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This paper presents a novel approach for reconstructing free-form, texture-mapped, 3D scene

models from a single painting or photograph. Given a sparse set of user-specified constraints

on the local shape of the scene, a smooth 3D surface that satisfies the constraints is

generated. This problem is formulated as a constrained variational optimization problem. In

contrast to previous work in single-view reconstruction, our technique enables high-quality

reconstructions of free-form curved surfaces with arbitrary reflectance properties. A key

feature of the approach is a novel hierarchical transformation technique for accelerating

convergence on a non-uniform, piecewise continuous grid. The technique is interactive and

updates the model in real time as constraints are added, allowing fast reconstruction of

photorealistic scene models. The approach is shown to yield high-quality results on a large

variety of images. Copyright # 2002 John Wiley & Sons, Ltd.

Revised: 2 May 2002

KEY WORDS: shape reconstruction; hierarchical transformation; discontinuities; pictorial relief;
free-from modelling; variational surfaces

Introduction

One of the most impressive features of the human visual

system is our ability to infer 3D shape information from

a single photograph or painting. A variety of strong

single-image cues have been identified and used in

computer vision algorithms (e.g. shading, texture, and

focus) to model objects from a single image. However,

existing techniques are not capable of robustly recon-

structing free-form objects with general reflectance

properties. This deficiency is not surprising given the

ill-posed nature of the problem—from a single view it is

not possible to differentiate an image of an object from

an image of a flat photograph of the object. Obtaining

good shape models from a single view therefore re-

quires invoking domain knowledge.

In this paper, we argue that a reasonable amount of

user interaction is sufficient to create high-quality 3D

scene reconstructions from a single image, without

placing strong assumptions on either the shape or

reflectance properties of the scene. To justify this argu-

ment, an algorithm is presented that takes as input a

sparse set of user-specified constraints, including sur-

face positions, normals, silhouettes, and creases, and

generates a well-behaved 3D surface satisfying the con-

straints. As each constraint is specified, the system

recalculates and displays the reconstruction in real

time. The algorithm yields high-quality results on

images with limited perspective distortion.

We cast the single-view modelling problem as a

constrained variational optimization problem. Building

upon previous work in hierarchical surface modelling,1–

3 the scene is modeled as a piecewise continuous surface

represented on a quad-tree-based adaptive grid and is

computed using a novel hierarchical transformation

technique. The advantages of our approach are:

* A general constraint mechanism: any combination of

point, curve, and region constraints may be specified

as image-based constraints on the reconstruction.

* Adaptive resolution: the grid adapts to the complexity

of the scene, i.e., the quad-tree representation can be

made more detailed around contours and regions of

high curvature.

* Real-time performance: a hierarchical transformation

technique is introduced that enables 3D reconstruc-

tion at interactive rates.
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A technical contribution of our algorithm is the formu-

lation of a hierarchical transformation technique that

handles discontinuities. Controlled-continuity stabilizers4

have been proposed to model discontinuities in inverse

visual reconstruction problems. Whereas hierarchical

schemes1,2 and quad-tree splines3 enabled fast solutions

for related variational problems, our approach for in-

tegrating discontinuity conditions into a hierarchical

transformation framework is shown to yield significant

performance improvements over these prior methods.

The remainder of the paper is structured as follows.

We begin with a brief summary of related work. The

section on ‘A Variational Framework for Single-View

Modeling’ formulates single-view modelling as a con-

strained optimization problem in a high-dimensional

space. In order to solve this large-scale optimization

problem efficiently, a novel hierarchical transformation

technique that operates on an adaptive grid is intro-

duced in the section on ‘Hierarchical Transformation

with Adaptive Resolution’. Experimental results will be

presented followed by a conclusion to the paper.

PreviousWorkon Single-View
Modeling

The topic of 3D reconstruction from a single image is a

long-standing problem in the computer vision literature.

