
From the proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation

A Multiresolution Framework for Dynamic Deformations

Steve Capell Seth Green Brian Curless Tom Duchamp Zoran Popović

University of Washington

Abstract

We present a novel framework for the dynamic simulation of elas-
tic deformable solids. Our approach combines classical finite el-
ement methodology with a multiresolution subdivision framework
in order to produce fast, easy to use, and realistic animations. We
represent deformations using a hierarchical basis constructed using
volumetric subdivision. The subdivision framework provides topo-
logical flexibility and the hierarchical basis allows the simulation to
add detail where it is needed. Since volumetric parameterization is
difficult for complex models, we support the embedding of objects
in domains that are easier to parameterize.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically Based Modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: animation, deformation, physically-based animation,
physically-based modeling, multiresolution, hierarchical basis

1 Introduction

With advances in computer animation over the past few decades,
people have come to expect a high degree of realism. A common
way to achieve such realism is to painstakingly craft each keyframe,
but this requires a tremendous amount of labor and skill. An alter-
native is to endow animated objects with physical properties and
allow them to move automatically according to physical laws. This
approach is especially appealing because it promises increased real-
ism while simultaneously reducing the human workload. But such
simulations are computationally expensive and difficult to set up.

In this paper we introduce a new framework for dynamic defor-
mations that is fast and easy to use, and produces realistic results.
Our method can be applied to complex objects, and does not depend
on the representation of the object or its surface.

In our framework, the domain of deformation is described by
volumetric subdivision. Applying the principles of subdivision,
we construct a hierarchical basis to represent displacements. We
then formulate the equations of motion for a dynamically deform-
ing elastic solid in terms of the hierarchical basis. This formula-
tion defines the temporal behavior of the basis coefficients in the
presence of body forces and constraint forces. The mathematical
framework and equations of motion are described in Section 3.

Copyright c© 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish , to post on servers, or to redistribute to lists, re-
quires prior specific permission and/or a fee. Request permission from Permis-
sions Dept, ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org.
c© 2002 ACM 1-58113-573-4/02/0007 $5.00

Within this framework, we construct a robust dynamic simu-
lator that employs an implicit solver, permitting us to take large
timesteps without succumbing to instabilities. Spatially varying
material properties are accommodated, regardless of the resolu-
tion of the simulation. External constraints are handled using La-
grange multipliers. Using the hierarchical basis, our simulation can
adapt in order to concentrate computational resources where they
are needed. We introduce a new method of quasi-linearization of
the equations of motion that is effective but simpler than the stan-
dard method. Our simulator is described in Section 4.

In Section 5 we describe some resulting interactive simulations
built using our framework, and we conclude with a discussion in
Section 6.

2 Related Work

Our work builds on previous work in the areas of static and dynamic
deformations, hierarchical methods, and subdivision.

Early work on deformations focused on non-dynamic tech-
niques. The introduction of free-form deformation (FFD) by Seder-
berg et al. [38] allowed objects to be deformed independent of
their structure by embedding them in easily-parameterized do-
mains. MacCracken and Joy developed three-dimensional lattice
subdivision, an extension of Catmull-Clark subdivision surfaces,
for the purpose of easing the topological restrictions of FFD. An-
other important extension to FFD was the introduction of dynamics
by Faloutsos et al. [15]. Our framework builds on both of these
extensions, using a flexible class of control lattices as in [24], and
embedding objects in dynamic free-form lattices as in [15]. But un-
like [15], where a diagonal stiffness matrix is employed, we use the
finite element method to simulate the dynamics of the embedded
object.

The use of physically-based deformable models in graphics was
pioneered by Terzopoulos et al. [42]. The original work applied the
Lagrangian equations of motion using a finite difference scheme
to simulate elastic objects with regular parameterizations. Their
framework was extended to include inelastic behaviors [41], and to
handle stiff rotating bodies using linearized equations [44].

Physically-based deformations have since been extended in
many ways. Platt and Barr [33] introduced better constraint han-
dling via Lagrange multipliers. Pentland and Williams [31] ob-
tained realtime simulations by using only a few vibration modes.
Witkin and Welch [46] introduced the use of low-order polyno-
mial deformations to achieve fast deformations, to which Baraff
and Witkin [3] added non-penetration constraints. Metaxas and Ter-
zopoulos [28] combined global deformations with local finite ele-
ment deformations. O’Brien and Hodgins [29] computed realistic
fractures of viscoelastic bodies using a finite element framework in
which objects are approximated by a fine tessellation of tetrahedra.
A similar framework was used by Picinbono et al. [32] to achieve
interactive simulations of a virtual liver composed of about 2000
tetrahedra. But we are interested in interactively deforming objects
that cannot be approximated well by so few tetrahedra.

Deformable surfaces have also been used for geometric model-
ing. Celniker and Gossard [9] applied the finite element method
to minimize surface energy while meeting constraints. These ideas

From the proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation

were later extended to NURBS by Terzopoulos and Qin [43] and to
Catmull-Clark subdivision surfaces by Qin et al. [36].

For some applications dynamic motion has not been deemed
necessary so static and quasi-static methods have been employed
[6, 18, 21, 22, 37]. Since our interest is in realistic motion, we build
on dynamic methods.

