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Abstract

Wepresentanextremelysimpleyetrobustmulti-view stereo
algorithm and analyzeits properties. The algorithm �r st
computesindividualdepthmapsusinga window-basedvot-
ing approach that returnsonly good matches. The depth
mapsare thenmerged into a singlemeshusinga straight-
forward volumetricapproach. We showresultsfor several
datasets,showingaccuracy comparable to the bestof the
current stateof the art techniquesand rivaling more com-
plex algorithms.

1. Intr oduction

In the last decade,multi-view stereoalgorithmshave
evolvedsigni�cantly in boththeirsophisticationandquality
of results. While the early algorithmsweresimpleexten-
sionsof window-basedbinocularstereomatchers,thebest
currentlyavailablemethodsemploy powerful nonlinearen-
ergy minimizationmethods(e.g.,graphcuts[8, 16, 18, 15],
level setevolution [3, 13], meshevolution [7]) often incor-
poratingcareful treatmentof visibility conditionsandsil-
houetteconstraints.

In thispaper, wetakeabig stepbackward andarguethat
somesimplemodi�cationsof theoriginalwindow-basedal-
gorithmscanproduceresultswith accuracy on parwith the
bestcurrentmethods.Our algorithmconsistsof two steps:
In the �rst stepwe reconstructa depthmap for eachin-
put view, usinga robust versionof window-matchingwith
a small numberof neighboringviews. The secondstepis
to mergetheresultingdepthmapsusinga standardvolume
mergingmethod[2].

The key new idea underlying this work is to attempt
to reconstructonly the portion of the scenethat can be
matchedwith high con�dencein eachinput view. Conse-
quently, eachindividual depthmapmaycontainnumerous
holes,e.g., nearsilhouettes,oblique surfaces,occlusions,
highlights,low-texturedregionsandsoforth. Becausemost
of theseeffects(with theexceptionof low-texturedregions)
occur in different image regions in different views, the
merging step�lls in mostof thesemissingareas,and im-
provesaccuracy in regionsthat arereconstructedmultiple

Figure1. Reconstruction(right) from the templeFulldatasetand
an input image(left) for comparison. Despitethe simplicity of
theproposedalgorithm,it is ableto estimatetheobject's shapeto
sub-millimeteraccuracy.

times. While this is a simple idea, it is a departurefrom
most modernbinocularand multi-view stereoalgorithms,
which seekmodelsthat areascompleteaspossible,often
usingregularizationto help�ll in uncertainregions.While
we do not optimizeor enforcecompleteness,our algorithm
nonethelessreconstructsdenseshapemodelswith few holes
andgaps,givenasuf�cient numberof input views.

Thebene�tsof ouralgorithmareasfollows:

� The algorithmoutputsdenseandvery accurateshape
estimates,on par with the current best performing
methods(asreportedin anew evaluationof multi-view
stereomethods[14]).

� Con�denceis providedfor eachreconstructedpoint.

� The performanceis easyto understand,analyze,and
predict,dueto thealgorithm's simplicity.

� It is unusuallyeasyto implement.

Somedisadvantagesof ourapproachare

� Holescanoccurin areaswith insuf�cient texture.

� Eachsurfacepointmustbeseenin at leastthreeviews
to bereconstructed.



The technicaltools usedin this algorithm are not par-
ticularly new — indeed,they aredirectly inspiredby prior
work, in particular[9, 7]. However, they havenotbeenused
previously in this combination,andwe arguethat it is this
particularsynthesisof existing ideaswhich is thekey to its
success.A secondcontribution of this paperis ananalysis
of whythealgorithmperformsaswell asit does,andunder
whichconditionsit fails.

Theremainderof this paperis structuredasfollows: We
�rst give an overview of relatedwork beforewe describe
our algorithm in detail (Section2). We thendescribethe
datasetsusedfor our reconstructions(Section3) andshow
resultsfor a largenumberof parametersettings(Section4)
beforeweconclude.

1.1.RelatedWork

While thereis a largebodyof prior work on multi-view
stereoalgorithms,thethreepapersthataremostcloselyre-
lated are Narayananet al.'s Virtualized Reality technique
[9], Pollefeys et al's' visualmodelingsystem[11, 12], and
themulti-stereoapproachof HerńandezandSchmitt[6, 7].

