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Abstract

This paper presents a technique for computing the geome-
try of objects with general reflectance properties from im-
ages. For surfaces with varying material properties, a full
segmentation into different material types is also computed.
It is assumed that the camera viewpoint is fixed, but the illu-
mination varies over the input sequence. It is also assumed
that one or more example objects with similar materials and
known geometry are imaged under the same illumination
conditions. Unlike most previous work in shape recon-
struction, this technique can handle objects with arbitrary
and spatially-varying BRDFs. Furthermore, the approach
works for arbitrary distant and unknown lighting environ-
ments. Finally, almost no calibration is needed, making the
approach exceptionally simple to apply.

1 Introduction

An important unsolved problem in computer vision is mod-
eling scenes with realistic materials. Although real objects
reflect light in a wide range of interesting ways [3], most
shape reconstruction techniques in the computer vision lit-
erature work only for Lambertian scenes. The human visual
system operates effectively with a much wider variety of
materials—we have no problem interpreting shiny objects
and other surfaces that reflect light in varied ways. This
suggests that other cues may exist and significant improve-
ments in shape reconstruction algorithms are possible.

In this paper, we introduce orientation-consistency, a cue
for interpreting scenes with arbitrary reflectance properties.
Orientation-consistency states that, under the right condi-
tions, two points with the same surface orientation must
have the same or similar appearance in an image. Based
on this cue, we show how to reconstruct the normals of an
object, when imaged together with one or more reference
objects of similar materials and known shape.

This approach has the following features:

• The BRDF, illumination, and shape may all be un-
known. Moreover, the BRDF may be arbitrary and can
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vary over the surface. The approach will work with
any number of distant point or area light sources.

• Almost no calibration of the camera or lighting envi-
ronment is needed

• A segmentation of the object into different materials is
computed

• The algorithm is extremely simple to implement, yet
operates on a broader class of objects than any pre-
vious photometric stereo technique, and achieves im-
pressive results for a wide variety of challenging ma-
terials ranging from specular objects to velvet and
brushed fur. The quality of results on shiny objects
compares favorably to the performance of commercial
laser scanners on diffuse objects.

We also make the following assumptions: first, one or more
reference objects of the same or similar materials must be
imaged under the same illumination as the target object.
Second, the camera is assumed to be orthographic. Finally,
shadows, intereflections, and other non-local radiance ef-
fects are ignored.

1.1 Relation to Previous Work

Our use of reference objects builds upon early work on pho-
tometric stereo. In particular, Silver [10] used images of
a wooden sphere to reconstruct other wooden objects im-
aged under the same lighting. By specifying the outgoing
radiance function for a hemisphere of directions, the sphere
images provide an empirical model of reflection for wood.

Despite its simplicity, the use of reference objects in
shape reconstruction was not widely adopted in the research
community, due in part to the following problems: (1) the
scene must have a single albedo, (2) the reference object
must be made of the same material as the target object, and
(3) the need for a calibration object is undesirable. In an
effort to overcome these limitations, most subsequent work
on photometric stereo turned to using analytic rather than
empirical models of surface reflection [2, 5, 8, 10, 14] (for
a good overview, see [12]). While some of these techniques
have been shown to yield good results, they are currently
restricted to simple diffuse and specular materials. It is
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Figure 1: Orientation-consistency. A sphere and a bottle are
painted with the same material and lit the same way. The
orientation-consistency cue says that any two surface points
with the same normal have the same color. In particular,
for each of the above images, all points that are in highlight
have the same surface normal.

known, however, that a wide range of real world materials
do not fit these traditional BRDF models [3].

In this paper, we show that these difficulties are over-
come by some simple observations and the use of a small
number of reference objects (typically two) instead of one.
The resulting approach operates on a broader class of ob-
jects than any previous photometric stereo technique.

In terms of its generality and the quality of the results
obtained, our approach is similar to Helmholtz Stereopsis
[7, 15] which also enables reconstructing surfaces with ar-
bitrary BRDF’s in the absence of shadows and interreflec-
tions. The two approaches have different requirements,
however. An advantage of the Helmholtz approach is that
it does not require reference objects, orthography, or dis-
tant illumination. A disadvantage is that the Helmholtz ap-
proach requires a more complex experimental setup: both
the camera and the light source must be calibrated and
moved in a precise and controlled fashion (alternatively,
several static cameras and light sources may be used) [15].
In contrast, our approach does not require that the viewpoint
or illumination are known, and is flexible enough to be used
in unconstrained environments, e.g., for outside imaging us-
ing the sun and environment as a light source.