Implicit solvers have been enjoying a renaissance in dynamic
deformations for computer graphics in recent years. Terzopoulos et
al. [41, 42] used semi-implicit solvers in their initial work. Baraff
and Witkin [4] used an implicit scheme to greatly improve the speed
and stability of cloth simulation. Desbrun et al. [14] used a semi-
implicit scheme to stabilize stiff systems. Hauth and Etzmuss [20]
recently showed that the implicit method BDF(2), which factors
in one state of history in addition to the current and future states,
produces fast and accurate results for cloth simulations.

As noted in the introduction, we simulate using a hierarchical
basis. Such bases have been widely studied in the field of numerical
analysis (see, e.g., [2]). Our work was thus inspired, but our focus
is on building a useful framework for computer animation.

In the field of computer graphics, hierarchical methods have been
used to solve many problems including rendering [17], geometric
modeling [16], and deformable model simulations. Terzopoulos et
al. [41] employed a multigrid solver on a rectangular domain. De-
bunne et al. [11] created interactive simulations using an octree rep-
resentation, adaptive in both space and time. To animate a surface,
the surface points are linked to the grid by a weighting scheme.
Our framework is similar in that we embed objects in domains that
are easier to parameterize than the object itself. But since we do
not require that the domain be a parallelepiped, we can fit it more
closely to the underlying object. Later, Debunne et al. [12] devel-
oped an adaptive framework for deformable models employing an
unstructured hierarchy of tetrahedral meshes [12]. At each level
of the hierarchy the object is approximated by a tetrahedral mesh.
In our framework, coarse simulations do not require that the ob-
ject be coarsely approximated. Our coarse simulations factor in the
detailed shape and material properties of the entire object, as ap-
proximated at a fine level of detail during the preprocessing stage.
Recently, Grinspun et al. [19] have developed a general method
for organizing hierarchical simulations involving refinable function
bases.

Subdivision schemes have also been used for simulation.
Weimer and Warren [45] employed 3D subdivision to solve PDEs
associated with fluid flow. Cirak et al. [10] employed subdivision
surfaces to solve thin shell finite element problems, exploiting the
smoothness of subdivision basis functions to satisfy the integrabil-
ity requirements of thin shell elements. McDonnell et al. simulated
volumetric subdivision objects using a mass-spring model [26] and
then applied the finite-element methodology to the problem [27].

3 Formulation

In this section we describe our framework for computing the elas-
tic dynamics of an elastic body. We model the dynamics of the
deformable body as a system of second-order ordinary differential
equations obtained by applying the finite element method (FEM)
to the Lagrangian formulation of the equations of elasticity (see
[39, 30, 34]).

To establish notation, we begin with a quick review of the
method. Consider a body whose rest state is defined by a domain
Ω ⊂ R

3. The trajectory of the body over time is represented by a
function

p : Ω × R → R
3 : (x, t) 7→ p(x, t) (1)

It is convenient to decompose p(x, t) as the sum of the rest state
and a displacement

p(x, t) = x + d(x, t) . (2)

The function d is the solution of a system of second-order partial
differential equations, which we want to approximate by a (finite)
system of second-order ordinary differential equations.

This is done via a hierarchical basis [2] of piecewise smooth
functions on Ω. Roughly speaking, a collection B = {φa(x) : a =
1, 2, . . . } is called a hierarchical basis if the diameter of the support
of φa decreases as a increases.1 Expressing the state of the body in
terms of B yields the expansion

p(x, t) =
∑

a

(ra + qa(t)) φa(x) = (ra + qa(t)) φa(x) (3)

where ra and qa(t) are elements of R
3 and

x = raφa(x) (4)

is the expansion of the identity map. We use the Einstein summa-
tion conventions throughout this paper: any term that contains the
same index as both a subscript and a superscript implies a summa-
tion over that index.

We represent the state of the body at time t as a column vec-
tor of generalized coordinates q = q(t) whose a-th component
is qa(t) ∈ R

3. Thus both the kinetic energy T and the potential
energy V are functions of q:

T = T (q̇) and V = V (q) (5)

where q̇ denotes the time derivative of q. The equations of motion
are then the Euler-Lagrange equations

d

dt

(

∂T (q̇)

∂q̇

)

+
∂V (q)

∂q
+ Q

ext − µq̇ = 0 (6)

where ∂T/∂q̇ and ∂V/∂q denote gradients with respect to q̇ and q,
respectively. The term Qext is a generalized force corresponding to
external body forces, such as gravity. The last term is a generalized
dissipative force, added to simulate the effect of friction. A more
realistic damping term could easily be added (see, e.g., [29]).

In the following subsections, we discuss in detail our construc-
tion of a hierarchical basis and the derivation of the terms of Equa-
tion (6).

3.1 The Hierarchical Basis

Our construction of a hierarchical basis of functions on Ω is a gener-
alization to subdivision functions of the embedding methods com-
monly used in the finite element community under the headings
fictitious component or fictitious domain methods [5, 25]. Rather
than attempting to construct a basis of functions on the (perhaps
irregular) region Ω, one instead views Ω as embedded in a regular
region N (for instance, a cube in R

3) on which a hierarchical basis
of functions is known. Restriction to Ω then induces a collection
of functions on the original domain. Color Plates 1(a) and 1(d) il-
lustrate the fictitious domain approach applied to a dragon-shaped
region.