Narayananet al. [9] proposedtheideaof creatingdense
shapemodelsby volumetricmerging of depthmaps. The
key differencebetweentheir work andours is the method
usedto reconstructdepthmaps. Narayananet al. useda
traditionalmulti-baselinestereomatcher[10] that seeksto
estimatea completedepthmap. As the authorspoint out,
this methodproducesnoisy resultswith many outliersthat
lead to problemswith merging anderrorsin the resulting
shapes.In contrast,we devise a specializedmatcherthat
computesdepthonly athighcon�dencepoints,simplifying
themerging stepandleadingto muchhigherquality recon-
structions.

Pollefeys et al. [11, 12] usea threesteptechnique.They
�rst performapair-wisedisparityestimationfor directlyad-
jacentviews usinga modi�cation of Cox et al.'s dynamic
programmingscheme[1] which yields densebut incom-
plete depthmapsby enforcingvariousconstraintson the
solution. An optimal joint estimatefor eachview is then
computedbyaddingcorrespondingdisparityestimatesfrom
graduallyfartheraway views on a per-pixel basisas long
asthey arenot classi�ed asoutliersrelative to the current
depthestimatefor thepixel underconsideration.Thefused
depthmapsarethencombinedusinga volumetricmerging
approach.Comparedto Pollefeys et al., our systemrecon-
structsdepthmapsin a single passwith a much simpler
approachyielding potentiallylesscompletedepthmaps.In
addition,weonly usethequalityof amatchbetweena�x ed
numberof neighboringviewsastheacceptancecriterionin-
steadof performinganoutlierclassi�cationbasedonrecon-
structeddepthvalues.

The�rst stepof ourapproach(estimatingdepthmaps)is
inspiredby the work of Herńandezand Schmitt [7], who

also userobust window-basedmatchingto computereli-
abledepthestimates.While the high level ideasaresim-
ilar, many of the detailsarequite different from what we
do. First,weareusingasimplerandmoreconservativecor-
relationcriterion. Herńandez[6] computesthe local max-
ima of the correlationcurves betweenthe referenceview
andthenearbyimages.Theseareusedto vote for a depth
rangewithin whichtheglobalmaximumis determinedfrom
all views thatpassa threshold-basedselectioncriterion. In
contrast,werequirethatat leasttwo viewspassathreshold-
basedselectioncriterionateachcandidatedepthvalue.The
otherimportantwayin whichourmethoddiffersfrom [7] is
themethodof combiningdepthmapsinto a full 3D model.
They useacombinationof volume�ltering, meshevolution
basedon a snakes formulation, and additional silhouette
termsto recoveracompletemodel.Theresultingapproach,
while it generatesbeautifulresults,hasvery differentprop-
ertiesandassumptionsthanour approach.Sinceit is based
on local re�nement via snakes, [7] requiresa closeinitial
estimateof theshapebeingestimated,andthe topologyof
theobjectmustbethesameasthatof its visualhull. They
alsorequirethat silhouettesareextracted. In contrastour
approachdoesnot requirean initial surfaceestimate,and
doesnotplaceany restrictionon thetopologyof theobject.
While wedonot requiresilhouettes,ouralgorithmcantake
advantageof them, when available. An advantageof [7]
is that it producescompletesurfacemodelsandcan�ll in
holesusingregularizationandsilhouetteterms. While our
approachcanleaveholesin low-contrastregions,thelackof
asmoothnesstermhastheadvantageof avoidingsmoothing
over sharpfeatures.A �nal differenceis thatour approach
is very simpleto implementandreproduce,in comparison
to [7].

2. Algorithm Description

Our algorithmconsistsof two steps:1) reconstructinga
depthmapfor eachinput view, and2) merging the results
into a meshmodel. In the �rst step,depthmapsarecom-
putedusing a very simple but robust versionof window-
matchingwith a small numberof neighboringviews. We
also estimatea con�dence value for eachpixel and only
highcon�dencepointsareincludedin themergingstep.

In the second step, we merge the resulting set of
con�dence-weighteddepth maps using the volumetric
methodby CurlessandLevoy [2]. Theresultof thesecond
stepis a triangularmeshwith per-vertex con�dencevalues.

