents some
results and discusses their creation. Section 5 concludes with a dis-
cussion of contributions and possible directions for future work.

Keywords: botanical modeling, L-system, plant arrangement,
inverse-kinematics, optimization, interactive techniques 2 L-systems and L-strings

1 Introduction An L-system consists of a set of textual rules calpedductions

that describe the development of plant branches, leaves, flowers,
Lindenmayer-systems, or L-systems for short, were introduced asand other components. Inggneration phasthese productions are
a theoretical model of plant development [5]. In the hands of com- applied in a sequence dérivation stepso the initial string, called
puter graphics researchers, L-systems have evolved into a powerfulthe axiom The state of the L-system model after any number of
tool for creating biologically faithful and visually realistic models steps is encoded in a string of symbols, called lthstring. In a
of plants, capable of simulating their growth and interaction with subsequeninterpretation phasehe L-string is converted to a geo-
the environment [7, 10, 11]. metric representation of a plant.

The power of L-systems lies in their ability to generate complicated L-strings encode form usirtgrtle geometry1]. A turtle, starting at
structures from a small number of rules, but the cost of this brevity a specified location and orientation in world-space, interprets an L-
is the lack of precise control over the final form. This is a draw- string as a series of position- and orientation-changing instructions.
back of L-system models in applications such as illustration, scene The position of the turtle is represented by a veptats orientation
design, and animation — areas in which a designer's aesthetic vi-is given by three vectors, |, andu, indicating in the turtle's local
sion is the priority. In such areas, what is needed is a plant model frame of reference which directions are forward l@ading, left,

that can grow and respond to its environment, yet that can be easilyandup. As the L-string is scanned from left to right, these four state
adjusted and controlled. Our applicatidsa (interactive L-string vectors change according to the instructions encoded in the string.
arranger) allows a user to interactively manipulate a plant model In addition to the basic symbols listed in Table 1, many additional
while preserving its botanical accuracy and behavior, improving the symbols encode the information required for a detailed, realistic
usefulness of L-systems in domains beyond biological modeling. plant model. For a thorough introduction to plant modeling using

The ability to interact with L-system models extends their utility L-systems se&he Algorithmic Beauty of Planfa1].

within the domain of botanical modeling as well. A model can be
grown for a certain number of generations, arranged or pruned, and

then grown some more. The final form of such a model expresses F(a) | move forward distance
both the developmental behavior of the plant and the effects of hu- +(6) turn leftd degrees
man intervention. —(6) | turnrightd degrees

&(6) | pitch downf degrees
A(#) | pitch upf degrees

Our project ties together threads of related work from two areas of

computer graphics: plant modeling using L-systems and realistic -
model manipulation. The majority of work on L-system model- \(z) ro:: lrlg;]cthteeddegrees
ing is that of Prusinkiewicet al.[7, 10, 11]. In the broad area of /(6) | rollleft § degrees

>

save state, start new brandg
end branch, restore state

interactive manipulation, the most closely related work is that of
Zhao and Badler, who developed a system for the interactive ma-
nipulation of jointed figures using inverse-kinematics, and that of

Table 1 Basic L-string symbols and their turtle interpretations.

In addition, in the context of this work we introduce a new sym-
bol Z(s", ¢, 9) to specify the stiffness of joints between subsequent
branch segments. The impact of the paramedei®, ands is dis-
cussed in Section 3.1. If the stiffness values are not incorporated in
the L-system model and the resulting L-striflga estimates them

for the purpose of model manipulation, as described in Section 3.3.

3 Arrangement

Our interactive applicationisa acts as a specialized editor of L-
strings. To allow interactive response timiksa displays an un-
detailed view of the model being manipulated. A detailed view
is displayed incpfg (continuous plant and fractal generator), the
L-system interpretation and rendering environment developed by
Prusinkiewiczet al. [4]. This detailed view is updated as arrange-
ment changes are made iisa. The arranged model preserves
the growth and environmentally-sensitive behavior of the original
model. An example of the two applications working together is
shown in Figure 1.