More generally, consider a (piecewise smooth) homeomorphism

h : K → N ⊂ R
3 : u 7→ h(u) (7)

from a three-dimensional hexahedral complex K, which we call
a control lattice, onto a superset N ⊃ Ω. Denote the pre-image
of Ω under h by D = h−1(Ω) ⊆ K. Figure 1 illustrates the
relationship between an object Ω and a hexahedral complex K. The
homeomorphism h can then be used to transfer any hierarchical
construction on K to one on N .

1It is also desirable that B be well-behaved with respect to the L
2-inner

product on L
2(Ω).

2

From the proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation

PSfrag replacements

D

x

y

Ω

K
N

h

Figure 1: Visualization of the relationship between an object Ω and a control lattice
K. The lattice K parameterizes N , which is a superset of Ω, via the function h. The
pre-image of Ω under h is D.

We use subdivision rules on the control lattice K to define both
the homeomorphism h and a hierarchical basis B of functions on
Ω. The subdivision framework gives topological flexibility and is
intrinsically hierarchical. Our current implementation, based on
hexahedral subdivision, supports trilinear subdivision [7], the sub-
division solids introduced by MacCracken and Joy [24], which are
a generalization of Catmull-Clark subdivision surfaces [8], and the
scheme introduced recently by Bajaj et al. [1]. In all three cases, we
support only those control lattices that result in hexahedral com-
plexes after one subdivision step. This restriction is required in
order to ensure that all objects are parameterized by the control lat-
tice in the obvious way. It still allows a variety of polyhedral cells,
including hexahedra, tetrahedra and triangular prisms. While less
has been proven about the smoothness of the MacCracken and Joy
scheme than that of Bajaj et al., we have found that the former pro-
duces surfaces that are more visually pleasing. Therefore we used
the trilinear and MacCracken-Joy schemes for the examples shown
in this paper.

Both trilinear and MacCracken-Joy subdivision schemes give
rise to infinite sequences of nested function spaces [23] spanned
by the elements of a hierarchical basis B = {φa(u)}. Each finite
dimensional space is spanned by a set of functions, one correspond-
ing to each vertex of the subdivided control lattice. Using a stan-
dard construction (see, e.g., [40]), we form a hierarchical basis by
selecting a linearly independent subset of these basis functions.

At the coarsest level are the basis functions that correspond to
the original vertices in the control lattice. We denote the set of ba-
sis functions at the coarsest level by B0 = {φa

0}, where the index
a ranges over the vertices of K0 = K. Repeated subdivision of K
introduces an increasingly fine sequence of complexes Kk (see Fig-
ure 2). Applying subdivision to the complex Kk gives rise to basis
functions at level k. The basis Bk is inductively formed from Bk−1

by appending the basis functions φa
k on Kk where a ranges over the

set of odd vertices of Kk (vertices introduced when we subdivide
Kk−1). The hierarchical basis B is the union of the nested sequence

B0 ⊂ B1 ⊂ B2 ⊂ . . . (8)

Notice that the index k is redundant because each vertex a appears
at a unique subdivision level k. We, therefore, drop the index k,
writing φa instead of φa

k.
The homeomorphism h is formed by taking a linear combination

of the coarse basis functions:

h(u) = haφa
0 (9)

where ha ∈ R
3. We note that not every set of coefficients {ha} de-

fines a homeomorphism. Unfortunately, we do not know of an easy
way to detect overlap in h, so we resort to numerical approximation

Figure 2: On the left is a control lattice. In the top row the control lattice has been
subdivided once (center) and infinitely (right) using trilinear subdivision. In the bottom
row, the MacCracken-Joy scheme (augmented with the sharp surface rules of [13]) has
been used. In the rightmost images the object has been textured to indicate the surface
of a volumetric parameterization.

to verify that h is indeed a homeomorphism. Figure 2 shows exam-
ples of a trilinear and a MacCracken-Joy subdivision solid that are
parameterized by a control lattice. Color Plate 2(b) shows another
example of a region parameterized using trilinear subdivision.

Although the elements of B are defined on all of K, we are only
interested in their values on D, so we view them as functions on
D, deleting from B all functions whose support is disjoint from D.
Finally, by composing with h, the elements of B can be treated
as functions on Ω. This is convenient because the equations of
elasticity are easiest to describe in Euclidean coordinates. In Color
Plate 2(c) the vertices of a subdivided control lattice have been col-
ored to indicate the structure of the hierarchical basis.

3.2 Derivation of the Equations of Motion

The kinetic energy T (q̇), the potential energy V (q), and the gen-
eralized forces, can all be expressed as integrals over the domain
Ω. To derive the equations of motion, we need only express each
integral in terms of integrals involving the basis functions φa.

3.2.1 Kinetic Energy

The standard definition of the kinetic energy of a moving body is:

T =
1

2

∫

Ω

ρ(x) ṗ · ṗ dV =
1

2
Mab

q̇a · q̇b (10)

where ρ(x) is the mass density of the body, and

Mab =

∫

Ω

ρ φaφb dV. (11)

Equation (10) yields the formula

d

dt

(

∂T

∂q̇

)

= M q̈ . (12)

The matrix M , composed of the elements IMab, where I is a 3×3
identity matrix, is commonly referred to as the mass matrix. We
discuss its computation in Section 4.1.

