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Abstract

This paper presents an algorithm for computing optical flow,
shape, motion, lighting, and albedo from an image sequence
of a rigidly-moving Lambertian object under distant illumi-
nation. The problem is formulated in a manner that sub-
sumes structure from motion, multi-view stereo, and photo-
metric stereo as special cases. The algorithm utilizes both
spatial and temporal intensity variation as cues: the for-
mer constrains flow and the latter constrains surface orien-
tation; combining both cues enables dense reconstruction of
both textured and texture-less surfaces. The algorithm works
by iteratively estimating affine camera parameters, illumina-
tion, shape, and albedo in an alternating fashion. Results are
demonstrated on videos of hand-held objects moving in front
of a fixed light and camera.

1. Introduction

When an object moves in front of a camera, its appearance
changes in two fundamental ways: geometrically and pho-
tometrically. The former describes how points move in the
image, i.e., optical flow. The latter reveals shading varia-
tion due to object rotation relative to the viewer and the light
source. This paper combines both sources of information to
estimate the optical flow, shape, motion, light, and diffuse
albedo from a sequence of images.

Traditional shape reconstruction methods recover only a
subset of scene properties and assume that either pose or
shading is constant over all views. Although allowing both
pose and shading to vary appears to complicate the recon-
struction problem, we show that in fact it enables estimat-
ing flow and shape even in regions with little or no texture,
thereby resolving a key ambiguity in prior methods.

This paper generalizes optical flow, photometric stereo,
multi-view stereo, and structure from motion techniques un-
der certain assumptions. We assume that objects move
rigidly and are observed under orthographic projection; we
also assume that surfaces have Lambertian reflectance and
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are illuminated by fixed distant lighting; furthermore, we as-
sume no shadows, occlusions, or inter-reflections. Despite
the fixed lighting, these assumptions imply that the illumina-
tion still changes relative to the moving object. We present an
iterative algorithm that estimates camera motion, illumina-
tion, shape, and albedo in an alternating fashion, using both
spatial and temporal shading variations. Our contributions
can be interpreted in several different ways:
• Optical flow with lighting variation. Optical flow tech-

niques traditionally assume the brightness constancy con-
straint. We employ a more general constraint allowing
brightness to vary along optical flow.

• Stereo matching with changes in lighting. Stereo match-
ing usually requires static lighting across all views. We lift
this restriction in a principled way.

• Photometric stereo for moving scenes. Photometric
stereo recovers shape from temporal shading variations,
but requires a fixed object and camera. By computing flow
under changing illumination, we generalize photometric
stereo to moving objects.

• Dense structure from motion. Structure from motion re-
covers 3D positions for a sparse set of feature points. We
show that texture-less regions can also be reconstructed,
leading to dense surface reconstruction.
In the rest of the paper, we first review previous work

and formulate optical flow under varying illumination as
a subspace-constrained minimization. We then show how
our formulation resolves ambiguities present in previous ap-
proaches. Finally, we present a reconstruction algorithm and
demonstrate its performance on videos of real objects.

2. Previous work
In this section, we review previous work on motion analysis
under temporal brightness variation.

Pentland [15] coined the term photometric motion to de-
fine the intensity change of a scene point due to object rota-
tion, and proposed an algorithm to recover shape using this
cue. Although the algorithm can handle non-Lambertian sur-
faces, it requires that optical flow be known a priori.

Woodham [22] described a technique for recovering opti-
cal flow under controlled illumination. He assumed that the



object can be imaged two or more times for each pose, each
time with different illuminations. Despite the restrictive as-
sumptions, combining constraints from each image resolves
the aperture problem, but still fails on uniform regions.

Several tracking techniques have been proposed to model
lighting changes using predefined basis images [3, 7]. Other
optical flow algorithms [8, 10, 13, 14] modeled lighting
changes by introducing more parameters into the standard
optical flow equation. Although these methods out-perform
standard motion estimation, they require either large win-
dows or global smoothness to regularize flow in low-contrast
regions, often over-smoothing the results.

Stereo matching techniques have been extended to han-
dle changes in shading or illumination due to object rotation,
e.g., [11, 17, 19]. All of these methods use Lambertian re-
flectance to constrain matching in multiple images. However,
these techniques do not directly compute surface normals or
light source directions and therefore ambiguities arise in pla-
nar untextured regions.