Traditional approaches for solving this problem have

isolated a particular cue, such as shading,5 texture,6 or

focus.7 Because these techniques make strong assump-

tions on shape, reflectance, or exposure, they tend to

produce acceptable results for only a restricted class of

images. Of these, the topic of shape from shading, pioneered

by Horn,5 is most related to our approach in its use of

variational techniques and surface normal analysis.

More recent work by a number of researchers has

shown that moderate user interaction is highly effective

in creating 3D models from a single view. In particular,

Horry et al.8 and Criminisi et al.9 reconstructed piece-

wise planar models based on user-specified vanishing

points and geometric invariants. Shum et al.10 generated

similar models from panoramas using a constraint

system based on user input. The Façade system11 mod-

eled architectural scenes using collections of simple

primitives from one or more images, also with the

assistance of a user. A limitation of these approaches

is that they are limited to scenes composed of planes or

other simple primitives and do not permit modelling of

free-form scenes. A different approach is to use domain

knowledge; for example, Blanz and Vetter12 have ob-

tained remarkable reconstructions of human faces from

a single view using a database of head models.

A primary source of inspiration for our work is a

series of papers on the topic of Pictorial Relief.13 In this

work, Koenderink and his colleagues explored the

depth perception abilities of the human visual system

by having several human subjects hand-annotate

images with relative distance or surface normal infor-

mation. They found that humans are quite proficient at

specifying local surface orientation, i.e., normals, and

that integrating a dense user-specified normal field

leads to a well-formed surface that approximates the

real object, up to a depth scale. Interestingly, the depth

scale varies across individuals and is influenced by

illumination conditions. We believe that the role of

this depth scale is mitigated in our work, due to the

fact that we allow the user to view the reconstruction

from any viewpoint during the modelling process—the

user will set the normals and other constraints so that

the model appears correct from all viewpoints, rather

than just the original view. The surface integration

technique used by Koenderink et al. is not attractive as

Figure 1. The 3D model at right is generated from a single image and user-specified constraints.
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a general-purpose modelling tool, due to the large

amount of human labor needed to annotate every pixel

or grid point in the image. Although it is also based on

the principles put forth in the Pictorial Relief work, our

modelling technique is more efficient, works from

sparse constraints, and incorporates discontinuities

and other types of constraints in a general-purpose

optimization framework.

An interesting alternative to the approach advocated

in this paper is to treat the scene as an intensity-coded

depth image and use traditional image-editing techni-

ques to sculpt the depth image.14–16 While our frame-

work allows direct specification of depth values, we

found that surface normals are easier to specify and

provide more intuitive surface controls. This conclusion

is consistent with Koenderink’s findings13 that humans

are more adept at perceiving local surface orientation

than relative depth.

AVariational Framework for
Single-ViewModeling

The subset of a scene that is visible from a single image

may be modeled as a piecewise continuous surface. In

our approach, this surface is reconstructed from a set of

user-specified constraints, such as point positions,

normals, contours, and regions. The problem of com-

puting the best surface that satisfies these constraints is

cast as a constrained optimization problem.

Surface Representation

In this paper, the scene is represented as a piecewise

continuous function, fðx; yÞ, referred to as the depth map.

Samples of f are represented on a discrete grid,

gi;j ¼ fðid; jdÞ, where the i and j samples correspond to

pixel coordinates of the input image, and d is the

distance between adjacent samples, assumed to be the

same in x and y. Denote g as the vector whose compo-

nents are gi;j.

A set of four adjacent samples, A ¼ ði; jÞ, B ¼ ði þ 1; jÞ,
C ¼ ði þ 1; j þ 1Þ, and D ¼ ði; j þ 1Þ define the corners of

a grid cell. Note that a cell, written as A-B-C-D, is

specified by its vertices listed in counter-clockwise

order.

The technique presented in this paper reconstructs the

smoothest surface that satisfies a set of user-specified

constraints. A natural measure of surface smoothness is

the thin plate functional:4

Q0ðgÞ ¼
1

d2

X
i; j

�
�i; jðgiþ1; j � 2gi; j þ gi�1; jÞ2

þ 2�i; jðgiþ1; jþ1 � gi; jþ1 � giþ1; j þ gi; jÞ2

þ �i; jðgi; jþ1 � 2gi; j þ gi; j�1Þ2� ð1Þ

where �i;j, �i;j, and �i;j are weights that take on values of

0 or 1 and are used to define discontinuities, as will be

described later.