3.2.2 Potential Energy

The potential energy of an elastic body is based on measuring the
strain or distortion present in the body. Green’s strain tensor is a
common measure of strain:

eij =
∂di

∂xj
+

∂dj

∂xi
+ δkl

∂dk

∂xi

∂dl

∂xj
. (13)

3

From the proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation

A related concept is that of stress (also a tensor), which mea-
sures the forces present in a continuous body. For linear (stress is
proportional to strain) and isotropic bodies, stress has the following
relation to strain:

τij = 2G

{

ν

1 − 2ν
tr(e)δij + eij

}

(14)

where tr(e) = δijeij . The scalar G, called the shear modulus,
determines how easily the body deforms, and the scalar ν, called
Poisson’s ratio, determines how strains in perpendicular directions
relate.

The potential energy V , analogous to computing work as force
times distance, is computed by taking the componentwise product
of the stress and strain tensors:

V =

∫

Ω

G

{

ν

1 − 2ν
tr2(e) + δijδkleikejl

}

dV . (15)

By combining Equations 3, 13, and 15 we can express the elastic
potential V and its derivatives (with respect to q) as polynomial
functions of q. The coefficients of these polynomials are integrals
that can be precomputed. We refer to these coefficients as the stiff-
ness integrals. Their exact form can be found in the appendix of [7].
The matrix ∂2V

∂q∂q
, which is needed during the simulation, is com-

monly referred to as the stiffness matrix.

3.2.3 External Forces

We address two specific types of external forces: gravity (Qg) and
constraints (Qc). We add their generalized force contributions to
compute the aggregate generalized force Qext = Qg + Qc.

Gravity. Gravity is an example of a body force that affects all
points inside the body. We treat gravity as a constant acceleration
field specified by the vector g. The gravitational potential energy is
then the integral

Vg =

∫

Ω

ρg · p dV =

∫

Ω

ρ φa
g · qa dV . (16)

The generalized gravitational force is the gradient

Q
g
a =

∂Vg

∂qa

=

(
∫

Ω

ρ φa dV

)

g . (17)

The above force can be interpreted as the familiar mg except that
the mass term represents all of the mass associated with a particu-
lar basis function. Generalized forces for other conservative force
fields can be derived similarly.

Constraints. Using Lagrange multipliers, we support standard
constraints that can be described by equations of the form C = 0.
For example, we can constrain a body point P with coordinates u0

to coincide with the arbitrary point P0 as follows:

0 = C(q) = P − P0 = qaφa(u0) − P0 . (18)

3.2.4 System of Equations

Choosing a finite active basis

BA ⊂ B, (19)

collecting together the various terms computed above, substituting
them into Equation (6), and applying Baumgarte stabilization (see
[28]) to our constraints yields the system of ordinary differential
equations

[

M ∂C

∂q

T

∂C

∂q
0

]

[

q̈
λ

]

=

[

µq̇ − Qext − ∂V
∂q

−αĊ − βC̈

]

. (20)

As explained in Section 4.5, the elements of BA, and consequently
the system of equations, adaptively change with each time step of
numerical solution of Equation (20).

The Baumgarte stabilization parameters α and β control a
damped spring that acts to restore the constraints when they are not
being met. Due to the non-linearity of ∂V

∂q
our system of equations

is not linear.

4 Simulation

In this section we describe the computational aspects of solving
Equation (20) efficiently.

4.1 Numerical Integration

To speed up the computation of the terms in Equation (20), we pre-
compute the mass, stiffness, and gravity integrals using numerical
quadrature. We first subdivide to the desired level and compute the
values of all of the basis functions at each of the vertices. After
subdividing at least once, the domain is composed of hexahedral
cells, which we proceed to split into tetrahedra. We then compute
the integrals over each domain tetrahedron using piecewise linear
approximations to the basis functions. Since at every vertex the Eu-
clidean coordinates are known, we can compute the spatial deriva-
tives of the basis functions directly without using knowledge about
the parameterization of the object by the complex K.

As described in Section 3.1, we represent functions on Ω by re-
stricting functions on K to Ω. The restriction is approximated dur-
ing numerical quadrature at the level of the tetrahedra mentioned
in the previous paragraph. When computing integrals over Ω, we
do not integrate over tetrahedra that are deemed to be outside the
object. We accomplish this by regularly sampling each tetrahedron
and testing whether the sampled point is outside the surface. If all
of the sampled points are outside the surface then the tetrahedron
is discarded. In our current implementation, tetrahedra that strad-
dle the surface contribute to the computed integrals (an improve-
ment would be to weight the integral over a tetrahedron according
to the fraction of sample points inside the object). Color Plate 2(d)
shows the tetrahedra that were used to approximate the interior of
the dragon model.

The computed integrals involve products of as many as four basis
functions (see [7]), so it is important to know which basis functions
are nonzero over a given tetrahedron; otherwise, all 4-tuples would
be integrated. We accomplish this by storing the basis heights as
sparse vectors at each vertex. Our subdivision scheme operates di-
rectly on the sparse vectors to compute the basis heights. By exam-
ining the sparse vectors of basis heights at each vertex of a tetrahe-
dron, the integrator knows which basis functions are nonzero.

4.2 Solving the ODEs

Once we have precomputed the mass and stiffness terms, we are
prepared to solve the system in Equation (20) together with initial
values for p and ṗ (and thus q and q̇). Solution techniques typically
start with known values for q and q̇ and proceed to compute the
values of these variables at a sequence of subsequent points in time.