All known optical flow and stereo algorithms fail to guar-
antee accurate matches in uniform intensity regions. This pa-
per shows that even though flow is under-constrained in these
areas, shape can still be accurately reconstructed by comput-
ing surface normals from shading variation over time. Our
approach does not assume the lighting or spatial albedo dis-
tribution to be known a priori, a key difference from previous
work on combining stereo and shape from shading [4, 6, 16].

3. Multi-frame optical flow under varying illu-
mination

In this section, we formulate the optical flow problem un-
der varying illumination using a subspace framework. This
framework relates optical flow and intensity changes to sur-
face positions, normals, motion, lighting, and albedo. We
begin by describing a general form of optical flow that al-
lows brightness variations.

Optical flow under intensity variation. Optical flow is
the trajectory of a scene point in an image sequence. Let
xt = [xt, yt]

T be the trajectory of a scene point s ∈ R3 in an
image sequence It(x, y). Traditionally, optical flow is com-
puted assuming the brightness constancy constraint:

It(xt) = I0(x0). (1)

If the motion vector ut = xt − x0 = [ut, vt]
T is small, lin-

earizing Eq. (1) results in the optical flow equation

∇It
Tut = I0 − It (2)

where ∇It = [∂It

∂x , ∂It

∂y ]
T

is the image gradient at x0 and I0

and It are shorthand notations for image intensities I0(x0)
and It(x0) respectively. Assuming brightness constancy lim-
its the applicability of most optical flow algorithms because

the assumption is violated under varying illumination. In
fact, the assumption is violated even when the light is static
but the object moves relative to the light [15], e.g., a Lam-
bertion object rotating under a directional light.

We now generalize Eq. (1) to describe optical flow under
varying illumination. Specifically, we use a scaling variable
γt = It(xt)

I0(x0)
to represent intensity variation as introduced in

[10, 14] and write the generalized brightness constraint as

It(xt) = γtI0(x0). (3)

Linearizing Eq. (3) results in a generalized optical flow equa-
tion

∇It
Tut − γtI0 = −It. (4)

Notice that Eq. (2) constrains [ut, vt]
T to lie on a line in

the u − v plane and Eq. (4) constrains [ut, vt, γt]
T to lie in a

plane in the u−v−γ space. However, optical flow can not be
computed from either Eq. (2) or Eq. (4) because more than
one unknown variable exists in each constraint equation. To
address this, we cast the optical flow estimation into a global
framework, in which flows of multiple points over multiple
frames are estimated together.

Suppose we have F + 1 frames indexed by t = 0, · · · ,F
and P scene points indexed by p = 1, · · · ,P . We treat frame
0 as a reference frame and let xt,p = [xt,p, yt,p]

T and γt,p be
the position and the intensity scaling variable of scene point
sp ∈ R3 in frame t. Optical flow and intensity variation can
be estimated by minimizing the following objective function

Φ({xt,p, γt,p}) =
F∑

t=1

P∑
p=1

φ(xt,p, γt,p) (5)

where φ(xt,p, γt,p) = (It(xt,p) − γt,pI0(x0,p))2.
Eq. (5) involves a large number of inter-related variables

{xt,p, γt,p} and we constrain these variables by extending
Irani’s subspace method [9]. Specifically, we propose to im-
pose subspace constraints on both flow trajectories and inten-
sity variations to compute optical flow under lighting varia-
tion. We demonstrate that the lighting variation actually im-
proves the flow estimation in low contrast regions. To sim-
plify the problem, we assume a Lambertian object is moving
rigidly in front of an orthographic camera, illuminated by a
directional light and an ambient light.