The following sectionsdescribeboth stepsof the algo-
rithm in moredetail.

2.1.Step1: Depth Map Generation

We assumeasinput a setof views V = f V0; : : : ; Vn � 1g
of an object along with cameraparametersand an ap-



proximate bounding box or volume containing the ob-
ject. For eachview R 2 V (hereforthcalled a refer-
enceview) we �rst selecta set of k neighboringviews
C = f C0; : : : ; Ck � 1g � V � R againstwhichwecorrelate
R usingrobustwindow-matching.

For eachpixel p in R, we marchalongits backprojected
ray inside the boundingvolume of the object. For each
depthvalued wereprojecttheresulting3D locationinto all
views in C. We computethe normalizedcross-correlation
N CC(R; Cj ; d) betweenan m � m window centeredon
p andthe correspondingwindows centeredon the projec-
tions in eachof theviews Cj with subpixel accuracy. (Ap-
pendix A de�nes the normalizedcross-correlationN CC
formally.)

If two views show the samesurfaceareaof a textured
Lambertianobject,we expectto seea high NCC scorefor
somevalue of d. If, in contrast,there is an occlusion,
specularhighlight, or othercompoundingfactor, the NCC
valuewill typically be low for all depths.We wish to rely
on a depthvalueonly if the window in the referenceview
correlateswell with thecorrespondingwindow in multiple
views. We thereforede�ne that a depthvalued is valid if
N CC(R; Cj ; d) is larger thansomethresholdthreshfor at
leasttwo views in C. Thesetof all views with NCC larger
thanthreshfor agivendepthd is denotedasC v (d).

For a valid depth d we computea correlation value
corr(d) as the meanof the NCC valuesof all views in
C v (d):

corr(d) =

P
C j 2 C v (d) N CC(R; Cj ; d)

kC v (d)k
:

kC v (d)k evaluatesto thenumberof elementsin C v (d). For
eachpixel p in R, thedepthis chosento be thevalueof d
thatmaximizescorr(d), or noneif novalid d is found.

Note that this approachis extremely simple, and very
similar to standard SSSD-style multi-baseline window
matchingmethods[10], with the following modi�cations:
1) therobustversionof NCC effectively minimizestheim-
pact of occlusionsand specularities,and 2) we compute
depthonly athighcon�dencepointsin theimage.

Wealsocomputeacon�dencevalueconf(d) for eachre-
covereddepthvalueasfollows:

conf(d) =

P
C j 2 C v (d) (N CC(R; Cj ; d) � thresh)

kCk(1 � thresh)
:

Thiscon�dencefunctionincreaseswith thenumberof valid
views andis usedto inform themerging step,describedin
thenext subsection.

Therearea numberof freeparametersin theabove de-
scription, i.e., the numberk and selectionof neighboring
views, thesamplingratein depth,thewindow sizem, and
thethresholdthresh. Wediscussourchoiceof theseparam-
etersin Section4.

dataset # views geometry
templeFull 317 hemisphere
templeRing 47 ring
templeSparseRing 16 ring
dinoFull 363 hemisphere
dinoRing 48 ring
dinoSparseRing 16 ring
nskulla-half 24 8-ring+ 16-ring
nskulla-small 24 8-ring+ 16-ring

Table 1. Speci�cations of the datasets. All temple and dino
datasetshave a resolutionof 640� 480 pixels. The imagesof
the original nskulla datasets[4] are croppedto different sizes
within the dataset.We scaledthemdown to a resolutionof ap-
proximately1000� 900pixels (nskulla-half) and400� 360pixels
(nskulla-small).

2.2.Step2: Merging Depth Maps

Step1 producesa set of incompletedepthmapswith
con�dencevalues. In Step2, we merge them into a sin-
gle surfacemeshrepresentationusing the freely available
implementationof the volumetric methodof Curlessand
Levoy [2, 17]. This approachwasoriginally developedfor
merging laserrangescans. In a nutshell,it convertseach
depthmap into a weightedsigneddistancevolume, takes
a sumof thesevolumes,andextractsa surfaceat the zero
level set.Moredetailscanbefoundin [2].