There are two common classes for solving such systems of dif-
ferential equations. Explicit techniques compute the future state of
the system using information about the state of the system at the
current and previous timesteps. Forward Euler and Runga-Kutta
are examples of such explicit methods. Implicit techniques express
the future state in terms of quantities evaluated at the end of the
timestep, in addition to previously known quantities. Implicit meth-
ods are much more stable for large timesteps than explicit methods
because rather than jumping blindly forward, the conditions at the

4

From the proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation

future state are taken into consideration. For discussions of implicit
methods see [4, 20].

We desire a fast stable solution, so we chose to use an implicit
method to solve our system of equations. Applying the method of
[4], adapted to our constrained system, results in the following non-
linear system of equations:

[

M ∂C

∂q

T

∂C

∂q
0

]

[

∆v
λ

]

=

h

[

Q(q0 + h(v0 + h∆v),v0 + ∆v)

−αĊ − βC̈

]

(21)

where Q = µq̇ − Qext − Qe. We solve the above system of
equations for ∆v using the Newton-Raphson root-finding method.
The cost of this comes primarily from computing the stiffness ma-
trix, which is required to compute the gradient of Equation (21).
For our simulations we have found it acceptable to only perform
one iteration of Newton-Raphson. This corresponds to lineariza-
tion of Equation (21) at each timestep (as in [4]), but should not be
confused with the commonly used linearization of strain, which is
only accurate for small deformations (we discuss such linearization
in Section 4.4). The linear systems that need to be solved when
performing Newton-Raphson on Equation (21) are symmetric but
indefinite, so we solve them using the iterative minres algorithm
(using sparse matrices, see [35]).

4.3 Runtime Details

Although the interpretation of our object as a lattice is not needed
by the ODE solver, we still store a complete lattice at the level of
the finest basis functions. This is convenient because of the one-
to-one correspondence between lattice vertices and basis functions.
For each vertex we store the sparse vector of basis values, which al-
lows us to evaluate functions without using a global synthesis step.
In the case where the object being simulated is described by sub-
division (Ω = N), we perform a synthesis on the surface of the
object whenever it needs to be displayed. In order for the user to
be able to click on the surface and set a constraint, we store the
surface of the object as a triangle mesh. The triangle vertices store
basis function information. This allows us to quickly compute the
parametric location of the chosen surface point, select the relevant
subset of basis functions, and set up a constraint at that point as in
Section 3.2.3.

4.4 Quasi-linearization

For complex models in which there are many basis functions, the
full nonlinear equations of elasticity are too expensive to solve in-
teractively because even evaluating the stiffness matrix once per
simulation step is costly, and the equations of motion must be lin-
earized. We support two methods of linearization, in addition to the
nonlinear solver.

If the deformations are small, the nonlinear terms of strain
(Equation (13)) can be dropped, resulting in the traditional
quadratic (instead of quartic) elastic potential, and thus a constant
stiffness matrix. If the deformations are large but differ only slightly
from a rigid motion then the strain can be linearized about a floating
frame of reference that roughly tracks the orientation of the object
(see [44]). If large deformations are required and significant error
is unacceptable, then the full non-linear formulation is necessary.

Our approach to the large-rotation small-deformation scenario
deserves further comment. Terzopoulos et al. [44] (and similar for-
mulations in the engineering literature, e.g., [39]) integrate a mov-
ing frame of reference into the dynamic equations, adding greatly
to the complexity of the exposition and implementation. The frame

of reference attempts to track the configuration of the object as if it
were a rigid body. Besides the added complexity, another problem
is that over time, due to numerical error, the frame of reference will
drift out of alignment with the deforming body.

Roughly speaking, the error due to linearizing strain is large
when ∇×d is large. Our approach is to choose an orientation of
the rest state at the beginning of each timestep in order to minimize
∇×d. To avoid the computational expense of optimizing globally,
we minimize ∇×d at a single point x0, located near the rest center
of mass of the object. The orientation of the rest state is given by
a rotation R(x) and is determined by solving the following equa-
tions:

x + d(x) = x + D(x) + R(x) (22)

∇×D(x0) = 0 (23)

where D(x) = d(x) − R(x) is a displacement field relative to
the new rest state x + R(x). To first order, R(x) is a rotation by
1

2
‖∇×d‖ radians about the ∇×d axis. At the beginning of each

timestep we rotate the rest state by R and replace d by D. Since
the rotation during one timestep is typically small, this first-order
approximation to R(x) performs well.

4.5 Adapting the Basis

Because the basis B is hierarchical, it is possible to adaptively
choose the subbasis BA in Equation (19) so that detail is added
where needed. There are two pertinent questions regarding adapta-
tion: “how to adapt?” and “when/where to adapt?”

The first question is easily answered in our framework. We
choose a priori a maximum allowable subdivision level k and pre-
compute the mass and stiffness terms needed to form the system in
Equation (20) when BA = Bk. These terms are stored in sparse
data structures. When a decision is made to add or remove a ba-
sis function from the active basis BA, it is only necessary to add
or remove (precomputed) terms from the current mass and stiffness
matrices (and in the nonlinear case, to modify ∂V

∂q
by adding or sub-

tracting higher order terms). We note that the idea of adapting the
basis is not new (see, e.g., [16]), and has recently been generalized
by Grinspun et al. [19].