2 Shape by Example

Surface shading provides a great deal of information about
surface geometry. However, shading also depends on illu-
mination, camera geometry, and reflectance—varying any
one of these factors may modify the appearance of the ob-
ject. Without some way of separating the contributions of
each of these factors, computing shape is difficult.

To address this difficulty, we propose a cue that, given
certain assumptions, is invariant to the light source distri-
bution, camera parameters, and reflectance function and de-
pends purely on shape.

Orientation-consistency cue: two points with

the same surface orientation reflect the same light
toward the viewer.

Orientation-consistency holds when the following as-
sumptions are satisfied: both points have the same BRDF,
the light sources are directional (i.e., distant), the camera
is orthographic, and there are no shadows, interreflections,
transparency effects, or other non-local effects that do not
depend purely on the BRDF of a single point. Note that
under these conditions, the BRDF, surface orientation, in-
cident illumination, and viewer direction are the same for
both points. It follows from the principles of radiometry
[4] that the outgoing radiance is the same for both points.
Orientation-consistency is used implicitly in the photomet-
ric stereo literature, but in a more restricted form. We pro-
pose its use as a generic cue for image analysis and, to this
end, describe generalizations that greatly increase its appli-
cability.

This cue is helpful in shape perception, as it tells us quite
a bit about the distribution of highlights on an object. For
example, if a point is in highlight, any other point with the
same orientation should also have a highlight. An example
of this effect is shown in Figure 1.

If we happen to know the normals for some points in the
scene, orientation-consistency allows us to propagate this
knowledge to other points. In the example shown in Fig-
ure 1, we can determine the orientation of each point on the
bottle in highlight by finding the corresponding point on the
sphere that is also in highlight. In general, any reference ob-
ject may be substituted for the sphere, provided the shape of
the reference is known and it contains a sufficient distribu-
tion of surface orientations. However, the correspondence is
ambiguous when there are multiple highlights on the sphere,
and for points not in highlight.

2.1 A Correspondence Approach to Photo-
metric Stereo

We now describe an algorithm for reconstructing the shape
of an object from multiple images, using a reference object.
This algorithm is nearly identical to that presented by Silver
[10]; however, we show that it can be applied to a surpris-
ingly wide variety of objects including anisotropic materials
(Silver’s original formulation assumed isotropic materials
and was demonstrated only for simple wooden objects). We
also describe an effective technique for reducing run-time.

Suppose that we capture multiple images of the refer-
ence and target objects from the same viewpoint but under
different illuminations. Let Ir

1 , . . . , Ir
n be the reference im-

ages and It
1, . . . , I

t
n the target images. It is assumed that

corresponding reference Ir
i and target It

i images are cap-
tured under the same illumination. For each pixel position
p = (x, y) in a reference or target image, let Ip be the
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intensity of that pixel and define the observation vector (ab-
breviated OV, or as a vector V) to be the set of intensities
observed at that pixel over the n images:

Vp = [I1,p, . . . , In,p]T (1)

For RGB color images, there is a component OV for each
color channel. Let Rp, Gp, and Bp be the OVs for the red,
green, and blue channel, respectively. Define the cumula-
tive OV for color images Vp to be the concatenation of Rp,
Gp, and Bp into a single vector

Vp = [RT
p ,GT

p ,BT
p ]

T
(2)

Given a pixel p on the target object, the normal at p is
determined simply by searching for the point q on the ref-
erence object with the best matching OV, i.e., q minimizes
‖Vp − Vq‖. A complete correspondence determines the
normal for every pixel on the target object.

It is interesting to observe that this formulation
casts photometric stereo as a two-image stereo matching
problem—find pixel correspondences between an image of
the reference object and an image of the target object. Al-
though it is often argued that one of the virtues of pho-
tometric stereo is that it avoids the correspondence prob-
lem present in binocular stereo [14], photometric stereo and
binocular stereo can be viewed as addressing very similar
correspondence problems. In cases where the reflectance
map has a simple parametric form, model-fitting techniques
[2, 5, 8, 14] can provide a more efficient alternative to the
explicit search method presented here.