Since our goal is to preserve and augment the ability of L-systems
to model botanically-accurate plants, we constrain the manipula-
tions allowed hyilsa to those that could be performed on an actual
plant: bending and pruning branches and arranging and clipping
leaves and flowers. Removing elements (i.e., pruning or clipping
them) is straightforward and will not be discussed in depth. Bend-
ing branches interactively in a physically plausible way is a much
more interesting problem and will be fully explored in this section.

In nature, branches are continuous, beam-like structures that bend

and twist in response to natural forces. The degree to which a
branch bends or twists depends orsiiffness In ilsa, branches are
chains of straight, rigid segments connected by spring-like joints
that bend and twist in response to user input. Consider a branch
with n segments andjoints. At each joini, numbered from 1 ta,

the vectorsh;, u;, andl; define theheading up, andleft axes of the
turtle reference frame of the next segment. These vectors are illus-
trated in Figure 2. Each jointhas three associated stiffness values:
S, Su, ands that define how difficult it is to rotate the joint about
the localh, u, andl axes. Meaningful stiffness values range from
0 to infinity. An infinitely stiff joint allows no rotation around the
axis in question, and a joint with zero stiffness rotates freely. When
a plant is manipulated iitsa, joint stiffness information is used by

an inverse-kinematics (IK) optimization to determine a “natural”
branch position.

Ui Ui+

L,
/W%m

Figure 2 Branches irilsa are made up of rigid segments connected
by spring-like joints. At each joint, the vectord;, u;, andl; define

the heading, up, and left vectors of the turtle as it draws the next
segment.

lis1
his1

—9-

3.1 Branch manipulation

Manipulation inilsa must satisfy two goals: it must seem realistic,
and it must be interactive. A physical simulation would satisfy the
first goal but would be too slow for our purposes. Instead, we use
flexural and torsional joint stiffness values in an IK optimization
that allows interactive manipulation and achieves pleasing, “natu-
ral” branch arrangements.

The branch-positioning processiisa consists of two nested loops.

As the user manipulates a branch, an outer loop repeatedly calls the

IK optimization routine with parameters supplied by the user inter-
action. Each time the optimization routine is called, it solves for
a new branch position based on the current position of the branch,
the supplied user input, and the stiffness of the branch. First we
will discuss the objective function used by the inner loop of the

optimization; we will then discuss the parameters passed to the op-
timization routine by the outer loop.

Objective function

The objective function minimized bysa's IK solver positions a
branch by solving for a set of joint rotations along that branch. Ex-
amining the objective function for a seriesrofiifferent joints with
one degree of freedom (hereafter referred ta-fmints), leti be an
integer from 1 ton, and leta; be the current angle at joint We
refer to the joint angles collectively as the veator (aa, . . . , an).

When manipulating a branch, the user is primarily interested in

three things: the location of the end of the branch, the twist of the
branch, and the curve of the branch. Our objective function contains
two terms that attempt to meet user-supplied targets for branch end-
position and branch twist, and two terms that attempt to maintain
“natural” branch curvature. The four terms are described below:

e branch end-position

The branch end-position term tries to match the current branch
end-position, denoted by, with the target branch end-position,
denoted by The branch end-position term is thigm — f|.

e branch twist

The branch twist term considers the vectbendu of the final
segment in the manipulated branch. We call thesewligt vec-
torsand denote them byandt respectively. The twist term tries
to minimize the difference between the current twist vectors and
the target twist vectors, denoted sgridi. The branch twist term

is then||s — §| + ||t — .

e spring-energy

The spring-energy term is a sum over th@ints in the branch
and effectively bends flexible parts of the branch more than stiff
parts. Lets be the stiffness value at jointwherei is an integer
from 1 ton. Leta; be the current angle at jointlet p; be the rest
angle at jointi, and definej to bea; — pi. The spring-energy
term is thenzi”ﬂséiz. Examining the spring-energy term of a
joint i in terms of the potential energy of a spriégxz, we see
that the spring constaktrepresents the stiffness of the joint.

e smoothness
The smoothness term is a heuristic term designed
to provide reasonable behavior when the input

L-system does not contain joint stiffness information. This term
attempts to minimize the difference in bend between 1
consecutive joints. The smoothness tern i (8isa — 6)?.
When joint stiffness information is present in the input L-system,
the user turns off smoothness by setting the importance weight
of this term to 0.

