
Interactive Arrangement of Botanical L-System Models

Joanna L. Power A.J. Bernheim Brush Przemyslaw Prusinkiewiczy David H. Salesin

University of Washington yUniversity of Calgary

Abstract

In this paper, we explore the problem of interactively manipulat-
ing plant models without sacrificing their botanical accuracy. The
primary technical contribution of the paper is a method for interac-
tively manipulating plant structures using a inverse-kinematics op-
timization technique. The branches of the plant are endowed with
flexural and torsional stiffnesses, and these are used in the IK opti-
mization. We demonstrate our approach with several examples of
plant models arranged in this fashion.

Keywords: botanical modeling, L-system, plant arrangement,
inverse-kinematics, optimization, interactive techniques

1 Introduction

Lindenmayer-systems, or L-systems for short, were introduced as
a theoretical model of plant development [5]. In the hands of com-
puter graphics researchers, L-systems have evolved into a powerful
tool for creating biologically faithful and visually realistic models
of plants, capable of simulating their growth and interaction with
the environment [7, 10, 11].

The power of L-systems lies in their ability to generate complicated
structures from a small number of rules, but the cost of this brevity
is the lack of precise control over the final form. This is a draw-
back of L-system models in applications such as illustration, scene
design, and animation — areas in which a designer's aesthetic vi-
sion is the priority. In such areas, what is needed is a plant model
that can grow and respond to its environment, yet that can be easily
adjusted and controlled. Our applicationilsa (interactive L-string
arranger) allows a user to interactively manipulate a plant model
while preserving its botanical accuracy and behavior, improving the
usefulness of L-systems in domains beyond biological modeling.

The ability to interact with L-system models extends their utility
within the domain of botanical modeling as well. A model can be
grown for a certain number of generations, arranged or pruned, and
then grown some more. The final form of such a model expresses
both the developmental behavior of the plant and the effects of hu-
man intervention.

Our project ties together threads of related work from two areas of
computer graphics: plant modeling using L-systems and realistic
model manipulation. The majority of work on L-system model-
ing is that of Prusinkiewiczet al. [7, 10, 11]. In the broad area of
interactive manipulation, the most closely related work is that of
Zhao and Badler, who developed a system for the interactive ma-
nipulation of jointed figures using inverse-kinematics, and that of

Haradaet al., who invented a technique for interactive manipula-
tion of grammar-based models [15, 3].

The remainder of the paper is organized as follows: Section 2 pro-
vides relevant background information on L-systems. Section 3 de-
scribesilsa and the arrangement process. Section 4 presents some
results and discusses their creation. Section 5 concludes with a dis-
cussion of contributions and possible directions for future work.

2 L-systems and L-strings

An L-system consists of a set of textual rules calledproductions
that describe the development of plant branches, leaves, flowers,
and other components. In ageneration phasethese productions are
applied in a sequence ofderivation stepsto the initial string, called
the axiom. The state of the L-system model after any number of
steps is encoded in a string of symbols, called theL-string. In a
subsequentinterpretation phasethe L-string is converted to a geo-
metric representation of a plant.

L-strings encode form usingturtle geometry[1]. A turtle, starting at
a specified location and orientation in world-space, interprets an L-
string as a series of position- and orientation-changing instructions.
The position of the turtle is represented by a vectorp; its orientation
is given by three vectorsh, l, andu, indicating in the turtle's local
frame of reference which directions are forward (orheading), left,
andup. As the L-string is scanned from left to right, these four state
vectors change according to the instructions encoded in the string.
In addition to the basic symbols listed in Table 1, many additional
symbols encode the information required for a detailed, realistic
plant model. For a thorough introduction to plant modeling using
L-systems seeThe Algorithmic Beauty of Plants[11].

F(a) move forward distancea
+(�) turn left� degrees
�(�) turn right� degrees
&(�) pitch down� degrees
^(�) pitch up� degrees
n(�) roll right � degrees
=(�) roll left � degrees

[save state, start new branch
] end branch, restore state

Table 1 Basic L-string symbols and their turtle interpretations.

In addition, in the context of this work we introduce a new sym-
bol Z(sh, su,sl) to specify the stiffness of joints between subsequent
branch segments. The impact of the parameterssh, su, andsl is dis-
cussed in Section 3.1. If the stiffness values are not incorporated in
the L-system model and the resulting L-string,ilsa estimates them
for the purpose of model manipulation, as described in Section 3.3.