Geometric constraints on flow. Following [9], we define
constraints on optical flow arising from 3D motion in the
scene. Assuming orthographic camera projection, we can
relate flow trajectories and surface positions through[

xt,p

yt,p

]
=

[
rxTtsp + oxt

ryTtsp + oyt

]
(6)

where rxt and ryt
∈ R3 are the x and y camera axes for

frame t, and [oxt, oyt
]T is the projected object origin in the



Problem Known Unknown
Structure from Motion X, Y Rx,Ry,ox,oy,S
Photometric Stereo Γ, constant X and Y L,N
Multi-view Stereo Rx,Ry,ox,oy,Γ = 1 S

Table 1. Structure from Motion, Photometric Stereo, and Multi-view Stereo are special cases of Eq. (11).

image plane. Let [X]t,p = xt,p and [Y]t,p = yt,p
1. Tomasi

and Kanade [20] showed that X and Y lie in a three dimen-
sional affine subspace because[

X
Y

]
=

[
Rx

Ry

]
S +

[
Ox

Oy

]
(7)

where S = [s1, s2, · · · , sP ],

Rx = [rx1, rx2, · · · , rxF ]T,ox = [ox1, ox2, · · · , oxF ]T,

Ry = [ry1, ry2, · · · , ryF ]T,oy = [oy1, oy2, · · · , oyF ]T,

Ox = [ox,ox, · · · ,ox︸ ︷︷ ︸
Pcolumns

],Oy = [oy,oy, · · · ,oy︸ ︷︷ ︸
Pcolumns

].

[
Rx

Ry

]
and

[
ox

oy

]
form an affine basis for

[
X
Y

]
.

Photometric constraint on point intensity. We now de-
scribe constraints on the intensity variation of scene points.
The intensity of scene point sp in frame t is given by

It(xt,p) = αp · (lat + ldt
Tnp) (8)

where αp and np are the surface albedo and normal vector
at sp, and lat and ldt are the ambient light and directional
light for frame t respectively.2 We express lat, ldt, and np in
the object’s coordinate system; since we assume the object is
rigid, np is constant over time. From Eq. (8), we have

γt,p =
It(xt,p)
I0(x0,p)

=
lat + ldt

Tnp

la0 + ld0
Tnp

(9)

which is dependent on light variation and surface normal but
independent of surface albedo.

By stacking all {γt,p} into an F by P matrix Γ with
[Γ]t,p = γt,p, we can factorize Γ as follows

Γ = LN (10)

where L =
[

la1, · · · , laF
ld1, · · · , ldF

]T
,N =

[ 1
β1

, · · · , 1
βP

n1
β1

, · · · , nP
βP

]
, and

βp = la0 + ld0
Tnp is the irradiance at sp in the reference

frame. Therefore, Γ is spanned by a 4 dimensional linear
space and L is the basis of the subspace.

1[A]i,j = ai,j means “the element of matrix A at the i’th row and j’th
column is ai,j”

2Basri and Jacobs [1] prove that the right hand size of Eq. (8) is the
first-order approximation of the radiance from any Lambertian object under
general distant light distribution, where lat and ldt are interpreted as the
mean and the dominant direction of the light distribution respectively.

Subspace-constrained optical flow. We can now formu-
late multi-point multi-frame optical flow estimation un-
der rigid motion with lighting variation as a subspace-
constrained minimization problem:

min Φ(X,Y,Γ)
such that

X = RxS + Ox,Y = RyS + Oy,Γ = LN.
(11)

The key observation is that surface positions, normals, mo-
tion, and illumination are all coupled together into the same
minimization problem. In particular, surface positions and
normals are two complementary shape descriptions; the for-
mer is constrained by optical flow trajectories and the latter
is constrained by intensity variation along these trajectories.
By applying subspace constraints to both variables, we are
able to densely reconstruct rigidly moving shapes.

As shown in Table 1, our formulation of Eq. (11) sub-
sumes as special cases several traditional vision problems:
structure from motion (SFM), photometric stereo (PhS), and
multi-view stereo (MVS), which all correspond to assuming
some parameters are known and allowing others to vary. In
Section 4, we analyze the benefit of solving for all of the pa-
rameters together by deriving their estimation uncertainties
within our subspace-constrained minimization framework.
We begin by introducing a more robust form of the local ob-
jective function in Eq. (5) using windows of pixels.

3.1 Window-based flow

The pixel-based local objective function φ in Eq. (5) is not
robust in practice due to sensor noise, sampling, and quanti-
zation. We can define a more robust objective over a small
window Wp around x0,p in the reference frame, over which
both flow and surface normal are assumed to be constant. Re-
call in Eq. (9) that γt,p depends only on lighting and normal,
both of which are constant over the window; therefore, γt,p

is also constant over the window. The window-based local
objective function is then defined as

φW (xt,p, γt,p) =
∑

ξ∈Wp

(It(xt,p + ξ) − γt,pI0(x0,p + ξ))2.