Implementation Issues. In order to determine the geom-
etry of the reference sphere, we manually segmented it from
the background and then fit a circle to the silhouette. The
target object is also manually segmented. These tasks could
be fully automated by careful choice of the background.
The task of finding the reference OV closest to the target
OV is a nearest-neighbor search problem that may be ac-
celerated with appropriate data structures; we use the ANN
technique [1] for this purpose. To reduce the dimensionality
of the search, we apply principle component analysis to the
reference OVs before building the ANN search structure.

We compute a 3D surface from the estimated surface
orientations by formulating a quadratic energy function in-
corporating both surface orientation fit at each pixel and a
smoothness term [11]. This results in a sparse system of
linear equations that we solve using conjugate gradient.

Note that the calibration requirements are extremely
minimal—other than correcting the images for radial dis-
tortion or vignetting, no geometric or radiometric calibra-
tion of the camera or light sources is needed.

The objects were imaged with a Canon D60 camera, us-
ing a 640mm lens to attain a good approximation to orthog-
raphy. The scene was illuminated with a hand held spot

Figure 2: Bottle reconstruction. Shaded mesh renderings
of the result are shown at left and top. A texture-mapped
version is below. Note the fine details such as the wrinkles
in the label that are accurately captured.

light shone at the objects from a distance of 10 to 15 feet.
The objects were all less than one foot high.

Results. In our first test, we spray-painted a sphere and
a plastic bottle with the same shiny green paint, and ap-
plied the above algorithm. Two of the eight input images
are shown in Figure 1; the resulting reconstruction is shown
in Figure 2. The algorithm accurately reconstructed finely-
detailed geometry of the bottle, including wrinkles on the
label of the bottle and indentations on the cap. Some arti-
facts occur in places where the assumptions of the algorithm
are not satisfied, at self-shadows below the cap and under-
neath the bottle, and where paint has flaked off the cap.
The images were quite large—398×1176 for the bottle and
328 × 332 for the sphere. A brute force search to compute
normals requires roughly one day of compute time. The
accelerated method using ANN completed in about 5 min-
utes. An additional 30 minutes was required to compute the
high-resolution mesh from the normals, but this could be
accelerated using multigrid techniques or other fast linear
solvers [11].

The same algorithm is applied to reconstructing a vel-
vet surface in Figure 3. Since we did not have access to a
velvet sphere, we used a cylinder reference object instead,
and constrained the surface to bend roughly along the ver-
tical axis. Velvet is known to have a particularly unusual
reflectance map that is brightest when the surface normal
is nearly orthogonal the the light source direction [3]. This
particular velvet sample has a two-toned appearance—from
oblique angles only the red threads are visible, while from
the front, the material has a blue tone as more of the backing
material shows through. The algorithm captured the shape
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Figure 3: Velvet reconstruction. Left: One photograph (of fourteen) used for reconstruction. The reference object, in the
shape of a cylinder is on the left, and the target object is on the right. Center: Reconstructed target shape, rendered from
above. Right: Reconstructed target shape, textured with the target image

Figure 4: Brushed fur reconstruction. This anisotropic material is made of a single BRDF that is rotated due to fiber orienta-
tion, causing an interesting pattern of highlights. Left: One photograph (of fourteen) used for reconstruction. The reference
object, in the shape of a cylinder is on the left, and the target object is on the right. Center: Reconstructed target shape,
rendered from above. Right: Reconstructed target shape, textured with the target image

very well, as seen in the figure—note the three protrusions
from the three supporting cylinders.

Anisotropic Materials. This algorithm can also be used
to reconstruct materials with anisotropic BRDFs. In this
case, orientation-consistency dictates that two pixels will
have the same OV if they have the same surface normal and
orientation about the normal. This means that the reference
object should contain samples of many surface normals and
rotations, so that there will be a good match for each possi-
ble surface orientation on the target.