We address the second question by a heuristic similar to the one
used in [12]: areas of higher deformation require more detail. The
elements of Bk are organized into a tree, with a parent-child rela-
tionship between basis functions at adjacent subdivision levels and
having intersecting support. Each level of the hierarchy has two
separate thresholds for determining when to refine or coarsen. If
the deformation is above the activation threshold in the region of
support of a basis function φa then the children of φa are activated.
A basis function is deactivated if the deformation is below the de-
activation threshold in its region of support. As noted in [12], a
lower deactivation threshold discourages the system from immedi-
ately removing newly introduced basis functions.

4.6 Realtime Simulation

In order to have the appearance of realism, it is important that the
simulation be not only fast enough to be interactive, but also to
proceed at a consistent pace. Adaptively changing the basis intro-
duces variation in the amount of time required to compute a sin-
gle timestep. Since our simulator can take large timesteps we can
remedy this problem by adjusting the timestep to stay in sync with
actual time. For example, when basis functions are added each step
of the simulation will take longer due to the increased number of
degrees of freedom in the system. We compensate by integrating
over a longer period of virtual time during each timestep.

So why not take arbitrarily large timesteps? First, interactive ap-
plications demand high frame rates. It is best to display a new state

5

From the proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation

Figure 3: The deformation of an object described by MacCracken-Joy subdivision with
sharp surface rules. Upon releasing the constraints (represented as spheres in the first
frame), the object dynamically vibrates and eventually returns to its rest shape.

of the system at each video refresh cycle. Second, implicit inte-
gration exacts payment for its improved stability. Large timesteps
result in unrealistic damping. For these reasons we typically set
the timestep to the amount of physical time that lapsed during the
previous iteration of simulation and display.

5 Results

We now describe the results of implementing our framework and
running a variety of simulations. All of the simulations were per-
formed interactively on a standard desktop PC (Athlon 1.4 GHz,
256 MB ram).

Comparison with Embedding in a Regular Grid. Color
Plate 1 shows a comparison between our method and one in which
the object is embedded in a regular grid. In the simulation, posi-
tion constraints were used to stretch the dragon (by pulling on its
front and back) and open its mouth. Despite having more degrees of
freedom, and thus requiring more computation time, the simulation
based on a regular grid is less convincing. Rather than having the
mouth open and the body uncoil, as we would expect, the mouth
and body seem to stretch uniformly. This effect is caused by basis
functions whose support spans the empty regions adjacent to dis-
tinct parts of the dragon, thus correlating the motion of parts that
would not naturally move together. In contrast, our method pro-
duces a more natural deformation because the grid can be made to
fit the object much more closely.

Adaptation. Color Plate 2 illustrates our adaptive simulation
algorithm applied to the dragon model. The coarsest level basis
B0 has 88 basis functions, while the finest level basis B2 has 2245
elements. Using the quasi-linear solver, the simulation took about
0.02 seconds per frame when only the coarse basis is active. At the
level of adaptation shown, each frame required about 0.1 seconds.

Sharp Features. DeRose and Kass [13] added rules for sharp
features to the Catmull-Clark subdivision framework. Since the
boundaries of MacCracken-Joy solids are Catmull-Clark surfaces,
we can easily include sharp features in our framework.2 Figure 3
shows a simulation involving an object with sharp surface features.

Virtual Environments. We have implemented a rudimentary
collision detection scheme to demonstrate the feasibility of placing
our objects in a virtual environment. We use surface constraints to
stop vertices on the model from passing through walls in the envi-
ronment. In Figure 4 a duck is being tossed about in a box inter-
actively. Our quasi-linearization scheme performed as expected; as
long as deformations are modest the results appear realistic.

Varying Material Properties. Our system supports material
properties that vary both spatially and temporally. Material prop-
erties are incorporated during the computation of the stiffness and
mass matrices. During the quadrature phase, the values for ν, G,
and ρ need not be constant. In addition, because our basis is hierar-
chical, material properties are smoothly factored into the the mass
and stiffness matrices at all levels. For a particular generalized co-
ordinate, the material properties at all points in the support of its

2We are not sure what the limitations are of adding sharp features to the
surfaces of MacCracken-Joy solids, but it works well in practice.

Figure 4: A collection of frames from an interaction with a duck model. The duck is
modeled directly as a MacCracken-Joy subdivision solid. The motion of the duck is
limited by the floor and wall constraints.

Figure 5: A cucumber-like object (modeled as a MacCracken-Joy subdivision solid),
with a longitudinally varying shear modulus G. The object is being shaken by the
bottom using a position constraint. The bottom is firm and maintains its shape, while
the top deforms drastically.

associated basis function are factored into the computation of the
mass and stiffness matrices. Consequently, the material properties
of the object are correctly modeled, even when only a subset of the
basis is used in the simulation. For instance, the shear modulus G
of the object in Figure 5 varies along its length. When it is shaken,
one end wobbles like soft rubber while the other remains almost
rigid.

An easy way to represent varying material properties over the
body is to use the coarse subdivision basis. Then we need only to
specify control values at the coarse level vertices. The subdivision
rules generate values throughout the object.

We also allow the shear modulus G to be scaled globally at run-
time. This does not require re-computation because it uniformly
scales the entire stiffness matrix. Scaling G globally makes the ob-
ject seem more or less firm.