(12)
Linearizing the intensity functions in Eq. (12) and mini-

mizing it yields a generalized Lucas-Kanade equation:

Mt,p

[
ut,p

γt,p

]
= dt,p (13)



where Mt,p =
∑

ξ∈Wp

[ ∇It∇It
T −I0∇It

−I0∇It I2
0

]

and dt,p =
∑

ξ∈Wp

[ −It∇It

I0It

]
.

The solution for [uT, γ]T is obtained when M is non-
singular. However, M will be close to singular for any
pixel that is not a corner, i.e., for most pixels. Consequently,
Eq. (13) must be solved with global flow and intensity con-
straints.

In practice, we achieve better results by defining the local
objective function based on an affine motion model within
windows around each pixel [18] and generalizing the sub-
space constraints accordingly. To simplify notation, we use
the translational model in the body of this paper, and de-
rive the affine model, used in our implementation, in the ap-
pendix.

4. Uncertainties for shape, motion, and light

The subspace-constrained minimization formulation of
Eq. (11) involves several sets of unknowns: surface posi-
tions, normals, lighting, and motion. In this section, we
analyze the uncertainties of these unknowns, revealing the
benefits of estimating all the unknowns together instead of
treating them in isolation as in previous work.

In particular, we analyze the uncertainties for two sub-
problems. In the first, we assume known poses and illumina-
tions and estimate surface positions and normals. This case
corresponds to the stereo matching problem when the illumi-
nation changes from frame to frame. For the second subprob-
lem, we assume known surface positions and normals and es-
timate poses and illuminations, which corresponds to a cam-
era and lighting calibration problem. In each subproblem,
we analyze the uncertainties by deriving the Gauss-Newton
approximation of its Hessian matrix with respect to the un-
knowns.

4.1 Stereo matching with changes in lighting

Traditional stereo matching techniques assume static light-
ing across views; we now generalize stereo matching to in-
corporate lighting changes. Formally, given the affine basis[

Rx

Ry

]
and

[
ox

oy

]
for

[
X
Y

]
and the linear basis L for Γ,

we wish to compute S and N such that Eq. (11) is minimized.
We first rewrite the generalized Lucas-Kanade equation,

Eq. (13), in terms of unknown flow positions xt,p and bright-
ness scales γt,p:

Mt,p

[
xt,p

γt,p

]
= d′

t,p (14)

where d′
t,p = dt,p + Mt,p[x0,p

T, 0]T.

We then substitute into Eq. (14) the camera pose con-
straint, Eq. (6), and lighting constraint, Eq. (9),

Mt,p


 rxTtsp + oxt

ryTtsp + oyt

(lat + ldTtnp)/βp


 = d′

t,p. (15)

Let lt =
[

lat

ldt

]
, n̄p =

[
1

βp
np

βp

]
, and Jt =


 rxTt 0

ryTt 0
0 ltT


;

Eq. (15) then becomes

Mt,pJt

[
sp

n̄p

]
= d′′

t,p (16)

where d′′
t,p = d′

t,p − Mt,p[oxt, oyt
, 0]T.

We finally multiply JT
t on both sides of Eq. (16), sum the

resulting equations for all frames, and obtain

Qp

[
sp

n̄p

]
= wp (17)

where Qp =
F∑

t=1
Jt

TMt,pJt and wp =
F∑

t=1
Jt

Td′′
t,p.

Eq. (17) allows us to compute the flow trajectory xt,p and
intensity variation γt,p of point p over multiple frames within
the lighting and pose subspaces. Qp is the approximated
Hessian matrix; inverting Qp gives sp and np.

Analysis. Because Qp determines the uncertainty of shape
and normal estimation, we now analyze its structure more
carefully. We first decompose Mt,p into sub-matrices:

Mt,p =
[

At,p bt,p

bt,p
T cp

]
(18)

where we assume At,p =
[

λ1t,p 0
0 λ2t,p

]
is diagonal

without loss of generality,3 and let bt,p = [b1t,p, b2t,p]
T.