3 Arrangement

Our interactive applicationilsa acts as a specialized editor of L-
strings. To allow interactive response time,ilsa displays an un-
detailed view of the model being manipulated. A detailed view
is displayed incpfg (continuous plant and fractal generator), the
L-system interpretation and rendering environment developed by
Prusinkiewiczet al. [4]. This detailed view is updated as arrange-
ment changes are made inilsa. The arranged model preserves
the growth and environmentally-sensitive behavior of the original
model. An example of the two applications working together is
shown in Figure 1.

Since our goal is to preserve and augment the ability of L-systems
to model botanically-accurate plants, we constrain the manipula-
tions allowed byilsa to those that could be performed on an actual
plant: bending and pruning branches and arranging and clipping
leaves and flowers. Removing elements (i.e., pruning or clipping
them) is straightforward and will not be discussed in depth. Bend-
ing branches interactively in a physically plausible way is a much
more interesting problem and will be fully explored in this section.

In nature, branches are continuous, beam-like structures that bend
and twist in response to natural forces. The degree to which a
branch bends or twists depends on itsstiffness. In ilsa, branches are
chains of straight, rigid segments connected by spring-like joints
that bend and twist in response to user input. Consider a branch
with n segments andn joints. At each jointi, numbered from 1 ton,
the vectorshi , ui , andl i define theheading, up, andleft axes of the
turtle reference frame of the next segment. These vectors are illus-
trated in Figure 2. Each jointi has three associated stiffness values:
sh, su, andsl that define how difficult it is to rotate the joint about
the localh, u, andl axes. Meaningful stiffness values range from
0 to infinity. An infinitely stiff joint allows no rotation around the
axis in question, and a joint with zero stiffness rotates freely. When
a plant is manipulated inilsa, joint stiffness information is used by
an inverse-kinematics (IK) optimization to determine a “natural”
branch position.

l i
hi

ui ui+1

hi+1

li+1

Figure 2 Branches inilsa are made up of rigid segments connected
by spring-like joints. At each jointi, the vectorshi , ui , andl i define
the heading, up, and left vectors of the turtle as it draws the next
segment.

3.1 Branch manipulation

Manipulation inilsa must satisfy two goals: it must seem realistic,
and it must be interactive. A physical simulation would satisfy the
first goal but would be too slow for our purposes. Instead, we use
flexural and torsional joint stiffness values in an IK optimization
that allows interactive manipulation and achieves pleasing, “natu-
ral” branch arrangements.

The branch-positioning process inilsa consists of two nested loops.
As the user manipulates a branch, an outer loop repeatedly calls the
IK optimization routine with parameters supplied by the user inter-
action. Each time the optimization routine is called, it solves for
a new branch position based on the current position of the branch,
the supplied user input, and the stiffness of the branch. First we
will discuss the objective function used by the inner loop of the

optimization; we will then discuss the parameters passed to the op-
timization routine by the outer loop.

Objective function

The objective function minimized byilsa's IK solver positions a
branch by solving for a set of joint rotations along that branch. Ex-
amining the objective function for a series ofn different joints with
one degree of freedom (hereafter referred to as1-joints), let i be an
integer from 1 ton, and let�i be the current angle at jointi. We
refer to the joint angles collectively as the vector� = (�1, : : : ,�n).
When manipulating a branch, the user is primarily interested in
three things: the location of the end of the branch, the twist of the
branch, and the curve of the branch. Our objective function contains
two terms that attempt to meet user-supplied targets for branch end-
position and branch twist, and two terms that attempt to maintain
“natural” branch curvature. The four terms are described below:

� branch end-position

The branch end-position term tries to match the current branch
end-position, denoted byp, with the target branch end-position,
denoted by ˆp. The branch end-position term is thenkp� p̂k.

� branch twist

The branch twist term considers the vectorsl andu of the final
segment in the manipulated branch. We call these thetwist vec-
torsand denote them bysandt respectively. The twist term tries
to minimize the difference between the current twist vectors and
the target twist vectors, denoted by ˆsandt̂. The branch twist term
is thenks� ŝk + kt� t̂k.