Letwp, W, We, andws denote the importance weights for the branch
end-position term, the branch twist term, the spring-energy term,
and the smoothness term respectively. The objective function for a
set ofn 1-joints is then the weighted sum of the four terms described
above:

f(cr) = Wpllp — BI| +we(]|s — 8| + [t —)
n n—1
+ We Z 567 +WSZ(6i+1 — &)
i=1 i=1

For a three-dimensional plant model, each branch joint has three
degrees of freedom. (We will call such a joinBgoint). To arrange

1)

r
|
-
r
-
-

Figure 1 Our applicationilsa was designed to work in conjunction witpfg The detailed rendering on the left is provideddpfg ilsa uses
a simpler rendering style to allow interactive response time.

@) (b) (© (d) (€)

Figure 3 Branch manipulation in 2D. The branch consists of 11 segments connected by 1-joints. From left to right: (a) the original branch;
(b) the result of manipulating a branch with constant joint stiffness values; (c) the result of manipulating a branch with increasing joint stiffness
values; (d) the result of manipulating a branch with decreasing joint stiffness values; and (e) the result of manipulating the uniformly stiff
branch in two separate moves. Leaf sizes indicate the stiffness of the associated joints.

a branch in three-dimensionisa interprets each 3-joint as three « as a starting point. The specified setngbints defines a set of
1-joints, two of which are followed by a segment of length zero. branch segments that will be directly affected by the manipulation.
We call this set of branch segments thranch path Letr denote

the position of the root of the branch path gndenote the position

of the movable end. (Note that the positionrofvill not change
during manipulation.) Théranch axis-vectow(p,r) describes a
vector pointing from the root of the branch path to its movable end.
As we described in the previous section, thést vectorss andt are

the vectord andu respectively of the last joint in the branch path.
A branch path and its associated vectors are illustrated in Figure 5.

The importance of the spring-energy term to the results of a manip-
ulation is illustrated in Figures 3 and 4. In Figure 3 we show the
results of manipulating simple branches with constant, increasing,
and decreasing joint stiffness values. In Figure 4 we show the re-
sults of applying a single manipulation to a more complex branch in
three situations: first using no stiffness information and no smooth-
ness term, next using only the smoothness term, and finally using
only stiffness information. The same manipulation was used in each
case: the left branch was selected just above the last joint and pulledAs the user interacts with a branchilsa, an outer loop repeatedly
down and to the left. The difference between subfigures (b) and calls the IK-optimization routine with targets for the branch end-
(c) indicates that in the absence of stiffness information, using the position and twist-vectons, $, andt, respectively. The optimization
smoothness term gives slightly more natural results. Obtaining the routine solves for a new set of joint angle valeesThe actual end-
most natural result, however, requires stiffness values. position and twist-vectors of the branch change as a function of the
new joint angles; that i), sandt are functions otx.

Optimization parameters The inner loop of the optimization process minimizes the objec-
tive functionf(a). The branch end-position term of the objective
In ilsa, we use conjugate gradient descent optimization, since the function requireg(cr), which is calculated, and the target branch
function we are optimizing is nonlinear and differentiable [9]. (For end-positionp; which is supplied as input. The branch twist term
details on the derivative function, see the appendix.) Conjugate of the objective function requires the twist vectsfer) andt(c),
gradient descent is sensitive to local minima. However, this po- which are calculated, and the target twist vectasdt, which are
tential shortcoming does not present serious problems in practicesupplied as input. Thus the full set of inputs to the optimization rou-
because our application is interactive and because the optimizationtine isc, p, r, f, ands. The values ofx are determined by conjugate
converges quickly given a good starting point. Thus, any branch gradient descent from a starting set of valoes ~
that settles into an undesired configuration due to a local minimum . . . o) . .
can simply be “pulled out” interactively, and the optimization will As the following section will describelsa provides manipulation
continue. This approach is also used by Zhao and Badler in their Widgets that allow subsets of the optimization parameters to vary si-

work on positioning articulate figures using inverse kinematics [15]. Multaneously, while holding other parameters fixed. These widgets
allow the user to control which aspects of a branch will be affected