Piecewise Continuous Surface Representation.
While it is convenient to represent a surface by a grid

of samples, users should have the freedom to interact

with a continuous surface by specifying constraints at

any location with sub-grid accuracy. Given a sampled

surface gi; j, we represent the continuous surface f ðx; yÞ
using a triangular mesh. Specifically, each grid cell is

divided into four triangles by inserting a vertex at the

centre with depth defined as the average of the depths of

the four corner samples, and adding edges connecting

the new vertex with the four corners. The resulting mesh

defines a piecewise planar surface over the cell. The

depth of each point in the cell can be expressed as a

barycentric combination of the depth values of four

corner samples. Grid cells that intersect discontinuity

curves are omitted from the representation and appear

as gaps in the reconstruction.

Constraints

Our technique supports five types of constraints: point

constraints, depth discontinuities, creases, planar region

constraints, and fairing curve constraints. Point con-

straints specify the position or the surface normal of

any point on the surface. Surface discontinuity con-

straints identify tears in the surface, and crease con-

straints specify curves across which surface normals are

not continuous. Planar region constraints determine sur-

face patches that lie on the same plane. Fairing curve

constraints allow users to control the smoothness of the

surface along any curve in the image.

Point Constraints. A point constraint sets the depth

and/or the surface normal of any point in the input

image. A position constraint is specified by clicking at a

point in the image to define the (sub-pixel) position

ðx0; y0Þ, and then dragging up or down to specify the

depth value. A surface normal is specified by rendering
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a figure representing the projection of a disk sitting on

the surface with a short line pointing in the direction of

the surface normal (Figures 2 and 3(a)). This figure is

superimposed over the point in the image where the

normal is to be specified and manually rotated until it

appears to align with the surface in the manner

proposed by Koenderink.13 In order to uniquely deter-

mine the normal from its image plane projection, we

assume orthographic projection.

A position constraint fðx0; y0Þ ¼ f0 defines the follow-

ing constraint:

c00gi;j þ c10giþ1;j þ c01gi;jþ1 þ c11giþ1;jþ1 ¼ f0 ð2Þ

where ðx0; y0Þ is located in grid cell ½id; ði þ 1Þd��
½ jd; ð j þ 1Þd� and c00, c01, c10, and c11 are the barycentric

coordinates of ðx0; y0Þ. Specifying the normal of a point

ðx0; y0Þ to be ðNx; Ny; NzÞT, defines the following pair of

constraints:

fðx0 þ d; y0Þ � fðx0 � d; y0Þ
2d

¼ �Nx

Nz
ð3Þ

fðx0; y0 þ dÞ � fðx0; y0 � dÞ
2d

¼ �
Ny

Nz
ð4Þ

Substituting Equation (2) for fðx0 � d; y0Þ and

fðx0; y0 � dÞ yields two linear constraints on g. An ex-

ample of the effects of position and normal constraints is

shown in Figure 3(a).

Depth Discontinuities and Creases. A depth dis-

continuity is a curve across which surface depth is not

continuous, creating a tear in the surface. A crease is

a curve across which the surface normal is not contin-

uous, while the surface depth is continuous. Depth

discontinuities and creases are introduced to model

important features in real-world imagery. For example,

mountain ridges can be modeled as creases and silhou-

ettes of objects can be modeled as depth discontinuities.

These features can be easily specified by users with a 2D

graphics interface.

Depth discontinuities and creases are modeled by

defining the weights �i; j, �i; j, and �i; j in the smoothness

Figure 2. Specifying constraints. Surface orientation is spe-

cified by placing a disc with a needle pointing in the direction

of the surface normal, shown in red. A position constraint is

rendered as a blue cross. Depth discontinuity and crease

curves are drawn in purple and cyan, respectively.