Then Qp can be shown to have the following structure

Qp =
[

Rx
TΛ1pRx + Ry

TΛ2pRy (Rx
TB1p + Ry

TB2p)L
LT(B1p

TRx + B2p
TRy) cpLTL

]
(19)

where Λ1p = diag{λ1t,p}t is an F by F diagonal matrix
with [Λ1p]t,t = λ1t,p, and similarly Λ2p = diag{λ2t,p}t,
B1p = diag{b1t,p}t, B2p = diag{b2t,p}t.

Notice that the top left submatrix Qsp = Rx
TΛ1pRx +

Ry
TΛ2pRy determines the uncertainty of sp if np is

given [12]. The bottom right submatrix Qnp = cpLTL de-
termines the uncertainty of np if sp is given. On one hand,
if the object has enough motion relative to camera, i.e., Rx

3In general, At,p = Ut,p · diag{λ1t,p, λ2t,p} · Ut,p
T. Defining

[rx′t, ry
′
t] = [rxt, ryt]·Ut,p makes Eq. (19) still valid.



or Ry is rank 3, sp can be recovered if Λ1p or Λ2p is non-
zero. As a result, imposing the subspace constraint on optical
flow alleviates the aperture problem when only one of Λ1p

and Λ2p is non-zero. However, low-contrast regions where
both Λ1p and Λ2p are nearly zero are still problematic. On
the other hand, if the object has enough motion relative to
the light, i.e., L is full rank4, np can be recovered if cp > 0.
Recall that cp is simply the sum of squared intensity in the
window around x0,p at reference frame 0. Therefore, the sur-
face normal can always be estimated as long as the surface
albedo is non-zero. In summary, assuming the scene motion
is non-degenerate, we have the following:

• in regions with significant texture, sp is computable

• even in texture-less regions, np is computable

These two sources of shape information are thus complemen-
tary and can be used together to reconstruct surfaces in both
textured and textureless regions.

We should emphasize that in low contrast regions, the sur-
face normals can be accurately estimated in the presence of
optical flow errors because small offsets in flow trajectories
do not cause large changes in intensity variations along these
trajectories. Traditional shape-from-flow methods, e.g., [13],
regularize flow and thus often over-smooth the reconstructed
shape. Here we argue that optical flow does not have to
be strongly regularized in low contrast regions; they can be
computed through reconstructed shape integrated from sur-
face normals. We will present an algorithm in Section 5 to
combine both flow trajectories and shading variation along
these trajectories for shape reconstruction.

4.2 Camera and light calibration

We now consider the subproblem of estimating camera mo-
tion Rx, Ry, ox, oy and light L given the surface positions S
and normals N. Similarly to Section 4.1, we can derive the
approximated Hessian matrix Pt for computing the camera
motion and light as:

Pt




rxt

oxt

ryt
oyt
lt


 = vt (20)

where Pt =
P∑

p=1
Kp

TMt,pKp , vt =
P∑

p=1
Kp

Td′
t,p,

Kp =


 s̄Tp 0 0

0 s̄Tp 0
0 0 n̄T

p


 , s̄p =

[
sp

1

]
.

4Actually, the normal can also be estimated when the ambient term in L
is zero, in which case the rank of L is only 3.

Under the same assumption that At,p is diagonal, Pt can
be shown to have the following structure

Pt =


 S̄Λ1tS̄T 0 S̄B1tNT

0 S̄Λ2tS̄T S̄B2tNT

NB1t
TS̄T NB2t

TS̄T NCNT


 (21)

where Λ1t = diag{λ1t,p}p is a P by P diagonal matrix
with [Λ1t]p,p = λ1t,p, and similarly Λ2t = diag{λ2p,p}p,
B1t = diag{b1t,p}p, B2t = diag{b2t,p}p, C = diag{cp},
and S̄ = [s̄1, s̄2, · · · , s̄P ].

The top left sub-matrix Pmt =
[

S̄Λ1tS̄T 0
0 S̄Λ2tS̄T

]
determines the uncertainty of camera motion estimation for
frame t and is dominated by feature points that have large λ1

and λ2.
The bottom right sub-matrix Plt = NCNT determines

the uncertainty of light for t and is determined by non-black
regions in the images. As more points are used to estimate
the light, N tends to contain more normal variation, and the
lighting estimation becomes more certain.