� spring-energy

The spring-energy term is a sum over then joints in the branch
and effectively bends flexible parts of the branch more than stiff
parts. Letsi be the stiffness value at jointi, wherei is an integer
from 1 ton. Let�i be the current angle at jointi, let�i be the rest
angle at jointi, and define�i to be�i � �i . The spring-energy
term is then

Pn
i=1 si�

2
i . Examining the spring-energy term of a

joint i in terms of the potential energy of a spring1
2kx2, we see

that the spring constantk represents the stiffness of the joint.

� smoothness

The smoothness term is a heuristic term designed
to provide reasonable behavior when the input
L-system does not contain joint stiffness information. This term
attempts to minimize the difference in bend betweenn � 1
consecutive joints. The smoothness term is

Pn�1
i=1 (�i+1 � �i)2.

When joint stiffness information is present in the input L-system,
the user turns off smoothness by setting the importance weight
of this term to 0.

Let wp, wt, we, andws denote the importance weights for the branch
end-position term, the branch twist term, the spring-energy term,
and the smoothness term respectively. The objective function for a
set ofn1-joints is then the weighted sum of the four terms described
above:

f (�) = wpkp� p̂k + wt(ks� ŝk + kt � t̂k)

+ we

nX
i=1

si�
2
i + ws

n�1X
i=1

(�i+1 � �i)
2 (1)

For a three-dimensional plant model, each branch joint has three
degrees of freedom. (We will call such a joint a3-joint). To arrange

Figure 1 Our applicationilsa was designed to work in conjunction withcpfg. The detailed rendering on the left is provided bycpfg; ilsa uses
a simpler rendering style to allow interactive response time.

(a) (b) (c) (d) (e)

Figure 3 Branch manipulation in 2D. The branch consists of 11 segments connected by 1-joints. From left to right: (a) the original branch;
(b) the result of manipulating a branch with constant joint stiffness values; (c) the result of manipulating a branch with increasing joint stiffness
values; (d) the result of manipulating a branch with decreasing joint stiffness values; and (e) the result of manipulating the uniformly stiff
branch in two separate moves. Leaf sizes indicate the stiffness of the associated joints.

a branch in three-dimensions,ilsa interprets each 3-joint as three
1-joints, two of which are followed by a segment of length zero.

The importance of the spring-energy term to the results of a manip-
ulation is illustrated in Figures 3 and 4. In Figure 3 we show the
results of manipulating simple branches with constant, increasing,
and decreasing joint stiffness values. In Figure 4 we show the re-
sults of applying a single manipulation to a more complex branch in
three situations: first using no stiffness information and no smooth-
ness term, next using only the smoothness term, and finally using
only stiffness information. The same manipulation was used in each
case: the left branch was selected just above the last joint and pulled
down and to the left. The difference between subfigures (b) and
(c) indicates that in the absence of stiffness information, using the
smoothness term gives slightly more natural results. Obtaining the
most natural result, however, requires stiffness values.

Optimization parameters

In ilsa, we use conjugate gradient descent optimization, since the
function we are optimizing is nonlinear and differentiable [9]. (For
details on the derivative function, see the appendix.) Conjugate
gradient descent is sensitive to local minima. However, this po-
tential shortcoming does not present serious problems in practice
because our application is interactive and because the optimization
converges quickly given a good starting point. Thus, any branch
that settles into an undesired configuration due to a local minimum
can simply be “pulled out” interactively, and the optimization will
continue. This approach is also used by Zhao and Badler in their
work on positioning articulate figures using inverse kinematics [15].

Positioning a branch requires the specification of a set ofn joints
with joint angle values�. Let the initial joint angle values be ¯�.
A new set of joint angle values� is chosen by the IK-solver using

�̄ as a starting point. The specified set ofn joints defines a set of
branch segments that will be directly affected by the manipulation.
We call this set of branch segments thebranch path. Let r denote
the position of the root of the branch path andp denote the position
of the movable end. (Note that the position ofr will not change
during manipulation.) Thebranch axis-vectorv(p, r) describes a
vector pointing from the root of the branch path to its movable end.
As we described in the previous section, thetwist vectorssandt are
the vectorsl andu respectively of the last joint in the branch path.
A branch path and its associated vectors are illustrated in Figure 5.

As the user interacts with a branch inilsa, an outer loop repeatedly
calls the IK-optimization routine with targets for the branch end-
position and twist-vectors ˆp, ŝ, andt̂, respectively. The optimization
routine solves for a new set of joint angle values�. The actual end-
position and twist-vectors of the branch change as a function of the
new joint angles; that is,p, sandt are functions of�.