Figure 3. Modeling constraints. (a) The effects of position (blue crosses) and surface normal constraints (red discs with needles).

(b) A depth discontinuity constraint creates a tear. (c) A crease constraint. (d) The blue region is a planar region constraint. (e) A

fairing curve minimizing curvature. (f) A fairing curve minimizing torsion makes the surface bend smoothly given a single

normal constraint—this type of constraint is useful for modeling silhouettes.
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objective function of Equation (1). Given a depth dis-

continuity curve, let A-B-C be a set of three consecutive

collinear grid points that cross the curve, and D-E-F-G a

cell that the curve intersects. For each such tuple A-B-C,

the term ðgA � 2gB þ gCÞ2 is dropped from Q0 by setting

�B or �B to 0. For each such cell D-E-F-G, the term

ðgD � gE � gF þ gGÞ2 is also dropped by setting �G to 0.

Each crease curve is first scan converted17 to the sampling

grid points. Then, all the terms ðgA � 2gB þ gCÞ2 are

dropped if B is on the curve; all the terms

ðgD � gE � gF þ gGÞ2 are dropped if either edge D-E or

edge F-G is on the curve. Otherwise, all the weights are 1

by default. Examples of depth discontinuity and crease

constraints are shown in Figures 3(b) and (c) respectively.

Planar Region Constraints. The necessary and suffi-

cient conditions for surface planarity over a region R are

fxxðx; yÞ ¼ fxyðx; yÞ ¼ fyyðx; yÞ ¼ 0, 8ðx; yÞ 2 R. For a dis-

crete mesh g, these constraints translate to

gA � 2gB þ gC ¼ 0 ð5Þ
gD � gE � gF þ gG ¼ 0 ð6Þ

for all three consecutive collinear grid points A-B-C in R,

and for all cells D-E-F-G in R. An example of a planar

region constraint is shown in Figure 3(d).

Fairing Curve Constraints. It is often useful to con-

trol the smoothness of the surface along or across a

specific curve. For example, surface depth is made to

vary slowly along a curve in Figure 3(e), and the surface

gradient is made to vary slowly across a curve in

Figure 3(f). Fairing curves provide better control of the

shape of the surface along salient contours such as

silhouettes, and are achieved as follows.

Suppose that a user specifies a curve sðlÞ ¼ ðxðlÞ;
yðlÞÞT in the image. To maximize the smoothness along

the curve, the following integral is minimized:

QdðsÞ ¼
ð

l

d2

dl2
fðsðlÞÞ

� �2

dl ð7Þ

The gradient of the surface across s is ðrfÞTns, where

rf ¼ ð fx; fyÞT is the gradient of the surface fðx; yÞ at the

point sðlÞ and nsðlÞ ¼ ð� d
dl yðlÞ; d

dl xðlÞÞT is the normal of s.

To make the surface gradient across sðlÞ have small

variation, the integral

QsðsÞ ¼
ð

l

d

dl
ððrfÞTnsÞ

� �2

dl ð8Þ

is minimized. Note that d
dl

�
ðrfÞTns

�
is the derivative of

the surface gradient across the curve with respect to the

curve parameter.

The terms d2

dl2 fðsðlÞÞ and d
dl

�
ðrfÞTns

�
may be discre-

tized as follows:

d2

dl2
fðsðliÞÞ ¼ fðsðliþ1ÞÞ � 2fðsðli�1ÞÞ þ fðsðli�1ÞÞ

ðrfÞTns

� �
ðliÞ ¼ f sþ d

2
ns

� �
ðliÞ

� �

� f s� d

2
ns

� �
ðliÞ

� �

d

dl
ðrfÞTns

� �
ðliÞ ¼ ðrfÞTns

� �
ðliþ1Þ � ðrfÞTns

� �
ðliÞ

where fsðliÞg are sampling points on the curve. Conse-

quently, Equations (7) and (8) can be expressed as

quadratic functions of g. The resulting equations are

added, with weights �s and �s, into Equation (1), result-

ing in a modified surface smoothness objective function

QðgÞ:

QcðsÞ ¼ �sQdðsÞ þ �sQsðsÞ ð9Þ

QðgÞ ¼ Q0ðgÞ þ
X
s

QcðsÞ ð10Þ

We call �sQdðsÞ the curvature term and �sQsðsÞ the torsion

term.