Positioning a branch requires the specification of a set jofnts by a manipulation and interact with a plant in meaningful ways by

with joint angle valuesx. Let the initial joint angle values be. rotating, twisting, straightening, and bending branches.
A new set of joint angle values is chosen by the IK-solver using

@) (b) (© (d)

Figure 4 Plant manipulation with and without joint stiffness information. From left to right: (a) the original plant with the active branch in
dark gray and the branch path in white; (b) the result of manipulating the lower branch with no joint stiffness values and smoothness turned
off; (c) the result of manipulating the branch with no joint stiffness values and smoothness turned on; (d) the result of manipulating the branch
with automatically-assigned joint stiffness values and smoothness turned off.

3.2 Userinterface directly affected by a manipulation as theanch path There may

]] o be any number of branches attaching to the branch path whose po-
As mentioned beforélsa renders models using lines for branches sitions may also be indirectly affected by this manipulation. We
and wire-frame surfaces for leaves and petals. This drawing style call this set of branches tretive branch An example of an active
allowsilsa to achieve good interactive behavior even for complex pranch is shown in Figure 6. To define a branch path and an active
models. A detailed view of the plant is provided byfgand up- branch inilsa, the user first picks one point to be the fixed point of
dated in response to messages setilsaythrough a socket connec- hoth the branch path and the active branch, the pdimbur previ-
tion. The manipulations allowed bisa include pruning branches, ous discussion. The active branch consists of all structures from
clipping leaves and flowers, and arranging branches by bending ando the branch ends, and these structures are highlighted as soon as
twisting them. is picked. The active branch selection can be easily modified using
the arrow keys: up moves the fixed point toward the branch end,
down moves the fixed point toward the base of the plant, and left
and right move to sibling branches. The user specifies the moveable

Pruning and clipping are straightforward: the user simply chooses €nd of the branch path, the manipulated pginby picking again
the delete tool, selects the portion of the plant to be removed, and Within the active branch.

hits delete on the keyboard. A special symbol is inserted into the
L-string to indicate that pruning has taken place. This symbol can
be used in further generations of the L-system model to trigger re-
growth induced by pruning [10].

Pruning

Selection

In order to arrange branchesilsa, the user first selects the part of
the plant to be manipulated. This selection process has two com- Figure 6 In ilsa, the active branchis highlighted in red (shown
ponents, as does the analogous selection process on a real plant. in dark gray), thebranch pathis highlighted in yellow (shown in
Imagine that a user wants to physically bend an inconveniently- white), and the immobile portion of the plant remains green (shown
placed branch. She holds the base of the plant in her left hand, then in middle gray).
grasps the end of the plant in her right hand, and pulls. The ma-
nipulation directly affects a path of branch segments, starting with
the manipulated poinbn the branch that she pulls and ending at
thefixed pointat the base of the plant. Now imagine that the user's Arrangement
goal is to achieve a more local change. She chooses a manipulated
point at the end of the branch as before, but she chooses a differenOnce the branch path has been selected, an arrangement tool ap-
fixed point, one above the base of the plant, shortening the affectedpears at the end of the branch path. The four arrangement tools that
path. In either case, the effect of the manipulation may or may not ilsa provides come from the Open Inventor Toolkit and are shown
propagate all the way from the manipulated point to the fixed point, in Figure 7 [13]. These tools allow the user to modify different
depending on the rigidity of the branches along the way. subsets of the parameters passed to the optimization routine. Any