The inner loop of the optimization process minimizes the objec-
tive function f (�). The branch end-position term of the objective
function requiresp(�), which is calculated, and the target branch
end-position ˆp, which is supplied as input. The branch twist term
of the objective function requires the twist vectorss(�) and t(�),
which are calculated, and the target twist vectors ˆs andt̂, which are
supplied as input. Thus the full set of inputs to the optimization rou-
tine is�̄, p̂, r, t̂, andŝ. The values of� are determined by conjugate
gradient descent from a starting set of values ¯�.

As the following section will describe,ilsa provides manipulation
widgets that allow subsets of the optimization parameters to vary si-
multaneously, while holding other parameters fixed. These widgets
allow the user to control which aspects of a branch will be affected
by a manipulation and interact with a plant in meaningful ways by
rotating, twisting, straightening, and bending branches.

(a) (b) (c) (d)

Figure 4 Plant manipulation with and without joint stiffness information. From left to right: (a) the original plant with the active branch in
dark gray and the branch path in white; (b) the result of manipulating the lower branch with no joint stiffness values and smoothness turned
off; (c) the result of manipulating the branch with no joint stiffness values and smoothness turned on; (d) the result of manipulating the branch
with automatically-assigned joint stiffness values and smoothness turned off.

3.2 User interface

As mentioned before,ilsa renders models using lines for branches
and wire-frame surfaces for leaves and petals. This drawing style
allows ilsa to achieve good interactive behavior even for complex
models. A detailed view of the plant is provided bycpfg and up-
dated in response to messages sent byilsa through a socket connec-
tion. The manipulations allowed byilsa include pruning branches,
clipping leaves and flowers, and arranging branches by bending and
twisting them.

Pruning

Pruning and clipping are straightforward: the user simply chooses
the delete tool, selects the portion of the plant to be removed, and
hits delete on the keyboard. A special symbol is inserted into the
L-string to indicate that pruning has taken place. This symbol can
be used in further generations of the L-system model to trigger re-
growth induced by pruning [10].

Selection

In order to arrange branches inilsa, the user first selects the part of
the plant to be manipulated. This selection process has two com-
ponents, as does the analogous selection process on a real plant.
Imagine that a user wants to physically bend an inconveniently-
placed branch. She holds the base of the plant in her left hand, then
grasps the end of the plant in her right hand, and pulls. The ma-
nipulation directly affects a path of branch segments, starting with
the manipulated pointon the branch that she pulls and ending at
thefixed pointat the base of the plant. Now imagine that the user's
goal is to achieve a more local change. She chooses a manipulated
point at the end of the branch as before, but she chooses a different
fixed point, one above the base of the plant, shortening the affected
path. In either case, the effect of the manipulation may or may not
propagate all the way from the manipulated point to the fixed point,
depending on the rigidity of the branches along the way.

We have already defined the set of branch segments that may be

1
n

2

r
v

t

s

p

Figure 5 Branch path. The branch path, shown as dashed lines,
consists ofn segments between the branch path rootr and the branch
path endp. The branch axis vectorv and the twist vectorssandt are
used byilsa's IK-optimization over joint angles�i , 1� i � n.

directly affected by a manipulation as thebranch path. There may
be any number of branches attaching to the branch path whose po-
sitions may also be indirectly affected by this manipulation. We
call this set of branches theactive branch. An example of an active
branch is shown in Figure 6. To define a branch path and an active
branch inilsa, the user first picks one point to be the fixed point of
both the branch path and the active branch, the pointr in our previ-
ous discussion. The active branch consists of all structures fromr
to the branch ends, and these structures are highlighted as soon asr
is picked. The active branch selection can be easily modified using
the arrow keys: up moves the fixed point toward the branch end,
down moves the fixed point toward the base of the plant, and left
and right move to sibling branches. The user specifies the moveable
end of the branch path, the manipulated pointp, by picking again
within the active branch.

Figure 6 In ilsa, the active branchis highlighted in red (shown
in dark gray), thebranch pathis highlighted in yellow (shown in
white), and the immobile portion of the plant remains green (shown
in middle gray).