This merging approachhasa numberof niceproperties
that make it particularlyappropriatefor our algorithm, in
particular robustnessin the presenceof outliers and rep-
resentationof directionaluncertainty. The merging algo-
rithm startsby reconstructinga trianglemeshfor eachview
and downweightingpoints neardepthdiscontinuitiesand
pointsseenat grazingangles.Thesemeshesarethenscan-
convertedwith per-vertex weightsinto a volumefor merg-
ing. Outliersconsistingof oneor two samplesare�ltered
outautomatically, becausethey cannotform trianglesin the
�rst phaseof thealgorithm.Largerhandfulsof outlierswill
bereconstructedassmalldisconnectedsurfaces;thesesur-
faceswill have low weight, sinceall the points are near
depthdiscontinuitiesandareprobablynot substantiatedby
otherviews. They canbe eliminatedin a post-processing
stepby removing low con�dencegeometryor by extract-
ing the largestconnectedcomponent.In addition, the ap-
proachhasbeenshown to be leastsquaresoptimal under
certain conditions,particularly assuminguncertaintydis-
tributedalongsensorlines of sight [2] which by construc-
tionsappliesto thedepthmapsfrom Step1.

3. Description of Datasets

We now describethe datasetsusedin this paper– the
temple, dino, and nskulla datasets(seeTable 1 for their
speci�cations).Thetempleobjectis a159.6mmtall plaster



reproductionof an ancienttemple. It is quite diffuseand
containslots of geometricstructureandtexture. The tem-
ple wasilluminatedby multiple light sourcesandcaptured
with acameramountedonacalibratedsphericalgantry. Im-
ageswith castshadowswherethecameraor thegantrywere
in front of a light sourcewere removed from the dataset.
templeFullis thefull datasetwith 317 images.templeRing
containsonly 47 views on a ring aroundthe object, tem-
pleSparseRingis a moresparseversionof the templeRing
datasetwith 16 views on a ring aroundtheobject. All im-
ageshave a resolutionof 640� 480pixels.

Thedinoobjectis a87.1mmtall, white,stronglydiffuse
plasterdinosaurmodel. It wascapturedin thesameway as
the templeandconsistsof threesetsof images: dinoFull
(sampledalong the hemisphere),dinoRing(sampledin a
ring aroundtheobject),anddinoSparseRing(sparselysam-
pled in a ring aroundtheobject). A moredetaileddescrip-
tion of thedinoandtempledatasetscanbefoundin [14].

Thenskullaobjectis a plastercastof a humanskull. It
was lit by several light sourceswith diffusersto approxi-
matediffuselighting. Theskull wasrotatedon a turntable
while camerasandlights remained�x ed so that the light-
ing conditionsaredifferentfor eachimage. Moving high-
lights are clearly visible on the object's moderatelyspec-
ular surface. The nskulladatasetcontains16 imagescap-
turedonaring aroundtheobjectplusanadditional8 images
capturedon a sparserring at higherelevation angles.The
datasetsdiffer only in resolutionand were downsampled
from their original resolutionto approximately1000� 900
pixels (nskulla-half) and 400� 360 pixels (nskulla-small).
A moredetaileddescriptionof the nskulladatasetcanbe
foundin [4].

4. Results

The descriptionof the algorithm in Section2 contains
severalparameters.In this section,we brie�y describehow
eachparameterwaschosenin ourreconstructionsandshow
resultsfor otherparameterchoices.We alsodiscussthein-
�uence of otherfactorssuchasthere�ectancepropertiesof
theobject.Finally, we reportsomeresultsof anevaluation
of thereconstructedmodelsagainstgroundtruth.

4.1.Implementation Notes

We generallysetthenumberof neighboringviews k =
4. A largerk reducesocclusionsbut doesnot signi�cantly
improve theresults.Dueto thearrangementof thecamera
positionsarounda ring or distributedon someportionof a
hemisphere,weselectedneighboringviews basedon angu-
lar distancebetweentheopticalaxes.For a givenreference
view, thek closestviewswerechosenasneighboringviews
unlessthe angulardistancebetweena view andthe refer-
enceview or any otherneighboringview was lessthan4

degrees.We useda �x edsamplingrate� d in depthto �nd
aninitial depthestimated0. The�nal depthd wascomputed
by re-runningthealgorithmwith stepsize � d

10 in theinterval
(d0� � d;d0+ � d). Weselected� d = 2:5 mmfor thetem-
ple anddino datasetand� d = 0:2 for thenskulladatasets.
The default value for the NCC thresholdis thresh = 0:6
exceptfor thenskulladataset,asdiscussedin Section4.5.