. arameter that is unaffected by a particular tool remains fixed at the
We have already defined the set of branch segments that may b‘%/)alue the parameter had at tk)lle tipme the arrangement tool was in-
stantiated. Lep, s, andt denote theseriginal valuesof p, s, andt
respectively. The optimization parameters that vary according to ar-

o It rangement tool arg (target branch end-position) asandt (target
P r— twist-vectors). Let/ = p — r denote the original branch axis-vector.
/11 The behaviors of the arrangement tools and their interaction with
[fn the optimization routine are described below:

e Spherical dragger

Figure 5 Branch path. The branch path, shown as dashed lines, A spherical widget centered atwith a radius||V]| allows the
consists oh segments between the branch path raotd the branch user to rotate and drag the branch with track-ball-like interac-
path endp. The branch axis vectarand the twist vectorsandt are tions. The spherical dragger affects all three parametgrs; ~

used byilsa's IK-optimization over joint angleg;, 1 <i < n. andt.

(b) (© (d)

Figure 7 Arrangement widgets. From left to right: the spherical dragger, disc dragger, axis dragger, and 2D-plane dragger.

e Disc dragger a branch.

A disc-shaped widget positionedmand axis-aligned with al- Borrowing notation from the field of biomechanics, Eetepresent
lows the user to twist the branch with steering-wheel-like mo- the elastic moduluof the branch material and Iétrepresent the
tions. The disc dragger affects the branch twist parameters: tar-second moment of araaf the branch cross-sectidnLet the mag-
get twist vectorssand{. Since the branch end-position should nitude of the torque required to bend the branch to a curvétire
stay fixed, the dragger always paspess the target branch end- represented by:. Then, according to Niklas [8, page 135],
positionp.

o Axis dragger = EIK. @

A widget consisting of a cylinder and an orthogonal plane posi-

tioned atp. The cylinder is axis-aligned witk and allows the We see that the torque required to bend a branch to a curvature

user to move the branch end-position in and out alangThe K depends on some inherent properties of the branch and on the

user may also use the plane portion of the widget to position the degree of curvature. The resistance of the branch to bending, rep-

end of the branch, but we have found that the spherical dragger resented by the product &andl, is called theflexural stiffnes®f

provides a more natural interface for this action, since it attempts the branch [8].

to preserve the length of the branch.) The axis dragger affects _ . .

only the target branch end-position paramegerSince branch ~ 1ypPically we do not know the value &, the elastic modulus of

twist does not change, the dragger always passes the initial twistthe branch material. However, using our assumptionsghaton-

vectorssandt for the target twist vectorsandt. stant and that the branch has a circular cross-section of rgdites
can conclude that the flexural stiffneBsis proportional tor* [8,
e 2D-plane dragger page 134]. This information is sufficient for our purposes, since the

multiplication of all the joint stiffness terms by a constant does not
change the outcome of the branch-positioning optimization. Let us
denote byc: the constant portion of flexural stiffness:

This dragger consists of the axis dragger widget, positioned so
that the plane is useful. The dragger appearp anhd is ori-
ented in the view-plane. It allows the user to interact with a 3-
dimensional plant as if it were 2-dimensional. The dragger af-

fects only the target branch end-position paramptenly. The El =cr.
dragger always passes the initial twist vecwendt for the tar-
get twist vectors andt. Equation (2) describes the behavior of a continuous branch, but in

L-system models a branch is represented as a sequence of stiff seg-
The spherical dragger can also be used to manipulate structuresnents connected by joints. We can replace curvature by its discrete
such as leaves and flowers. In this case, the root of the branch pattapproximation:K = 6/L, whereL = (li—1 +1i)/2 is the average
r is the attachment point of the structure, and the branch path con-length of two adjacent segments, ahi the angle between them.
sists of a single virtual segment in the direction of the turtle heading BY substituting this expression into Equation (2), we obtain:
vectorh atr. The length of the virtual segment is chosen such that 49 2o
|v]| equals the maximum dimension of the selected structure. = Cer = G r+| .

i—1 i

®)

3.3 Assigning joint stiffness values Not surprisingly, we see that the torque required to bend a joint to

Branch stiffness values are not readily available for most plants, 2" @nglé/ is proportional tc.