Arrangement

Once the branch path has been selected, an arrangement tool ap-
pears at the end of the branch path. The four arrangement tools that
ilsa provides come from the Open Inventor Toolkit and are shown
in Figure 7 [13]. These tools allow the user to modify different
subsets of the parameters passed to the optimization routine. Any
parameter that is unaffected by a particular tool remains fixed at the
value the parameter had at the time the arrangement tool was in-
stantiated. Let ¯p, s̄, andt̄ denote theseoriginal valuesof p, s, andt
respectively. The optimization parameters that vary according to ar-
rangement tool are ˆp (target branch end-position) and ˆsandt̂ (target
twist-vectors). Let ¯v = p̄� r denote the original branch axis-vector.
The behaviors of the arrangement tools and their interaction with
the optimization routine are described below:

� Spherical dragger

A spherical widget centered atr with a radiuskv̄k allows the
user to rotate and drag the branch with track-ball-like interac-
tions. The spherical dragger affects all three parameters: ˆp, ŝ,
andt̂.

(a) (b) (c) (d)

Figure 7 Arrangement widgets. From left to right: the spherical dragger, disc dragger, axis dragger, and 2D-plane dragger.

� Disc dragger

A disc-shaped widget positioned at ¯p and axis-aligned with ¯v al-
lows the user to twist the branch with steering-wheel-like mo-
tions. The disc dragger affects the branch twist parameters: tar-
get twist vectors ˆs and t̂. Since the branch end-position should
stay fixed, the dragger always passes ¯p as the target branch end-
positionp̂.

� Axis dragger

A widget consisting of a cylinder and an orthogonal plane posi-
tioned atp̄. The cylinder is axis-aligned with ¯v and allows the
user to move the branch end-position in and out along ¯v. (The
user may also use the plane portion of the widget to position the
end of the branch, but we have found that the spherical dragger
provides a more natural interface for this action, since it attempts
to preserve the length of the branch.) The axis dragger affects
only the target branch end-position parameter ˆp. Since branch
twist does not change, the dragger always passes the initial twist
vectorss̄ andt̄ for the target twist vectors ˆs andt̂.

� 2D-plane dragger

This dragger consists of the axis dragger widget, positioned so
that the plane is useful. The dragger appears at ¯p and is ori-
ented in the view-plane. It allows the user to interact with a 3-
dimensional plant as if it were 2-dimensional. The dragger af-
fects only the target branch end-position parameter ˆp only. The
dragger always passes the initial twist vectors ¯s and t̄ for the tar-
get twist vectors ˆs andt̂.

The spherical dragger can also be used to manipulate structures
such as leaves and flowers. In this case, the root of the branch path
r is the attachment point of the structure, and the branch path con-
sists of a single virtual segment in the direction of the turtle heading
vectorh at r. The length of the virtual segment is chosen such that
kv̄k equals the maximum dimension of the selected structure.

3.3 Assigning joint stiffness values

Branch stiffness values are not readily available for most plants,
nor are they easily measured. Therefore, we want our system to
automatically assign reasonable joint stiffness values to existing L-
system models. Studies in the field of plant biomechanics, along
with some help from a Renaissance man, provide the tools we need
to accomplish this task. As discussed in detail by Niklas, plant
branches behave like beams that are subject toflexion, or bending,
andtorsion, or twisting [8]. The flexural and torsional rigidities of
a branch depend on both its material and cross-sectional geometry.
If we assume that all branches of a plant are composed of the same
material and have circular cross-sections, we can determine relative
branch rigidities based solely on branch radii.

Branch flexion

In turtle terms, branch flexion means rotation about thel or u axis.
Our goal is therefore to obtain values forsl

i andsu
i for each jointi of

a branch.

Borrowing notation from the field of biomechanics, letE represent
the elastic modulusof the branch material and letI represent the
second moment of areaof the branch cross-section.1 Let the mag-
nitude of the torque required to bend the branch to a curvatureK be
represented by�f . Then, according to Niklas [8, page 135],

�f = EIK. (2)

We see that the torque required to bend a branch to a curvature
K depends on some inherent properties of the branch and on the
degree of curvature. The resistance of the branch to bending, rep-
resented by the product ofE andI , is called theflexural stiffnessof
the branch [8].