4.2.Window Size

Figure 2 shows a comparisonof rendereddepthmaps
reconstructedfor thesamereferenceview R with two dif-
ferentwindow sizes.Thecenterrow shows thecorrelation
valuecorr(d) andthe bottomrow displaysthe con�dence
valueconf(d).

Overall, the behavior is asnormallyexpected:A larger
window sizeleadsto smootherdepthmapsandtheremoval
of lower con�dence valuesfrom the reconstruction(e.g.,
noise in the background,�ne structuresin the columns).
Note thatmostof thebackgroundnoisein the5� 5 dataset
is not containedin the depthmap generatedby [17] due
to the inherentoutlier �ltering (seeSection2.2). It is also
assigneda muchlower con�dencevalueandcantherefore
beeasilyremoved. Theexamplesshow alsothat thealgo-
rithm detectsocclusionsreliably for all window sizeswith-
out compromisingthe correlationvalues— only the con-
�dence value is scaledaccordingto the numberof valid
views. This is visible in the con�dence imageas a dark
verticalstripeon the left sideof the templewheresomeof
theinputviewsareoccluded.In ourexperiments,we found
a 5� 5 window gave goodresults,andwe usedthis sizefor
all of our reconstructions.

4.3.Densityof Views

Our algorithmrequiresthat eachsurfacepoint (andthe
window surroundingit) is seenin at leastthreeviews(aref-
erenceview andatleasttwoneighboringviews)andfurther-
moreyields a high correlationvalue. The reconstructions
of the templeSparseRingdatasetare thereforeincomplete
even in low-occlusionareas(seeFigures3 and7). Some
high-occlusionregionssuchasthetempleroof aremissing
almostcompletely. The resultsfor the templeRingandthe
templeFulldatasetshow however that addingmore views
drastically improves the resultsyielding almostcomplete
surfacecoverage. The templeFullreconstructioncontains
holesalmostexclusively in areasthat needto be observed
from below. Suchviews arenot includedin thedataset.

4.4.Surfaceswithout Texture

The dino plastercasthasa white, Lambertiansurface
withoutobvioustexture.Dueto thelackof structure,stereo
reconstructionusing window-matchingis extremely dif�-
cult. Nevertheless,thealgorithmreconstructsgeometryfor



Figure2. Top to bottom: Reconstructeddepthmap(renderedas
triangle meshgeneratedby [17]), correlationvalues,and con�-
dencevaluesfor a view from the templeRingdataset.Left: Re-
constructionwith window size5� 5. Right: Reconstructionwith
window size9� 9. The“glow” aroundthesilhouettesof thetemple
is discussedin Section4.6.

a largeportionof thesurface.The input imageswerecap-
turedunder�x edbut notcompletelydiffuseilluminationso
thatthesurfaceshadingis stationary. Regionsin thevicinity
of shadow boundariesandgeometricfeaturesaretherefore
reconstructed.In addition, the algorithmreconstructsge-
ometry in the neighborhoodof dust speckson the plaster
surface.

Figure3. Detail of thetemplereconstructedfrom increasingnum-
bersof input views. Left to right: templeSparseRing(16 views),
templeRing(47 views), templeFull(317views). The full version
of thedatasetsis shown in Figure7.

Figure4. Exampleview from thenskulla-halfdatasetandthe re-
constructedmesh.Notethespecularre�ection ontheskull surface
andthereconstructedgeometryin theeyesocket.

4.5.Specularvs. Lambertian Surfaces

A textured, Lambertiansurface is an optimal casefor
NCC-basedwindow matching.Thesurfaceof theskull cast
in the nskulla datasetsis however quite specularand the
lighting conditionsarechangingper-view. Figure4 shows
thatour algorithmcanneverthelessreconstructa triangular
meshof theunoccludedregionsof theskull. Theindividual
depthmapswerehoweverquiteincompletesothatthemesh
containsmany smallholes.