Figure 4 shows reconstruction of an anisotropic brushed-
fur-like fabric. Note that the entire strip is made from a
single material—the interesting pattern of highlights is due
to varying orientations of the fibers, causing the BRDF to be
rotated at different positions on the fabric. As in the velvet
example above, we used a cylindrical reference object, thus
restricting the problem to vertical surfaces. Note that the
fabric was placed in a different configuration than in the
velvet example.

To our knowledge, this is the first time in the computer
vision literature that a shape reconstruction technique has
been successfully applied to an anisotropic material. The
reflectance in this example is sufficiently complex that it is
very difficult for humans to perceive the shape, yet the algo-
rithm performs quite well. Although we show results only
for vertically-oriented surfaces, note that both components
of the surface normal can be computed with this algorithm,
given a reference object with the full range of surface ori-
entations (or by rotating the cylinder).

3 Modeling Material Variation

Two limitations of the technique presented in the previous
section are (1) the target object must have a single albedo,
and (2) the reference object must be composed of exactly
the same material as the target object. In this section we
describe how both of these restrictions are removed.

In the first subsection, we consider the case of surface
texture due to albedo variations over a purely diffuse or
specular object. The next subsection considers the case of
more general material variations.

3.1 Color Variation

Consider a diffuse target object with a texture pattern that
varies over the surface. The appearance of such an object
may be approximated using the Lambertian formula:

It
p = ρt

pnp ·
∑

light l

l (3)

where np is the surface normal at that point, l encodes the
light source direction and intensity, and ρp a reflection co-
efficient that varies over the surface.

Suppose we have a homogeneous diffuse reference ob-
ject with reflection coefficient ρr. The appearance of this
object may therefore be modeled as:

Ir
p = ρrnp ·

∑

light l

l (4)
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Now suppose that a point p on the target has the same
surface orientation as a point q on the reference object. It
follows from equations (3) and (4) that

Vt
p =

ρt
p

ρr
Vr

q (5)

and therefore
Vt

p

‖Vt
p‖

=
Vr

q

‖Vr
q‖

(6)

Consequently, the algorithm in Section 2 can be applied if
we normalize the target and reference OVs before match-
ing.1 In the case of color images, the OVs for each color
channel can be normalized separately, before combining
them into Vp.

Note that the same approach can model attached shad-
ows and purely specular surfaces. More generally, the ap-
proach applies for any surface having the form:

Ip = ρpf(np,v,L) (7)

where f is any reflectance map as a function of v, the direc-
tion to the viewer, and L, the incident illumination field.

3.2 Material Variation

In the general case, the target object may be composed of
multiple materials that vary over its surface. We make the
assumption that all materials on a single object can be rep-
resented as a linear combination of k basis materials for
some fixed value of k. For example, the Phong model is
expressed as a linear combination of a diffuse and specular
component, i.e., k = 2. More generally, there is strong em-
pirical evidence that a wide variety of reflectance maps may
be represented as a linear combination of a small number of
basis functions [6, 9, 13].

Accordingly, suppose that the target surface has a re-
flectance map of the form:

It
p =

k∑

i=0

ρt
i,pfi(np,v,L) (8)

Note that here we assume that the image intensities, not
the BRDF’s are a linear combination of k basis functions.
The distinction is significant if the camera has a nonlinear
gain, i.e., if the pixel values are not linear functions of scene
radiance. In some cases, it may be beneficial to calibrate
and correct for such nonlinearities, although we found it un-
necessary for our experiments.

Now instead of one reference object, suppose we had k
reference objects r1, . . . , rk, with reflectance maps that are

1In general, we recommend the method in Section 3.3 over this nor-
malization approach, as it will perform better in the presence of noise and
dark albedos.

similar to the target object. Although the reference objects
could in principle have spatially varying materials, we as-
sume for simplicity that they are homogeneous, i.e.,

I
rj
q =

k∑

i=0

ρ
rj

i fi(nq,v,L) (9)

For notational convenience, let q denote a point with the
same surface orientation in every reference image, i.e., q is
a pointer to a pixel of a given orientation in each reference
image rather than absolute image coordinates.

If the reference observation vectors Vr1
q , . . . ,Vrk

q are
linearly independent, they form a k-dimensional vector
space and it follows that the target OV must lie within their
span, i.e.,

Vt
p =

k∑

j=0

mj,pV
rj
q (10)

We refer to the vector mp = [m1,p, . . . ,mk,p]T as the
real-valued material index for target point p.

