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Appendix
Details of Optimistic Estimation Methods
UCRL This strongly optimistic approach is based on
UCRL2 (Jaksch, Ortner, and Auer 2010), which defines a
confidence set over each transition/reward distribution, and
takes the maximum valid distribution in the confidence set
when planning. Specifically, in a finite-horizon setting it al-
lows the L1 norm of the transition distribution to deviate
from the MLE by at most

√
14 log(SA`τ`/δ)

max(N,1) , where ` is the
number of episodes, N is the number of transition sam-
ples, and δ is a user-specified confidence parameter. UCRL’s
bound incorporates global uncertainty to ensure that the
true MDP is within the confidence set with high probability
(Auer and Ortner 2007). We use this bound to quantify the
uncertainty over our outcome distribution, setting δ = 0.05
as in Osband et al. 2013.1. The advantage of UCRL2’s con-
straint on the L1 is that it is easy to calculate the most op-
timistic distribution that obeys the constraint, as explained
in Strehl and Littman 2004. Since we are in a finite hori-
zon setting, we calculate the most optimistic distribution for
each (s, t) pair.

MBIE Model-based Interval Estimation (MBIE) (Strehl
and Littman 2004; 2008) is a very similar idea to UCRL,
but simply bounds the local L1 divergence at each state
with probability 1− δ. The original MBIE algorithm (Strehl
and Littman 2004) used a bound on their transition dy-

namics of
√

2(|S|−1) log(N+1)−log(δ)
N . However, similar to

later versions (Strehl and Littman 2008), we use the bound
shown by Weissman et al. 2003, namely that for a dis-
crete distribution with O outcomes, the probability of the
error in L1 divergence being ε or greater after N samples
is at most (2O − 2)e−Nε

2/2, to derive the refined bound of√
2 log((2O−2)/δ)

N . The advantage of this bound is that it de-
creases faster with the number of samples N and matches
our outcomes setting. Again we let δ = 0.05 correspond-

1Note that since it is not immediately clear how to translate
the UCRL analysis to an MDP specified in terms of outcomes, we
simply use apply UCRL’s bound on the transition distribution to
our outcome distribution. Also, even though it seems as though
δ = 1/` is needed to induce sublinear expected regret for UCRL,
we follow Osband et al. 2013 for the parameter values.

ing to 95% confidence, and use max(N, 1) to deal with the
0-sample case.

(Optimistic) Thompson Sampling Thompson sampling
(Thompson 1933), also known as posterior sampling, has
been shown to be one of the best performing algorithms
empirically at handling the exploration/exploitation tradeoff
(Chapelle and Li 2011; Osband, Russo, and Van Roy 2013).
Unfortunately, it is not optimistic. Although this tends to be
a strength in a explore/exploit setting where it tends to boost
exploitation, here it is a major weakness as if the sample hap-
pens to be pessimistic we may wastefully add an action at a
state where an existing action may already be good. One pre-
viously proposed way of partially alleviating this problem is
Optimistic Bayesian Sampling, (May et al. 2012) which re-
jects samples with values lower than the mean of the distri-
bution.2 The mean of a Dirichlet with parameters α1, . . . αO
is a vector X with components αi∑

j αj
, so we reject sampled

distributions with values of less than V (X). The choice how
to set the prior (Dirichlet parameters) is up to the user, how-
ever if a Bayesian algorithm such as PSRL (Osband, Russo,
and Van Roy 2013) is used, the user will likely have to sup-
ply a prior distribution in any case.

BOSS An alternate approach to inject optimism into a
posterior sample is simply to sample J times and take the
sample with maximum value. This is the key idea behind the
Best of Sampled Set (BOSS) algorithm (Asmuth et al. 2009),
which showed this approach can have attractive theoretical
properties in a traditional explore/exploit setting. Unfortu-
nately, a significant downside of BOSS is that it is unclear
how to set J . Asmuth et al. 2009 found a value of J = 10 to
work best empirically so we use that value without further
tuning.