nor are they easily measured. Therefore, we want our system tosince we have assumed circular cross-section of the branch, the

automatically assign reasonable joint stiffness values to existing L- flexural stiffness values for bending around thend! axes are the
system models. Studies in the field of plant biomechanics, along same:

with some help from a Renaissance man, provide the tools we need

to accomplish this task. As discussed in detail by Niklas, plant

branches behave like beams that are subjefiexion or bending, " 2cir?
andtorsion or twisting [8]. The flexural and torsional rigidities of §'=s= it 0
a branch depend on both its material and cross-sectional geometry. m T
If we assume that all branches of a plant are composed of the sameéThe second moment of area describes both the geometry of the cross-
material and have circular cross-sections, we can determine relativesection and the plane of bending. In a bending branch, therenésitzal
branch rigidities based solely on branch radii. axis at which opposing tensile (stretching) and compressive stresses bal-
ance. The second moment of aréais an integral summing the products

of each infinitesimally small area within a cross-section and the square of
the distanced each area lies from the neutral axis= ffrgax d?dA. For

In turtle terms, branch flexion means rotation aboutltbeu axis. example, for a branch with a circular cross-section of radjbe second

Our goal is therefore to obtain values fands' for each joint of moment of ared = %711’4 [8, page 134].

(4)

Branch flexion

Equation (4) allows us to assign flexural stiffness values to the joints
of a branch once we know the flexural constarfor the plant and
the radiug of the branch in question.

Branch torsion

In ilsa, torsion corresponds to rotation around thexis. To cal-
culated for each jointi of a branch, we consider the resistance of
the branch to twisting. This resistance is thesional rigidity of
the branch. Like flexural stiffness, torsional rigidity depends both

on the branch material and the branch cross-sectional area [8, page

160]. For a branch with a circular cross-section and constant mate-
rial, there is a constart for which the torsional rigidity§ is given

by

4
Gl
S T

ReplacingL by the average length of the adjacent segments, we
arrive at an equation for the torsional rigidity of tHe joint of a
particular branch with radius

h_ 2ar
b+l

®)

Equation (5) allows us to assign torsional rigidity values to the
joints of a branch once we know the torsional constarfor the
plant and the radiusof the branch in question.

For branches with non-circular cross-sections, we can calculate two
second moments of are,, and 1, to account for differences in
flexibility along thel andu axes.

Automatic assignment

It should now be clear that given values for the flexural stiffness
constant;, the torsional rigidity constartt, and the radii of all the
branches in the plant, we can automatically assign joint stiffness
values.

If the radii values are not available, we assign reasonable values
using a formula proposed by Leonardo da Vinci. He postulated that

the cross-sectional area of a tree branch is equal to the sum of the

cross-sectional areas of its children branches [2].

Let us assume that all children of a particular branch have the same

radius. Letr represent the radius of a branch wittchildren and
let rc represent the radius of the children. Using the relationship
proposed by da Vinci, we derive the following equations:

2
;
mrl=narl==ri= o

(6)

In ilsa, the user provides a value for the trunk radigi$in terms of
turtle steps). The system then recursively assigns radii values to all
branches using Equation (6).

The user also provides values for the flexural stiffness and torsional
rigidity of the trunk, sy (or s,) and s respectively. These values

|

Ct

—
EN

|4

Ct

-.‘
~

0

The following pseudocode summarizes the recursive function used
to automatically assign joint stiffness values to a plant:

function AssignStiffnesgbranchr, ¢, ¢t)
for each jointi

o2t
s = Gi_1+E;
g =9
#q — _2art
b1t
end for

2
for each child branclchild
AssignStiffneséchild, r¢, ¢, ct)
end function

4 Examples

We present three examples of plants generated wegiftgand

arranged usingsa:

e Rose campion

We selected the rose campiohyfichnis coronarij because

its architecture has already been described and modeled in de-
tail [11, 12]. Figure 8 presents three snapshots documenting the
arrangement process. From the complex model generated by
cpfg we pruned and arranged the branches to create a simpler,
more stylized plant. This arrangement was completed in about
half an hour.