Linearly ConstrainedQuadratic
Optimization

Based on the surface objective function and constraints

presented above, finding the smoothest surface that

satisfies these constraints may be formulated as a line-

arly constrained quadratic optimization. Point con-

straints and planar region constraints introduce a set

of linear equations, Equations (2–6), for the depth map g,

expressed as Ag ¼ b. Surface discontinuity and crease

constraints define weights �, �, and � and fairing curve

constraints introduce the terms in Equation (9). QðgÞ is a

quadratic form and can be expressed as gTHg. Conse-

quently, our linearly constrained quadratic optimiza-

tion problem is defined by

g� ¼ arg mingfQðgÞ ¼ gTHgg
subject to Ag ¼ b

	
ð11Þ
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The Lagrange multiplier method is used to convert this

problem into the following augmented linear system:

H AT

A 0


 �
g
�


 �
¼ 0

b


 �
ð12Þ

The Hessian matrix H is a banded sparse matrix. For a

grid of size N by N, H is of size N2 by N2, with band

width of OðNÞ and about 13 non-zero elements per row.

Direct methods, such as LU decomposition, are of OðN4Þ
time complexity, and therefore do not scale well for

large grid sizes. Iterative methods are more applicable.

We use the minimum residue method,18 designed for

symmetric indefinite systems. However, the linear sys-

tem arising from Equaton (11) is often poorly condi-

tioned, resulting in slow convergence of the iterative

solver. To address this problem, a hierarchical-basis

preconditioning approach with adaptive resolution is

presented in the next section.

Hierarchical Transformation
withAdaptive Resolution

The reason for the slow convergence of the minimum

residue method is that it takes many iterations to

propagate a constraint to its neighborhood, due to the

sparseness of H. The first row of Figure 6 shows an

example of this constraint propagation process, where

the two normal constraints generate only two small

ripples after 200 iterations. Multigrid techniques19

have been applied to this type of problem; however,

they are tricky to implement and require a fairly smooth

solution to be effective.1 Szeliski1 and Gortler and

Cohen2 use hierarchical basis functions to accelerate

the solution of linear systems like Equation (12). We

review their approach next, to provide a foundation for

our work which builds upon it. In the hierarchical

approach, a regular grid is represented with a pyramid

of coefficients,20 where the number of coefficients is

equal to the original number of grid points. The

coarse-level coefficients in the pyramid determine a

low-resolution surface sampling and fine-level coeffi-

cients determine surface details, represented as displa-

cements relative to the interpolation of the low-

resolution sampling. To convert from coefficients ~g to

depth values g, the algorithm starts from the coarsest

level, doubles the resolution by linearly interpolating

the values of the current level, adds in the displacement

values defined by the coefficients in the next finer level,

moves to the next finer level, and repeats the procedure

until the finest resolution is obtained. Using similar

notation to Szeliski’s,3 the process can be written

procedure CoefToDepth(g̃)

for l=1 to L-1

for every grid point P in level l

g_P = g̃_P +
X
Q2NP

w_{P,Q}* g_Q

return g

end CoefToDepth

where L is the number of levels in the hierarchy, ~gP is the

hierarchical coefficient for P, NP is the set of grid points

in level l � 1 used in interpolation for P in level l, and

wP;Q is a weight that will be described later. Level 0

consists of a single cell, with coefficients defined to be

the depth values at the corners of the cell.