By stacking the reference OVs into a matrix Wq =
[Vr1

q , . . . ,Vrk
q ], we can restate equation (10) as

Vt
p = Wqmp (11)

For the case of RGB color images, there are separate ma-
terial indices mR,p, mG,p, and mB,p for each of the R, G,
and B channels. We refer to the color material index mp

as the concatenation of these component indices into one
vector.

3.3 Generalized Orientation-Consistency

The orientation-consistency cue is generalized to handle
multiple materials as follows. We say a point p on the target
is orientation-consistent with a point q in each of the refer-
ence images if there exists a material index mp that satisfies
equation (11).

The procedure in Section 2 is modified to compute the
material index mp for each candidate point q by the pseu-
doinverse (+) operation:

mp = Wq
+Vt

p (12)

For each point p on the target, the candidate q is chosen
such that the estimated mp minimizes

‖Wqmp − Vt
p‖2 (13)

In the case of RGB color images, a separate mp is esti-
mated for each color channel, and equation (13) is summed
over the three channels. The pseudoinverse is used in or-
der to handle pixels whose normal is uniquely determined
but whose material index is ambiguous. For example, some
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Figure 5: Fish input data (one of fourteen sets of images).

points on the bottle in Figure 1 do not appear in highlight
in any of the input images. Although the surface is shiny,
these points could also fit a purely Lambertian model. How-
ever, this ambiguity does not prevent estimating their sur-
face normals, which are fully determined from the Lamber-
tian component. The ambiguity in material estimation can
be addressed by the material clustering algorithm in the next
section.

Results. Figures 6 and 7 show reconstruction results of a
3-inch tall ceramic fish and a 6-inch tall ceramic cat. Both
objects are shiny and contain multiple materials. We chose
light source positions to minimize cast self-shadows. For
the shiny reference object, we used a black snooker ball. For
the diffuse reference object, we spray-painted a billiard ball
with gray primer. For comparison, Figure 6 shows our result
along with the same fish scanned with a desktop CyberWare
Model 15 laser scanner. In order to laser scan the object, it
first had to be covered with a thin diffuse paint. Nonethe-
less, our method extracts distinctly more surface detail than
the laser scanner. While some of this detail is likely due to
the higher resolution of the D60 compared to the imager in
the laser scanner, other differences may be due to the fact
that the fish is coated with a thin layer of transparent lac-
quer. Our approach is likely capturing the surface under the
lacquer—which does contain a relief texture, while the laser
scan of the painted fish captures the smoothed, lacquered,
outer surface. Our reconstruction required roughly 5 hours
of computation, on a 2.8 GHz Intel Xeon.

Noticeable artifacts occur in our results where the as-
sumptions of our algorithm do not hold. For example, cast
shadows by the pink pendant on the cat result in indenta-
tions in the reconstructed surface. Also, some artifacts ap-
pear near where highlights appeared in the original images,
since generalized consistency does not model saturation of
the highlights.

4 Clustering Materials

We now describe a technique for segmenting surface mate-
rials. Most image segmentation techniques operate directly
on image pixels, and are unable to distinguish shading vari-
ations from material (e.g., albedo) variations. We assume
that the surface is composed of K distinct materials, with
material c defined by a material index mc. We can then
cluster the surface using clustering algorithm similar to k-
means and to the clustering algorithm of Lensch et al. [6].

Our goal is to estimate the material indices of the K ma-
terials, and to assign every target pixel p to one of these
materials. We also compute the surface orientations that
best fit these estimates. Specifically, we define a labeling
indicator variable λc,p that equals 1 if point p is assigned
to material c, and 0 otherwise. The labeling is mutually ex-
clusive:

∑
c λc,p = 1. Define s(p) to be a point q on the

reference object with the same orientation as p. The prob-
lem can then be stated as finding the labels λ, materials m,
and correspondences s(p) to minimize

E(λ,m, s) =
∑

p

∑

c

λc,p||Vt
p − Ws(p)mc||2 (14)

Our clustering algorithm is as follows. First, we run the
algorithm described in the previous section2 to obtain an ini-
tial estimate of s(p). We initialize λ with a random label-
ing. We then optimize E(λ,m, s) by alternating between
updates to m and to λ and s(p):

• The objective function is optimized with re-
spect to the materials by setting mc =
(
∑

p λc,pWT
s(p)Ws(p))+(

∑
p λc,pWT

s(p)V
t
p)

for each c. Based on these new material indices, we
can construct a virtual reference object (VRO) for
each material by linearly combining the real reference
objects: the OV at point q of the VRO for material c
is given by Wqmc.