5. Reconstruction algorithm
In this section, we present an iterative algorithm to solve
Eq. (11). We begin by computing camera motion and initial-
izing lighting with structure from motion on sparse features.
Then, we iterate between solving for the shape and solving
for the lighting while fixing other unknowns.

5.1 Solve for Rx, Ry, ox, oy, and initialize L

To estimate camera motion, we track feature points using
our translation-based generalized Lucas-Kanade equation,
Eq. (13), and then apply Tomasi-Kanade factorization to re-
cover Rx, Ry, ox, oy. Currently, we select a small number
(M) of feature points manually, though automatic methods
could also be used [18]. To estimate lighting, we upgrade
motion model from translation to affine in feature tracking.
In the appendix, we show that the affine motion parameters
are also subject to the subspace constraints of camera mo-
tion.5 Affine tracking under these constraints amounts to es-
timating surface tangents ∂s

∂x and ∂s
∂y at the feature points. Fi-

nally, we compute feature normals from the surface tangents,
and estimate the lighting L using the method to be described
in Section 5.3.

5.2 Solve for S and {np}
Next, we compute the position and normal at each pixel in
the reference frame. We begin by solving for {sp} and {n̄p}
using Eq. (17) subject to the following linear constraint[

rx0Tsp + ox0
ry0

Tsp + oy0

]
=

[
x0,p

y0,p

]
(22)

5We could have used unconstrained affine tracking from the start, but we
found that the added degrees of freedom made the tracking less robust.



which forces sp to lie along the line of sight through x0,p.6

As discussed in Section 4, we can expect the normal infor-
mation to be reasonably good over most pixels, but recon-
structed positions will generally be unreliable in textureless
regions. Thus, our shape reconstruction relies primarily on
normals. Given {n̄p} for every point, we integrate a depth
map z̃(x, y) by minimizing

Ψ(z̃) =
∑
x,y

(
∂z̃(x, y)

∂x
+

nx

nz

)2

+
(

∂z̃(x, y)
∂y

+
ny

nz

)2

(23)
using the conjugate gradient method. In our iterative frame-
work, we improve convergence by initializing the conjugate
gradient solver with the depth map from the last iteration.

The depth map z̃(x, y) obtained from normal integration
will not in general correspond to the “true” depth map if
the lighting is not accurate. In particular, erroneous light-
ing gives rise to global distortion of the estimated surface
normals and thus global distortion of the reconstructed depth
map. This distortion is evident when the surface does not
pass through the 3D positions of tracked feature points. To
bring the surface closer to these points, we apply a global
affine transformation to the depth map:

z(x, y) = µx + νy + ζz̃(x, y) + η. (24)

For each of the M feature points sm, we have both a depth
zm directly computed from Eq. (17), as well as a depth z̃m

from normal integration in Eq. (23). Thus, using Eq. (24), we
can set up a system of M linear equations and solve for the
affine parameters. We then use these parameters to correct
the depth map of the reconstructed surface. As shown by
Belhumeur et al. [2], we can also use the same parameters to
correct normals.

5.3 Solve for L and {βp}
After surface positions and normals are computed, we esti-
mate lighting L and irradiance parameters {βp}. The index
p in this section refers to either sparse feature points or dense
flow points. Recall that γt,p = (lat + ldt

Tnp)/βp, which may
be rewritten as

lat + np
Tldt − γt,pβp = 0. (25)

For dense flow, we have P · F equations and 4F unknowns
for lighting {lt} and P unknowns for {βp}7. Recalling the
definition of βp, we have a set of constraints for Eq. (25) in
the reference frame:

la0 + np
Tld0 − βp = 0. (26)

6We do not enforce the quadratic constraint that the L2 norm of the last
three elements of n̄p should equal the square of the first element.

7Replace P with M for the sparse feature case.

A least squares solution to Eq. (25) constrained by Eq. (26)
is computed using a variant of constrained least squares [5]
for homogeneous equations.

In the case that there is no relative motion between the
camera and light, the relations ldt = [rxt, ryt

, rzt] · ld0 and
lat = la0 further constrain the problem and make the solution
more robust.