6 Conclusion

In this paper we have presented a framework for the simulation of
elastic deformable solids. Our framework is easy to use and creates
fast realistic simulations of complex objects. By working within a
subdivision framework we inherit topological flexibility and a hi-
erarchical basis. In this framework, we have been able to simulate
elastic deformable models of moderate complexity and having spa-
tially varying material properties at interactive rates.

There are many directions for future work. Because interactive
simulations are easier to experiment with, our examples involve rel-
atively simple simulations. We plan to apply this framework to
more complex scenarios in the future. Another area of future work
is to discover uses for the sharp internal features supported by the
scheme of Bajaj et al. [1]. Real objects do have sharp internal dis-
continuities, such as at the boundaries of bones. We have also not
addressed the problem of self collision, which is important for more
general simulations.

Another interesting issue is whether a more sophisticated func-
tion basis could be useful in this framework. We have experimented
with applying the lifting scheme to our bases, but in our current
framework the benefits are unclear and the costs are significant (due
to increased density of the mass and stiffness matrices). The choice

6

From the proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation

of basis would probably be much more critical if we were using a
hierarchical solver such as multigrid, another area for future work.
A major improvement over the current framework would be to im-
plement an adaptive hierarchical solver with provable error bounds.

Acknowledgments This work was supported by the Animation
Research Labs, NSF grants DMS-9803226 and CCR-0092970, an
Intel equipment donation, and Microsoft Research.

References
[1] Chandrajit Bajaj, Scott Schaefer, Joe Warren, and Guoliang Xu. A subdivision

scheme for hexahedral meshes. draft, 2001.

[2] R. E. Bank. Hierarchical bases and the finite element method, volume 5 of Acta
Numerica, pages 1–43. Cambridge University Press, Cambridge, 1996.

[3] David Baraff and Andrew Witkin. Dynamic simulation of non-penetrating flexi-
ble bodies. Computer Graphics (Proceedings of SIGGRAPH 92), 26(2):303–308,
July 1992.

[4] David Baraff and Andrew Witkin. Large steps in cloth simulation. Proceedings
of SIGGRAPH 98, pages 43–54, July 1998.

[5] C. Börgers and O. Widlund. On finite element domain imbedding methods. SIAM
J. Num. Anal., 27:145–162, 1990.

[6] Morten Bro-Nielsen and Stephane Cotin. Real-time volumetric deformable mod-
els for surgery simulation using finite elements and condensation. Computer
Graphics Forum, 15(3):57–66, August 1996.

[7] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović.
Interactive skeleton-driven dynamic deformations. To appear in the Proceedings
of SIGGRAPH 2002, 2002.

[8] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer-Aided Design, 10:350–355, September 1978.

[9] George Celniker and Dave Gossard. Deformable curve and surface finite-
elements for free-form shape design. Computer Graphics, 25(4):257–266, July
1991.

[10] Fehmi Cirak, Michael Ortiz, and Peter Peter Schröder. Subdivision surfaces: a
new paradigm for thin-shell finite-element analysis. International Journal for
Numerical Methods in Engineering, 47(12):2039–72, April 2000.

[11] Gilles Debunne, Mathieu Desbrun, Alan Barr, and Marie-Paule Cani. Interac-
tive multiresolution animation of deformable models. Computer Animation and
Simulation ’99, September 1999.

[12] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. Dy-
namic real-time deformations using space & time adaptive sampling. Proceed-
ings of SIGGRAPH 2001, 2001.

[13] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in character
animation. Proceedings of SIGGRAPH 98, pages 85–94, August 1998.

[14] Mathieu Desbrun, Peter Schröder, and Al Barr. Interactive animation of struc-
tured deformable objects. Graphics Interface ’99, pages 1–8, June 1999.

[15] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Dynamic
free-form deformations for animation synthesis. IEEE Transactions on Visual-
ization and Computer Graphics, 3(3):201–214, July–September 1997.

[16] Steven J. Gortler and Michael F. Cohen. Hierarchical and variational geometric
modeling with wavelets. 1995 Symposium on Interactive 3D Graphics, pages
35–42, April 1995.

[17] Steven J. Gortler, Peter Schröder, Michael F. Cohen, and Pat Hanrahan. Wavelet
radiosity. Proceedings of SIGGRAPH 93, pages 221–230, August 1993.

[18] Jean-Paul Gourret, Nadia Magnenat Thalmann, and Daniel Thalmann. Simula-
tion of object and human skin deformations in a grasping task. Computer Graph-
ics (Proceedings of SIGGRAPH 89), 23(3):21–30, July 1989.

[19] E. Grinspun, P. Krysl, and P. Schröder. Charms: A simple framework for adaptive
simulation. To appear in the Proceedings of SIGGRAPH 2002, 2002.

[20] Michael Hauth and Olaf Etzmuss. A high performance solver for the animation
of deformable objects using advanced numerical methods. Computer Graphics
Forum (Proceedings of Eurographics 2001), 20(3), 2001.

[21] Doug L. James and Dinesh K. Pai. Artdefo - accurate real time deformable
objects. Proceedings of SIGGRAPH 99, pages 65–72, August 1999.

[22] R. M. Koch, M. H. Gross, F. R. Carls, D. F. von Büren, G. Fankhauser, and
Y. Parish. Simulating facial surgery using finite element methods. Proceedings
of SIGGRAPH 96, pages 421–428, August 1996.

[23] Michael Lounsbery, Tony D. DeRose, and Joe Warren. Multiresolution analy-
sis for surfaces of arbitrary topological type. ACM Transactions on Graphics,
16(1):34–73, January 1997.