Typically we do not know the value ofE, the elastic modulus of
the branch material. However, using our assumptions thatE is con-
stant and that the branch has a circular cross-section of radiusr, we
can conclude that the flexural stiffnessEI is proportional tor4 [8,
page 134]. This information is sufficient for our purposes, since the
multiplication of all the joint stiffness terms by a constant does not
change the outcome of the branch-positioning optimization. Let us
denote bycf the constant portion of flexural stiffness:

EI � cf r
4.

Equation (2) describes the behavior of a continuous branch, but in
L-system models a branch is represented as a sequence of stiff seg-
ments connected by joints. We can replace curvature by its discrete
approximation:K = �=L, whereL = (l i�1 + l i)=2 is the average
length of two adjacent segments, and� is the angle between them.
By substituting this expression into Equation (2), we obtain:

�f =
cf r4�

L
=

2cf r4�

l i�1 + l i
. (3)

Not surprisingly, we see that the torque required to bend a joint to
an angle� is proportional to�.

Since we have assumed circular cross-section of the branch, the
flexural stiffness values for bending around theu andl axes are the
same:

su
i = sl

i =
2cf r4

`i�1 + `i
. (4)

1The second moment of area describes both the geometry of the cross-
section and the plane of bending. In a bending branch, there is aneutral
axis at which opposing tensile (stretching) and compressive stresses bal-
ance. The second moment of area,I , is an integral summing the products
of each infinitesimally small area within a cross-section and the square of

the distanced each area lies from the neutral axis:I =
R dmax

�dmax
d2dA. For

example, for a branch with a circular cross-section of radiusr , the second
moment of areaI = 1

4�r4 [8, page 134].

Equation (4) allows us to assign flexural stiffness values to the joints
of a branch once we know the flexural constantcf for the plant and
the radiusr of the branch in question.

Branch torsion

In ilsa, torsion corresponds to rotation around theh axis. To cal-
culatesh

i for each jointi of a branch, we consider the resistance of
the branch to twisting. This resistance is thetorsional rigidity of
the branch. Like flexural stiffness, torsional rigidity depends both
on the branch material and the branch cross-sectional area [8, page
160]. For a branch with a circular cross-section and constant mate-
rial, there is a constantct for which the torsional rigiditySt is given
by

St �
ctr4

L
.

ReplacingL by the average length of the adjacent segments, we
arrive at an equation for the torsional rigidity of theith joint of a
particular branch with radiusr:

sh
i =

2ctr4

`i�1 + `i
. (5)

Equation (5) allows us to assign torsional rigidity values to the
joints of a branch once we know the torsional constantct for the
plant and the radiusr of the branch in question.

For branches with non-circular cross-sections, we can calculate two
second moments of area,I l and I u, to account for differences in
flexibility along thel andu axes.

Automatic assignment

It should now be clear that given values for the flexural stiffness
constantcf , the torsional rigidity constantct, and the radii of all the
branches in the plant, we can automatically assign joint stiffness
values.

If the radii values are not available, we assign reasonable values
using a formula proposed by Leonardo da Vinci. He postulated that
the cross-sectional area of a tree branch is equal to the sum of the
cross-sectional areas of its children branches [2].

Let us assume that all children of a particular branch have the same
radius. Letr represent the radius of a branch withn children and
let rc represent the radius of the children. Using the relationship
proposed by da Vinci, we derive the following equations:

�r2 = n�r2
c =) r2

c =
r2

n
. (6)

In ilsa, the user provides a value for the trunk radiusr0 (in terms of
turtle steps). The system then recursively assigns radii values to all
branches using Equation (6).

The user also provides values for the flexural stiffness and torsional
rigidity of the trunk, su

0 (or sl
0) and sh

0 respectively. These values
represent the stiffness of a joint between segments with average
length equal to 1. We then use Equations (4) and (5) to calculate
the constantscf andct:

cf =
su

0

r0
4
,

ct =
sh

0

r0
4
.

The following pseudocode summarizes the recursive function used
to automatically assign joint stiffness values to a plant:

function AssignStiffness(branch, r , cf , ct)
for each jointi

su
i :=

2cf r4

`i�1+`i

sl
i := su

i

sh
i := 2ctr

4

`i�1+`i

end for

rc
2 := r2

n
for each child branchchild

AssignStiffness(child, rc, cf , ct)
end function

4 Examples

We present three examples of plants generated usingcpfgand

arranged usingilsa:

� Rose campion

We selected the rose campion (Lynchnis coronaria) because
its architecture has already been described and modeled in de-
tail [11, 12]. Figure 8 presents three snapshots documenting the
arrangement process. From the complex model generated by
cpfg, we pruned and arranged the branches to create a simpler,
more stylized plant. This arrangement was completed in about
half an hour.