5.4 Implementation

After estimating camera motion and initializing lighting, we
solve for shape and lighting in a coarse-to-fine manner using
an image pyramid. At each resolution, we iterate twice be-
tween the steps described in Section 5.2 and 5.3. In principle,
we could also update camera motion in this iterative frame-
work. However, our analysis of Eq. (21) indicates that low
contrast points do not improve pose estimation much, and
the Tomasi-Kanade factorization already initializes camera
motion using a good set of features.

6. Results
Our experimental configuration consists of a single light
source and a Basler A301f video camera. We recorded im-
age sequences of handheld objects rotating in front of a fixed
camera under static lighting. Figure 1 shows the sample in-
puts and reconstruction result. If we just solve Eq. (17) for
the surface position {sp}, we get a noisy reconstruction (Fig-
ure 1e) due to ambiguities in textureless regions. When in-
tegrating normals derived from that same equation, we are
able to reconstruct a good facsimile of the original shape, as
shown by the coarse-to-fine progression (Figure 1f-g). Fig-
ure 1c and d show side view renderings, the latter with es-
timated surface albedo. Figure 2 is an example of a shape
containing large planar untextured regions, which confound
optical flow and stereo reconstruction algorithms, even those
designed to handle brightness changes. Since our method
correctly estimates normals without texture, we obtain an ac-
curate reconstruction.

7. Conclusions and future work
We have presented a technique for computing optical flow,
shape, motion, lighting, and albedo from a monocular im-
age sequence. The approach combines both geometric (opti-
cal flow) and photometric (intensity change) cues to compute
dense shape that is accurate even in completely uniform un-
textured regions.

In order to accomplish our goals, we made a number of as-
sumptions and approximations. For example, our approach is
not robust to occlusions, shadows, inter-reflections, or spec-
ularity. Further, in Section 5.2, surface positions and normals
are computed for each point individually without enforcing
their mutual consistency. One direction of future work is to
robustly optimize with respect to all unknowns, i.e., solve for
a surface whose positions and normals simultaneously satisfy



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Reconstruction of a figurine. (a) The reference image. (b) Another sample image from a 236 frame sequence. (c)
Profile view of the reconstruction. (d) The same view with recovered albedo-map. (e) Shape obtained by solving Eq. (17) without
normal integration. (f)-(h) Coarse-to-fine reconstructions using normal integration.

(a) (b) (c)

Figure 2. (a) is an input frame from a 130 frame sequence. (b) is a surface reconstruction by solving Eq. (17) directly instead of
by normal integration, (c) is the rendering of the final surface reconstructed with normal integration.



both flow and shading variation constraints. It may also be
possible to extend our approach to handle non-rigidly mov-
ing scenes, by incorporating recent work on morphable shape
bases, e.g., [21].

Appendix

In this appendix, we present the subspace-constrained optical
flow with a local objective function φ̃W based on an affine
motion model, defined as

φ̃W (xt,p, γt,p) =
Wp∑
ξ

(It(xt,p +Dt,p ·ξ)−γt,pI0(x0,p +ξ))2

(27)

where Dt,p =
[

et,p gt,p

ft,p ht,p

]
is the first order approxima-

tion for the flow around xt,p. Assuming orthographic camera
projection, it follows that[

et,p

ft,p

]
=

[
rxTt
ryTt

]
∂sp

∂x

[
gt,p

ht,p

]
=

[
rxTt
ryTt

]
∂sp

∂y .

(28)
Defining [E]t,p = et,p, [F]t,p = ft,p, [G]t,p = gt,p, [H]t,p =
ht,p, we have[

E
F

]
=

[
Rx

Ry

]
∂S
∂x

[
G
H

]
=

[
Rx

Ry

]
∂S
∂y (29)

where ∂S
∂x = [∂s1

∂x , · · · , ∂sP
∂x ] and ∂S

∂y = [∂s1
∂y , · · · , ∂sP

∂y ].
Therefore the window deformation coefficients are also sub-
ject to three dimensional subspace constraints, and the multi-
point multi-frame optical flow problem becomes

min Φ(X,Y,E,F,G,H,Γ)
such that

X = RxS + Ox,Y = RyS + Oy,Γ = LN
E = Rx

∂S
∂x ,F = Ry

∂S
∂x ,G = Rx

∂S
∂y ,H = Ry

∂S
∂y .

(30)
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