The reconstructionof the nskulla-small datasetwith
standardparameters(thresh = 0:6, 5� 5 window) yields
comparablyincompletedepthmaps(seeFigure5). Lower-
ing threshto 0.4improvescoveragebut includesalsoalarge
numberof incorrectsampleswith high con�dencevalue.
All otherdatasetsshown in thepaperwerethereforerecon-
structedwith thresh= 0:6.

4.6.Silhouettes

Figure6(b) shows a sampledepthmapfrom the temp-
leRing datasetwith spuriousgeometryaroundthe silhou-
ettes. Spuriousgeometrycan be createdin regions with
low-contrastbackgroundwherethewindows arestill dom-
inatedby thesilhouetteedgealthoughthey arecenteredon
the background.The silhouetteis clearly visible after the
normalizationstepof theNCC (seeFigure6(d)). Thenor-
malizedreferencewindow matchesthe two windows from
neighboringviews shown on the left of Fig. 6(e) and6(f)



Figure 5. Comparisonof different thresholdsthresh for a view
from the nskulla-smalldataset.Top left: thresh = 0:6 leadsto
largeholesin thereconstruction,asshown in this renderingof the
depthmap.Topright: Loweringthethresholdto thresh= 0:4 �lls
someof theseholesbut introducesstrongnoise. Bottom: Con�-
dencevaluesfor boththresholds.Loweringthethresholdfrom 0.6
(left) to 0.4(right) increasesthecon�dencein thenoisyregions.

creatingspuriousgeometry. The matchingwindows are
dominatedby theedgefeaturesothattheNCCvalueis high
despitethepresenceof backgroundnoise.Thespuriousge-
ometry is thereforeassigneda high con�dencevalue and
will most likely appearin the �nal geometrymodel. This
problemarisesparticularlyin thetempledatasetdueto the
placementof the light sourcesrelative to the object. Be-
causesilhouettesareeasilydeterminedin this dataset,we
can reduceartifactsby omitting windows centeredon the
background.

4.7.Evaluation againstGround Truth

The reconstructedmodels from the temple and dino
datasetswere submittedto a multi-view stereoevaluation
effort [14] whichassessedaccuracy andcompletenessof the
reconstructedmodels.Accuracy is measuredasthedistance
in mmsuchthat90% of thepointsonamesharewithin this
distanceof thegroundtruth. Thecompletenessvaluemea-
sureshow well the reconstructioncoversthe groundtruth.
A moredetailedexplanationof thesemeasuresandtheeval-
uationmethodologyappearsin [14]. Theevaluationresults
aresummarizedin Table2. Figure7 shows a comparison
of an input view, our reconstructionsfor the threedataset
sizes,andan imageof thegroundtruth datasetusedin the
evaluation.

A full evaluationandrankingof theperformanceon all
datasetsis available in [14]. In summary, the accuracy of

(a) croppedreferenceview with ap-
proximatelocationof referencewin-
dow

(b) renderingof thecorresponding
depthmap

(c) referencewindow (d) normalizedreferencewindow

(e) correspondingwindows in neighboringviews

(f) normalizedcorrespondingwindows in neighboringviews

Figure6. Spuriousgeometrycanoccuratsilhouetteswith low im-
agecontrast.Fig. 6(a)and6(b)show areferenceview andthecor-
respondingdepthmap.Theseeminglystructureless9� 9 window
of thereferenceview (Fig. 6(c),markedin Fig. 6(a))actuallycon-
tainsstructurewhich is revealedby thenormalizationusedin the
NCC(Fig.6(d)). Thereferencewindow matchesthetwo windows
from neighboringviewsshown ontheleft of Fig. 6(e)and6(f) and
spuriousgeometryis createdalongtheedgesof thecolumns.

the proposedalgorithm was within a small margin of the
bestperformingalgorithmfor the templedatasets.Accu-
racy and completenessclearly improved with the number
of input images. For the moredif�cult dino datasets,our
algorithm'saccuracy actuallydecreasedwith thenumberof
inputimagesandachievedthebestaccuracy outof all meth-
ods for the smallestdataset(dinoSparseRing). This trend
is causedby two factors. First, our algorithmreconstructs
depthvaluesfor the diffuse,texturelessdino only in areas
whereotherfeatures(e.g.,geometricstructuresor shadow



Figure 8. Comparisonof the nskulla-half datasetreconstructed
with our method (left) and with one of the currently top-
performingmulti-view stereomethods[5].

boundaries)allow for a high con�dencematch.Second,in
contrastto theotherparticipants,we do not estimateshape
everywherewhich avoids introducinginaccurategeometry.
Our reconstructionof the dinoSparseRingdatasetis thus
mostaccuratebut leastcomplete.