In previous work,13 the weights wP;Q were implicitly

defined to be constant, resulting in a simple averaging

operation for computing P from NP. This averaging

approach implicitly assumes local smoothness within

the region defined by NP, resulting in poor convergence

in the presence of discontinuities. In practice, this

choice of weights causes the artifact that modifying the

surface on one side of a discontinuity boundary disturbs

the shape on the other side during the iterative conver-

gence process. As a result, it takes longer to converge to a

solution, and results in unnatural convergence behavior.

The latter artifact is a problem in an incremental solver

where the evolving surface is displayed to the user, as is

done in our implementation. To address this problem, we

next introduce a new interpolation rule to handle dis-

continuities between the grid points in NP.

The basic unit in the 2D hierarchial transformation

technique is the cell shown in Figure 4, where the depth

for corners A, B, C, and D has already been computed and

the task is to transform coefficients at E, F, G, H, and I to

depth values at these points. With the same notation as in

the procedure CoefToDepth, NE ¼ fA;Bg, NF ¼ fB;Cg,

NG ¼ fC;Dg, NH ¼ fD;Ag, and NI ¼ fE,F,G,Hg.

gE,gF,gG, and gH are first interpolated from A, B, C, and

D along edges, and then offset by their respective coeffi-

cients ~gE, ~gF, ~gG, and ~gH . Second, gI is interpolated from

gE,gF,gG, and gH and offset by its coefficient, ~gI . The two

interpolation steps above use continuity-based interpolation

with weights defined as

wP;Q ¼
eP;QP

Q2NP
eP;Q

if
P

Q2NP
eP;Q > 0;

0 otherwise

8<
:
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where

eP;Q ¼ 1 if edge P � Q is continuous
0 otherwise

	

In the absence of discontinuities, the proposed continuity-

based weighting scheme is the same as simple averaging

schemes used in previous work.1,3 In the presence of

discontinuities, only locally continuous coarse-level grid

points are used in the interpolation. The new scheme

prevents interference across discontinuity boundaries

and consequently accelerates the convergence of the

Minimum Residue algorithm. The second and third

rows of Figure 6 show a performance comparison be-

tween standard hierarchical transformation and our

transformation with continuity-based weighting on a

simple surface modelling problem with one discontinu-

ity curve. The improvement of our algorithm is quite

evident in this example. In the third row, our new

transformation both accelerates the propagation of

constraints and removes the interference across the dis-

continuity boundary. We have found this kind of beha-

vior very typical in practice and find that adding

continuity-based weighting yields dramatic improve-

ments in system performance.

To summarize our approach, instead of solving Equa-

tion (12) directly for g, we instead compute the hier-

archical coefficients ~g. The conversion from ~g to g is

implemented by the procedure CoefToDepth with

continuity-based weighting. CoefToDepth implements

a concatenation of linear transformations and can be

described by a matrix S¼S1S2 . . .SL-1,1 where Sl per-

forms the continuity-based interpolation and displace-

ment operation for grid points in level l. Substituting

g ¼ S~g into Equation (11) and applying the Lagrange

Multiplier method yields the transformed linear

system:2

STHS STAT

AS 0


 �
~g
�


 �
¼ 0

b


 �
ð13Þ

Figure 4. A cell is the primitive for 2D hierarchical transformation. (a) Interpolation on a cell; (b) edge interpolation; (c) cross

interpolation. The depth at the center point I is interpolated from the midpoints E, F, G, and H, which are in turn interpolated

along each edge of the cell.

Figure 5. Depth is represented by a quad-tree grid. (a) An example of a quad-tree of three levels. (b) Triangulating the cell A-B-C-

D makes it piecewise continuous. (c) The horizontal second-order derivative at grid point A is computed from the depths at I and J.

J is a virtual vertex, whose depth is interpolated from grid points F and A. (d) Grid point A is weighted according to one-half of the

area of all incident triangles, i.e., AHL, AIN, ANG, AGK, AKF, AFM, and AMH.
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The matrix STHS is shown to be better conditioned,1

resulting in faster convergence. The number of floating

point operations of the procedure CoefToDepth and its

transpose1 is approximately 2N2 for a grid size of

N � N. Considering that there are around 13 non-zero

elements per row in H, the overhead introduced by S in

multiplying STHS with a vector is about 15%. Given the

considerable reduction in number of iterations shown in

Figure 6, the total run time is generally much lower

using a hierarchical technique.