[24] Ron MacCracken and Kenneth I. Joy. Free-form deformations with lattices of
arbitrary topology. Computer Graphics (Proceedings of SIGGRAPH 96), pages
181–188, 1996.

[25] G.I. Marchuk, Y.A. Kuznetsov, and A.M. Matsokin. Fictitious domain and do-
main decomposition methods. Sov. J. Numer. Anal. Math Modeling, 1, 1986.

[26] K. McDonnell and H. Qin. Dynamic sculpting and animation of free-form sub-
division solids. In Proceedings of the Conference on Computer Animation, pages
126–133. IEEE Press, 2000.

[27] Kevin T. McDonnell and Hong Qin. FEM-based subdivision solids for dynamic
and haptic interaction. In Proceedings of the Sixth Symposium on Solid Modeling
and Application, pages 312–313. ACM Press, 2001.

[28] Dimitri Metaxas and Demetri Terzopoulos. Dynamic deformation of solid prim-
itives with constraints. Computer Graphics (Proceedings of SIGGRAPH 92),
26(2):309–312, July 1992.

[29] James F. O’Brien and Jessica K. Hodgins. Graphical modeling and animation of
brittle fracture. Proceedings of SIGGRAPH 99, pages 137–146, 1999.

[30] J. T. Oden and J. N. Reddy. An Introduction to the Mathematical Theory of Finite
Elements. John Wiley and Sons, Ltd., New York, London, Sydney, 1982.

[31] Alex Pentland and John Williams. Good vibrations: Modal dynamics for
graphics and animation. Computer Graphics (Proceedings of SIGGRAPH 89),
23(3):215–222, July 1989.

[32] G. Picinbono, H. Delingette, and N. Ayache. Real-time large displacement elas-
ticity for surgery simulation: Non-linear tensor-mass model. In Proceedings of
the Third International Conference on Medical Robotics, Imaging and Computer
Assisted Surgery: MICCAI 2000, pages 643–652, 2000.

[33] John C. Platt and Alan H. Barr. Constraint methods for flexible models. Com-
puter Graphics (Proceedings of SIGGRAPH 88), 22(4):279–288, August 1988.

[34] P. M. Prenter. Splines and Variational Methods. John Wiley and Sons, 1975.

[35] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in C, 2nd. edition. Cambridge University Press, 1992.

[36] Hong Qin, Chhandomay Mandal, and Baba C. Vemuri. Dynamic catmull-clark
subdivision surfaces. IEEE Transactions on Visualization and Computer Graph-
ics, 4(3):215–229, 1998.

[37] S. H. Martin Roth, Markus H. Gross, Silvio Turello, and Friedrich R. Carls. A
bernstein-bézier based approach to soft tissue simulation. Computer Graphics
Forum, 17(3):285–294, 1998.

[38] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geo-
metric models. Computer Graphics, 20(4):151–160, August 1986.

[39] A. Shabana. Dynamics of Multibody Systems. Cambridge University Press, 1998.

[40] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for Computer
Graphics: Theory and Applications. Morgann Kaufmann, San Francisco, CA,
1996.

[41] Demetri Terzopoulos and Kurt Fleischer. Modeling inelastic deformation: Vis-
coelasticity, plasticity, fracture. Computer Graphics (Proceedings of SIGGRAPH
88), 22(4):269–278, August 1988.

[42] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically
deformable models. Computer Graphics (Proceedings of SIGGRAPH 87),
21(4):205–214, July 1987.

[43] Demetri Terzopoulos and Hong Qin. Dynamic nurbs with geometric constraints
for interactive sculpting. ACM Transactions on Graphics, 13(2):103–136, April
1994.

[44] Demetri Terzopoulos and Andrew Witkin. Physically based models with rigid
and deformable components. IEEE Computer Graphics and Applications,
8(6):41–51, November 1988.

[45] Henrik Weimer and Joe Warren. Subdivision schemes for fluid flow. Proceedings
of SIGGRAPH 99, pages 111–120, August 1999.

[46] Andrew Witkin and William Welch. Fast animation and control of nonrigid struc-
tures. Computer Graphics (Proceedings of SIGGRAPH 90), 24(4):243–252, Au-
gust 1990.

7

From the proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation

Color Plate 1: A comparison of simulations using a regular grid (top row) and a subdivision control lattice (bottom row). The left images show the dragon in its rest state surrounded
by (a) a regular grid (375 degrees of freedom) and (d) a subdivision control lattice (264 degrees of freedom). The center images show a simulation in which position constraints
have been used to stretch the dragon and open its mouth. Black spheres represent position constraints and red spheres represent the degrees of freedom of the system. In both cases,
trilinear basis functions were used. The rightmost images show the deformed state of the dragon.

Color Plate 2: (a) The dragon in its rest state. (b) A trilinear subdivision volume that surrounds the dragon. The surface has been textured to indicate how the volume is parameterized.
(c) The hierarchical structure of the subdivision volume. Red spheres correspond to level 0 basis functions, green to level 1, and blue to level 2. (d) The tetrahedral approximation of
the dragon that is used to compute integrals over its interior (i.e., for numerical quadrature). (e) The dragon being deformed by a position constraint pulling on the upper lip. (f) The
basis functions introduced by the adaptive solver.

8