Our currentstereoimplementationlacksany optimiza-
tionsfor speedandis consequentlytheslowestof all partic-
ipantsin [14]. This is, however, not a principle limitation
asoptimizationssuchasimagerecti�cation or hierarchical
evaluation[6] canbeeasilyapplied.

5. Discussion

The previous sectiondemonstratesthat a conservative
window-basedmulti-stereoalgorithm can achieve results
on par with the bestcurrentmethods.Being conservative
comeshowever at the price that the reconstructedmodels
areincompleteif too few input views areavailable.There-
constructionsfrom smallerdatasetsareconsequentlyscor-
ing worsein termsof completenessthanthereconstructions
from full datasets.

Thereis however alsoanotherway to look at the issue:
Figure 8 comparesthe nskulla-half datasetreconstructed
with our methodon the left with oneof the currentlytop-
performing multi-view stereomethods[5]. Both recon-
structionsare (arguably) very good— but they alsohave
very differentproperties.Ourapproachleavesholesof var-
ious sizesin areasof uncertaintybut is ableto reconstruct
more complex geometryfor this model (e.g., at the teeth
on the left sideof the jaw andin theeye sockets). In con-

trast,mostmodernmulti-view stereoreconstructionmeth-
odsreconstructplausible,smooth,andwell-behavedgeom-
etryevenin areaswherelittle or no informationis available
abouttherealobject. Ultimately, it is a questionof theap-
plicationfor whichthemodelis generatedand/orof auser's
preferencewhetheroneor theotherreconstructionphiloso-
phy is better.
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dataset accuracy differ enceto completeness run time
bestmethod (hours:minutes)
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dinoFull 0.56mm 0.14mm 80.0% 281:00
dinoRing 0.46mm 0.04mm 57.8% 37:00
dinoSparseRing 0.56mm — 26.0% 12:24

Table 2. Resultsof the evaluationregarding accuracy, completeness,and run time. The third column lists the differencebetweenthe
accuracy of our methodandtheaccuracy of thebestperformingmethodin [14]. Theheightsof theobjectsare159.6mm (temple)and
87.1mm(dino). Runtimesgivenfor a3.4GHzPentium4 processor. Modelswhoserun timesaregivenin italics werecomputedonaPC
clusterandtimingswerenotdirectlyavailable.Therun timeswerethereforeestimatedbasedon therun timesfor thesparseRingdatasets.

photograph templeSparseRing templeRing templeFull groundtruthmodel

photograph dinoSparseRing dinoRing dinoFull groundtruthmodel
Figure7. Modelsevaluatedin the multi-view stereoevaluation[14]. Left to right: Photographof the object, reconstructionfrom the
sparseRing,ring, andfull dataset,groundtruthmodelusedin theevaluation.
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A. Normalized Cross-Correlation

We usea versionof NCC for n-dimensionalRGB color
vectorsv0; v1 with normalizationper color channel. The
vectorsvi correspondin our applicationto color valuesin
an n = m � m window arounda pixel positionin a view
V . To computetheNCCbetweentwo vectorsv0 andv1 we
�rst computetheaveragecolorvaluevi for eachvectorwith
i 2 f 0; 1g. WecanthencomputetheNCCin astandardway
as

N CC(v0; v1) =
P n � 1

j =0 (v0(j ) � v0) � (v1(j ) � v1)
q P n � 1

j =0 (v0(j ) � v0)2 �
P n � 1

j =0 (v1(j ) � v1)2
:

A multiplicationbetweentwo color vectorsis evaluatedas
dot product.TheNCC returnsa singlevaluein theinterval
[� 1; 1] where1 meanshighestcorrelation.