• The labeling λ and correspondence s(p) is computed
for each target pixel p by finding the material c and
s(p) for which ||Vt

p − Ws(p)mc|| is minimized. In
practice, we compute all OVs from the VROs and place
them in an ANN data structure [1], and search for the
nearest neighbor to Vt

p for each p.

The objective function is guaranteed to be nonincreas-
ing at each step, and, since there is a finite set of possible
labelings λ, the algorithm is guaranteed to converge. The
extension to RGB color images is straightforward: material
indices are computed separately for each color; the label-
ings are updated by searching for the color OV that best
matches the target OV.

2We do not directly use the materials produced by the algorithm de-
scribed in the previous section, due to the ambiguity discussed in Section
3.3. Directly clustering the estimated materials produces poor results.
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(a) (b) (c)

Figure 6: Fish reconstruction from data in Figure 5. (a) Reconstruction using our method. (b) Comparison with laser range
scanner reconstruction from a similar viewpoint (the fish was painted with a diffuse paint in order to enable laser scanning).
(c) Additional views of our reconstruction, using original image data for texture-mapping.

Figure 7: Cat reconstruction. Left: Input data (one of thirteen sets). Right: Views of the reconstructed model.

21 3

5 6 7 8

4 21 3

5 6 7 8

4

Figure 8: Material clustering and virtual reference objects of the fish and cat models. (Refer to the electronic version of this
paper to view the images in color.)

7



Results. Figure 8 illustrates the clustering algorithm ap-
plied to the two surfaces of the previous section. Note that
the algorithm correctly groups pixels with similar materials
but different orientations (and, thus, different reflectances).
For example, the white areas of the cat have been grouped in
cluster 4, despite variations in shading due to illumination.
Also, note that the algorithm has used cluster 1 on the cat as
an “outlier material,” to model cast shadows and interreflec-
tions. Because there are not enough clusters to capture the
smooth material variations on the surface, the clustering of
the cat appears fragmented, but these fragments correspond
well to the different albedos. For the same reason, the clus-
tering algorithm gave slightly less accurate surface normals
than the algorithm in the previous section. Because the fish
object contained a discrete set of materials, the segmenta-
tion for this example is very clean.

5 Discussion

Many fundamental questions remain. In particular, how
many images are needed to reconstruct scenes using this
example-based method? The answer will surely depend on
the properties of the material and the environment. It is
known, for instance, that three non-degenerate images are
sufficient in the case of Lambertian scenes [14]. For purely
specular scenes, the answer depends on the illumination,
particularly in the case of a perfect mirror. In one extreme,
a chrome object illuminated by a distant, moving point light
source would require an infinite number of images to recon-
struct the surface, enough for the highlight to pass over ev-
ery point on the object. In contrast, if the chrome object is
illuminated by a highly structured lighting environment, a
single image could be sufficient to compute the correspon-
dence of pixels to the reference object. Investigating the
necessary illumination conditions (and designing reference
objects) for anisotropic materials is another interesting area
for future work.

The method makes several assumptions that one might
want to relax. In particular, we assume orthography, dis-
tant lighting, no cast shadows, no interreflections, no sub-
surface scattering, or transparency. For some of these as-
sumptions, it may be possible to detect and mask out pix-
els that do not satisfy these assumptions, for example, by
measuring reconstruction error for individual pixels. It may
also be possible to model some of these effects by gener-
alizing orientation-consistency. For example, our method
should correctly handle interreflections when similar inter-
reflections are observed in the reference object, for instance
to model chisel marks on a statue. Another interesting av-
enue is to remove the need for a physical reference object
by rendering a synthetic one, given a known lighting envi-
ronment and a known BRDF model. (e.g. [3]).
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