Lily

The lily model depicted in Figure 9 has exquisite detail, much of
which is hidden in the original arrangement as generaterphy

The original model did not provide branch stiffness information,
SO we assigned joint stiffness valuesilga. This arrangement
took about an hour to complete. A great deal of time was spent

waiting for cpfgto render the detailed version of the plant so that
the effects of precise manipulations might be discerned.

e Regrowth example

The model depicted in Figure 10 is a very simple plant, based
on an example fronThe Algorithmic Beauty of PlantsThe
branches are rendered as lines and the leaves and flowers as poly-
gons. Joint stiffness values were again assigned ulsiagThis
example hints at the many possible applications of the ability to
grow a plant, arrange it, and then grow it some more.

5 Discussion and future work

We have presented a system for the interactive manipulation of
plants modeled using L-systems. Our applicatiisa allows the
user to locally arrange a plant model while preserving its botanical
accuracy. The approach implementediga is to interact with an
L-system model at the level of the L-string.

This work extends the usefulness of L-systems for both computer
graphics and botanical modeling. Possible applications include L-
system bonsai, interactive topiary, landscaping planning and de-

represent the stiffness of a joint between segments with averagesign. Our system could easily be extended to support flower ar-
length equal to 1. We then use Equations (4) and (5) to calculate ranging and grafting, a process widely applied to fruit trees. |I-
the constants; andc:: lustrators, scene designers, and animators could take advantage of

the growth and environmental interaction capabilities of L-system

models, yet achieve more precise control over the final presen-

tation of the plants. Another interesting area for further explo- of

ration is 2D floral pattern design, potentially extending the work dar A+B+C+D.)

of Wonget al.[14].

Another very interesting direction for future work is the develop-

ment of an interactive toolkit for creating L-system models. We

imagine a library of basic components like branching structures,
leaf profiles and surfaces, flowering patterns, thorns, etc. that could
be put together and interactively adjusted, resulting in a new model.
Lintermannet al.developed a system that allows intuitive assembly

of botanical components [6]. Extending the user-interface concepts
presented in their work to take advantage of the growth and envi-
ronmental interaction capabilities of L-system models could lead to
a powerful botanical modeling system with an easy-to-use visual

Let us first look at the partial derivative of the branch end-position
term with respect tev. Let the rotation axis of thé" joint be the
unit vectorw. Let p, denote the position of the turtle at jointafter
drawing segmenit — 1. Let the branch end-positiqn= p,. Let
Vpost = P — P;. Letsandt be the turtle vectorsandu respectively
after drawing then" branch segment. The derivativesppf, andt

can be computed fromv andvpost as follows [15]:

interface. op _
a—ai = W X Vpost
Acknowledgments 95 _ s
dai
Many thanks to the people who volunteered their time and expertise ot _
to help with this project, especially Radonviech and Eric Stoll- dai wxt

nitz. This work was supported by an NSF Presidential Faculty
Fellow award (CCR-9553199), an ONR Young Investigator award
(N00014-95-1-0728), a NASA Space Grant, an NSF Graduate Re-
search Fellowship, and industrial gifts from Interval, Microsoft, and 1hUs,
Xerox to David Salesin, and the NSERC grant OGP0130084 to
Przemyslaw Prusinkiewicz.

0 R
A= —wy(||p—
Appendix: Gradient of objective function Oai w(llp =PI ®)
- A Op
Here we derive the gradient of the objective function used in the = 20(p — P) - dai
IK-optimization and presented in Equation (1):

Now let us look at the partial derivative of the branch twist-term

R . N with respect tay;:
f(a) = Wpl[p — Pl +w(l[s — 8| + |t —t]])

n n—1
+We Z S8 + WSZ(éiﬂ - 8)? B .
i=1 i=1 B=—w(|s—8§|+|t—tl)

dai
o i . o O0s ot ©
The gradient is a vector of partial derivatives: =2w((s—9- a0 t-19- ﬁ)
| I
V= (222 o
Oa1’ Oaz Oan Now let us look at the partial derivatives of the branch energy and

smoothness terms with respectio

We need to find the partial derivative biwith respect to a single
joint rotationa;:

2 2
C= ——WeS$,
Doy S (10)
o9 Wo(llp — PIJ) + = WeSi i
aai 6ai P e 0j

0 R -
5o Mellls = Sl + [t =Ty +
0

— W, 62+
da eS 0j

and

9 SV (5 — 5V 0 2 2
9o Ws((8i+1 — &)+ (6 — 6i—1)) D= (3_aiws((6i+1 — &)+ (6 — 6i—1)) (11)
= Ws(26i — bi—1 — bis1)
For clarity we consider the derivative terms one at a time. A,et
B, C, andD be the derivatives of the branch end-position term, the
branch twist term, the spring-energy term, and the smoothness termBy substituting expressions (2) to (5) into (1), we obtain the gradi-
respectively: ent function needed.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

(20]

[11]

(12]

(23]

[14]

(18]

H. Abelson and A. A. diSessalurtle geometry M.1.T. Press, Cam-
bridge, 1982.

L. da Vinci. The notebooks of Leonardo da Vinci, compiled and edited
from the original manuscripts by Jean Paul Richt&over Publica-
tions, New York, 1970.

Mikako Harada, Andrew Witkin, and David Baraff. Interactive
physically-based manipulation of discrete/continuous modelSI®&
GRAPH 95 Conference Peeedings pages 199-208. ACM SIG-
GRAPH, New York, 1995.

Mark James, Mark Hammal, Jim Hanan, RadoMech, and Prze-
myslaw PrusinkiewiczCPFG Version 2.7 User's Manual

A. Lindenmayer. Mathematical models for cellular interaction in de-
velopment, Parts | and llournal of Theoretical Biologyl8:280-315,
1968.

Berd Lintermann and Oliver Deussen. Interactive modelling and ani-
mation of branching botanical structures. Harographics Computer
Animation and Simulation EGCAS3pringer-Verlag, 1996.

Radonir Mech and Przemyslaw Prusinkiewicz. Visual models of
plants interacting with their environment. BIGGRAPH 96 Con-
ference Proceedingpages 397-410. ACM SIGGRAPH, New York,
1996.

K. J. Niklas. Plant Biomechanics: an Engineering Approach to Plant
Form and Function The University of Chicago Press, Chicago, 1992.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. FlanneryNumerical Recipes in C: The Art of Scientific Com-
puting, chapter Chapter 10: Minimization or Maximization of Func-
tions. Cambridge University Press, 1992.

Przemyslaw Prusinkiewicz, Mark James, and Raiddviech. Syn-
thetic topiary. INSIGGRAPH 94 Conference Reedingspages 351—
358. ACM SIGGRAPH, New York, 1994.

Przemyslaw Prusinkiewicz and Aristid LindenmayEne Algorithmic
Beauty of PlantsSpringer-Verlag, 1990.

Przemyslaw Prusinkiewicz, Aristid Lindenmayer, and James Hanan.
Developmental models of herbaceous plants for computer imagery
purposes. I'8IGGRAPH 88 Conference Rmeedingspages 141-150.
ACM SIGGRAPH, New York, 1988.

Josie Wernecke.The Inventor Mentor Addison-Wesley Publishing
Company, 1994.

Michael T. Wong, Douglas E. Zongker, and David H. Salesin.
Computer-generated floral ornament. SHGGRAPH 98 Conference
Proceedingspages 423-434. ACM SIGGRAPH, New York, 1998.

Jianmin Zhao and Norman |. Badler. Inverse kinematics position-
ing using nonlinear programming for highly articulated figure€M
Transactions on Graphi¢d.3(4):313-336, October 1994.

(b)

Figure 8 Rose campion. From left to right: (a) the original L-system model; (b) an intermediate stage in the arrangement process; (c) the final arrangement.

(@) (b)

Figure 9 Lily. The original L-system model (a) and the final arrangement (b).

@) (b) (© (d)

Figure 10 Regrowth example. From left to right: (a) a simple plant grown for four generations; (b) the same plant grown for five generations
(rescaled to the same display size); (c) the fourth-generation plant arraniégad (d) the arranged plant grown for one more generation.