2OBS as proposed by May et al. 2012 takes the max of the
sample and the mean, we instead resample if the current sample
is lower than the mean to further increase optimism. Additionally,
since we have Dirichlet distributions we must be careful in distin-
guishing the mean of the posterior distribution with the expected
final value. However, since the values of each outcome are consid-
ered to be a constant and not dependent on the outcome distribu-
tion, it suffices to dot product the mean of the Dirichlet with the
vector of values.



Proof of Lemma 1
Lemma 1. (Non-starving) Consider ELI using a prior dis-
tribution f which consists of an independent Dirichlet prior
on outcome distributions of αi = c for some c > 0. As-
sume for a given ε > 0, after Nε actions are added to each
state, additional actions improve the value of each state by
at most ε. Let C be an arbitrary class of models with Nε
actions which has non-zero probability under our chosen
prior. Assume that the true model M for the first Nε ac-
tions is drawn from C according to f(M |C).3 Finally, as-
sume4 that for each s there exists o1, o2 ∈ O such that
T (s, o1) = T (s, o2);R(s, o1) 6= R(s, o2). Then, as the
number of actions added by ELI goes to infinity, our ELI
approach will eventually uncover actions at each state such
that the optimal policy in the MDP with added actions is at
least ε-optimal (with respect to the full set of actions).

Proof. For a contradiction, assume there is some non-
vanishing probability that the optimal policy in the MDP
with added action is less than ε-optimal. For this to be the
case, clearly there must be a state s and timestep t such that
|As,`| < Nε as ` → ∞ and V (s, t) is not epsilon-optimal,
but if we added additional actions to that s, V (s, t) in the
MDP with added actions would be epsilon-optimal. Since
the number of total actions added by ELI goes to infinity,
there must be at least one other state s′ 6= s such that the
number of added actions added by ELI at s′ go to infinity.
Since our ELI method selects the state with the highest ELI
score, there must be an infinite number of rounds where the
ELI score of s′ is greater than that of s. Now, since the ELI
score for s′ contains a factor of 1

|As′,`|+2 the score will go
to zero as the number of actions at state s′ goes to infinity.
Therefore, the only way for us to add a finite number of ac-
tions to s is for the ELI score of state s to go to zero as well.
Since we sum over timesteps and all ELI scores are nonneg-
ative, this means the score of s at time t must go to zero as
well.

Now, we know the ELI score for state s at time t
is 1
|As,`|+2 (Vmax(s, t) − V̂ (s, t|As,`)), or, since we know

|As,`| < Nε, at least 1
Nε+2 (Vmax(s, t) − V̂ (s, t|As,`)).

Clearly, the only way for this to go to zero is for V̂ (s, t|As,`)
to go to Vmax(s, t), which means for some as ∈ As,`
Q̂(s, as, t) converges to Vmax(s, t).

By assumption, there exists o1, o2 ∈ O such that
T (s, o1) = T (s, o2);R(s, o1) 6= R(s, o2). Without loss of
generality, label o1 and o2 such that R(s, o1) > R(s, o2).
Clearly, in order for Q̂(s, as, t) to approach Vmax(s, t) the
estimated P̂ (o2|s, as) must go to zero as ` increases, or
we could have increased Q̂(s, as, t) by shifting the prob-
ability mass to P̂ (o1|s, as). If we sample (s, as) a finite

3This assumption on the relationship of the true model to the
prior is fairly weak, and similar to that used in the analysis of
PSRL (Osband, Russo, and Van Roy 2013).

4This assumption is due to the considered outcome setting, in
fact in discrete MDPs Osband et al. 2013 proposes priors which
treat rewards and transitions independently which would imply a
stronger assumption.

number of times, the BOSS sampling procedure will sam-
ple P̂ (o2|s, as) > 0 with some positive and non-vanishing
probability. If we sample P̂ (o2|s, as) an infinite number
of times, it will converge to its true value. The probabil-
ity of any outcome distribution placing zero probability on
any outcome under the posterior MDP distribution f(M) is
zero, and thus likewise under f(M |C). Since the distribution
over outcomes at (s, as) was sampled according to f(M |C),
P (o2|s, as) > 0 with probability 1 in the true (sampled)
model. So Q̂(s, as, t) does not converge to Vmax(s, t).