Adaptive Surface Resolution

As an alternative to solving for the surface on the full

grid, it is advantageous to use an adaptive grid, with

higher resolution used only in areas where it is needed.

For example, the surface should be sampled densely

along a silhouette and sparsely in areas where the

geometry is nearly planar. We support adaptive resolu-

tion by allowing the user to specify the grid resolution

for each region via a user interface. Subdivision may

also occur automatically—in our implementation, dis-

continuity and crease curves are automatically subdi-

vided to enable accurate boundaries. A quad-tree

representation is used to represent the adaptive grid.

By modifying our hierarchical transformation technique

to operate on a quad-tree grid, as in Szeliski and Shum,3

the run time of the algorithm is proportional to the

number of subdivided grid points, which is typically

much smaller than the full grid.

Modifying the algorithm to operate on a quad-tree

requires the following changes. First, at each level l, the

CoefToDepth procedure should consider only grid

points that are present in the quad-tree.

Second, the triangular mesh representation is mod-

ified so that each inserted vertex is connected to all

neighboring grid points in the quad tree, not just to

the four corners of the cell. The depth of each inserted

vertex is defined as the average of the depths of the

midpoints of the leaf cell’s four edges. For example, a 3-

level quad-tree pyramid is shown in Figure 5(a). To

triangulate the leaf cell A-B-C-D, a vertex N is inserted

at the center of the cell, with depth gN defined as the

average of gE, gBþgC

2 , gCþgD

2 , and gG. The cell A-B-C-D is

triangulated by connecting I to A, I, E, B, C, D, and G, as

shown in Figure 5(b).

Third, the second-order derivatives of f , in terms of g,

should be derived from the quad-tree representation by

interpolating a regular grid neighborhood around each

point from the triangular mesh. For example, in

Figure 5(c), d2

dx2 fðAÞ is approximated as
gIþgJ�2gA

jJAjjAIj , where

jJAj ¼ jAIj and gJ is interpolated as jJAj
jFAj gF þ jFJj

jFAj gA. Simi-

larly, d2

dxdy fðNÞ is approximated as gD�gC�gBþgA

jABjjADj .

Finally, special care should be taken to approximate

surface integrals by summations on the non-uniform

Figure 6. Performance comparison of solving Equation (12) by using no hierarchical transformation, traditional transformation,

and our novel transformation in terms of number of iterations. The model has approximately 1400 grid points, and four

constraints.
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grid. Specifically, the smoothness measure (Equation

((1)) is redefined as

Q0ðgÞ ¼
X

fA;B;Cg
�B�B

gA � 2gB þ gC

jABjjBCj

� �2

þ
X

fD;E;F;Gg
2�D�D

gG � gF � gE þ gD

jDEjjDFj

� �2
ð14Þ

where the first summation is over all consecutive colli-

near grid points A-B-C in the horizontal and vertical

directions, and the second summation is over all leaf

cells D-E-F-G. The binary coefficients �B and �D are

determined by continuity conditions, as described pre-

viously. The coefficients �B and �D are the weights based

on the size of the local quad-tree neighborhood. In our

implementation, �D is simply the area of cell D-E-F-G,

and �B is one halfa of the sum of the areas of triangles

that are incident to B. For example, in Figure 5(d), the

weight �A for the term
�

gIþgJ�2gA

jJAjjAIj

�2
is defined as

�A ¼ 1

2
½areaðAHLÞ þ areaðALIÞ þ areaðAINÞ þ areaðANGÞ

þ areaðAGKÞ þ areaðAKFÞ þ areaðAFMÞ þ areaðAMHÞ�
ð15Þ

Experimental Results

We have implemented the approach described in this

paper and applied it to create reconstructions of a wide

variety of objects. Three of these results are presented in

this section but higher-resolution images and 3D VRML

models can be found online.21 We encourage the reader

to peruse these results online to better gauge the quality

of the reconstructions.