� Lily

The lily model depicted in Figure 9 has exquisite detail, much of
which is hidden in the original arrangement as generated bycpfg.
The original model did not provide branch stiffness information,
so we assigned joint stiffness values inilsa. This arrangement
took about an hour to complete. A great deal of time was spent
waiting forcpfgto render the detailed version of the plant so that
the effects of precise manipulations might be discerned.

� Regrowth example

The model depicted in Figure 10 is a very simple plant, based
on an example fromThe Algorithmic Beauty of Plants. The
branches are rendered as lines and the leaves and flowers as poly-
gons. Joint stiffness values were again assigned usingilsa. This
example hints at the many possible applications of the ability to
grow a plant, arrange it, and then grow it some more.

5 Discussion and future work

We have presented a system for the interactive manipulation of
plants modeled using L-systems. Our applicationilsa allows the
user to locally arrange a plant model while preserving its botanical
accuracy. The approach implemented inilsa is to interact with an
L-system model at the level of the L-string.

This work extends the usefulness of L-systems for both computer
graphics and botanical modeling. Possible applications include L-
system bonsai, interactive topiary, landscaping planning and de-
sign. Our system could easily be extended to support flower ar-
ranging and grafting, a process widely applied to fruit trees. Il-
lustrators, scene designers, and animators could take advantage of

the growth and environmental interaction capabilities of L-system
models, yet achieve more precise control over the final presen-
tation of the plants. Another interesting area for further explo-
ration is 2D floral pattern design, potentially extending the work
of Wonget al. [14].

Another very interesting direction for future work is the develop-
ment of an interactive toolkit for creating L-system models. We
imagine a library of basic components like branching structures,
leaf profiles and surfaces, flowering patterns, thorns, etc. that could
be put together and interactively adjusted, resulting in a new model.
Lintermannet al.developed a system that allows intuitive assembly
of botanical components [6]. Extending the user-interface concepts
presented in their work to take advantage of the growth and envi-
ronmental interaction capabilities of L-system models could lead to
a powerful botanical modeling system with an easy-to-use visual
interface.

Acknowledgments

Many thanks to the people who volunteered their time and expertise
to help with this project, especially Radomír Mech and Eric Stoll-
nitz. This work was supported by an NSF Presidential Faculty
Fellow award (CCR-9553199), an ONR Young Investigator award
(N00014-95-1-0728), a NASA Space Grant, an NSF Graduate Re-
search Fellowship, and industrial gifts from Interval, Microsoft, and
Xerox to David Salesin, and the NSERC grant OGP0130084 to
Przemyslaw Prusinkiewicz.

Appendix: Gradient of objective function

Here we derive the gradient of the objective function used in the
IK-optimization and presented in Equation (1):

f (�) = wpkp� p̂k + wt(ks� ŝk + kt� t̂k)

+we

nX
i=1

si�
2
i + ws

n�1X
i=1

(�i+1 � �i)
2

The gradient is a vector of partial derivatives:

rf (�) =
�

@f
@�1

,
@f
@�2

, : : : ,
@f
@�n

�

We need to find the partial derivative off with respect to a single
joint rotation�i :

@f
@�i

=
@

@�i
wp(kp� p̂k) +

@

@�i
wt(ks� ŝk + kt � t̂k) +

@

@�i
wesi�

2
i +

@

@�i
ws((�i+1 � �i)

2 + (�i � �i�1)
2)

For clarity we consider the derivative terms one at a time. LetA,
B, C, andD be the derivatives of the branch end-position term, the
branch twist term, the spring-energy term, and the smoothness term
respectively:

@f
@�i

= A + B + C + D. (7)

Let us first look at the partial derivative of the branch end-position
term with respect to�i . Let the rotation axis of theith joint be the
unit vectorw. Let pi denote the position of the turtle at jointi, after
drawing segmenti � 1. Let the branch end-positionp = pn. Let
vpost = p� pi . Let s andt be the turtle vectorsl andu respectively
after drawing thenth branch segment. The derivatives ofp, s, andt
can be computed fromw andvpost as follows [15]:

@p
@�i

= w� vpost

@s
@�i

= w� s

@t
@�i

= w� t

Thus,

A =
@

@�i
wp(kp� p̂k)

= 2wp(p� p̂) �
@p
@�i

(8)

Now let us look at the partial derivative of the branch twist-term
with respect to�i :

B =
@

@�i
wt(ks� ŝk + kt� t̂k)

= 2wt((s� ŝ) �
@s
@�i

+ (t� t̂) �
@t
@�i

)
(9)

Now let us look at the partial derivatives of the branch energy and
smoothness terms with respect to�i :

C =
@

@�i
wesi�

2
i

= wesi�i

(10)

and

D =
@

@�i
ws((�i+1 � �i)

2 + (�i � �i�1)
2)

= ws(2�i � �i�1 � �i+1)
(11)

By substituting expressions (2) to (5) into (1), we obtain the gradi-
ent function needed.

References

[1] H. Abelson and A. A. diSessa.Turtle geometry. M.I.T. Press, Cam-
bridge, 1982.

[2] L. da Vinci. The notebooks of Leonardo da Vinci, compiled and edited
from the original manuscripts by Jean Paul Richter. Dover Publica-
tions, New York, 1970.

[3] Mikako Harada, Andrew Witkin, and David Baraff. Interactive
physically-based manipulation of discrete/continuous models. InSIG-
GRAPH 95 Conference Proceedings, pages 199–208. ACM SIG-
GRAPH, New York, 1995.

[4] Mark James, Mark Hammal, Jim Hanan, Radomír Mech, and Prze-
myslaw Prusinkiewicz.CPFG Version 2.7 User's Manual.

[5] A. Lindenmayer. Mathematical models for cellular interaction in de-
velopment, Parts I and II.Journal of Theoretical Biology, 18:280–315,
1968.

[6] Berd Lintermann and Oliver Deussen. Interactive modelling and ani-
mation of branching botanical structures. InEurographics Computer
Animation and Simulation EGCAS96. Springer-Verlag, 1996.

[7] Radoḿir Mech and Przemyslaw Prusinkiewicz. Visual models of
plants interacting with their environment. InSIGGRAPH 96 Con-
ference Proceedings, pages 397–410. ACM SIGGRAPH, New York,
1996.

[8] K. J. Niklas. Plant Biomechanics: an Engineering Approach to Plant
Form and Function. The University of Chicago Press, Chicago, 1992.

[9] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery.Numerical Recipes in C: The Art of Scientific Com-
puting, chapter Chapter 10: Minimization or Maximization of Func-
tions. Cambridge University Press, 1992.

[10] Przemyslaw Prusinkiewicz, Mark James, and Radomír Mech. Syn-
thetic topiary. InSIGGRAPH 94 Conference Proceedings, pages 351–
358. ACM SIGGRAPH, New York, 1994.

[11] Przemyslaw Prusinkiewicz and Aristid Lindenmayer.The Algorithmic
Beauty of Plants. Springer-Verlag, 1990.

[12] Przemyslaw Prusinkiewicz, Aristid Lindenmayer, and James Hanan.
Developmental models of herbaceous plants for computer imagery
purposes. InSIGGRAPH 88 Conference Proceedings, pages 141–150.
ACM SIGGRAPH, New York, 1988.

[13] Josie Wernecke.The Inventor Mentor. Addison-Wesley Publishing
Company, 1994.

[14] Michael T. Wong, Douglas E. Zongker, and David H. Salesin.
Computer-generated floral ornament. InSIGGRAPH 98 Conference
Proceedings, pages 423–434. ACM SIGGRAPH, New York, 1998.

[15] Jianmin Zhao and Norman I. Badler. Inverse kinematics position-
ing using nonlinear programming for highly articulated figures.ACM
Transactions on Graphics, 13(4):313–336, October 1994.

(a) (b) (c)

Figure 8 Rose campion. From left to right: (a) the original L-system model; (b) an intermediate stage in the arrangement process; (c) the final arrangement.

(a) (b)

Figure 9 Lily. The original L-system model (a) and the final arrangement (b).

(a) (b) (c) (d)

Figure 10 Regrowth example. From left to right: (a) a simple plant grown for four generations; (b) the same plant grown for five generations
(rescaled to the same display size); (c) the fourth-generation plant arranged inilsa; (d) the arranged plant grown for one more generation.