Simulation Domains
Riverswim (Strehl and Littman 2008) is a chain MDP with
6 states and 2 ground actions per state that requires efficient
exploration (Osband, Russo, and Van Roy 2013). For a dia-
gram and complete description of the environment, see Os-
band et al. 2013. Similar to past work (Mandel et al. 2016)
we used a horizon of 20 and use 5 relative outcomes for
moving left and right or staying with some reward. We used
a flat (αi = 1) Dirichlet prior over outcome distributions for
PSRL.

Marblemaze (Asmuth et al. 2009; Russell and Norvig
1994) is a gridworld MDP with 36-states and 4 ground
actions per state that allows a significant amount of prior
knowledge to be encoded in the outcomes framework (As-
muth et al. 2009; Mandel et al. 2016). For a diagram and
complete description of the environment, see Asmuth et
al. 2009. As in past work (Mandel et al. 2016), we used a
horizon of 30 and a set of 5 outcomes denoting whether the
agent moved in each cardinal direction or hit a wall (in keep-
ing with past work, the coordinates of the goal and pits are
assumed to be known). We also set the reward for falling in
a pit to be -0.03. As in riverswim, we used a flat (αi = 1)
Dirichlet prior over outcome distributions for PSRL.

We also try a variant of Marblemaze with an uninforma-
tive outcome space. Here, the outcome space consists of ev-
ery possible combination of the 3 possible reward values and
the 31 possible valid next states (plus the terminal signal for
falling into one of the four pits or reaching the goal). To al-
low PSRL to learn faster in this large outcome space, we
used a Dirichlet prior of (αi = 1

O ) over outcome distribu-
tions, which encourages sparsity.

The Large Action Task was introduced by Sallans et
al. 2004 as a testbed for algorithms that cope with an ac-
tion space too large to explore directly. In this setting, states
and actions are described by vectors of K bits.5 On each
run the environment is initialized by picking 13 bit vectors
uniformly at random to represent the states of the problem.
Then each of these states is associated with another bit vec-
tor (again chosen uniformly at random) to represent the op-
timal action. At the start of an episode a fresh bit vector is
selected uniformly at random, and the the agent starts the
episode at the closest (in hamming distance) state to that
vector.6 The agent picks a bit vector as an action and re-

5Sallans et al. considered cases where the number of bits for
states and actions differed, but we keep them the same for simplic-
ity.

6For implementational reasons we do not actually sample a



ceives a reward equal to the number of bits that matched be-
tween the chosen action and the optimal action minusK/2.7
In Sallans et al. the environment was closer to a contextual
bandit setup, where after each timestep a new key state was
drawn independent of the action taken. To make the problem
more interesting from a reinforcement learning perspective,
we deterministically transition by XORing the chosen ac-
tion and current state vector and finding the closest (in ham-
ming distance) next key state. In our experiments we choose
K = 20, so there are only 13 states but 220 ground actions.
We use a horizon of 5, and the outcome space is uninfor-
mative with one outcome for each key state and reward, so
273 total outcomes. Due to the large outcome space we use
a sparse prior, similar to large outcomes version of marble-
maze (αi = 1

O ).
Improving experts in the large action task behave as fol-

lows. The initial action for s is drawn by first uniformly sam-
pling a hamming distance, and then uniformly sampling a
vector with that hamming distance from the optimal action
for s. Subsequent actions are generating by either (with 50%
probability) generating another random vector with the same
hamming distance as the closest currently available action
for s, or (with the remaining 50% probability) choosing an
improved hamming distance uniformly at random and then
choosing a vector with that hamming distance at random.

Poor experts in the large action task behave as follows.
The initial action is generated uniformly at random, and sub-
sequent actions are generated with probability proportional
to their hamming distance to the optimal action, so poor ac-
tions are much more likely to be generated.
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