Smooth objects without position discontinuities are

especially easy to reconstruct using our approach. As a

case in point, the jelly bean image in the first column of

Figure 7 requires only isolated normals and creases to

generate a compelling model, and can be created quite

rapidly (about 20 minutes, including time to specify

constraints) using our interactive system. The first col-

umn of Figure 7 shows the input image, quad-tree grid

with constraints, a view of the quad-tree from a novel

viewpoint, and a texture mapped rendering of the same

view. For this example, the user worked with a 32� 32

grid that was automatically subdivided as the crease

curves were drawn. This model has 144 constraints in

all, 3396 grid points, and required 25 seconds to con-

verge completely on a 1.5 GHz Pentium 4 processor,

using our hierarchical transformation technique with

continuity-based weighting. The system is designed so

that new constraints may be added interactively at any

time during the modelling process—the user does not

have to wait until full convergence to specify more

constraints. The second column of Figure 7 shows a

single-view reconstruction of the Great Wall of China.

This example is challenging due to the complex scene

geometry and significant perspective distortions.

Because our method assumes orthography, the scale of

the tower and other foreground elements is exaggerated

in the reconstruction, and the scene appears unrealisti-

cally compressed. Addressing perspective is an inter-

esting topic for future work. The Great Wall of China

model has 135 constraints, 2566 grid points, and re-

quired 40 seconds to converge completely.

An interesting application of single-view modelling

techniques is to reconstruct 3D models from paintings.

In contrast to other techniques,8,9,11,12 our approach

does not make strong assumptions about geometry,

making it amenable to impressionist and other non-

photorealistic works. Here we show a reconstruction

created from a self-portrait of Van Gogh. This model has

264 constraints, 3881 grid points, and required 45 sec-

onds to converge. This was the most complex model we

tried, requiring roughly 1.5 hours to design. For com-

parison, it takes 70 seconds to converge without using

the hierarchical transformation and 3 minutes using the

hierarchical transformation without continuity-based

weighting, i.e., an inappropriately weighted hierarchical

method can perform significantly worse than not using

a hierarchy at all. Note, however, that there is significant

room for optimization in our implementation; we expect

that the timings for both hierarchical methods could be

improved by a factor of 1.5 or 2.

Conclusions

In this paper, it was argued that a reasonable amount of

user interaction is sufficient to create high-quality 3D

scene reconstructions from a single image, without

placing strong assumptions on either the shape or

reflectance properties of the scene. To justify this argu-

ment, an algorithm was presented that takes as input a

sparse set of user-specified constraints, including

aThe factor of one half arises because each triangle contains two
quad-tree grid points, and therefore contributes twice to the
integral.

SINGLE-VIEW MODELLING OF FREE-FORM SCENES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2002 John Wiley & Sons, Ltd. 233 J. Visual. Comput. Animat. 2002; 13: 225–235



Figure 7. Examples of single-view modeling on different scenes. From top to bottom, the rows show the original images, user-

specified constraints on adaptive grids, 3D wireframe rendering, and textured rendering.

L. ZHANG ET AL.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2002 John Wiley & Sons, Ltd. 234 J. Visual. Comput. Animat. 2002; 13: 225–235



surface positions, normals, silhouettes, and creases, and

generates a well-behaved 3D surface satisfying the con-

straints. As each constraint is specified, the system

recalculates and displays the reconstruction in real

time. A technical contribution is a novel hierarchial

transformation technique that explicitly models discon-

tinuities and computes surfaces at interactive rates. The

approach was shown to yield very good results on a

variety of images.

There are a number of interesting avenues for future

research in this area. In particular, single-view modelling

has the inherent limitation that only visible surfaces in an

image can be modeled, leading to distracting holes near

occluding boundaries. Automatic hole-filling techniques

could be developed that maintain the surface and tex-

tural attributes of the scene. Another important extension

would be to generalize to perspective projection as well

as other useful projection models like panoramas.
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